2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Efficient Training of Semantic Image Segmentation
on Summit using Horovod and MVAPICH2-GDR

Quentin Anthony, Ammar Ahmad Awan, Arpan Jain, Hari Subramoni, and Dhabaleswar K. (DK) Panda
Dept. of Computer Science and Engineering
The Ohio State University
{anthony.301, awan.10, jain.575, subramoni.l, panda.2} @osu.edu

Abstract—Deep Learning (DL) models for semantic image
segmentation are an emerging trend in response to the explosion
of multi-class, high resolution image and video data. However,
segmentation models are highly compute-intensive, and even the
fastest Volta GPUs cannot train them in a reasonable time
frame. In our experiments, we observed just 6.7 images/second
on a single Volta GPU for training DeepLab-v3+ (DLv3+),
a state-of-the-art Encoder-Decoder model for semantic image
segmentation. For comparison, a Volta GPU can process 300
images/second for training ResNet-50, a state-of-the-art model for
image classification. In this context, we see a clear opportunity
to utilize supercomputers to speed up training of segmentation
models. However, most published studies on the performance
of novel DL models such as DLv3+ require the user to signif-
icantly change Horovod, MPI, and the DL model to improve
performance. Our work proposes an alternative tuning method
that achieves near-linear scaling without significant changes to
Horovod, MPI, or the DL model. In this paper, we select DLv3+
as the candidate TensorFlow model and implement Horovod-
based distributed training for DLv3+. We observed poor default
scaling performance of DLv3+ on the Summit system at Oak
Ridge National Laboratory. To address this, we conducted an
in-depth performance tuning of various Horovod/MPI knobs to
achieve better performance over the default parameters. We
present a comprehensive scaling comparison for Horovod with
MVAPICH2-GDR up to 132 GPUs on Summit. Our optimization
approach achieves near-linear (92%) scaling with MVAPICH2-
GDR. We achieved a “mIOU” accuracy of 80.8% for distributed
training, which is on par with published accuracy for this model.
Further, we demonstrate an improvement in scaling efficiency by
23.9% over default Horovod training, which translates to a 1.3x
speedup in training performance.

Index Terms—DNN Training, Performance Characterization,
MVAPICH2 MPI, TensorFlow, Horovod, Image Segmentation

1. INTRODUCTION AND MOTIVATION

Deep Neural Networks (DNNs)! have revolutionized many
computer vision tasks, and are at the forefront of state-of-the-
art image processing problems such as image classification,
object detection, and semantic image segmentation. Simply
put, a DNN is a directed, weighted graph with non-linear
mappings between an input x and a learned output y. Nodes
in the graph are labeled as neurons, and each subsequent
set of neurons are grouped into layers. Input image data is

'We use the terms DNN and model interchangeably in this paper

passed through each layer of the DNN sequentially. Training
the DNN entails adjusting the weighted connections to produce
a function f such that y = f(x). The trained DNN may then
be applied to new data to produce predictions. Training DNN
models is compute/communication intensive, and much
effort has been extended to train DNNs on HPC systems
(1] [2] [3] [4].

Deep Convolutional Neural Networks (DCNNs) are an
extension of traditional DNNs to image-related applications.
DCNNs have achieved highly accurate image classification
by employing pooling layers, which reduce the input image’s
dimensions by combining the outputs of several previous
neurons into a single neuron. A standard image classification
DCNN is ResNet-50. Such pooling layers reduce the size
of the network while improving the network’s invariance to
local image transformations. While invariance is desirable for
high-level vision tasks such as image classification, it may
be problematic for lower-level tasks such as semantic image
segmentation, in which each individual pixel is classified
according to its enclosing region.

A better DCNN for such low-level vision tasks should be
sensitive to local image details instead of relying upon local
pooling layers. Encoder-decoder image segmentation DCNNs
achieve this behavior by introducing an encoder-decoder struc-
ture that first reduces the input image to its essential features,
and then recovers the input image to its original resolution
at the output layer. DeepLab-v3+ (DLv3+) is one successful
example of the encoder-decoder structure that we evaluate in
this paper. A key difference between an image classification
model (e.g. ResNet-50) and an image segmentation model
(e.g. DLv3+) is that segmentation models are much more
compute-intensive even for the same image size (see Figure
1). We first compare the training throughput of ResNet-50 on
a standard ImageNet image size (224x224) with the larger
PASCAL VOC 2012 image size (513x513) typically used to
train DLv3+. The ResNet-50 model is still almost 10x faster
to train than a DLv3+ model on the same image size. This
massive increase in computation indicates that segmentation
models like DLv3+ could benefit significantly from distributed
training on HPC systems. Further, while semantic image
segmentation has become increasingly relevant for applications
such as object detection, climate analysis, and autonomous
driving, few studies have investigated the feasibility and

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00171

1015

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

performance of distributed segmentation networks on HPC
systems.

350

" [
0
ResNet-50 ResNet-50

(224x224) (513x153)
Model (Width x Height)

DLv3+ (513x513)

Fig. 1: Single-node performance for classification (ResNet-50)
and segmentation (DLv3+) models on a V100 GPU

To the best of our knowledge, only the work of Kurth
. [5] has scaled an image segmentation model to an HPC
system, albeit with significant changes to Horovod’s data-
parallel support. We demonstrate that comparable performance
is achievable by tuning the knobs of both Horovod and a
GPU-Direct MPI communication backend. In this work, we
first modify an existing segmentation network (DLv3+) written
in Tensorflow to provide multi-node data-parallel support via
Horovod, and then we examine the default scaling behavior
on MVAPICH2-GDR and NCCL communication backends.
Finally, we demonstrate the performance benefits that may
be gained through system-level tuning and confirm that seg-
mentation models trained on a distributed system still provide
competitive accuracy compared to their counterparts trained
on a single node.

A. Challenges

The key challenge addressed in this paper is: How do we
efficiently distribute image segmentation models after taking
into account the unique characteristics of both the segmen-
tation model and the HPC system? We seek a distributed
training method that may be easily applied to other novel
DNN architectures. To answer this broad question, we solve
the following concrete challenges:

o What are the key differences between segmentation and
classification networks that affect their training perfor-
mance at scale?

« How may existing segmentation networks be trained on
HPC systems without changes to the model or commu-
nication library? (e.g. MPI, NCCL)

« What system-level optimizations may be made to effi-
ciently train segmentation networks on distributed sys-
tems, given these key differences?

B. Proposed Approach

To solve these challenges, we propose a two-step process to
distribute existing segmentation models. First, introduce data-
parallel training support via Horovod to the existing training
code. Second, fine-tune Horovod to support the increased

model and image sizes required for semantic image segmen-
tation.

C. Contributions

This work provides the user with an efficient approach to
scale image segmentation without changes to the model, the
distributed training framework (Horovod), or the communi-
cation runtime. Further, our proposed training approach is
agnostic to the model, DL framework, and system used for
DNN training. This is achieved by extensive tuning of various
knobs for Horovod and the MPI runtime. To understand the
communication characteristics, we rely on a diagnostic tool
called hvprof [6]. We make the following key contributions in
this paper:

« Demonstrate the productivity and performance shortcom-
ings of existing distributed semantic image segmentation
training methods.

o Establish the usefulness of Horovod and MPI profiling
tools for distributing novel DNNs on GPU clusters, and
apply them to demonstrate a 68.1% improvement (Table
D) in allreduce

o Propose and evaluate system-level tuning to provide com-
petitive segmentation training performance.

o Ensure that the prediction accuracy of segmentation mod-
els is not affected by distributed training

« We demonstrate the superiority of our tuned
Horovod/MPI approach and report an improvement
in scaling efficiency by 23.9% (Fig. 13), which translates
to a 1.3x speedup over the default approach

D. Organization

The rest of the paper is organized as follows. Section
2 provides the necessary background, including details on
Horovod, Semantic image segmentation, and DeepLab. Sec-
tion 3 contains an overview of the proposed optimizations to
improve distributed training performance. Section 4 discusses
characterization metrics, software libraries, and platforms used
in this study. Sections 5 and 6 provide insights into hyperpa-
rameter optimization for single-node training and the scaling
trend under Horovod and MVAPICH2-GDR’s default settings.
In Section 7, we show optimized scaling performance using
our proposed design, and then we summarize key insights in
Section 8. Section 9 contains related work, and we conclude
with Section 10.

II. BACKGROUND
A. DL Frameworks

DL frameworks are a user-transparent interface to define,
train, and validate DL models on various CPU and GPU
architectures. Such frameworks reduce development effort by
providing modular building blocks that may be combined to
create novel, reproducible DNN architectures. These frame-
works hide complex mathematics from the users, enabling
them to define and implement new layers and models tailored

1016

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

according to the end application. DNN training time depends
on the DL model, the size of dataset, and the DL framework
being used. While DNN training has become increasingly
compute-intensive, few DL frameworks provide convenient
distributed training features. Even with the limited framework
support, however, the choice of communication backend may
be complex. Training with TensorFlow, for example, can be
distributed across nodes with gRPC, gRPC-X, and MPI/NCCL
based solutions [7].

B. Data-Parallelism

Data parallelism is an approach to distributed DNN training
that sends a copy of the DNN model to each CPU/GPU,
and then training data is partitioned across all the processes.
The number of samples sent to each node at each global
training step is called the batch size. After each training
step, the DNN parameters need to be synchronized by av-
eraging the gradients among the processes. This is typically
achieved with an MPI_allreduce, which performs an element-
wise sum operation and sends the result to every process.
The standard data-parallelism approach, synchronous training,
requires each device’s model copy to send an updated gradient
before progressing to the next global training step. While
asynchronous training approaches improve the throughput on
individual nodes, training convergence becomes complicated
to achieve.

> GPUO (Bcast) |

packed_comm_buff

0

Params

HEEE|

I~
&
©
Forward

Backward
Pass

packed_re
duce buff

packed_re
duce buff

packed_re
duce buff

packed_re
duce buff

I

Gradients

i
]
ApplyUpdates 1
1

GPU 0 (Reduce)

Fig. 2: Example data parallel DNN training on 4 GPUs [8]

C. Horovod

Horovod is a distributed DNN training framework that em-
ploys data parallelism to train DNNs [9]. Horovod employs the
MPI_Allreduce and MPI_Bcast of a user-provided communi-
cation backend to perform data-parallel training. Horovod sup-
ports most communication runtimes such as MPI, DDL [10],
and NCCL [11]. Horovod initializes a communication engine
responsible for synchronization among processes, and employs
optimization techniques such as Tensor Fusion to improve
distributed training performance. Tensor fusion batches small
allreduce operations into a single reduction operation, which
improves DNN training performance. Tensor Fusion works as
follows:

1017

1) Determine which tensors are ready to be
reduced. Select first few tensors that fit in
HOROVOD_FUSION_THRESHOLD bytes and have

the same data type

Allocate fusion buffer of size
HOROVOD_FUSION_THRESHOLD if it was not allo-
cated before. Default fusion buffer size is 64 MB

2)

3)
4)
5)
6)

Copy data of selected tensors into the fusion buffer
Execute the allreduce operation on the fusion buffer
Copy data from the fusion buffer into the output tensors

repeat until there are no more update tensors to reduce
in current cycle of length HOROVOD_CYCLE_TIME
(Default is 3.5 ms)

Tuning these parameters may have significant performance
benefits for novel DNN training workloads, and here we
exploit this insight for semantic image segmentation. Cur-
rently, Horovod supports the TensorFlow, MXNet, PyTorch,
and Keras DL frameworks. Horovod acts as a middleware
between these frameworks and a communication backend as
depicted in Figure 3

Application Models

Deeplab-v3+

(Deep Learning Frameworks)
| MXNet | | PyTorch | | TensorFlow | | Keras |
N J
(" Distributed Training Middleware (Horovod) h
| Ncco || we |
N J

: HPC Platforms High-Performance Interconnects)

il
:| InfiniBand || Pcle ||
\ e ————— -I/

Fig. 3: Overview of a Distributed DNN Training Stack

D. Semantic Image Segmentation and Pascal VOC 2012

In image classification, each individual image of a dataset is
assigned a class label. However, in the age of high-resolution
multi-class image datasets, DCNNs for image classification do
not provide sufficient detail of image contents. Semantic image
segmentation, also termed pixel-level classification, produces
a mapping from each pixel of an image to a distinct object
class. The output of a segmentation model is a set of masks
over each pixel cluster, which correspond to a set of distinct
object classes. For an example segmentation data sample, see
Figure 4. Semantic image segmentation is vital to several

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

emerging applications such as autonomous driving, automatic
medical diagnosis from imaging, or climate analysis [5].

=Y

Fig. 4: A sample image and ground-truth segmentation map-
ping from PASCAL VOC 2012. Courtesy: Everingham et
al. [12]

In order to provide application-agnostic benchmarks for
segmentation models, several freely-available datasets have
become available such as Cityscapes, ADE20K, and PASCAL
VOC. The PASCAL Visual Object Classes (VOC) dataset
consists of 20 foreground object classes and one background
class. The training and validation data has 11,530 images
containing 27,450 region-of-interest (ROI) annotated objects
and 6,929 segmentations. Users may evaluate the accuracy of
a segmentation model by calculating the mean intersection-
over-union (mIOU), which is defined as the intersection-over-
union between the predicted and ground-truth segmentation
masks averaged over each class in the image.

E. DeepLab

DeepLab is an extension of the U-Net segmentation archi-
tecture [13] based on Fully Convolutional Networks (FCNs)
[14], [15]. DeepLab [16] is one of the most popular image
segmentation models, and introduced three major improve-
ments over past DCNNs for semantic image segmentation: up-
sampled filters or ‘atrous convolution,” atrous spatial pyramid
pooling (ASPP), and improved localized object boundaries.
The latest iteration of DeepLab, DeepLab-v3+ (DLv3+), in-
troduced an encoder-decoder structure that compresses image
features while maintaining fine-grained details. A depiction
of the encoder-decoder architecture of DLv3+ is contained in
Figure 5. DLv3+ obtains state-of-the-art mIOU (89.0%) on
the PASCAL VOC 2012 image segmentation dataset [17]
without any post-processing. We chose DeepLab-v3+ as our
evaluation model due to its popularity, performance, and open-
source implementation.

III. PROPOSED OPTIMIZATION APPROACH

We now describe our proposed approach to improve the
performance of Deeplab distributed training. Broadly, we
follow a three-phase optimization approach:

1) As DeepLab’s default implementation is only for a
single CPU/GPU, we must first realize a distributed version
of DLv3+. Based on our findings in [7], we choose Horovod
to implement distributed DLv3+. Design details are discussed
further in Section III-A.

1018

2) With a basic version of DLv3+ in hand, we identify
performance bottlenecks using an in-house Horovod profiler
called hvprof [6]. The major insight is that the default imple-
mentation using Horovod is not efficient at scale (See Figure
7). More details are described in Section III-B.

3) Implement a simple grid-search tuning strategy for
Horovod as well as for the MPI runtime. Based on the
profiling insights, we found the best parameters for Horovod
and MPL. Exact parameters used in this study are provided in
Section III-C.

A. Extending DeepLab to Support Horovod

Given the simplicity and formulaic structure of DNN train-
ing using a DL framework, Horovod support can be added in
a general and model-agnostic manner. DNN training with a
DL framework broadly follows the following guidelines:

1) Setup training data and apply preprocessing, if neces-

sary.
2)
3)
4)

Define model structure.
Declare optimizer and training hyperparameters.

Create a training loop or computational graph to carry
out each training iteration.

With this DNN training pipeline in mind, we added Horovod
support to DLv3+ by following the practice described by
Horovod developers. The guidelines are as follows.

1) Map the processes to the GPUs on each node (typically

one GPU per process).

2) Add a Horovod broadcast operation to set up the initial

model parameters at each device.

3) Wrap the training optimizer in Horovod’s distributed

optimizer.

4) Scale the learning rate of the optimizer by the number
of devices (Optional, but good practice to counteract the

effective increased batch size).

5) Add logging at each training step to monitor training.
Following this approach, we have added Horovod dis-
tributed training to an implementation of DLv3+ in Tensorflow.

B. Profiling and Improving Performance of Communication

Our goal is to improve performance in a generalizable
and simple manner. While creating a specialized Horovod
extension as in [5] should provide nearly ideal performance,
we seek to achieve comparable performance without changes
to Horovod, MPI, and the model itself. MVAPICH2-GDR [18],
a GPU-Direct RDMA (GDR) MPI implementation, coupled
with effective Horovod tuning, can provide competitive perfor-
mance without sacrificing user productivity or explicit changes
to the application code. Applying this method, we collected the
default distributed DNN training performance data discussed
in Section VI.

We ran a DLv3+ training job for 100 steps with hvprof [6],
which provides the user with a detailed profile of Horovod’s

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

“Encoder

Atrous Conv

3x3 Conv
rate 12

3x3 Col
rate
Pool

A A A A AA.

(([Exaconv) —

rate6 | ™

!
A N NN NN

o

g"'Decoder

Low-Level
Features

A

1x1 Conv| —» —

\

nv
e —
age

ling -
by 4

Upsample

-
—>

Prediction

Upsample
—»3x3 Conv —>| Eiria

Fig. 5: The DeepLab-v3+ architecture, containing an encoder module that compresses image features via atrous convolution,
and a decoder that recovers segmentation details at object boundaries. Courtesy: Chen et al. [17]

communication backend performance (MPI or NCCL) orga-
nized by message size and collective used. The hvprof output
is depicted in Figure 11 and a speedup achievable for allreduce
is in Section VII. After applying hvprof to a training run,
we discovered the following insights into the communication
bottlenecks present in the basic version of distributed semantic
image segmentation models.

o The high-resolution dataset significantly increased the
average message size for MPI_Broadcast operations.

o Large tensors were being delayed by a short de-
fault HOROVOD_CYCLE_TIME and a small default
HOROVOD_FUSION_THRESHOLD.

C. Tuning Strategies to Improve Performance

With these insights in hand, we applied the following com-
munication optimizations to provide efficient, reproducible,
and scalable DLv3+ training without requiring any code
changes to the model or to Horovod.

e We develop a grid-search tuning framework
to find the best possible combination of the
HOROVOD_FUSION_THRESHOLD and

HOROVOD_CYCLE_TIME to provide the best perfor-
mance at every scale.

o« We exploit MVAPICH2-GDR’s tuning infrastructure to
optimize the library for large message sizes being used
by collectives like MPI_Broadcast and MPI_Allreduce.

The results of these tuning operations are discussed in detail

in SectionVII. The performance benefits of tuning are directly
compared with default performance in Section VI.

1019

/+ Create Horovod Parameters grid */
Horovod_cycle_array «—{}
Horovod_threshold_array < {};

/+ Create grid to store throughput =«/
Result_array + {{ }};

/* Search Grid x/

foreach cycle time in Horovod_cycle_array do

foreach threshold in Horovod_threshold_array
do

train_deeplab(cycle_time, threshold);

record(cycle_time, threshold, Result_array)
end

end

Algorithm 1: Horovod Tuning with Grid Search

IV. CHARACTERIZATION METRICS AND PLATFORMS

We discuss different software libraries, evaluation platforms,
and experiments needed to fully characterize DLv3+ training
performance.

A. Evaluation Platforms

We performed all experiments on the Summit supercom-
puter at Oak Ridge National Laboratory (ORNL). It is the
#1-ranked machine in the TOP500 as of November 2019 [19],
and is composed of 4,608 nodes each with two IBM POWER
9 CPUs each connected to 3 NVIDIA Volta GPUS (V100)

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

via NVIDIA NVLink. Each V100 GPU has 16 GB HBM2
memory.

B. Software Libraries

We use Tensorflow v1.14.0 compiled with CUDA 10.1.168
and CUDNN 7.6.1 on Horovod 0.18.1. Horovod was built
against the MVAPICH-GDR 2.3.3 GPU-direct MPI library
[20]. Evaluations with NCCL used NCCL 2.5.7-1 from
GitHub?. The DeepLab-v3+ model was pulled and modified
from the publicly-available implementation®

C. DeepLab Training

We used an xception_65 backbone, with atrous rates of [6,
12, 18] and an output stride of 16. After performing the single-
node evaluation depicted in Figure 6, we chose a training
batch size of 4 images. Distributed training took approximately
300,000 training steps to converge for accuracy measurements.

Images/sec

O R N WD U oSN 0O

o
N

4 6 8 10
Batch Size

Fig. 6: Single-Node Batch Size Evaluation

V. SINGLE-NODE - HYPERPARAMETER OPTIMIZATION

Before distributing DLv3+, we performed an exhaustive
single-node training evaluation to find the best hyperparam-
eters. In particular, we sought the best batch size performance
and hyperparameters to achieve a highly accurate mIOU on
PASCAL VOC. For the single-node evaluation, we chose a
batch-size of 4 and hyperparameters listed in Section IV-C.

VI. DEFAULT SCALING - SHORTCOMINGS AND INSIGHTS

Once default Horovod support was added to DLv3+ as
detailed in Section III-A, the scaling behaviour was taken up to
22 Summit nodes (132 V100 GPUs) by adding benchmarking
support (images/second) to the DeepLab model. We compare
results between NCCL and MVAPICH2-GDR to ensure that
poor scaling results are not due to issues with any particular
communication backend.

From Figures 7 and 8, we can see that, while performance
is acceptable for a small number of nodes, the images/sec
quickly degrades at scale. This is due to the segmentation
model’s communication requirements detailed in Section III-B.
Further, scaling efficiency drops to 60% for large node counts.
The shortcomings of default scaling performance led us to

Zhttps://github.com/NVIDIA/nccl
3https://github.com/tensorflow/models/tree/master/research/deeplab

perform an investigation into the system workload that seg-
mentation models require. We performed an analysis with our
Horovod/MPI profiler hvprof as detailed in Section III-B.

120

-
\m
7777777772
]
Ytz
7ZZ7777772)

OMVAPICH2-GDR Efficiency NCQ Efficiency

Fig. 7: Default DLv3+ Scaling Efficiency for Horovod built
against MVAPICH2-GDR and NCCL

We note that we compare our performance to NCCL to
identify the root cause of scaling inefficiencies. Clearly, the
problem exists for both NCCL as well as MPI, which high-
lights that the high-level model characteristics and low-level
communication runtime’s knobs are not well-tuned to support
each other. We seek to achieve a scaling efficiency above 90%
by tuning both Horovod and the underlying MPI distribution,
while leaving the basic structure of MPI/Horovod and the
model unchanged.

VII. OPTIMIZED SCALING - PERFORMANCE AND
INSIGHTS

After applying the system-level optimizations presented in
Section III, we re-ran our training experiments and took scal-
ing data up to 22 Summit nodes (132 GPUs). The optimized
results are depicted below in Figures 9 and 10.

Further, we applied hvprof to demonstrate the benefits of
optimized horovod by profiling 100 training steps of DLv3+
under default and optimal horovod parameters. The improve-
ment for allreduce is depicted in Figure 11 and Table I. We
demonstrate a 68.1% improvement in allreduce over the
default

Message Size (Bytes) Defaupftlme E;Ill)ii)mize q Percentage Improvement
0-10° 1866.0 1635.1 12.3
105 — 10° 1292.4 3424 735
105 — 107 3503.4 724.5 79.3
107 — 10 21911.8 3234.0 85.2
>108 - 3176.8
Total Time 28573.8 9112.9 68.1

TABLE I: Allreduce time performance improvement

With the tuned system, we achieve both near-linear scaling
up to 132 GPUs and above 90% scaling efficiency. These
results demonstrate the feasibility and benefits of our pro-
posed approach. In short, distributed training of novel
DNN architectures may be significantly improved given
an in-depth understanding of the characteristics of DNN

1020

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

1000
900
800
700
600
500
400
300
200
100 -
0 ==

Images/sec

12 24 36 48

—«—MVAPICH2-GDR —=—NCCL

60

#G

26.7%

72 96 108 120 132

PUs

84

Ideal

Fig. 8: Distributed DLv3+ Training Performance for Horovod built against MVAPICH2-GDR and NCCL

1000
800
600
400
200

0

Images/sec

12 24 36 48

——MVAPICH2-GDR

60

72 84 96 108 120 132

GPUs

Ideal

Fig. 9: Optimized Distributed DLv3+ Training Performance for Horovod built against MVAPICH2-GDR

= o
1]
8 S

®
)

@
S

% Efficiency

IS
S

~
S5

0

2 6 12 18 24 36 66 132

#GPUs

Fig. 10: Optimized DLv3+ Scaling Efficiency for Horovod
built against MVAPICH2-GDR

workloads. This performance benefit doesn’t necessarily
require significant changes to the model or Horovod/MPI.
With these results in hand, we find that a general and simple
development pipeline to provide distributed training support
to a novel DNN is as follows:

« Add Horovod support to an existing single-node training
script via the steps in Section III-A.

1021

——Before ——After
4800
3800
Z 2800
o
€ 1800
i
800

-200

262144 1048576 4194304 16777216

Message Size (Bytes)

67108864

Fig. 11: Hvprof allreduce training profile for 100 training steps
of DLv3+ on 12 GPUs

« Apply Horovod diagnostic tools to generate a profile and
locate bottlenecks

« Given the insights gained from profiling, tune the relevant
Horovod, MPI, and model parameters to provide efficient
scaling

Finally, we seek to ensure that the model’s segmentation
accuracy is not significantly affected by distributed training.
Using the hyperparameters listed in Section IV, we trained the
model on 22 nodes (132 GPUs) on the PASCAL VOC 2012
dataset. We were able to achieve a mIOU of 80.84%, which

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

is comparable with the official published DLv3+ results.

VIII. KEY INSIGHTS

We present our key insights as follows:

« Horovod support for existing models is feasible, and an
abundance of documentation makes this step approach-
able, even if the model is a novel DNN architecture (e.g.
DeepLab-v3+).

« While default Horovod support provides acceptable scal-
ing efficiency for a small number of nodes, efficiency
quickly drops off at larger scales.

« Without changing the underlying model/Horovod/MPI
implementations, it is possible to tune the system scaling
to provide competitive training performance.

We believe that this work provides a general training
optimization pipeline for other compute and communication-
intensive DNNs that could benefit from distributed training on
HPC systems. Figures 12 and 13 illustrate these insights for
distributed training with novel DNN architectures (in particular
semantic image segmentation).

1000
800
o4
£ 600
4]
& 400
£
200
A R P p— M : S ML N
1 2 6 12 18 24 36 66 132
GPUs
& Proposed (Default) m Proposed (Optimized) Ideal

Fig. 12: Performance Improvement for DLv3+ Training after
Tuning/Optimization

110 23.9%

% Efficiency
w
o

IS TLSSSSSSS)

2 6 12 18 2
#GPUs

N

36 66 132

Ideal mProposed (Optimized) % Proposed (Default)

Fig. 13: Scaling Efficiency Improvement for DLv3+ Training
after Tuning/Optimization

IX. RELATED WORK

There are several studies available in the literature which
use segmentation DNNs for climate analytics such as extreme

weather prediction, [21]-[23], tropical cyclone detection [24],
etc. DeepLab [16] is a widely used segmentation model based
on CNNs, which is used in various applications like object
detection [25], style transfer [26], etc.

Kurth et al. [5] extended the DeepLabv3+ and Tiramisu
segmentation models to perform climate analytics. TensorFlow
was coupled with Horovod to distribute DNN training using
Data Parallelism and implemented a Hierarchical allreduce to
scale the training to 27,360 GPUs. However, in this paper
we used the MVAPICH2-GDR communication runtime and
Horovod/MPI tuning to achieve competitive allreduce perfor-
mance without changing the code for Horovod/MPI. Jacobs et
al. [27] scaled Deep Generative models on scientific datasets
using LBANN, a deep learning framework for distributed
training. Data parallelism is coupled with model parallelism
to scale a DNN to 1,024 GPUs with 64 trainers and achieved
109% parallel efficiency. CosmoFlow [28] uses DNN to de-
termine the physical model which can be used to describe the
universe. CosmoFlow uses TensorFlow and CPE ML plugin to
implement distributed training for 3D convolution operation on
8192 KNL nodes and achieved 77% parallel efficiency. Cycle-
Consistent Adversarial Networks (CycleGANs) [29] can be
used to visualize the effect of climate change. Before and after
images of locations, which have experienced floods, forest
fires, and other natural disasters are used to train the network
so that it can predict the outcome of natural disasters for other
locations.

X. CONCLUSION

The computational workloads for Deep Learning are rapidly
increasing for emerging image processing applications such
as autonomous driving, automatic medical image diagnosis,
and climate analysis [5]. The extreme computation and
communication requirements of these applications provide
an excellent opportunity for distributed DNN training. We
demonstrate that scaling image segmentation analysis models
to HPC systems is both feasible and approachable for existing
single-node DNN implementations. Near-linear scaling may
be achieved without significantly changing the structure of
the model, Horovod, or MPI communication backend. Given
an understanding of the communication requirements of the
novel DCNN, we have achieved strong distributed training
with above 90% scaling efficiency while maintaining a mIOU
accuracy of 80.8% that is competitive with state-of-the-art
single-node results. Further, our tuning method achieves an
improvement in scaling efficiency by 23.9%, which translates
to a 1.3x speedup in training performance. We believe that
these results pave the way for efficiently training semantic
image segmentation models and other novel DNNs that require
long training times.

ACKNOWLEDGEMENT

This research is supported in part by NSF grants #CNS-
1513120, #ACI-1450440, #CCF-1565414, #ACI-1664137,
#OAC-1818253, and #ACI-1931537.

1022

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

[2]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-Caffe:
Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on
Modern GPU Clusters,” in Proceedings of the 22Nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’17. ACM, 2017, pp. 193-205.

X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu,
“Highly Scalable Deep Learning Training System with Mixed-Precision:
Training ImageNet in Four Minutes,” CoRR, vol. abs/1807.11205,
2018. [Online]. Available: http://arxiv.org/abs/1807.11205

N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. A.
Hechtman, “Mesh-tensorflow: Deep learning for supercomputers,”
CoRR, vol. abs/1811.02084, 2018. [Online]. Available: http://arxiv.org/
abs/1811.02084

M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa,
N. Fukumoto, T. Tabaru, A. Ike, and K. Nakashima, “Yet another
accelerated SGD: resnet-50 training on imagenet in 74.7 seconds,”
CoRR, vol. abs/1903.12650, 2019. [Online]. Available: http://arxiv.org/
abs/1903.12650

T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr,
E. Phillips, A. Mahesh, M. Matheson, J. Deslippe, M. Fatica,
Prabhat, and M. Houston, “Exascale deep learning for climate
analytics,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, ser. SC
’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 51:1-51:12.
[Online]. Available: https://doi.org/10.1109/SC.2018.00054

A. A. Awan, A. Jain, C.-H. Chu, H. Subramoni, and D. Panda, “Com-
munication Profiling and Characterization of Deep Learning Workloads
on Clusters with High-Performance Interconnects,” in Hot Interconnects
26 (Hotl ’19), August 2019.

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni, and D. Panda,
“Scalable Distributed DNN Training using TensorFlow and CUDA-
Aware MPI: Characterization, Designs, and Performance Evaluation,” in
The 19th Annual IEEE/ACM International Symposium in Cluster, Cloud,
and Grid Computing (CCGRID 2019), May 2019.

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-Caffe:
Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on
Modern GPU Clusters,” in Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP *17. New York, NY, USA: ACM, 2017, pp. 193-205. [Online].
Available: http://doi.acm.org/10.1145/3018743.3018769

A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.
[Online]. Available: http://arxiv.org/abs/1802.05799

M. Cho, U. Finkler, S. Kumar, D. S. Kung, V. Saxena, and D. Sreedhar,
“Powerai DDL,” CoRR, vol. abs/1708.02188, 2017. [Online]. Available:
http://arxiv.org/abs/1708.02188

NVIDIA, “NVIDIA Collective Communication Library
(NCCL),” https://docs.nvidia.com/deeplearning/sdk/nccl-developer-
guide/docs/index.html, 2016, Accessed: March 16, 2020.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351.
Springer, 2015, pp. 234-241, (available on arXiv:1505.04597 [cs.CV]).

1023

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[Online]. Available: http:/Imb.informatik.uni-freiburg.de/Publications/
2015/RFB15a

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848,
2017.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801-818.

“NVIDIA GPUDirect RDMA,” Accessed: March 16, 2020. [Online].
Available: http://docs.nvidia.com/cuda/gpudirect-rdma/

H. Meur, E. Strohmaier, J. Dongarra, and H. Simon, “TOP 500 Super-
computer Sites,” http://www.top500.org, 1993, [Online; accessed March
16, 2020].

MVAPICH2: MPI over InfiniBand, 10GigE/iWARP and RoCE,
https://mvapich.cse.ohio-state.edu/, 2001, [Online; accessed March 16,
2020].

Y. Liu, E. Racah, Prabhat, J. Correa, A. Khosrowshahi, D. Lavers,
K. Kunkel, M. F. Wehner, and W. D. Collins, “Application of deep
convolutional neural networks for detecting extreme weather in climate
datasets,” CoRR, vol. abs/1605.01156, 2016. [Online]. Available:
http://arxiv.org/abs/1605.01156

G. Iglesias, D. C. Kale, and Y. Liu, “An examination of deep learning
for extreme climate pattern analysis,” in The 5th International Workshop
on Climate Informatics, 2015.

S. Kim, H. Kim, J. Lee, S. Yoon, S. E. Kahou, K. Kashinath, and
M. Prabhat, “Deep-hurricane-tracker: Tracking and forecasting extreme
climate events,” in 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV). 1EEE, 2019, pp. 1761-1769.

D. Matsuoka, M. Nakano, D. Sugiyama, and S. Uchida, “Detecting
precursors of tropical cyclone using deep neural networks,” in The 7th
International Workshop on Climate Informatics, CI, 2017.

J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection: a
survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84-100,
2018.

F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo style
transfer,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

S. A. Jacobs, B. V. Essen, D. Hysom, J.-S. Yeom, T. Moon, R. Anirudh,
J. J. Thiagaranjan, S. Liu, P.-T. Bremer, J. Gaffney, T. Benson, P. Robin-
son, L. Peterson, and B. Spears, “Parallelizing training of deep genera-
tive models on massive scientific datasets,” 2019.

A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kirnd, D. Moise, S. J. Pennycook, K. Maschhoff,
J. Sewall, N. Kumar, S. Ho, M. F. Ringenburg, P. Prabhat, and V. Lee,
“Cosmoflow: Using deep learning to learn the universe at scale,”
in SCI8: International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2018, pp. 819-829.

V. Schmidt, A. Luccioni, S. K. Mukkavilli, N. Balasooriya, K. Sankaran,
J. Chayes, and Y. Bengio, “Visualizing the consequences of climate
change using cycle-consistent adversarial networks,” CoRR, vol.
abs/1905.03709, 2019. [Online]. Available: http://arxiv.org/abs/1905.
03709

Authorized licensed use limited to: The Ohio State University. Downloaded on October 11,2020 at 16:27:40 UTC from IEEE Xplore. Restrictions apply.

