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Abstract—Deep Learning (DL) models for semantic image
segmentation are an emerging trend in response to the explosion
of multi-class, high resolution image and video data. However,
segmentation models are highly compute-intensive, and even the
fastest Volta GPUs cannot train them in a reasonable time
frame. In our experiments, we observed just 6.7 images/second
on a single Volta GPU for training DeepLab-v3+ (DLv3+),
a state-of-the-art Encoder-Decoder model for semantic image
segmentation. For comparison, a Volta GPU can process 300
images/second for training ResNet-50, a state-of-the-art model for
image classification. In this context, we see a clear opportunity
to utilize supercomputers to speed up training of segmentation
models. However, most published studies on the performance
of novel DL models such as DLv3+ require the user to signif-
icantly change Horovod, MPI, and the DL model to improve
performance. Our work proposes an alternative tuning method
that achieves near-linear scaling without significant changes to
Horovod, MPI, or the DL model. In this paper, we select DLv3+
as the candidate TensorFlow model and implement Horovod-
based distributed training for DLv3+. We observed poor default
scaling performance of DLv3+ on the Summit system at Oak
Ridge National Laboratory. To address this, we conducted an
in-depth performance tuning of various Horovod/MPI knobs to
achieve better performance over the default parameters. We
present a comprehensive scaling comparison for Horovod with
MVAPICH2-GDR up to 132 GPUs on Summit. Our optimization
approach achieves near-linear (92%) scaling with MVAPICH2-
GDR. We achieved a “mIOU” accuracy of 80.8% for distributed
training, which is on par with published accuracy for this model.
Further, we demonstrate an improvement in scaling efficiency by
23.9% over default Horovod training, which translates to a 1.3×
speedup in training performance.

Index Terms—DNN Training, Performance Characterization,
MVAPICH2 MPI, TensorFlow, Horovod, Image Segmentation

I. INTRODUCTION AND MOTIVATION

Deep Neural Networks (DNNs)1 have revolutionized many

computer vision tasks, and are at the forefront of state-of-the-

art image processing problems such as image classification,

object detection, and semantic image segmentation. Simply

put, a DNN is a directed, weighted graph with non-linear

mappings between an input x and a learned output y. Nodes

in the graph are labeled as neurons, and each subsequent

set of neurons are grouped into layers. Input image data is

1We use the terms DNN and model interchangeably in this paper

passed through each layer of the DNN sequentially. Training

the DNN entails adjusting the weighted connections to produce

a function f such that y = f(x). The trained DNN may then

be applied to new data to produce predictions. Training DNN
models is compute/communication intensive, and much
effort has been extended to train DNNs on HPC systems
[1] [2] [3] [4].

Deep Convolutional Neural Networks (DCNNs) are an

extension of traditional DNNs to image-related applications.

DCNNs have achieved highly accurate image classification

by employing pooling layers, which reduce the input image’s

dimensions by combining the outputs of several previous

neurons into a single neuron. A standard image classification

DCNN is ResNet-50. Such pooling layers reduce the size

of the network while improving the network’s invariance to

local image transformations. While invariance is desirable for

high-level vision tasks such as image classification, it may

be problematic for lower-level tasks such as semantic image

segmentation, in which each individual pixel is classified

according to its enclosing region.

A better DCNN for such low-level vision tasks should be

sensitive to local image details instead of relying upon local

pooling layers. Encoder-decoder image segmentation DCNNs

achieve this behavior by introducing an encoder-decoder struc-

ture that first reduces the input image to its essential features,

and then recovers the input image to its original resolution

at the output layer. DeepLab-v3+ (DLv3+) is one successful

example of the encoder-decoder structure that we evaluate in

this paper. A key difference between an image classification
model (e.g. ResNet-50) and an image segmentation model
(e.g. DLv3+) is that segmentation models are much more
compute-intensive even for the same image size (see Figure
1). We first compare the training throughput of ResNet-50 on

a standard ImageNet image size (224x224) with the larger

PASCAL VOC 2012 image size (513x513) typically used to

train DLv3+. The ResNet-50 model is still almost 10× faster

to train than a DLv3+ model on the same image size. This

massive increase in computation indicates that segmentation

models like DLv3+ could benefit significantly from distributed

training on HPC systems. Further, while semantic image

segmentation has become increasingly relevant for applications

such as object detection, climate analysis, and autonomous

driving, few studies have investigated the feasibility and
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performance of distributed segmentation networks on HPC

systems.

Fig. 1: Single-node performance for classification (ResNet-50)

and segmentation (DLv3+) models on a V100 GPU

To the best of our knowledge, only the work of Kurth

. [5] has scaled an image segmentation model to an HPC

system, albeit with significant changes to Horovod’s data-

parallel support. We demonstrate that comparable performance

is achievable by tuning the knobs of both Horovod and a

GPU-Direct MPI communication backend. In this work, we

first modify an existing segmentation network (DLv3+) written

in Tensorflow to provide multi-node data-parallel support via

Horovod, and then we examine the default scaling behavior

on MVAPICH2-GDR and NCCL communication backends.

Finally, we demonstrate the performance benefits that may

be gained through system-level tuning and confirm that seg-

mentation models trained on a distributed system still provide

competitive accuracy compared to their counterparts trained

on a single node.

A. Challenges

The key challenge addressed in this paper is: How do we
efficiently distribute image segmentation models after taking
into account the unique characteristics of both the segmen-
tation model and the HPC system? We seek a distributed

training method that may be easily applied to other novel

DNN architectures. To answer this broad question, we solve

the following concrete challenges:

• What are the key differences between segmentation and

classification networks that affect their training perfor-

mance at scale?

• How may existing segmentation networks be trained on

HPC systems without changes to the model or commu-

nication library? (e.g. MPI, NCCL)

• What system-level optimizations may be made to effi-

ciently train segmentation networks on distributed sys-

tems, given these key differences?

B. Proposed Approach

To solve these challenges, we propose a two-step process to

distribute existing segmentation models. First, introduce data-

parallel training support via Horovod to the existing training

code. Second, fine-tune Horovod to support the increased

model and image sizes required for semantic image segmen-

tation.

C. Contributions

This work provides the user with an efficient approach to

scale image segmentation without changes to the model, the

distributed training framework (Horovod), or the communi-

cation runtime. Further, our proposed training approach is

agnostic to the model, DL framework, and system used for

DNN training. This is achieved by extensive tuning of various

knobs for Horovod and the MPI runtime. To understand the

communication characteristics, we rely on a diagnostic tool

called hvprof [6]. We make the following key contributions in

this paper:

• Demonstrate the productivity and performance shortcom-

ings of existing distributed semantic image segmentation

training methods.

• Establish the usefulness of Horovod and MPI profiling

tools for distributing novel DNNs on GPU clusters, and

apply them to demonstrate a 68.1% improvement (Table

I) in allreduce

• Propose and evaluate system-level tuning to provide com-

petitive segmentation training performance.

• Ensure that the prediction accuracy of segmentation mod-

els is not affected by distributed training

• We demonstrate the superiority of our tuned

Horovod/MPI approach and report an improvement

in scaling efficiency by 23.9% (Fig. 13), which translates

to a 1.3× speedup over the default approach

D. Organization

The rest of the paper is organized as follows. Section

2 provides the necessary background, including details on

Horovod, Semantic image segmentation, and DeepLab. Sec-

tion 3 contains an overview of the proposed optimizations to

improve distributed training performance. Section 4 discusses

characterization metrics, software libraries, and platforms used

in this study. Sections 5 and 6 provide insights into hyperpa-

rameter optimization for single-node training and the scaling

trend under Horovod and MVAPICH2-GDR’s default settings.

In Section 7, we show optimized scaling performance using

our proposed design, and then we summarize key insights in

Section 8. Section 9 contains related work, and we conclude

with Section 10.

II. BACKGROUND

A. DL Frameworks

DL frameworks are a user-transparent interface to define,

train, and validate DL models on various CPU and GPU

architectures. Such frameworks reduce development effort by

providing modular building blocks that may be combined to

create novel, reproducible DNN architectures. These frame-

works hide complex mathematics from the users, enabling

them to define and implement new layers and models tailored
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according to the end application. DNN training time depends

on the DL model, the size of dataset, and the DL framework

being used. While DNN training has become increasingly

compute-intensive, few DL frameworks provide convenient

distributed training features. Even with the limited framework

support, however, the choice of communication backend may

be complex. Training with TensorFlow, for example, can be

distributed across nodes with gRPC, gRPC-X, and MPI/NCCL

based solutions [7].

B. Data-Parallelism

Data parallelism is an approach to distributed DNN training

that sends a copy of the DNN model to each CPU/GPU,

and then training data is partitioned across all the processes.

The number of samples sent to each node at each global

training step is called the batch size. After each training

step, the DNN parameters need to be synchronized by av-

eraging the gradients among the processes. This is typically

achieved with an MPI allreduce, which performs an element-

wise sum operation and sends the result to every process.

The standard data-parallelism approach, synchronous training,

requires each device’s model copy to send an updated gradient

before progressing to the next global training step. While

asynchronous training approaches improve the throughput on

individual nodes, training convergence becomes complicated

to achieve.

Fig. 2: Example data parallel DNN training on 4 GPUs [8]

C. Horovod

Horovod is a distributed DNN training framework that em-

ploys data parallelism to train DNNs [9]. Horovod employs the

MPI Allreduce and MPI Bcast of a user-provided communi-

cation backend to perform data-parallel training. Horovod sup-

ports most communication runtimes such as MPI, DDL [10],

and NCCL [11]. Horovod initializes a communication engine

responsible for synchronization among processes, and employs

optimization techniques such as Tensor Fusion to improve

distributed training performance. Tensor fusion batches small

allreduce operations into a single reduction operation, which

improves DNN training performance. Tensor Fusion works as

follows:

1) Determine which tensors are ready to be

reduced. Select first few tensors that fit in

HOROVOD_FUSION_THRESHOLD bytes and have

the same data type

2) Allocate fusion buffer of size

HOROVOD_FUSION_THRESHOLD if it was not allo-

cated before. Default fusion buffer size is 64 MB

3) Copy data of selected tensors into the fusion buffer

4) Execute the allreduce operation on the fusion buffer

5) Copy data from the fusion buffer into the output tensors

6) repeat until there are no more update tensors to reduce

in current cycle of length HOROVOD CYCLE TIME

(Default is 3.5 ms)

Tuning these parameters may have significant performance

benefits for novel DNN training workloads, and here we

exploit this insight for semantic image segmentation. Cur-

rently, Horovod supports the TensorFlow, MXNet, PyTorch,

and Keras DL frameworks. Horovod acts as a middleware

between these frameworks and a communication backend as

depicted in Figure 3

Fig. 3: Overview of a Distributed DNN Training Stack

D. Semantic Image Segmentation and Pascal VOC 2012

In image classification, each individual image of a dataset is

assigned a class label. However, in the age of high-resolution

multi-class image datasets, DCNNs for image classification do

not provide sufficient detail of image contents. Semantic image

segmentation, also termed pixel-level classification, produces

a mapping from each pixel of an image to a distinct object

class. The output of a segmentation model is a set of masks

over each pixel cluster, which correspond to a set of distinct

object classes. For an example segmentation data sample, see

Figure 4. Semantic image segmentation is vital to several
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emerging applications such as autonomous driving, automatic

medical diagnosis from imaging, or climate analysis [5].

Fig. 4: A sample image and ground-truth segmentation map-

ping from PASCAL VOC 2012. Courtesy: Everingham et

al. [12]

In order to provide application-agnostic benchmarks for

segmentation models, several freely-available datasets have

become available such as Cityscapes, ADE20K, and PASCAL

VOC. The PASCAL Visual Object Classes (VOC) dataset

consists of 20 foreground object classes and one background

class. The training and validation data has 11,530 images

containing 27,450 region-of-interest (ROI) annotated objects

and 6,929 segmentations. Users may evaluate the accuracy of

a segmentation model by calculating the mean intersection-

over-union (mIOU), which is defined as the intersection-over-

union between the predicted and ground-truth segmentation

masks averaged over each class in the image.

E. DeepLab

DeepLab is an extension of the U-Net segmentation archi-

tecture [13] based on Fully Convolutional Networks (FCNs)

[14], [15]. DeepLab [16] is one of the most popular image

segmentation models, and introduced three major improve-

ments over past DCNNs for semantic image segmentation: up-

sampled filters or ‘atrous convolution,’ atrous spatial pyramid

pooling (ASPP), and improved localized object boundaries.

The latest iteration of DeepLab, DeepLab-v3+ (DLv3+), in-

troduced an encoder-decoder structure that compresses image

features while maintaining fine-grained details. A depiction

of the encoder-decoder architecture of DLv3+ is contained in

Figure 5. DLv3+ obtains state-of-the-art mIOU (89.0%) on

the PASCAL VOC 2012 image segmentation dataset [17]

without any post-processing. We chose DeepLab-v3+ as our

evaluation model due to its popularity, performance, and open-

source implementation.

III. PROPOSED OPTIMIZATION APPROACH

We now describe our proposed approach to improve the

performance of Deeplab distributed training. Broadly, we

follow a three-phase optimization approach:

1) As DeepLab’s default implementation is only for a

single CPU/GPU, we must first realize a distributed version

of DLv3+. Based on our findings in [7], we choose Horovod

to implement distributed DLv3+. Design details are discussed
further in Section III-A.

2) With a basic version of DLv3+ in hand, we identify

performance bottlenecks using an in-house Horovod profiler

called hvprof [6]. The major insight is that the default imple-

mentation using Horovod is not efficient at scale (See Figure

7). More details are described in Section III-B.

3) Implement a simple grid-search tuning strategy for

Horovod as well as for the MPI runtime. Based on the

profiling insights, we found the best parameters for Horovod

and MPI. Exact parameters used in this study are provided in
Section III-C.

A. Extending DeepLab to Support Horovod

Given the simplicity and formulaic structure of DNN train-

ing using a DL framework, Horovod support can be added in

a general and model-agnostic manner. DNN training with a

DL framework broadly follows the following guidelines:

1) Setup training data and apply preprocessing, if neces-

sary.

2) Define model structure.

3) Declare optimizer and training hyperparameters.

4) Create a training loop or computational graph to carry

out each training iteration.

With this DNN training pipeline in mind, we added Horovod

support to DLv3+ by following the practice described by

Horovod developers. The guidelines are as follows.

1) Map the processes to the GPUs on each node (typically

one GPU per process).

2) Add a Horovod broadcast operation to set up the initial

model parameters at each device.

3) Wrap the training optimizer in Horovod’s distributed

optimizer.

4) Scale the learning rate of the optimizer by the number

of devices (Optional, but good practice to counteract the

effective increased batch size).

5) Add logging at each training step to monitor training.

Following this approach, we have added Horovod dis-

tributed training to an implementation of DLv3+ in Tensorflow.

B. Profiling and Improving Performance of Communication

Our goal is to improve performance in a generalizable

and simple manner. While creating a specialized Horovod

extension as in [5] should provide nearly ideal performance,

we seek to achieve comparable performance without changes

to Horovod, MPI, and the model itself. MVAPICH2-GDR [18],

a GPU-Direct RDMA (GDR) MPI implementation, coupled

with effective Horovod tuning, can provide competitive perfor-

mance without sacrificing user productivity or explicit changes

to the application code. Applying this method, we collected the

default distributed DNN training performance data discussed

in Section VI.

We ran a DLv3+ training job for 100 steps with hvprof [6],

which provides the user with a detailed profile of Horovod’s
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Fig. 5: The DeepLab-v3+ architecture, containing an encoder module that compresses image features via atrous convolution,

and a decoder that recovers segmentation details at object boundaries. Courtesy: Chen et al. [17]

communication backend performance (MPI or NCCL) orga-

nized by message size and collective used. The hvprof output

is depicted in Figure 11 and a speedup achievable for allreduce

is in Section VII. After applying hvprof to a training run,

we discovered the following insights into the communication

bottlenecks present in the basic version of distributed semantic

image segmentation models.

• The high-resolution dataset significantly increased the

average message size for MPI_Broadcast operations.

• Large tensors were being delayed by a short de-

fault HOROVOD_CYCLE_TIME and a small default

HOROVOD_FUSION_THRESHOLD.

C. Tuning Strategies to Improve Performance

With these insights in hand, we applied the following com-

munication optimizations to provide efficient, reproducible,

and scalable DLv3+ training without requiring any code

changes to the model or to Horovod.

• We develop a grid-search tuning framework

to find the best possible combination of the

HOROVOD_FUSION_THRESHOLD and

HOROVOD_CYCLE_TIME to provide the best perfor-

mance at every scale.

• We exploit MVAPICH2-GDR’s tuning infrastructure to

optimize the library for large message sizes being used

by collectives like MPI Broadcast and MPI Allreduce.

The results of these tuning operations are discussed in detail

in SectionVII. The performance benefits of tuning are directly

compared with default performance in Section VI.

/* Create Horovod Parameters grid */

Horovod cycle array ← {};
Horovod threshold array ← {};
/* Create grid to store throughput */

Result array ← {{ }};
/* Search Grid */

foreach cycle_time in Horovod cycle array do
foreach threshold in Horovod threshold array
do

train deeplab(cycle time, threshold);
record(cycle time, threshold, Result array)

end
end

Algorithm 1: Horovod Tuning with Grid Search

IV. CHARACTERIZATION METRICS AND PLATFORMS

We discuss different software libraries, evaluation platforms,

and experiments needed to fully characterize DLv3+ training

performance.

A. Evaluation Platforms

We performed all experiments on the Summit supercom-

puter at Oak Ridge National Laboratory (ORNL). It is the

#1-ranked machine in the TOP500 as of November 2019 [19],

and is composed of 4,608 nodes each with two IBM POWER

9 CPUs each connected to 3 NVIDIA Volta GPUS (V100)
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via NVIDIA NVLink. Each V100 GPU has 16 GB HBM2

memory.

B. Software Libraries

We use Tensorflow v1.14.0 compiled with CUDA 10.1.168

and CUDNN 7.6.1 on Horovod 0.18.1. Horovod was built

against the MVAPICH-GDR 2.3.3 GPU-direct MPI library

[20]. Evaluations with NCCL used NCCL 2.5.7-1 from

GitHub2. The DeepLab-v3+ model was pulled and modified

from the publicly-available implementation3

C. DeepLab Training

We used an xception 65 backbone, with atrous rates of [6,

12, 18] and an output stride of 16. After performing the single-

node evaluation depicted in Figure 6, we chose a training

batch size of 4 images. Distributed training took approximately

300,000 training steps to converge for accuracy measurements.

Fig. 6: Single-Node Batch Size Evaluation

V. SINGLE-NODE - HYPERPARAMETER OPTIMIZATION

Before distributing DLv3+, we performed an exhaustive

single-node training evaluation to find the best hyperparam-

eters. In particular, we sought the best batch size performance

and hyperparameters to achieve a highly accurate mIOU on

PASCAL VOC. For the single-node evaluation, we chose a

batch-size of 4 and hyperparameters listed in Section IV-C.

VI. DEFAULT SCALING - SHORTCOMINGS AND INSIGHTS

Once default Horovod support was added to DLv3+ as

detailed in Section III-A, the scaling behaviour was taken up to

22 Summit nodes (132 V100 GPUs) by adding benchmarking

support (images/second) to the DeepLab model. We compare

results between NCCL and MVAPICH2-GDR to ensure that

poor scaling results are not due to issues with any particular

communication backend.

From Figures 7 and 8, we can see that, while performance

is acceptable for a small number of nodes, the images/sec
quickly degrades at scale. This is due to the segmentation

model’s communication requirements detailed in Section III-B.

Further, scaling efficiency drops to 60% for large node counts.

The shortcomings of default scaling performance led us to

2https://github.com/NVIDIA/nccl
3https://github.com/tensorflow/models/tree/master/research/deeplab

perform an investigation into the system workload that seg-

mentation models require. We performed an analysis with our

Horovod/MPI profiler hvprof as detailed in Section III-B.

Fig. 7: Default DLv3+ Scaling Efficiency for Horovod built

against MVAPICH2-GDR and NCCL

We note that we compare our performance to NCCL to

identify the root cause of scaling inefficiencies. Clearly, the

problem exists for both NCCL as well as MPI, which high-

lights that the high-level model characteristics and low-level

communication runtime’s knobs are not well-tuned to support

each other. We seek to achieve a scaling efficiency above 90%
by tuning both Horovod and the underlying MPI distribution,

while leaving the basic structure of MPI/Horovod and the

model unchanged.

VII. OPTIMIZED SCALING - PERFORMANCE AND

INSIGHTS

After applying the system-level optimizations presented in

Section III, we re-ran our training experiments and took scal-

ing data up to 22 Summit nodes (132 GPUs). The optimized

results are depicted below in Figures 9 and 10.

Further, we applied hvprof to demonstrate the benefits of

optimized horovod by profiling 100 training steps of DLv3+

under default and optimal horovod parameters. The improve-

ment for allreduce is depicted in Figure 11 and Table I. We
demonstrate a 68.1% improvement in allreduce over the
default

Message Size (Bytes)
Time (ms)

Percentage Improvement
Default Optimized

0-105 1866.0 1635.1 12.3

105 − 106 1292.4 342.4 73.5

106 − 107 3503.4 724.5 79.3

107 − 108 21911.8 3234.0 85.2

>108 - 3176.8
Total Time 28573.8 9112.9 68.1

TABLE I: Allreduce time performance improvement

With the tuned system, we achieve both near-linear scaling

up to 132 GPUs and above 90% scaling efficiency. These

results demonstrate the feasibility and benefits of our pro-

posed approach. In short, distributed training of novel
DNN architectures may be significantly improved given
an in-depth understanding of the characteristics of DNN
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Fig. 8: Distributed DLv3+ Training Performance for Horovod built against MVAPICH2-GDR and NCCL

Fig. 9: Optimized Distributed DLv3+ Training Performance for Horovod built against MVAPICH2-GDR

Fig. 10: Optimized DLv3+ Scaling Efficiency for Horovod

built against MVAPICH2-GDR

workloads. This performance benefit doesn’t necessarily
require significant changes to the model or Horovod/MPI.
With these results in hand, we find that a general and simple

development pipeline to provide distributed training support

to a novel DNN is as follows:

• Add Horovod support to an existing single-node training

script via the steps in Section III-A.

Fig. 11: Hvprof allreduce training profile for 100 training steps

of DLv3+ on 12 GPUs

• Apply Horovod diagnostic tools to generate a profile and

locate bottlenecks

• Given the insights gained from profiling, tune the relevant

Horovod, MPI, and model parameters to provide efficient

scaling

Finally, we seek to ensure that the model’s segmentation

accuracy is not significantly affected by distributed training.

Using the hyperparameters listed in Section IV, we trained the

model on 22 nodes (132 GPUs) on the PASCAL VOC 2012

dataset. We were able to achieve a mIOU of 80.84%, which
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is comparable with the official published DLv3+ results.

VIII. KEY INSIGHTS

We present our key insights as follows:

• Horovod support for existing models is feasible, and an

abundance of documentation makes this step approach-

able, even if the model is a novel DNN architecture (e.g.

DeepLab-v3+).

• While default Horovod support provides acceptable scal-

ing efficiency for a small number of nodes, efficiency

quickly drops off at larger scales.

• Without changing the underlying model/Horovod/MPI

implementations, it is possible to tune the system scaling

to provide competitive training performance.

We believe that this work provides a general training

optimization pipeline for other compute and communication-

intensive DNNs that could benefit from distributed training on

HPC systems. Figures 12 and 13 illustrate these insights for

distributed training with novel DNN architectures (in particular

semantic image segmentation).

Fig. 12: Performance Improvement for DLv3+ Training after

Tuning/Optimization

Fig. 13: Scaling Efficiency Improvement for DLv3+ Training

after Tuning/Optimization

IX. RELATED WORK

There are several studies available in the literature which

use segmentation DNNs for climate analytics such as extreme

weather prediction, [21]–[23], tropical cyclone detection [24],

etc. DeepLab [16] is a widely used segmentation model based

on CNNs, which is used in various applications like object

detection [25], style transfer [26], etc.

Kurth et al. [5] extended the DeepLabv3+ and Tiramisu

segmentation models to perform climate analytics. TensorFlow

was coupled with Horovod to distribute DNN training using

Data Parallelism and implemented a Hierarchical allreduce to

scale the training to 27,360 GPUs. However, in this paper

we used the MVAPICH2-GDR communication runtime and

Horovod/MPI tuning to achieve competitive allreduce perfor-

mance without changing the code for Horovod/MPI. Jacobs et

al. [27] scaled Deep Generative models on scientific datasets

using LBANN, a deep learning framework for distributed

training. Data parallelism is coupled with model parallelism

to scale a DNN to 1,024 GPUs with 64 trainers and achieved

109% parallel efficiency. CosmoFlow [28] uses DNN to de-

termine the physical model which can be used to describe the

universe. CosmoFlow uses TensorFlow and CPE ML plugin to

implement distributed training for 3D convolution operation on

8192 KNL nodes and achieved 77% parallel efficiency. Cycle-

Consistent Adversarial Networks (CycleGANs) [29] can be

used to visualize the effect of climate change. Before and after

images of locations, which have experienced floods, forest

fires, and other natural disasters are used to train the network

so that it can predict the outcome of natural disasters for other

locations.

X. CONCLUSION

The computational workloads for Deep Learning are rapidly

increasing for emerging image processing applications such

as autonomous driving, automatic medical image diagnosis,

and climate analysis [5]. The extreme computation and

communication requirements of these applications provide

an excellent opportunity for distributed DNN training. We

demonstrate that scaling image segmentation analysis models

to HPC systems is both feasible and approachable for existing

single-node DNN implementations. Near-linear scaling may

be achieved without significantly changing the structure of

the model, Horovod, or MPI communication backend. Given

an understanding of the communication requirements of the

novel DCNN, we have achieved strong distributed training

with above 90% scaling efficiency while maintaining a mIOU

accuracy of 80.8% that is competitive with state-of-the-art

single-node results. Further, our tuning method achieves an

improvement in scaling efficiency by 23.9%, which translates

to a 1.3× speedup in training performance. We believe that

these results pave the way for efficiently training semantic

image segmentation models and other novel DNNs that require

long training times.
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