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an excited state and the vacuum state of a conformal field theory (CFT) reduced to a

spherical region. For example, when the excited state is a small perturbation of the vac-

uum state, the relative entropy is known to have a universal expression for all CFT’s [1].

Specifically, the perturbative relative entropy can be written as the symplectic flux of a

certain scalar field in an auxiliary AdS-Rindler spacetime [1]. Moreover, if the CFT has

a semi-classical holographic dual, the relative entropy is known to be related to conserved

charges in the bulk dual spacetime [2]. In this paper, we introduce a one-parameter gener-

alization of the relative entropy which we call refined Rényi relative entropy. We study this

quantity in CFT’s and find a one-parameter generalization of the aforementioned known
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3.1 Refined Rényi relative entropy 10

3.1.1 Perturbation of the refined Rényi relative entropy 12
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1 Introduction

The introduction of quantum information theory into quantum gravity in general and the

AdS/CFT correspondence in particular has led to a revolution in the latter. Specifically,

formulating questions in gravity in terms of entropy measures such as the entanglement

entropy and relative entropy has proven to be a very fruitful endeavor.

Relative entropies are a way of quantifying the distinguishability of two quantum states,

borne out of quantum information theory. The relative entropy between two states ρ and

σ is defined as

Srel(ρ||σ) ≡ tr(ρ log ρ)− tr(ρ log σ) . (1.1)

This quantity has proven to be very important in the context of quantum gravity, appear-

ing in the proof of the Bekenstein bound [3, 4], proofs of the generalized second law [5, 6],
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proofs of the Bousso bound [7, 8], the proof of the average null energy condition [9], study

of the quantum null energy condition [10–12], study of constraints satisfied by the renor-

malization group trajectories in field theory [13], the question of black hole microstate

distinguishability [14], the proof of entanglement wedge reconstruction [15–18], the deriva-

tions of bulk constraints such as Einstein equations [19–23], and the recent holographic

proofs of the positive energy theorems [2, 24–26].

A significant effort has been made to study relative entropy in the context of conformal

field theories (CFT’s) on R1,d−1, especially when the reference state is taken to be the

vacuum state reduced to a spherical region. The relative entropy between an excited state

(ρ) and the vacuum state (σ) in this setup has been studied using field theory methods

in [1, 27, 28] and using the AdS/CFT correspondence in [2, 19–26, 29]. In the case where

the state ρ in eq. (1.1) can be written as small perturbation around the vacuum state

σ, the relative entropy (to lowest order in the perturbation parameter) can be written in

terms of the CFT two point functions [1, 27], and hence, is completely fixed by conformal

symmetry.1 This universal perturbative relative entropy for a general CFT was written

in [1] as the symplectic flux of a scalar field in an auxiliary AdS-Rindler ‘bulk’ spacetime

Srel(ρ||σ) =

∫
Σ0

ωφ

(
Φ
(
r, t, y

)
, £ξΦ

(
r, t, y

) )
, (1.2)

where ξ is related to the timelike killing vector field and Σ0 is a Cauchy slice in the AdS-

Rindler spacetime; (see section 2.1 for details). On the other hand, when the excited state

ρ is not necessarily a perturbative state, the relative entropy between ρ and σ depends

on the details of the CFT’s. The relative entropy in this case was studied for holographic

CFT’s in [2]. It was argued that the bulk dual of the relative entropy is related to the

difference in the conserved charges, Hξ (Mρ) and Hξ (Mσ) , in the entanglement wedges

of ρ and σ respectively. That is, [2]

Srel(ρ||σ) = Hξ (Mρ)−Hξ (Mσ) . (1.3)

The conserved charges Hξ have contributions from both the codimension-2 extremal surface

and the asymptotic boundary. We review the concept of conserved charges in section 2.2

and review the derivation of eq. (1.3) in section 2.3.

Another area of some recent interest has been that of studying the Rényi entropies,

Sn(ρ), defined by

Sn(ρ) =
1

1− n log tr ρn . (1.4)

In particular, the holographic dual of a specific derivative of this quantity, called the refined

Rényi entropy S̃n(ρ), defined by

S̃n(ρ) = n2∂n

(
n− 1

n
Sn(ρ)

)
(1.5)

was derived in [39], where it was shown that this object is calculated by the minimal area

of a cosmic brane with tension given by Tn = n−1
4nGN

. In the case when n goes to one, this

1This is true for the perturbative entanglement entropy as well [30–38].
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becomes the holographic formula for entanglement entropy [40–43] and corresponds to the

tension-less limit of this brane. It is worth noting that while this refined Rényi entropy has

a natural holographic dual, the Rényi entropy itself does not yet possess the same.

Since the relative entropy is defined in the context of entanglement entropies, as, for

example, is apparent from the fact that entanglement entropy appears explicitly in the form

of the relative entropy, it is natural to ask for Rényi generalizations thereof. The problem is

that the method for performing this generalization is not unique. Indeed, several different

candidates have appeared in the literature, with some of the desirable properties that

such a quantity should be expected to possess; see for example [44–48]. In particular, the

quantity of the sandwiched Rényi relative entropy defined in these works seems to be the

generalization that most preserves the desired properties, in particular the monotonicity of

Rényi relative entropy under CPTP maps. This object is defined to be

Sn(ρ||σ) ≡ 1

n− 1
log tr

{(
σ

1−n
2n ρ σ

1−n
2n

)n}
. (1.6)

It is now a natural question to ask whether such a generalization of the relative entropy

can be nicely related to a geometric object with nice bulk properties via holography. The

goal of this paper is to address this question. Specifically, we consider a refined version of

the sandwiched Rényi relative entropy, which we define as

S̃n(ρ||σ) ≡ n2 ∂n

(
n− 1

n
Sn(ρ||σ)

)
. (1.7)

We call this quantity ‘refined’ Rényi relative entropy. In particular, we study this quantity

when the state σ is the vacuum state of an arbitrary CFT reduced to a spherical region

and ρ is a slightly excited state. We find that, for integer n ≥ 1, the perturbative refined

Rényi relative entropy, just like the relative entropy, is completely fixed by conformal

symmetry and can be written as the symplectic flux of a scalar field in an auxiliary AdS-

Rindler spacetime. We therefore consider our result to be a one-parameter generalization of

eq. (1.2). Moreover, we also specialize to the case of holographic CFT’s and argue that the

holographic dual of the non-perturbative refined Rényi relative entropy, for integer n ≥ 1, is

related to conserved charges in an asymptotically locally AdS spacetime. We consider this

to be a one-parameter generalization of eq. (1.3). Finally, we use this holographic formula

to prove certain ‘positive energy’ theorems in the asymptotically locally AdS spacetimes.

It is important to point out here that the Hilbert space of a quantum field theory

is not factorizable into subspaces of spatial subregions. Therefore, the ‘reduced’ density

matrices of a spatial subregion are not formally defined objects in quantum field theory.

Moreover, local algebras in a quantum field theory are of Type III [49–51], and therefore

do not have a notion of trace. Hence, the definition of the relative entropy in eq. (1.1)

and sandwiched Rényi relative entropy in eq. (1.6) are only valid for finite dimensional

Hilbert spaces. Nevertheless, the relative entropy between a general and a vacuum state

on a subregion is still a well-defined object in quantum field theory. This is defined in

terms of subalgebras of local operators in the subregion using Tometa-Takesaki modular

theory [52, 53]; see [54] for review. Furthermore, a formal definition of the sandwiched
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Rényi relative entropy was recently discussed in [55]. Since, the sandwiched Rényi relative

entropy is a well-defined quantity in a quantum field theory, we deduce from eq. (1.7) that

the refined Rényi relative entropy is also a well-defined object in quantum field theory.

The rest of this paper in organized as follows. We start with a review of known

results about relative entropy in CFT’s, such as eq. (1.2) and eq. (1.3), and a review

of conserved charges using covariant phase space methods in section 2. We introduce

refined Rényi relative entropy in section 3.1 and derive some properties of this quantity.

In particular, we show that this quantity can be written as the relative entropy of an n-

dependent state, which we call the ‘sandwiched’ state. We use this observation to derive

a general perturbative formula for the refined Rényi relative entropy in section 3.1.1. We

then show in section 3.2 that for a particular family of states, the sandwiched state can

be prepared by a Euclidean path integral. Using these results, we study the refined Rényi

relative entropy in section 4 when the reference state is the vacuum of a CFT reduced to a

spherical region and the other state is a small perturbation thereof. We show in section 4.1

that the refined Rényi relative entropy in this case can be written as the symplectic flux

of a scalar field through a Cauchy slice of the AdS-Rindler spacetime, thus providing a

one-parameter generalization of eq. (1.2). We then specialize to CFT’s with semi-classical

holographic duals in section 5. We argue that the holographic dual of the refined Rényi

relative entropy between an excited state and a vacuum state reduced to a spherical region

is related to conserved charges in the bulk dual of the sandwiched state. We therefore

consider our result to be a one-parameter generalization of eq. (1.3). We use this result

in section 5.1 to prove certain ‘positive-energy’ theorems in asymptotically locally AdS

spacetimes. Finally, we end with a summary of our results and some possible future

directions in section 6.

2 Background

Our goal in this paper is to present a one-parameter generalization of the known results

about the relative entropy in CFT’s, particularly eq. (1.2) and eq. (1.3). We dedicate this

section to a brief review of these known results as well as a brief review of the concept of

the conserved charges derived via covariant phase space methods.

2.1 Perturbative relative entropy in a general CFT

As pointed out earlier, relative entropy has been studied in detail between states of a

conformal field theory (CFT) in R1,d−1 especially when the reference state is taken to

be the vacuum state reduced to a spherical region. The simplification that occurs when

dealing with the CFT vacuum reduced to a spherical region, B, is that the vacuum reduced

state, σ, has a universal form [56]. In particular, the modular Hamiltonian of the reduced

vacuum state, defined as Kσ ≡ − log σ , is given by [56]

Kσ =

∫
S
dΣb ξ̂a Tab , (2.1)

where S is any achronal slice within the domain of dependence of the spherical region B,

D(B), such that ∂S = ∂B. Moreover, the vector ξ̂ is the generator of a (modular) flow
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in D(B). In particular, the vector field ξ̂ (in Cartesian coordinates xµ = {x0, xi}) for a

spherical region of radius R at x0 = 0 and centered at the origin is

ξ̂ =
π (R2 − (x0)2 − ~x2)

R
∂0 −

2π x0 xi

R
∂i . (2.2)

For holographic CFT’s on R1,d−1, the vacuum state is dual to the Poincare patch of

the (d+ 1)-dimensional vacuum AdS spacetime, which is described by

ds2 =
`2

z2

(
dz2 + ηµνdx

µdxν
)
. (2.3)

where z = 0 is the boundary of the AdS spacetime and ` is the AdS length scale. Moreover,

the bulk region dual to the vacuum state reduced to a subregion is the corresponding en-

tanglement wedge in Poincare AdS. The entanglement wedge corresponding to a spherical

region B of radius R, Mσ, is the domain of dependence of an achronal surface, Σ0, such

that ∂Σ0 = B ∪ B̃σ, where

B̃σ : x0 = 0 and z2 + ~x2 = R2 . (2.4)

The vector field, ξ, that generates the (modular) flow in the entanglement wedge Mσ is

ξz = −2π x0 z

R
ξ0 =

π (R2 − z2 − (x0)2 − ~x2)

R
ξi = ξ̂i . (2.5)

It is easy to check that ξ is a killing vector field of the Poincare AdS spacetime and that

it satisfies the following boundary conditions

ξ
∣∣
B

=ξ̂ ξ
∣∣
B̃σ

= 0 . (2.6)

The entanglement wedge Mσ can be mapped, by a coordinate transformation, to the

AdS-Rindler spacetime [56], which is described by

ds2 = −
(
r2

R2
− 1

)
dt2 +

(
r2

R2
− 1

)−1

dr2 + r2 ds2
Hd−1 , (2.7)

where ds2
Hd−1 is the metric on the (d − 1)-dimensional unit hyperbolic space. In this

coordinate system, the extremal surface B̃σ is given by r = R for any finite t, which is

the bifurcation surface of the AdS-Rindler spacetime. Moreover, ξ is related to the time-

translation vector field by

ξ = −2πR∂t . (2.8)

One can now check that the vector field ξ satisfies(
∇aξb −∇bξa

) ∣∣
B̃σ

= 4π nab , (2.9)

where nab ≡ na1n
b
2 − na2nb1 , where n1 = ∂r and n2 = ∂t are normal vectors to the extremal

surface B̃σ .
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Now let us consider an excited state of a CFT prepared by a path integral with the

insertion of a smeared operator. We denote this state reduced to a spherical region B by ρ.

For the case when the excited state ρ is a perturbation of σ, the relative entropy between

these states for holographic CFT’s was studied using the AdS/CFT correspondence in [26].

This work was generalized in [1] for all CFT’s, irrespective of whether the CFT has a

holographic dual or not. It was shown in [1] that the perturbative relative entropy can be

written as the symplectic flux of a scalar field through a Cauchy slice of the AdS-Rindler

spacetime. More precisely,

Srel(ρ||σ) =

∫
Σ0

ωφ

(
Φ
(
r, t, y

)
, £ξΦ

(
r, t, y

) )
. (2.10)

The mass of the scalar field in eq. (2.10) is fixed by the conformal dimension of the operator

used to prepare the perturbed state ρ whereas the boundary condition of the scalar field

is fixed by the smearing function of that operator. If the CFT under consideration were

holographic, this scalar field would have been the holographic dual of the operator used to

prepare the state ρ. However, it should be noted that the AdS/CFT correspondence was

not assumed in the analysis of [1] and hence, the result in eq. (2.10) is valid for all CFT’s.

Therefore, the scalar field in eq. (2.10) and the AdS-Rindler spacetime should be thought

as auxiliary tools used to write the perturbed relative entropy geometrically.

Recently, a similar perturbative calculation was performed in [57] for the Rényi relative

divergence which is defined as

Dn(ρ||σ) ≡ tr
(
σ1−n ρn

)
. (2.11)

In particular, it was found that at the lowest order in the perturbation parameter, the

quantity defined as

D̃n(ρ||σ) ≡ D−n(ρ||σ)−Dn(ρ||σ) , (2.12)

and its derivative, ∂nD̃n(ρ||σ) , can also be written as the symplectic flux of the scalar field

as in eq. (1.2). The perturbative Rényi relative divergence was also studied in [58], where

the Rényi relative divergence between two thermal states was written as a Euclidean path

integral. This path integral was then computed using the AdS/CFT correspondence.

The sandwiched Rényi relative entropy and the Rényi relative divergence are both

special cases of n-z Rényi relative divergence which is defined as

Dn,z(ρ||σ) ≡ 1

n− 1
log tr

{(
σ

1−n
2z ρ

n
z σ

1−n
2z

)z}
. (2.13)

This quantity was studied for two perturbatively nearby states in [59]. Indeed, it was found

that at the lowest order in the perturbation parameter, this quantity can also be written as

the symplectic flux of the scalar field as in eq. (1.2). However, the AdS/CFT correspondence

was assumed in [59] and hence this analysis is only valid for holographic CFT’s.

This concludes our review of the known perturbative results regarding relative entropy

and various associated Rényi quantities. Before moving on to a review of the derivation of

eq. (1.3) presented in [2], we review the notion of conserved charges and canonical energy

in the following subsection.
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2.2 Quasi-local conserved charges and canonical energy

In this subsection, we switch from quantum information to gravity temporarily and talk

about the concepts of conserved charges and canonical energy in the general framework of

covariant phase space methods. We restrict ourselves to a review of these quantities only

to the extent that will be relevant for our analysis in this paper. The reader is referred to

canonical references on this topic [60–63] for full details.

Given a field theory in (d+ 1) dimensions, any variation of the Lagrangian is given by

δL ≡ E(g)δg + dθ(g, δg) , (2.14)

where we use g, δg as collective labels to represent the metric and matter fields and their

variations respectively. In eq. (2.14), E(g) = 0 denotes the equations of motion and the

d-form θ(g, δg) is called the symplectic potential. From the symplectic potential, one can

define the symplectic current, ω(g, δ1g, δ2g), as

ω(g, δ1g, δ2g) ≡ δ1θ(g, δ2g)− δ2θ(g, δ1g) , (2.15)

which is a d-form and is antisymmetric and bilinear in two field perturbations.

Given Σ, a subspace of a codimension-1 hypersurface and η, a vector field on Σ, the

perturbed Hamiltonian conjugate to η is given by [60–63]

δHη ≡
∫

Σ
ω(g, δg,£ηg) . (2.16)

Using eq. (2.14) and assuming equations of motions, E(g) = 0, this can be written as

δHη =

∫
Σ
δ
(
θ(£ηg)− η · L

)
−
∫
∂Σ

η · θ(δg) , (2.17)

where ∂Σ denotes the boundary of Σ. It is worth pointing out that the existence of the

Hamiltonian, Hη, is a non-trivial issue. In particular, it exists if and only if the boundary

term is a total variation which is to say that the quantity appearing on the right hand side

of eq. (2.17) is integrable. This is guaranteed if the following condition holds [63]∫
∂Σ

η · [δ1θ(δ2g)− δ2θ(δ1g)] = 0 , (2.18)

for arbitrary perturbations δ1 and δ2. When this condition holds, there exists a d-form

K(g) such that [2]

δ
(
η ·K(g)

)
≡ η · θ(δg) on ∂Σ . (2.19)

Assuming the condition in eq. (2.18) is satisfied, the Hamiltonian conjugate to η can

be written as

Hη =

∫
Σ
Jη −

∫
∂Σ

η ·K , (2.20)

where

Jη ≡ θ(£ηg)− η · L . (2.21)
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Note that the Hamiltonian, Hη, in eq. (2.20) can be written purely as a boundary

integral. This is because Jη can be written, using equations of motion, as

Jη = dQη , (2.22)

where Qη is a (d − 1)-form and is called the Noether charge. Therefore, the Hamiltonian

can be written as an integral over ∂Σ,

Hη =

∫
∂Σ

(Qη − η ·K) . (2.23)

This ‘quasi-local’ expression implies that the Hamiltonian only depends on the details of

the vector field η near the boundary ∂Σ. Moreover, this implies that the Hamiltonian is

the same for any two codimension-1 surfaces Σ1 and Σ2 if they have a common boundary,

i.e. ∂Σ1 = ∂Σ2 . In this sense, the Hamiltonian is conserved and hence we will use it

interchangeably with conserved charge in this paper.

Now let us suppose that the metric and matter fields have a perturbative expansion

given by

g = g(0) + ε g(1) +O(ε2) , (2.24)

where ε � 1 is a perturbation parameter. Let us further assume that the unperturbed

metric and matter fields are invariant under the diffeomorphism generated by the vector

field η. That is, £η g
(0) = 0 . Using eq. (2.16), we deduce that the derivative of the

Hamiltonian, Hη , is given by

d

dε
Hη =

∫
Σ
ω

(
g,
d

dε
g,£ηg

)
. (2.25)

At linear order in ε, the Hamiltonian, Hη , is

H(1)
η ≡ dHη

dε

∣∣∣
ε=0

=

∫
Σ
ω
(
g(0), g(1),£ηg

(0)
)
. (2.26)

Since we have assumed £ηg
(0) = 0 , we get that H

(1)
η = 0 . Similarly, the Hamiltonian, Hη ,

at quadratic order in ε is given by

H(2)
η ≡ d2Hη

dε2

∣∣∣
ε=0

=

∫
Σ
ω
(
g(0), g(1),£ηg

(1)
)
. (2.27)

The quantity on the right hand side, for the case when η is a timelike killing vector field

of the unperturbed metric, is called the canonical energy [64].

This concludes our review of the concepts of conserved charges and canonical energy.

In the next subsection, we review the derivation of eq. (1.3) originally presented in [2].

2.3 Relative entropy in holographic CFT’s

Now we consider a CFT with a holographic dual. Like in section 2.1, we denote an excited

state and a vacuum state reduced to a spherical region by ρ and σ respectively. However, we

– 8 –
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no longer assume that the state ρ is a perturbative state around the vacuum state σ. The

relative entropy between these states was studied in [2] using the AdS/CFT correspondence.

It was found that the holographic dual of the relative entropy between these states is related

to certain conserved charges in the entanglement wedge corresponding to ρ, Mρ , and in

the entanglement wedge corresponding to σ, Mσ . Here, we review the argument of [2].

Recall that the relative entropy in eq. (1.1) can be written as

Srel(ρ||σ) = S(σ)− S(ρ) + 〈Kσ〉ρ − 〈Kσ〉σ , (2.28)

where S(ρ) and S(σ) are the von Neumann entropies of the states ρ and σ whereas 〈Kσ〉ρ
and 〈Kσ〉σ are the expectation values of Kσ in the states ρ and σ respectively.

For holographic CFT’s, we already know the bulk duals of S(σ) and of S(ρ). In

particular, these quantities are given by [40, 41]

S(σ) =
Area

(
B̃σ
)

4GN
, (2.29)

S(ρ) =
Area

(
B̃ρ
)

4GN
, (2.30)

where B̃σ and B̃ρ are the boundary anchored codimension-2 extremal surface corresponding

to the states σ and ρ respectively. Now using the form of Kσ from eq. (2.1) and using

eq. (2.29) and eq. (2.30), we write the relative entropy in eq. (2.28) as

Srel(ρ||σ) =
Area

(
B̃σ
)

4GN
− Area

(
B̃ρ
)

4GN
+

∫
S
dΣb ξ̂a 〈Tab〉ρ −

∫
S
dΣb ξ̂a 〈Tab〉σ . (2.31)

As discussed in section 2.1, B̃σ is the bifurcation surface of the AdS-Rindler spacetime.

Hence, the area of this surface can be written as a surface integral of the Noether charge

conjugate to ξ [60, 61]. That is,

Area
(
B̃σ
)

4GN
=

∫
B̃σ

Qξ (Mσ) , (2.32)

where ξ is the killing vector field in eq. (2.5). Moreover, since ξ vanishes at B̃σ as stated

in eq. (2.6), we can write eq. (2.32) as

Area
(
B̃σ
)

4GN
=

∫
B̃σ

(
Qξ
(
Mσ

)
− ξ ·K

(
Mσ

))
. (2.33)

In general, there is no killing vector field in the bulk dual of an excited CFT state.

Therefore, it does not trivially follow that the area of B̃ρ can also be written as in eq. (2.33).

However, it was argued in [2] that one can always find a vector field (which we also denote

by ξ) that vanishes on B̃ρ and that satisfies eq. (2.9) near B̃ρ. With these conditions on ξ,

it was shown in [2] that we can write

Area
(
B̃ρ
)

4GN
=

∫
B̃ρ

(
Qξ
(
Mρ

)
− ξ ·K

(
Mρ

))
. (2.34)
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If the state ρ is a perturbative state around the vacuum, then it was shown in [20] that∫
B

(
Qξ
(
Mρ

)
− ξ ·K

(
Mρ

))
−
∫
B

(
Qξ
(
Mσ

)
− ξ ·K

(
Mσ

))
=

∫
S
dΣb ξ̂a 〈Tab〉ρ −

∫
S
dΣb ξ̂a 〈Tab〉σ , (2.35)

where the integral is performed over a spherical boundary region B. It was then argued

in [2] that this expression holds even if ρ is not a perturbative state.

Now using eq. (2.33), eq. (2.34), and eq. (2.35), we write eq. (2.31) as

Srel(ρ||σ) =

∫
B

(
Qξ
(
Mρ

)
− ξ ·K

(
Mρ

))
−
∫
B̃ρ

(
Qξ
(
Mρ

)
− ξ ·K

(
Mρ

))
−
∫
B

(
Qξ
(
Mσ

)
− ξ ·K

(
Mσ

))
+

∫
B̃σ

(
Qξ
(
Mσ

)
− ξ ·K

(
Mσ

))
. (2.36)

Note that B ∪ B̃σ and B ∪ B̃ρ are the boundaries of achronal slices on Mσ and Mρ

respectively. Now using eq. (2.23), we write the relative entropy in eq. (2.36) as

Srel(ρ||σ) = Hξ (Mρ)−Hξ (Mσ) . (2.37)

In this equation, Hξ (Mσ) is the conserved charge corresponding to the diffeomorphism

generated in Mσ by the killing vector field ξ given in eq. (2.5). On the other hand,

Hξ (Mρ) is the conserved charge corresponding to the diffeomorphism generated by any

vector field inMρ that behaves like the vector field ξ near the boundary ofMρ. That is, it

is a killing vector field near the asymptotic boundary and it satisfies boundary conditions

similar to eq. (2.6) and eq. (2.9).

This finishes our review of the known results about relative entropy in the context

of CFT’s and holography, especially eq. (1.2) and eq. (1.3). Our goal in this paper is to

show that similar results are true for the refined Rényi relative entropy defined in eq. (1.7).

Before we do this, we discuss the refined Rényi relative entropy and derive some of its

properties in the next section.

3 Preliminaries

3.1 Refined Rényi relative entropy

We start by reviewing two quantities in quantum information theory that are particularly

relevant to this paper, namely relative entropy and Rényi relative entropy. In doing so, we

will show that for particular choices of states, relative entropy and a quantity related to

Rényi relative entropy, the refined Rényi relative entropy, are actually equal to each other.

This equality will be central to our analysis in the subsequent sections of this paper.

Recall that the relative entropy between two states ρ and σ is defined as

Srel(ρ||σ) ≡ tr(ρ log ρ)− tr(ρ log σ) , (3.1)
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when supp(ρ) ⊆ supp(σ) (otherwise, the relative entropy is taken to be ∞). The relative

entropy satisfies a data-processing inequality which implies that the relative entropy de-

creases under a completely positive and trace preserving map (CPTP) [65]. That is, under

a CPTP map E ,

Srel (E(ρ)||E(σ)) ≤ Srel(ρ||σ) . (3.2)

Now consider two reduced density states of a subsystem A, ρA and σA . For any smaller

subsystem B ⊂ A, eq. (3.2) implies

Srel (ρB||σB) ≤ Srel(ρA||σA) . (3.3)

In other words, it is more difficult to distinguish two states when some potentially distin-

guishing information is traced out.

The one-parameter generalization of the relative entropy that also satisfies a data-

processing inequality is the ‘sandwiched’ Rényi relative entropy, which is defined as [44–48]

Sn(ρ||σ) ≡ 1

n− 1
log tr

{(
σ

1−n
2n ρ σ

1−n
2n

)n}
, (3.4)

when supp(ρ) ⊆ supp(σ). This quantity also monotonically increases with Rényi parameter

n [45, 47]. That is,

∂n Sn(ρ||σ) ≥ 0 . (3.5)

In this work, we introduce a closely related quantity, refined Rényi relative entropy,

which is defined as

S̃n(ρ||σ) ≡ n2 ∂n

(
n− 1

n
Sn(ρ||σ)

)
. (3.6)

Just like the sandwiched relative entropy, this quantity approaches the relative entropy

between states ρ and σ in the limit n→ 1. That is,

lim
n→1

S̃n(ρ||σ) = Srel(ρ||σ) . (3.7)

Note that we can write eq. (3.6) as

S̃n(ρ||σ) = Sn(ρ||σ) + n(n− 1) ∂nSn(ρ||σ) . (3.8)

Now using the monotonicity of sandwiched Rényi relative entropy, eq. (3.5), we find the

following hierarchical structure between the different relative entropies

S̃n(ρ||σ) ≥ Sn(ρ||σ) ≥ Srel (ρ||σ) for n ≥ 1 , (3.9)

S̃n(ρ||σ) ≤ Sn(ρ||σ) ≤ Srel (ρ||σ) for n ≤ 1 . (3.10)

As we will see in section 5.1, applying the inequality in eq. (3.9) in the context of

the AdS/CFT correspondence leads to interesting energy conditions in asymptotically

AdS spacetimes.
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A useful property of the refined Rényi relative entropy is that it can be written as the

relative entropy of a related state. More precisely, we have

S̃n(ρ||σ) =Srel

(
ρ(n)||σ

)
, (3.11)

where we have introduced a ‘sandwiched’ state, ρ(n), which is defined as

ρ(n) ≡

(
σ

1−n
2n ρ σ

1−n
2n

)n
tr
(
σ

1−n
2n ρ σ

1−n
2n

)n . (3.12)

We relegate the derivation of eq. (3.11) to appendix A and discuss the consequences of this

identity in the following. First, the fact that the relative entropy is non-negative guarantees

that the refined Rényi relative entropy is also non-negative.

S̃n(ρ||σ) ≥ 0 . (3.13)

Secondly, the identity in eq. (3.11) allows us to study the perturbative expansion of the

refined Rényi relative entropy which we discuss in detail in the next subsection.

3.1.1 Perturbation of the refined Rényi relative entropy

In this section, our goal is to study the refined Rényi relative entropy when the state ρ is

perturbatively expanded around an arbitrary state σ. More precisely, we take state ρ to

be given by

ρ = σ + ε ρ(1) +O(ε2) , (3.14)

where ε � 1 is a perturbation parameter. The perturbation of the relative entropy has

been studied in the literature [1, 26, 27]. Since the relative entropy is non-negative, it

means that the relative entropy between states ρ and σ vanishes at linear order in ε. This

implies that the change in entanglement entropy is equal to the change in ‘modular’ energy,

which is usually called the first law of entanglement [29]. Therefore, to lowest order in ε,

the relative entropy between states ρ and σ is of the form

Srel(ρ||σ) =
ε2

2
S

(2)
rel (ρ||σ) +O(ε3) , (3.15)

where [1]

S
(2)
rel (ρ||σ) = −

∫ ∞
−∞

ds

4 sinh2
(
s+iδ

2

)tr
(
σ−1− is

2π ρ(1) σ
is
2π ρ(1)

)
. (3.16)

Since the refined Rényi relative entropy is related to the relative entropy according

to eq. (3.11), we can deduce the second-order contribution to the refined Rényi relative

entropy using eq. (3.16). To do this, we first need to find the perturbative expansion of

the sandwiched state, ρ(n). By inserting the expansion of ρ from eq. (3.14) in eq. (3.12),

we find that the sandwiched state for integer n ≥ 1 at linear order in ε is given by

ρ(n) = σ + ε
n−1∑
k=0

σ
1−n+2k

2n ρ(1) σ
n−1−2k

2n +O(ε2) . (3.17)
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Now using eq. (3.11) and eq. (3.16), we deduce that the refined Rényi relative entropy at

the lowest order in ε is

S̃n(ρ||σ) =
ε2

2
S̃(2)
n (ρ||σ) +O(ε3) , (3.18)

where

S̃(2)
n (ρ||σ) = −

n−1∑
k=0

n−1∑
j=0

∫ ∞
−∞

ds

4 sinh2
(
s+iδ

2

)tr
(
σ−1σ−

is
2π

+
(k−j)
n ρ(1) σ

is
2π
− (k−j)

n ρ(1)
)
. (3.19)

This general formula for the perturbation of the refined Rényi relative entropy for integer

n ≥ 1 is the main result of this section.2 We will use this result in section 4 to relate the

perturbative refined Rényi relative entropy to the symplectic flux of a scalar field through

a Cauchy slice of the AdS-Rindler wedge.

3.2 Sandwiched state in a CFT

In this paper, we are interested in studying the refined Rényi relative entropy between

states of a conformal field theory (CFT) on R1,d−1 though our results are valid for CFT’s

on R × Sd−1 as well. In particular, our approach will be to use the relation between

the refined Rényi relative entropy and the relative entropy given in eq. (3.11). To use

this relation, we first need to construct the sandwiched state, ρ(n) , for given states ρ and

σ. In this section, we show that for a family of states ρ and σ, the sandwiched state

ρ(n) can be prepared (up to a unitary transformation) by a Euclidean path integral over

H′ = S1 ×Hd−1.

Let us take the state σ to be the vacuum state of the CFT, |Ω〉 , reduced to a spherical

region, B, of radius R. The domain of dependence of B, which we denote by D(B) , can be

mapped to H = R × Hd−1 by a conformal transformation [56]. Under this transformation,

the state σ maps to a thermal state, σ̃ , of temperature T = 1/(2πR) on the hyperbolic

space of radius R [56]. Therefore, the state σ is related to σ̃ by a unitary transformation.

If we denote the Hamiltonian on the hyperbolic space by H, then the state σ is given by

U σ U † = σ̃ ≡ e−2πRH

ZR
, (3.20)

where ZR = tr e−2πRH is the thermal partition function on the hyperbolic space and U is

the unitary transformation that maps states from B to hyperbolic space.

Following [55], We now consider a state |Ψ〉 ≡ N Ψ |Ω〉, where Ψ is defined by the

smearing of a local operator Ψ(x) in a small neighborhood around the point x and N is

the normalization constant. We take state ρ to be the state |Ψ〉 reduced to region B. The

state ρ can be represented by a Euclidean path integral on Rd with open cuts just above

and below the region B and with insertions of operators Ψ in the lower and in the upper

half plane.3

2It may be possible to analytically continue eq. (3.19) to non-integer n by converting the sum into a

contour integral as done in [27]. We thank Tom Hartman for pointing this out.
3For simplicity, we take Ψ to be a Hermitian operator.
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τ0

U ρU †

U σ
1
3 U †

U σ
1
3 U †

U ρU † = U σ
1
3 ρ̂(3) σ

1
3 U † U ρ̂(3) U

†

2πR
3

2πR
3

2πR
3

U ρ(3) U
†

τ = 0

τ = πR

τ = 2πR

Figure 1. The pictorial representation of the construction of the states ρ and ρ(n) using a Euclidean

path integral overH′ = S1×Hd−1. The vertical direction denotes the direction along the S1 whereas

the horizontal direction denotes the radial direction of Hd−1 and we have suppressed the transverse

d− 2 dimensions. (This figure is inspired by figure 1 of [2].)

Just like the state σ, the state ρ is also related to the state ρ̃ on the hyperbolic space

by a unitary transformation. To find the state ρ̃ , we use the conformal transformation

from Rd to H′ = S1 × Hd−1 where the radii of S1 and Hd−1 are equal to R. Note that

this is simply the Euclidean version of the conformal transformation that maps D(B) to

H. Under this conformal transformation, the aforementioned path integral representation

of the state ρ maps to a path integral representation of a density matrix on H′. We

perform this analysis in appendix B and find that the matrix elements of ρ and ρ̃, up to a

normalization constant, can be written as

〈φ̃−|U ρU †|φ̃+〉 = 〈φ̃−| ρ̃ |φ̃+〉

∼
∫ Φ(τ=2πR)=φ̃−

Φ(τ=0)=φ̃+

DΦ e−I0[Φ]Ψ̃(τ = πR+ τ0) Ψ̃(τ = πR− τ0) , (3.21)

for 0 ≤ τ0 ≤ πR . In this equation, Ψ̃ = U ΨU † is the image of Ψ under conformal

transformation and Ψ̃(τ∗) is the smearing of the local operator Ψ(τ, y) around a small

neighborhood of τ = τ∗ and yi = 0 where 0 < τ < 2πR and yi are the coordinates on

S1 and Hd−1 respectively. A pictorial representation of the path integral in eq. (3.21) is

presented in figure 1. As we discuss in appendix B, the path integral in eq. (3.21) can be

written in operator language. This yields the following expression for states ρ and ρ̃

U ρU † = ρ̃ =
σ̃Ψ̃(πR+ τ0) Ψ̃(πR− τ0)

〈Ψ̃(πR+ τ0) Ψ̃(πR− τ0)〉H′
, (3.22)

where 〈. . .〉H′ is the correlation functions on H′.
Now consider the sandwiched state, ρ(n) , defined in eq. (3.12). Note that we can write

the sandwiched state, up to a normalization constant, as ρ(n) ∼ ρ̂n(n) , where

ρ̂(n) = σ
1−n
2n ρ σ

1−n
2n . (3.23)
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Inverting this equation yields ρ = σ
n−1
2n ρ̂(n) σ

n−1
2n . As discussed in [2, 28, 55], this expres-

sion for ρ allows us to write a path integral representation of ρ̂(n) . This follows from the

observation that for 1 < n < πR
τ0

,4 the path integral representation of the matrix element

in eq. (3.21) can be can be cut in S1 direction as shown in figure 1. This yields that ρ̂(n)

can be written as a path integral (with two operator insertions) over S1 ×Hd−1 where the

radius of S1 is now R/n. Now since ρ(n) ∼ ρ̂n(n) , we take n copies of ρ̂(n) and glue them

together. As a result, we find that, for integer n ≥ 1, the sandwiched state ρ(n) can be

written as a path integral over H′ with 2n operators insertions [2, 28, 55], as shown in

figure 1.

In this paper, one of our goals is to use eq. (3.19) to study the refined Rényi relative

entropy when the state ρ is perturbatively expanded around the state σ as in eq. (3.14).

To write the state ρ as in eq. (3.14), we take the operator Ψ as a perturbation around the

identity and write it as

Ψ = 1 + εO +O(ε2) . (3.24)

Inserting this in eq. (3.22) and comparing it with eq. (3.14), we find

U ρ(1) U † = ρ̃(1) = σ̃Õ(πR+ τ0) + σ̃Õ(πR− τ0) . (3.25)

Since Õ are smeared operators, we can equivalently write eq. (3.25) as an integral over H′,

U ρ(1) U † = ρ̃(1) =

∫ 2πR

0
dτ

∫
Hd−1

dd−1yλ̃(τ, y)σ̃Õ(τ, y) , (3.26)

where λ̃ is equal to the smearing function inside small neighborhoods of τ = πR ± τ0

and yi = 0 and vanishes everywhere outside these two neighborhoods. Also note that, by

construction, the function λ̃ is symmetric around τ = πR .

This finishes our discussion of the path integral construction of sandwiched state, ρ(n).

In the next two sections, we will study the refined Rényi relative entropy between these

state ρ given in eq. (3.22) and state σ in eq. (3.20).

4 Perturbative refined Rényi relative entropy in a general CFT

The perturbative calculation of relative entropy between the vacuum state and a slightly

perturbed state of a CFT, both reduced to a spherical region, has been well-studied [1, 26,

27]. It was shown in [1] that the relative entropy at the lowest order in the perturbation

parameter can be written as the symplectic flux of a scalar field through a Cauchy slice

of an auxiliary AdS spacetime, as given in eq. (1.2). Note that this result was derived

purely from CFT calculations without assuming the AdS/CFT correspondence. In fact,

this result is true for all CFT’s. In this sense, this result is a generalization of [26] where

the same result was derived for holographic CFT’s using the AdS/CFT correspondence.

4We can follow [2] and take the limit τ0 → 0 or we can follow [57] and take R → 0. This will allow us

to use the following construction for arbitrarily large n.
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Our goal in this section is to study the refined Rényi relative entropy between states

of a general CFT reduced to a spherical region B and, for simplicity, we take the radius

of B to be R = 1. We take state σ to be the reduced vacuum state as in eq. (3.20) and

ρ to be the perturbation around σ as in eq. (3.14) and eq. (3.26). In the following, we

show that refined Rényi relative entropy at lowest order in the perturbation parameter

can also be written as the symplectic flux of some scalar field through a Cauchy slice of

the aforementioned auxiliary AdS-spacetime. Hence, our result can be considered to be a

one-parameter generalization of the result of [1] given in eq. (1.2).

As we discussed in section 3.2, the states σ and ρ are related to the states on the

hyperbolic space by a unitary transformation. Using the invariance of the refined Rényi

relative entropy under unitary transformations, we write

S̃n(ρ||σ) = S̃n(U † ρ̃ U ||U † σ̃ U) = S̃n(ρ̃||σ̃) , (4.1)

where σ̃ and ρ̃ are states on the hyperbolic space and their explicit forms are given in

eq. (3.20) and eq. (3.22) respectively.

Now to compute the perturbative refined Rényi relative entropy, we use the general

formula derived in eq. (3.19). By inserting the perturbation of ρ̃ given in eq. (3.26) in the

general formula, we get5

S̃(2)
n (ρ||σ) = −

n−1∑
k=0

n−1∑
j=0

(
2∏
i=1

∫ 2π

0
dτi

∫
Hd−1

dd−1yiλ̃(τi, yi)

)∫ ∞
−∞

ds

4 sinh2
(
s+iδ

2

)
× tr

(
σ̃−

is
2π

+
(k−j)
n Õ(τ1, y1) σ̃1+ is

2π
− (k−j)

n Õ(τ2, y2)
)
, (4.2)

where S̃
(2)
n (ρ||σ) is the refined Rényi relative entropy at the second order in the perturbation

parameter as defined in eq. (3.18). Let us now try to simplify the above expression. We

start by using eq. (3.20) and the Euclidean evolution

σ̃a Õ(τ, y) σ̃−a = e−2πaH Õ(τ, y) e2πaH = Õ(τ − 2πa, y) , (4.3)

to write eq. (4.2) as

S̃(2)
n (ρ||σ) = −

n−1∑
k=0

n−1∑
j=0

(
2∏
i=1

∫ 2π

0
dτi

∫
Hd−1

dd−1yiλ̃(τi, yi)

)∫ ∞
−∞

ds

4 sinh2
(
s+iδ

2

)
× tr

(
σ̃Õ(τ2 + 2πk/n, y2)Õ(τ1 + 2πj/n+ is, y1)

)
. (4.4)

Now we write the above equation in terms of a time-ordered correlation function on H′ =
S1 ×Hd−1 as [1]

S̃(2)
n (ρ||σ) = −

n−1∑
k=0

n−1∑
j=0

(
2∏
i=1

∫ 2π

0
dτi

∫
Hd−1

dd−1yiλ̃(τi, yi)

)∫ ∞
−∞

ds

4 sinh2
(
s+iδsgn[τ2k−τ1j ]

2

)
×
〈
T Õ(τ2 + 2πk/n, y2)Õ(τ1 + 2πj/n+ is, y1)

〉
H′
, (4.5)

5Note that we have taken R = 1 here.

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
9
9

λ̃(3)(θ)

λ̃(θ)

θ = 0 θ = π θ = 2π

Figure 2. A pictorial representation of the source function λ̃(τ, y) and the Z3-symmetric source

function λ̃(3)(τ, y) where we have suppressed the y-coordinates for clarity. The functions are non-

zero everywhere except in the shaded regions. Both the source function λ̃ and the Z3-symmetric

source function λ̃(3) are symmetric around τ = π. Whereas the source function λ̃ is non-zero

only in the neighborhood of two points, the Z3-symmetric source function λ̃(3) is non-zero in the

neighborhood of six points and has a periodicity of 2π/3 .

where τ2k ≡ (τ2 + 2πk/n) mod 2π and τ1j is defined similarly. Now by using the KMS

condition [66–68] on the periodicity of the thermal two-point function〈
T Õ(τ2 + 2π, y2) Õ(τ1, y1)

〉
H′

=
〈
T Õ(τ2, y2) Õ(τ1, y1)

〉
H′
, (4.6)

and by redefining the angular coordinates, we simplify eq. (4.5) to get

S̃(2)
n (ρ||σ) = −

(
2∏
i=1

∫ 2π

0
dτi

∫
Hd−1

dd−1yiλ̃(n)(τi, yi)

)∫ ∞
−∞

ds

4 sinh2
(
s+iδ sgn[τ2−τ1]

2

)
×
〈
T Õ(τ2, y2)Õ(τ1 + is, y1)

〉
H′
, (4.7)

where we have absorbed all the n dependence in a Zn-symmetric source function, which

we define as6

λ̃(n)(τ, y) ≡
n−1∑
k=0

λ̃(τ − 2πk/n, y) . (4.8)

Recall from section 3.2 that the source function, λ̃, was only non-zero in the small neigh-

borhood of two points. On the contrary, the Zn-symmetric source function, λ̃(n), has a

periodicity of 2π/n and is non-zero in the neighborhood of 2n points. Just like the source

function, λ̃, the Zn-symmetric source function, λ̃n, is also symmetric around τ = π. A

pictorial representation of the Zn-symmetric source function, λ̃n, is presented in figure 2.

In the following, we use eq. (4.7) to write the perturbative refined Rényi relative entropy

as the symplectic flux. Note that an expression similar to eq. (4.7) was found in [1] for the

perturbative relative entropy. In fact, eq. (4.7) reduces to the expression of perturbative

relative entropy in [1] if we replace λ̃(n) with λ̃. This should not be surprising given that

the refined Rényi relative entropy approaches the relative entropy in the limit n→ 1 and all

6The function λ̃(τ, y) in eq. (3.26) was defined only in the domain τ = [0, 2π). We extend this function

beyond this domain by demanding the periodicity condition: λ̃(τ + 2π, y) = λ̃(τ, y).
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the n dependence in eq. (4.7) is encoded in the Zn-symmetric source function, λ̃(n) . This

is a useful observation as it implies that we can write perturbative refined Rényi relative

entropy in eq. (4.7) in terms of the symplectic flux by simply changing the boundary

conditions of the scalar field in eq. (1.2) from λ̃ to λ̃(n). For the sake of completeness, we

will now briefly sketch the argument of [1] and derive the expression of the perturbative

refined Rényi relative entropy in terms of the symplectic flux in the following.

4.1 Refined Rényi relative entropy as a symplectic flux

Let us consider a scalar in a fixed AdS-Rindler wedge. Recall that the metric of the

AdS-Rindler wedge can be written as

ds2 = −(r2 − 1) dt2 +
dr2

r2 − 1
+ r2 ds2

Hd−1 . (4.9)

For a CFT with a holographic dual, the AdS-Rindler wedge is precisely the bulk region

that is dual to the vacuum state reduced to a spherical region. In this section, however,

we treat it as an auxiliary spacetime without assuming the AdS/CFT correspondence.

Note that, after a Wick rotation, the AdS-Rindler patch in eq. (4.9) becomes a Eu-

clidean black hole with H′ = S1×Hd−1 as the asymptotic boundary. The real time solution

of the Lorentzian scalar field equation can be written in terms of a bulk-to-boundary Eu-

clidean propagator as [69, 70]

φ(r, t, y) =

∫ 2π

0
dτ ′
∫
Hd−1

dd−1y′φ0(τ ′, y′)KE

(
r, it, y | τ ′, y′

)
, (4.10)

where {τ, y} are the coordinates on H′ and the bulk point in the bulk-to-boundary Eu-

clidean propagator, KE , is analytically continued to real time. The asymptotic boundary

condition at r →∞ of the field, after analytic continuation, is fixed by φ0(τ, y).

The main insight that was used in [1] to relate the perturbative relative entropy to

symplectic flux was that the two point function on H′ can be written as the symplectic

flux of the scalar field on a constant radial slice (r = r0) of the AdS-Rindler wedge. That

is, [1]〈
T Õ(τ, y1) Õ(is, y2)

〉
H′

= −
∫ ∞
−∞

dt

∫
Hd−1

dd−1yωφ

(
KE

(
r0, it, y | τ, y1

)
, KR

(
r0, t, y | s, y2

))
, (4.11)

where KR is the retarded bulk-to-boundary propagator which is related to the Euclidean

bulk-to-boundary propagator according to

KR

(
r, t, y | s, y′

)
= iΘ(t− s) lim

µ→0+

[
KE

(
r, it, y | is− µ, y′

)
−KE

(
r, it, y | is+ µ, y′

)]
.

(4.12)
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Now we insert eq. (4.11) in eq. (4.7) and write the perturbative refined Rényi relative

entropy as

S̃(2)
n (ρ||σ) =

(
2∏
i=1

∫ 2π

0
dτi

∫
Hd−1

dd−1yiλ̃(n)(τi, yi)

)∫ ∞
−∞

ds

4 sinh2
(
s+iδ sgn[τ2−τ1]

2

)
×
∫ ∞
−∞

dt

∫
Hd−1

dd−1yωφ

(
KE

(
r0, it, y | τ2 − τ1, y2

)
, KR

(
r0, t, y | s, y1

) )
.

(4.13)

The integral over s was computed in [1]. We use that result here and write the perturbed

refined Rényi relative entropy as

S̃(2)
n (ρ||σ) = −2π

(
2∏
i=1

∫
H′
dXiλ̃(n)(Xi)

)∫
Σ0

ωφ

(
KE

(
r, 0, y |X2

)
, ∂tKE

(
r, 0, y |X1

) )
,

(4.14)

where Σ0 is the t = 0 slice in the AdS-Rindler patch and where X = {τ, y} are the

coordinates on H′. Since the symplectic current ωφ is bilinear, we write eq. (4.14) as

S̃(2)
n (ρ||σ) =

∫
Σ0

ωφ

(
Φ
(
r, t, y

)
, £ξΦ

(
r, t, y

) )
, (4.15)

where ξa = −2π(∂t)
a is a killing vector field of the AdS-Rindler wedge as in eq. (2.8) and

where we have defined

Φ
(
r, t, y

)
=

∫
H′
dXλ̃(n)(X)KE

(
r, t, y |X

)
. (4.16)

By comparing this with eq. (4.10), we deduce that Φ(r, t, y) is the solution of the scalar

field equation in bulk and the boundary condition of its analytic continuation is fixed by

the Zn-symmetric source function, λ̃(n), defined in eq. (4.8).

Eq. (4.15) is the main result of this section. It shows that for integer n ≥ 1, the

perturbative refined Rényi relative entropy between the states ρ in eq. (3.22) and σ in

eq. (3.20) is related to the symplectic flux of a scalar field through a Cauchy slice of

the AdS-Rindler spacetime. More interestingly, it shows that all the dependence in the

Rényi parameter n is encoded in the Zn-symmetric source function, λ̃n , which provides

the boundary conditions for the scalar field. Also note that we recover eq. (1.2) from

eq. (4.15) by taking the limit n → 1. Hence, our result is a one-parameter generalization

of eq. (1.2).

5 Refined Rényi relative entropy in a holographic CFT

We now focus on holographic CFT’s on R1,d−1. The relative entropy between an arbitrary

state and a vacuum state reduced to a spherical region was studied in [2], where it was

shown that the holographic dual of the relative entropy between these states is equal to

the difference between certain conserved charges in the bulk dual of these states, as stated

in eq. (1.3).
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In this section, we are interested in the refined Rényi relative entropy between two

states of a holographic CFT reduced to a spherical region B. In particular, we will study

the refined Rényi relative entropy between the state ρ in eq. (3.22) and the vacuum state,

σ , given in eq. (3.20). Moreover, we take the radius of the region B to be R = 1. We will

show that the refined Rényi relative entropy between these states satisfies a holographic

relation similar to eq. (1.3). Our result will be a one-parameter generalization of the result

of [2] given in eq. (1.3).

Note that we can simply deduce the holographic formula for refined Rényi relative

entropy using eq. (3.11) and eq. (1.3). According to eq. (3.11), the refined Rényi relative

entropy between ρ and σ is equal to the relative entropy between the sandwiched state,

ρ(n) , and σ. If the sandwiched state, ρ(n) , has a semi-classical gravity dual and if there

exits a vector field in the bulk spacetime that satisfies boundary conditions similar to those

in eq. (2.6) and eq. (2.9), then eq. (1.3) implies that the relative entropy between ρ(n) and

σ is equal to difference of conserved charges in the bulk duals of ρ(n) and σ. Then, by

eq. (3.11), this is precisely the holographic expression for the refined Rényi relative entropy

between states ρ and σ.

Motivated by the above observation, we now discuss the bulk dual of the sandwiched

state ρ(n). First, recall that the bulk region corresponding to the vacuum state reduced to

a spherical region B is the AdS-Rindler wedge [56], which is described by the metric given

in eq. (4.9). The codimension-2 bifurcation surface, given by r = 1 for any finite t in the

metric eq. (4.9), corresponds to the extremal surface corresponding to the boundary region

B. We denote this surface by B̃σ. Under Wick rotation, the metric of the AdS-Rindler

wedge in eq. (4.9) becomes

ds2 = (r2 − 1) dτ2 +
dr2

r2 − 1
+ r2 ds2

Hd−1 , (5.1)

where 0 ≤ τ < 2π is imposed to ensure that there is no canonical singularity. This is the

metric of the Euclidean black hole whose asymptotic boundary is H′ = S1 × Hd−1 . Note

that S1 contracts as we go deep into the bulk and it shrinks to zero size at a codimension-2

bifurcation surface, B̃σ. This Euclidean geometry can be represented as a cigar geometry

as shown in figure 3.

Now recall from figure 1 that for integer n ≥ 1, the sandwiched state ρ(n) can be

prepared by a path integral over H′ with 2n operator insertions. The Euclidean bulk

dual of this state can be found by solving the Euclidean bulk equations of motions with

appropriate boundary conditions. The boundary condition for the bulk Euclidean metric

is that it approaches the metric of H′ near the asymptotic boundary. We also impose the

condition that the Euclidean time, τ , has a periodicity of 2π. Moreover, the sources for the

operators inserted on the boundary provide the boundary conditions for the bulk matter

fields according to the standard GKPW dictionary [69, 71]. This Euclidean geometry is

shown in figure 3.

Note that just like in the Euclidean black hole in eq. (5.1), the Euclidean circle in the

Euclidean bulk dual of the sandwiched state contracts as we go into the bulk. We denote

the codimension-2 surface where the Euclidean circle shrinks to zero size by B̃(n). A general
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τ ∼ τ + 2π BB̃σ τ ∼ τ + 2π BB̃(3)

Mσ M(3)

Figure 3. The Euclidean bulk geometries dual to the boundary states σ (left) and ρ(3) (right).

The boundary B (shown in blue) is S1 ×Hd−1. The Euclidean circle on the boundary contracts as

one goes deep into the bulk and it is shrinks to zero size at a codimension-2 surface marked with

a red dot. The shaded region on the boundary of M(3) denotes the smeared operators inserted in

the path integral representation of the sandwiched state, ρ(3); see figure 1. The smearing function

provides the Z3-symmetric boundary conditions for the bulk matter fields. (This figure is inspired

by figure 2 of [2].)

ansatz for the Euclidean metric near B̃(n) can be written as [2]

ds2 = α2
(n)(τ, r̂) dτ

2 + dr̂2 + 2β
(n)
i (τ, r̂) dτdyi + hijdy

idyj , (5.2)

with α(n)(τ, r̂) = r̂ + O(r̂2) and β
(n)
i (τ, r̂) = O(r̂2) , where r̂ is the proper distance from

B̃(n) and yi and hij are coordinates and the induced metric on B̃(n) .

Note that the Euclidean vector field ξaE = 2π (∂τ )a vanishes at B̃(n) and it satisfies

∇aξbE −∇bξaE = 4π
(

(∂r̂)
a(∂τ )b − (∂r̂)

b(∂τ )a
)
, (5.3)

as can be checked easily using the metric in eq. (5.2). Furthermore, the boundary condition

that the Euclidean bulk metric approaches the metric of H′ near the asymptotic boundary

guarantees that ξE approaches the generator of the Euclidean time translation on the

boundary. In other words, the vector field ξE satisfies the Euclidean version of the boundary

conditions in eq. (2.6) and eq. (2.9).

Having established that the sandwiched state (for integer n ≥ 1) has a bulk dual, we

now use eq. (1.3) to get

Srel(ρ(n)||σ) = Hξ

(
M(n)

)
−Hξ (Mσ) , (5.4)

where ξ = iξE = −2π ∂t as in eq. (2.8). Moreover, Mσ and M(n) = Mρ(n) denote the

bulk spacetimes dual to the vacuum and the sandwiched state respectively. Now using

eq. (3.11), we conclude that the refined Rényi relative entropy between states ρ and σ is

given by

S̃n(ρ||σ) = Hξ

(
M(n)

)
−Hξ (Mσ) . (5.5)
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Our result in eq. (5.5) needs to be contrasted with the holographic formula of the

refined Rényi entropy which is defined in eq. (1.5). According to the holographic formula

derived in [39], the refined Rényi entropy of a boundary state is equal to the area of a

codimension-2 minimal area surface in some bulk spacetime other than the spacetime dual

to the boundary state. In particular, the spacetime that one uses to compute refined Rényi

entropy has to be constructed by introducing a cosmic brane and then accounting for its

backreaction. Recently, the boundary state dual to this backreacted geometry has been

identified in [72, 73]. Our result in eq. (5.5) is similar in the sense that the refined Rényi

relative entropy between states ρ and σ is not related to the conserved charge in the bulk

dual of the state ρ. In fact, it is related to the conserved charge in the bulk dual of a

sandwiched state, ρ(n) .

Despite this similarity, there are two crucial differences between our holographic for-

mula for the refined Rényi relative entropy and the holographic formula for refined Rényi

entropy derived in [39]. One is that the holographic formula for the refined Rényi entropy

is valid for a general boundary theory and for arbitrary boundary subregions. On the

other hand, our results apply only if the boundary theory is a CFT and the boundary

subregion is spherical. Secondly, the bulk geometry that one needs to compute the refined

Rényi entropy has a conical singularity at the location of the cosmic brane [39], whereas

the geometry that one needs for refined Rényi relative entropy, that is the bulk dual of

the sandwiched state, is smooth. This is related to the fact that Rényi relative entropies,

unlike Rényi entropies, are free of UV divergences.7

The holographic formula for refined Rényi relative entropy in eq. (5.5) is one of the

main results of this paper. In the following, we discuss the implications of this result and

its relation with the our perturbative result in section 4.

5.1 Positive energy theorems

The result of [2] that the holographic dual of the relative entropy is related to the conserved

charge as in eq. (1.3) led to interesting results. For example, the positive semi-definiteness

of the relative entropy implies a positive energy theorem: the vacuum-subtracted conserved

charge in the entanglement wedge of a spherical boundary region is non-negative. That is,

Hξ (Mρ)−Hξ (Mσ) ≥ 0 . (5.6)

Note that eq. (5.6) is an infinite set of positivity conditions as it is true for all spherical

boundary regions. We refer the interested readers to [2] for other gravitational constraints

emerging from eq. (1.3).

Now we discuss a different positive energy theorem that arises from the holographic

dual of refined Rényi relative entropy in eq. (5.5). Recall from eq. (3.9) that the refined

Rényi relative entropy (for n ≥ 1) cannot be smaller than the relative entropy. That is,

S̃n(ρ||σ) ≥ Srel (ρ||σ) for n ≥ 1 . (5.7)

7We thank Tom Hartman for pointing this out.
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By combining this inequality with eq. (1.3) and eq. (5.5), we get

Hξ

(
M(n)

)
≥ Hξ

(
M(1)

)
for n ≥ 1 , (5.8)

whereM(1) =Mρ . Since the boundary conditions for the bulk dual of the sandwiched state

are Zn-symmetric as shown in figure 3, we conclude that making the boundary conditions

symmetric in this manner cannot decrease the conserved charge in the entanglement wedge.

Just like eq. (5.6), eq. (5.8) is also an infinite set of conditions as it is valid for any spherical

boundary regions.

The positive energy condition in eq. (5.8) is interesting as it compares the conserved

charges in two non-vacuum bulk geometries. In this sense, it is different from the usual pos-

itive energy theorems [74, 75] which compare the energy in a (non-vacuum) spacetime with

the energy in a vacuum spacetime. Hence, we consider eq. (5.8) to be another nontrivial

bulk consequence of a quantum information theoretic property.

It is known that the sandwiched Rényi relative entropy monotonically increases with

the Rényi parameter n, as stated in eq. (3.5). It is therefore natural to ask if the refined

Rényi relative entropy obeys monotonicity as well. We do not have a definitive answer to

this question, though we present a simple example in appendix C in which the refined Rényi

relative entropy increases monotonically with the Rényi parameter. If it can be shown that

the refined Rényi relative entropy monotonically increases with the Rényi parameter either

in general or for the set of states ρ and σ in eq. (3.22) and eq. (3.20) respectively, then this

would imply a family of much stronger positive energy theorems than eq. (5.8). We leave

this question to future work.

5.2 Relation to the perturbative result

As discussed earlier, the Euclidean bulk dual of the sandwiched state, ρ(n) , is the solution

of the bulk Euclidean equations of motions for the metric and the scalar field subject to Zn-

symmetric boundary conditions. Here, we denote the boundary sources by λ̃(n) and assume

that the boundary sources are “small,” that is, we assume that the boundary sources can

be written as λ̃(n) = ε f(n) where ε� 1 .

The boundary conditions for the bulk scalar field demand that the scalar field, Φ, can

be written as

Φ = εΦ(1) +O(ε2) . (5.9)

The bulk spacetime when ε = 0 is the (Euclidean) AdS-Rindler spacetime. The correc-

tion to the metric has to be computed by solving the gravitational equations of motions

sourced by the stress-energy tensor of the bulk scalar field. Since the stress-energy tensor

is quadratic in the scalar field, it goes like O(ε2). Therefore, there is no backreaction at

linear order in ε and hence, we can write the bulk metric as

g = g(0) +O(ε2) , (5.10)

where g(0) is the metric of the (Euclidean) AdS-Rindler spacetime. Moreover, this implies

that Φ(1) is the solution of the scalar field on a fixed AdS-Rindler spacetime with Zn-

symmetric boundary conditions.
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Now note that the conserved charge in the bulk dual of sandwiched state can be

written as

Hξ[ g ] = Hξ[ g
(0) ] + εH

(1)
ξ [ g ] + ε2H

(2)
ξ [ g ] +O(ε3) , (5.11)

Since ξ is the killing vector field of the AdS-Rindler spacetime, we know from eq. (2.26)

that H
(1)
ξ vanishes identically. Moreover, from eq. (2.27), we know that H

(2)
ξ is given by

H
(2)
ξ =

∫
Σ0

ωφ

(
Φ(1),£ξΦ

(1)
)
, (5.12)

where we have used the fact that there is no correction to the metric at linear order in ε.

Now combining eq. (5.5) and eq. (5.12), we deduce that the refined Rényi relative

entropy at the lowest order in the perturbation parameter is given by the symplectic flux of

a scalar field, where the scalar field satisfies the Zn-symmetric boundary conditions. Hence,

we recover eq. (4.15) from eq. (5.5). However, this should not be considered a derivation

of eq. (4.15) as this analysis is only valid for CFT’s with semi-classical holographic duals

whereas eq. (4.15) is valid for all CFT’s.

This finishes our discussion of the holographic dual of the refined Rényi relative entropy.

6 Discussion

In this paper, we have introduced a quantity related to the sandwiched Rényi relative

entropy, which we called the ‘refined’ Rényi relative entropy, as defined in eq. (1.7). Like

the sandwiched Rényi relative entropy, this quantity is a one-parameter generalization of

relative entropy. In particular, we found that the refined Rényi relative entropy between

two states can be written as the relative entropy of two related states, as in eq. (3.11).

This identity relating the refined Rényi relative entropy with relative entropy played an

important role in our analysis in this paper.

We derived a perturbative formula, eq. (3.19), for the refined Rényi relative entropy

of two nearby states. Using this result, we studied the perturbative refined Rényi relative

entropy when the reference state is the vacuum of a CFT reduced to a spherical region

and the other state is a small perturbation thereof. We found that the perturbative refined

Rényi relative entropy can be written as the symplectic flux of a scalar field through a

Cauchy slice of the AdS-Rindler spacetime as in eq. (4.15).

We then studied the refined Rényi relative entropy for holographic CFT’s. We argued

that for a certain family of states reduced to a spherical region, the holographic dual of

the refined Rényi relative entropy is related to certain conserved charges in the dual bulk

spacetime. Combining this holographic result with an inequality in eq. (3.9) that the refined

Rényi relative entropy must satisfy, we then proved certain ‘positive-energy’ theorems in

the asymptotically locally AdS spacetimes.

We now discuss some possible directions in which the present work can be extended.

1. Data processing inequality

As discussed in section 3.1, the relative entropy and the sandwiched Rényi relative

entropy do not increase under a CPTP map [44–48, 65]. This is known as the data-

processing inequality, given in eq. (3.2). Since the partial trace operation is a CPTP
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map, the data-processing inequality implies that the relative and the sandwiched

Rényi relative entropy for states of system B is not greater than those for states of

system A if B ⊆ A, as stated in eq. (3.3).

A ‘good’ measure of the distinguishability of two quantum states must satisfy the

property that it does not increase under a partial trace operation. This is because

the partial trace could in general result in the loss of some potentially distinguishing

information, thus rendering distinguishability of the states more difficult. It would

be interesting to investigate if the refined Rényi relative entropy satisfies a data-

processing inequality.

2. Monotonicity in the Rényi parameter n

Recall from eq. (3.5) that the sandwiched Rényi relative entropy monotonically in-

creases with the Rényi parameter n [45, 47]. We have derived a weaker version of

this inequality for the refined Rényi relative entropy in eqs. (3.9)–(3.10). We have

used eqs. (3.9)–(3.10) in section 5.1 to prove certain positive energy theorems in

asymptotically locally AdS spacetimes.

It is not clear if the refined Rényi relative entropy monotonically increases with the

Rényi parameter n in general (although we showed it to be true in a simple example

in appendix C). If this were true, then the holographic formula for the refined Rényi

relative entropy in eq. (5.5) would lead to much stronger positive energy theorems

than what we have found in this paper. Because of this, it would be worthwhile to

explore if the refined Rényi relative entropy increases monotonically with n.

3. Generalization of quantum null energy condition (QNEC)

A QNEC is a local statement which puts a lower bound on the expectation value of

the ‘null-null’ component of the stress-energy tensor in an arbitrary state |ψ〉 of a

quantum field theory in R1,d−1 [76]. More precisely, it states that 〈Tkk〉 for any null

vector k at any point p satisfies

〈Tkk〉 ≥
1

2π
S′′(ρ) , (6.1)

where ρ is the state |ψ〉 reduced to any subregion Σp such that the boundary of that

subregion contains the point p. Moreover, S(ρ) is the Von Neumann entropy of the

state ρ and prime denotes the infinitesimal variation of the subregion Σp in the ka

direction at point p.

In some specific cases, eq. (6.1) can be written in terms of the relative entropy.

In particular, if the boundary of the entangling region lies on a null hypersurface,

eq. (6.1) can be written as [11]

S′′rel(ρ||σ) ≥ 0 , (6.2)

where σ is the reduced vacuum state. This follows from known results about the

modular Hamiltonian when the entangling surface lies on a null plane [77].
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Recently, the sandwiched Rényi relative entropy between an excited state and a

vacuum state of an arbitrary QFT reduced to a half-space was considered in [55]. It

was found that the sandwiched Rényi relative entropy satisfies a bound analogous to

eq. (6.2). It would be interesting to repeat this analysis for the refined Rényi relative

entropy and see if it also satisfies such a bound.

4. Refined Rényi relative entropy under RG flow

In this project, we have only studied the refined Rényi relative entropy between the

states of a conformal field theory. It would be interesting to study it away from

critical points. Specifically, one may deform a CFT by a relevant operator and study

the refined Rényi relative entropy between the vacuum state of the deformed theory

and that of the original CFT. This calculation, to lowest order in the coupling, can

be done using the general perturbative formula in eq. (3.19). It would be fascinating

if one can gain some insights on RG flow, similar to those in [78], by using inequalities

in eqs. (3.9)–(3.10).

5. Further Inequalities for the refined Rényi relative entropy through Holography

It is also possible that further inequalities for the refined Rényi relative entropy can

be discovered by exploiting holography. It would be interesting if the properties

of the conserved charges in asymptotically locally AdS spacetimes can be used to

find constraints obeyed by the refined Rényi relative entropy for holographic states

that are not obeyed by that for all quantum states. These would be analogous

to the constraints satisfied by the holographic entanglement entropy known as the

holographic entropy cone [79, 80].

6. Generalization of JLMS formula

It is known that the relative entropy of two nearby boundary states is equal to the

relative entropy of the corresponding bulk states [15]. This holographic relation

was an important ingredient in proofs of bulk reconstruction [16–18]. It would be

interesting to explore if an analogous relation holds for refined Rényi relative entropy

and what its implications are for bulk reconstruction.
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A Refined Rényi relative entropy as relative entropy

In section 3.1, we claimed that the refined Rényi relative entropy between two states can be

written as the relative entropy between two related states as in eq. (3.11). We found this

identity very useful in deriving a general formula for the perturbative refined Rényi relative

entropy, given in eq. (3.19). We applied this general perturbative formula in section 4 to

show that the refined Rényi relative entropy between two states of any CFT reduced to a

spherical region can be written as the symplectic flux of a scalar field through a Cauchy

slice of the AdS-Rindler wedge as in eq. (4.15). Moreover, we combined the identity in

eq. (3.11) with eq. (1.3) in section 5 to deduce the holographic dual of the refined Rényi

relative entropy.

In this appendix, we present a derivation of the eq. (3.11). We start with the definition

of refined Rényi relative entropy

S̃n(ρ||σ) ≡ n2 ∂n

(
n− 1

n
Sn(ρ||σ)

)
, (A.1)

where

Sn(ρ||σ) ≡ 1

n− 1
log tr

{(
σ

1−n
2n ρ σ

1−n
2n

)n}
, (A.2)

is the sandwiched Rényi relative entropy. Combining the above two expressions, we get

S̃n(ρ||σ) ≡ n2 ∂n

(
1

n
log tr ρ̂n(n)

)
, (A.3)

where we have defined a Hermitian matrix

ρ̂(n) ≡ σ
1−n
n ρ σ

1−n
n . (A.4)

Taking the derivative w.r.t. n in eq. (A.3), we get

S̃n(ρ||σ) = − log tr ρ̂n(n) +
n

tr ρ̂n(n)

∂n tr ρ̂n(n) . (A.5)

Now using

∂n tr ρ̂n(n) = tr
(
ρ̂n(n) · log ρ̂(n)

)
+ n tr

(
ρ̂n−1

(n) · ∂nρ̂(n)

)
(A.6)

and

∂nρ̂(n) = − 1

2n2

(
log σ · ρ̂(n) + ρ̂(n) · log σ

)
, (A.7)

we write eq. (A.5) as

S̃n(ρ||σ) = − log tr ρ̂n(n) +
n

tr ρ̂n(n)

tr
(
ρ̂n(n) · log ρ̂(n)

)
− 1

tr ρ̂n(n)

tr
(
ρ̂n(n) · log σ

)
. (A.8)

We simplify this result and write it as

S̃n(ρ||σ) = tr
(
ρ(n) log ρ(n)

)
− tr

(
ρ(n) log σ

)
, (A.9)
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where

ρ(n) ≡
ρ̂n(n)

trρ̂n(n)

(A.10)

is precisely the sandwiched state defined in eq. (3.12). Now the expression in the r.h.s. of

eq. (A.9) is the same as the definition of the relative entropy given in eq. (3.1). However,

to relate the r.h.s. of eq. (A.9) with the relative entropy, we first need to show that the

sandwiched state ρ(n) is a valid denisty matrix. In other words, it is a positive semi-definite

matrix with unit trace. Note that, by construction, ρ(n) has unit trace. Moreover, the fact

that ρ(n) is positive semi-definite follows from the fact that the matrix ρ̂(n) in eq. (A.4) is

positive semi-definite. To see this, note that the expectation value of ρ̂(n) in any arbitrary

state |ψ〉 is non-negative:

〈ψ| ρ̂(n) |ψ〉 =
〈
ψ′
∣∣ ρ ∣∣ψ′〉 ≥ 0 , (A.11)

where |ψ′〉 ≡ σ
1−n
n |ψ〉 . Since, the sandwiched state is positive semi-definite matrix with

unit trace, it is a valid density matrix. Hence, we can write the r.h.s. of eq. (A.9) as relative

entropy. More precisely,

S̃n(ρ||σ) = Srel

(
ρ(n)||σ

)
. (A.12)

This finishes our derivation of eq. (3.11).

B Conformal transformation and state ρ

In this paper, we considered states that are obtained by acting on the vacuum of a CFT with

a single smeared operator. In section 3.2, we stated that these states reduced to a spherical

region are related to some states on the hyperbolic space by a unitary transformation. We

claimed that the precise form of these reduced states is given in eq. (3.22). In this appendix,

we present a derivation of eq. (3.22).

Consider a CFT with Euclidean action I0 on Rd. We work in the coordinate systems

in which the metric of Rd is

ds2 = dt2E + dr2 + r2 dχ2
d−2 , (B.1)

where dχ2
d−2 is the metric of a (d − 2)-dimensional sphere of unit radius. Now consider a

state |Ψ(−tE0)〉 ≡ Ψ(−tE0) |Ω〉, where |Ω〉 is the vacuum state of the CFT and Ψ(−tE0) is

a local operator Ψ(x) smeared in a small neighborhood around tE = −tE0 < 0 . Note that

due to translation symmetry, this state is independent of where we insert the operator Ψ

at tE = −tE0 slice. This means we can take the operator to be smeared in a small region

around (tE , r) = (−tE0, 0) . For simplicity, we assume that the operator Ψ is Hermitian.

Now let ρ be the state |Ψ(−tE0)〉 reduced to a spherical region B of radius R. We take

the region B to be given by

B : tE = 0 and r ≤ R . (B.2)
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The density matrix of ρ can can be written as a Euclidean path integral over Rd with open

cuts just above and below the region B and with the insertion of Ψ(−tE0) and Ψ(tE0) .

That is, the matrix elements of ρ (up to a normalization constant) are given by

〈φ−| ρ |φ+〉 ∼
∫

Φ(B±)=φ±

DΦ e−I0[Φ]Ψ(−tE0) Ψ(tE0) , (B.3)

where we have imposed the boundary conditions at the open cuts

B± : tE = 0± and r ≤ R . (B.4)

Now note that Rd can be conformally mapped to H′ ≡ S1 × Hd−1. This conformal

transformation is given by [30]

tE =R
sin(τ/R)

coshu+ cos(τ/R)
r = R

sinhu

coshu+ cos(τ/R)
, (B.5)

where 0 ≤ τ ≤ 2πR and 0 ≤ u < ∞. Under this coordinate transformation, the metric of

Rd in eq. (B.1) becomes

ds2 =
(

coshu+ cos(τ/R)
)−2

(
dτ2 +R2

(
du2 + sinh2 u dχ2

d−2

) )
, (B.6)

which is the same as the metric of H′ = S1 ×Hd−1, up to a conformal factor.

Using the conformal transformation in eq. (B.5), the matrix element in eq. (B.3) can

be written as a path integral over H′. Note that the branch cut B+ maps to τ = 0 and

0 ≤ u < ∞ whereas the branch cut B− maps to τ = 2πR and 0 ≤ u < ∞. Moreover, the

points (tE = ±tE0, r = 0) map to (τ = πR∓ τ0, u = 0) , where

τ0 = 2R arctan(R/tE0) . (B.7)

Hence, the matrix element of ρ can be written as

〈φ−| ρ |φ+〉 ∼
∫ Φ(τ=2πR)=φ̃−

Φ(τ=0)=φ̃+

DΦ e−I0[Φ]Ψ̃(τ = πR+ τ0) Ψ̃(τ = πR− τ0) , (B.8)

where |φ̃〉 ≡ U |φ〉 and Ψ̃ ≡ UΨU † are the unitary transformations of the states and

operators under the aforementioned conformal transformation. This finishes our derivation

of eq. (3.21).

Now note that we can write the path integral in eq. (B.8) in operator language. In the

Schrodinger picture, we get

〈φ−| ρ |φ+〉 ∼ 〈φ̃−| e−(πR−τ0)HΨ̃(0)e−2τ0H Ψ̃(0)e−(πR−τ0)H |φ̃+〉 , (B.9)

whereas in the Heisenberg picture, we get

〈φ−| ρ |φ+〉 ∼ 〈φ̃−| e−2πRHΨ̃(πR+ τ0)Ψ̃(πR− τ0) |φ̃+〉 , (B.10)
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where H is the Hamiltonian of the CFT on the hyperbolic space. Equivalently, we can

write the above expression as

U ρU † ∼ e−2πRHΨ̃(πR+ τ0)Ψ̃(πR− τ0) . (B.11)

In a simple case when the operator Ψ is an identity operator, the state ρ reduces to

the vacuum state which we denote by σ. Therefore, from eq. (B.11), we deduce that the

state σ is

U σ U † ∼ e−2πRH ≡ σ̃ , (B.12)

which is the thermal state on the hyperbolic space, σ̃ , up to a unitary transformation.

Note that eq. (B.12) is the same as eq. (3.20) up to a normalization constant. Moreover,

inserting eq. (B.12) in eq. (B.11) yields

U ρU † ∼ σ̃ Ψ̃(πR+ τ0)Ψ̃(πR− τ0) , (B.13)

which is the same as eq. (3.22) up to a normalization constant. This finishes the derivation

of eq. (3.22) and our discussion of the states that we considered in this paper.

C Refined Rényi relative entropy for thermal states

In this appendix, we study the refined Rényi relative entropy between two thermal states at

different temperatures and show that it monotonically increases with the Rényi parameter

n. Consider a quantum system with Hamiltonian, H, and two thermal states ρ(0) and ρ(1)

such that

ρ(i) =
e−βiH

Z(βi)
for i = {1, 2} , (C.1)

where

Z(β) ≡ tre−β H (C.2)

is the thermal partition function.

Now using eq. (3.11), the refined Rényi relative entropy between ρ1 and ρ0 is given by

S̃n(ρ(1)||ρ(0)) = Srel

(
ρ(n)||ρ(0)

)
, (C.3)

where the sandwiched state, ρ(n), is

ρ(n) =

(
ρ

1−n
2n

(0) ρ1 ρ
1−n
2n

(0)

)n
tr
(
ρ

1−n
2n

(0) ρ1 ρ
1−n
2n

(0)

)n . (C.4)

Since, ρ(0) and ρ(1) commute, we can simplify ρ(n) and write it as

ρ(n) =
e−βnH

Z(βn)
, (C.5)
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where

βn = β0 + n (β1 − β0) . (C.6)

We consider the case when β1 > n−1
n β0. This ensures that βn > 0. Hence, we can think

of ρ(n) as a thermal state with n dependent temperature.

Now using the definition of the relative entropy in eq. (3.1), we write eq. (C.3) as

S̃n(ρ(1)||ρ(0)) = tr
(
ρ(n) log ρ(n)

)
+ β0 tr

(
ρ(n)H

)
+ logZ(β0) , (C.7)

or equivalently as

S̃n(ρ(1)||ρ(0)) = β0E(βn)− S(βn) + logZ(β0) , (C.8)

where E(β) and S(β) are the average thermal energy and the thermal entropy of the system

at temperature 1/β.

Next we take the derivative of eq. (C.8) w.r.t. n and get

∂n S̃n(ρ(1)||ρ(0)) =β0 ∂nE(βn)− ∂n S(βn) . (C.9)

Now using the first law of thermodynamics, δE(β) = β−1 δS(β) , and using eq. (C.6), we

simplify this to get

∂n S̃n(ρ(1)||ρ(0)) = −n (β1 − β0) ∂nE(βn) = −n (β1 − β0)2
(
∂β E(β)

)∣∣∣
β=βn

. (C.10)

Now note that ∂βE(β) ≤ 0 . This can be seen as follows:

∂β E(β) = ∂β 〈H〉β = ∂β
tr(e−β H H)

tr(e−β H)
= −〈H2〉β + 〈H〉2β ≤ 0 . (C.11)

Combining this observation with eq. (C.10), we deduce that

∂n S̃n(ρ(1)||ρ(0)) ≥ 0 . (C.12)

Hence, the refined Rényi relative entropy between two thermal states of the same system

monotonically increases with the Rényi parameter.
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entropies, Phys. Rev. D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].

[33] A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Renyi entropy,

JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].

[34] V. Rosenhaus and M. Smolkin, Entanglement entropy for relevant and geometric

perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].

[35] M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038

[arXiv:1411.7011] [INSPIRE].

[36] D. Carmi, On the shape dependence of entanglement entropy, JHEP 12 (2015) 043

[arXiv:1506.07528] [INSPIRE].

[37] T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in

conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].

[38] S. Leichenauer, M. Moosa and M. Smolkin, Dynamics of the area law of entanglement

entropy, JHEP 09 (2016) 035 [arXiv:1604.00388] [INSPIRE].

[39] X. Dong, The gravity dual of Renyi entropy, Nature Commun. 7 (2016) 12472

[arXiv:1601.06788] [INSPIRE].

[40] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[41] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[42] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

– 33 –

https://arxiv.org/abs/1405.2933
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2933
https://doi.org/10.1088/0264-9381/32/6/065006
https://arxiv.org/abs/1405.3743
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3743
https://doi.org/10.1103/PhysRevLett.114.221601
https://arxiv.org/abs/1412.1879
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1879
https://doi.org/10.1007/JHEP06(2015)067
https://doi.org/10.1007/JHEP04(2016)153
https://arxiv.org/abs/1508.00897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00897
https://doi.org/10.1007/JHEP05(2015)033
https://arxiv.org/abs/1412.5648
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5648
https://doi.org/10.1103/PhysRevLett.113.051602
https://arxiv.org/abs/1404.3216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3216
https://doi.org/10.1007/JHEP08(2013)060
https://doi.org/10.1007/JHEP08(2013)060
https://arxiv.org/abs/1305.3182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3182
https://doi.org/10.1007/JHEP12(2014)179
https://doi.org/10.1007/JHEP12(2014)179
https://arxiv.org/abs/1403.3733
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3733
https://doi.org/10.1007/JHEP09(2014)119
https://arxiv.org/abs/1407.2891
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2891
https://doi.org/10.1103/PhysRevD.91.046002
https://arxiv.org/abs/1407.7249
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7249
https://doi.org/10.1007/JHEP01(2015)080
https://arxiv.org/abs/1407.8171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8171
https://doi.org/10.1007/JHEP02(2015)015
https://arxiv.org/abs/1410.6530
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6530
https://doi.org/10.1103/PhysRevD.91.045038
https://arxiv.org/abs/1411.7011
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7011
https://doi.org/10.1007/JHEP12(2015)043
https://arxiv.org/abs/1506.07528
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07528
https://doi.org/10.1007/JHEP04(2016)088
https://arxiv.org/abs/1511.05179
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05179
https://doi.org/10.1007/JHEP09(2016)035
https://arxiv.org/abs/1604.00388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00388
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06788
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+J+%22JHEP,0707,062%22
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926


J
H
E
P
0
8
(
2
0
1
9
)
0
9
9

[43] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,

JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[44] M.M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of

entanglement-breaking and hadamard channels via a sandwiched renyi relative entropy,

Commun. Math. Phys. 331 (2014) 593 [arXiv:1306.1586] [INSPIRE].

[45] M. Müller-Lennert et al., On quantum Rényi entropies: a new generalization and some
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