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Abstract
We construct a variety of conserved currents for test electromagnetic fields on
a Kerr background. Our procedure, which involves the symplectic product for
electromagnetism and symmetry operators, generates the conserved currents
given by Andersson et al [2015 Surveys in Differential Geometry (Hong Kong:
International)], as well as a new conserved current. These currents reduce to the
sum of (positive powers of) the Carter constants of photons in the geometric
optics limit, and generalize the current for scalar fields discovered by Carter
[1977Phys. Rev. D 16 3395–3414] involving theKilling tensor.We furthermore
show that the fluxes of our new current through null infinity and the horizon are
finite.

Keywords: Kerr perturbation theory, Carter constant, conserved currents

1. Introduction

Freely falling point particles in the Kerr spacetime possess a constant of motion, the Carter
constant K, associated with the existence of a Killing tensor Kab in this spacetime [1, 2]:

K ≡ Kabp
apb, (1.1)

where
∇(aKbc) = 0. (1.2)

Moreover, there exist generalizations of this Carter constant for charged particles in the
Kerr–Newman spacetime [1], as well as for spinning particles, to linear order in spin [3]. This
constant of motion, along with the energy E and axial angular momentum Lz, allows for the
solution of the geodesic equations in terms of first integrals.

Unlike the Carter constant, the energy and axial angular momentum of the point particle
are associated with Killing vectors ta and φa, and so can be related to conserved currents Tabtb
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1361-6382/20/185021+29$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6382/ab995a
https://orcid.org/0000-0001-5867-4372
mailto:amg425@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab995a&domain=pdf&date_stamp=2020-8-20


Class. Quantum Grav. 37 (2020) 185021 A M Grant and É É Flanagan

and Tabφb, for any field theory with a stress–energy tensor Tab. Moreover, the fluxes of these
conserved currents determine the evolution of the energy and axial angular momentum, respec-
tively, of a point particle that couples to this field theory. Is there any similar story for the Carter
constant (1.1)?

In [4], we showed that one cannot construct conserved currents that are related to the Carter
constant in this way from arbitrary stress–energy tensors. In particular, we showed that there is
no functional of a generic stress–energy tensor and its derivatives on a spacelike hypersurface
Σ that reduces to the Carter constant when the stress–energy tensor describes a point particle,
and is independent of Σ whenever the stress–energy tensor is conserved.2

This result does not eliminate the existence of conserved currents related to the Carter con-
stant that are not constructed from a stress–energy tensor. In fact, it is known that scalar fields
in the Kerr spacetime possess a conserved current that generalizes the Carter constant [6], in
the following sense: in the geometric optics limit, the integral of this current over a surface
is given by the sum of the Carter constants of all of the scalar quanta that pass through this
surface. A similar current also exists for spin-1/2 fields [7]. One may ask if a current of this
sort exists for other field theories.

The main result of this paper is the construction of conserved currents for electromagnetic
fields in the Kerr spacetime that are associated with the Carter constant in the geometric optics
limit. Our method of constructing currents, using symmetry operators which map the space
of solutions to itself, together with bilinear currents, is the same as that of [6, 7]. However,
we focus primarily on symmetry operators and currents which readily generalize to linearized
gravity on the Kerr background, and in particular the symmetry operators which we consider
are not obvious generalizations of those in [6, 7].

We consider two currents, which we define in section 4.3: we denote them by A j
a [ δ̄A] and

±1 j
a [ δ̄A], defined in equations (4.21) and (4.20), respectively. Here δ̄A is a perturbation to

the electromagnetic vector potential. The latter of these currents is new, whereas the first was
previous defined in [8]. For A j

a [ δ̄A], we find that the geometric optics limits of this current
is proportional to K [see equation (5.17)], whereas for ±1 j

a [ δ̄A] the limit is proportional to
K2 [see equation (5.20)].

In addition to computing the geometric optics limit of these currents, we also consider
the fluxes of these currents through null infinity and the horizon. This is motivated by the
idea that these fluxes might allow one to determine the evolution of the Carter constant of a
charged particle in Kerr that is emitting radiation. We show that the fluxes of ±1 j

a [ δ̄A] are
finite, giving explicit expressions for the fluxes in equations (6.11). The flux of A j

a [ δ̄A] is
infinite at null infinity, so it would not be useful for determining the evolution of the Carter
constant.

The layout of this paper is as follows: in section 2, we review the formalism of electro-
magnetic perturbations in the Kerr spacetime, covering the spinor, Newman–Penrose, and
Teukolsky formalisms. We then, in section 3, use these formalisms to construct symmetry
operators which map the space of solutions to Maxwell’s equations to itself. Section 4 reviews
the currents that were constructed in [8], along with the symplectic product construction for
an arbitrary Lagrangian field theory (see [9], for example). We then consider the symplectic
product for electromagnetism, and show the circumstances under which the symplectic prod-
uct procedure reduces to the procedure for constructing currents given in [8]. In section 5 we
review the geometric optics limit for electromagnetism, and derive the geometric optics limits

2Note that, using the Killing–Yano tensor fab (see the discussion below in section 2.2), [5] has constructed a conserved
current for generic theories using the stress–energy tensor. However, the existence of such a current does not violate
the result in [4], since it does not reduce to the Carter constant for a point particle.
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of the currents we have defined. In section 6, we compute the fluxes for these currents at null
infinity and the horizon.

In this paper we use the following conventions: we generally follow the conventions of
Penrose and Rindler [10, 11], in particular the (+,−,−,−) metric signature convention and
their convention for the sign of the Riemann tensor. Tensors with indices removed are in a
bold face font, as is typically done with differential forms. For a linear (differential) operator
Ta1···apb1···bq that maps tensors of rank q to rank p, we denote Ta1···apb1···bqSb1···bq by T · Swhen
the indices are removed. Moreover, we use the convention where linear differential operators
are applied in a right associative manner, that is,

T · S ·R = T · (S ·R). (1.3)

Finally, in all calculations we implicitly use the soldering forms σaAA
′
which form the isomor-

phism between the tangent space and the space of Hermitian spinors [10]. That is, we implicitly
associate indices a with AA′, b with BB′, etc on two sides of an equation.

2. Electromagnetic perturbations on a Kerr background

An electromagnetic perturbation on a fixedKerr background is given by a tensor δ̄Fab satisfying

∇a δ̄Fab = 4π δ̄Jb, (2.1)

where δ̄Ja is a linearized source current. The ‘δ̄’ represents the fact that this perturba-
tion is obtained from a one-parameter family of solutions [Fab(λ), gab(λ)] to the full Ein-
stein–Maxwell equations, defining the variation δ̄Q(λ) of a quantity Q by3

δ̄Q ≡ dQ
dλ

∣∣∣∣
λ=0

. (2.2)

We are allowed to consider solely electromagnetic perturbations because δ̄Tab = 0, and so we
can consistently set δ̄gab = 0. Considering electromagnetic perturbations as variations will be
useful in section 4.2 below.

The homogeneousMaxwell’s equation is given by dδ̄F = 0, and so there a one-form poten-
tial δ̄A such that δ̄F = dδ̄A. We denote the operator that maps vector potentials into the
corresponding sources by 1E:

1Eab ≡ 2(δa
b∇c∇c −∇b∇a), (2.3)

such that, from equation (2.1),

1Eab δ̄Ab = 8π δ̄Ja. (2.4)

Since the theory of electromagnetic perturbations is linear, we will consider the com-
plexified solution space for convenience, in which case the Faraday tensor has six complex
components. In this case, δ̄Ja will also be complex.

3Note that we are using a non-standard symbol, δ̄, to denote variations instead of δ. This is due to an unfortunate clash
of notation with the Newman–Penrose directional derivatives, which also include an operator denoted with δ.
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2.1. Spinor and Newman–Penrose formalism

In order to discuss the spinor and Newman–Penrose formalism of electromagnetic pertur-
bations on a Kerr background, we use the conventions and terminology of [10, 11]. By the
symmetries of the Faraday tensor, δ̄Fab can be decomposed into symmetric spinor fields δ̄φAB
and δ̄χ̄A′B′ via

δ̄Fab ≡ ǫA′B′ δ̄φAB + ǫAB δ̄χ̄A′B′ ≡ −[ δ̄Fab]+
+[ δ̄Fab]. (2.5)

The operations +[·] and −[·] take the self-dual and anti-self-dual parts of δ̄Fab, respectively,
since taking the Hodge dual of these two parts yields

∗ ±[ δ̄F] = ±i ±[ δ̄F]. (2.6)

In terms of spinors, the relationship between the vector potential and the Faraday tensor is
given by

δ̄φAB = ∇(B
A′ δ̄AA)A′ ≡ 1FAB

c δ̄Ac, (2.7a)

δ̄χ̄A′B′ = ∇(B′
A δ̄AA′)A ≡ 1FA′B′

c δ̄Ac, (2.7b)

where the second equalities define the operator 1FAB
c, which we will need frequently

below.When we are considering real solutions, δ̄φAB = δ̄χAB. The inhomogeneousMaxwell’s
equation becomes, in spinor language,

∇AB′ δ̄φA
B
= 2π δ̄JBB

′
, ∇A′B δ̄χ̄A′

B′
= 2π δ̄J̄BB

′
. (2.8)

TheNewman–Penrose approach is to introduce a spin basis (o, ι), that is, a pair of spinors oA

and ιA such that oAιA = −oAιA = 1. The two spinorsφAB andχAB can be decomposed along this
spin basis into six complex scalars via the following procedure: we define, for any symmetric
spinor SAB,

S0 ≡ SABo
AoB, S1 ≡ SABι

AoB, S2 ≡ SABι
AιB (2.9)

The six complex scalars are then φ0, φ1, φ2, χ̄0, χ̄1, and χ̄2. One can also consider the null
tetrad given by

la = oAōA
′
, na = ιAῑA

′
, ma

= oAῑA
′
. (2.10)

These definitions, along with oAιA = 1, imply that lana = −mam̄
a = 1, with all other contrac-

tions between ℓa, na, ma, and m̄a being zero. Denote directional derivatives along the members
of this tetrad by , δ ≡ ma∇a, and δ̄ ≡ m̄a∇a, and define the twelve
spin coefficients

(2.11)

4
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Using the tetrad (2.10), the scalars δ̄φi and δ̄χ̄i can also be written as

δ̄φi = δ̄Fab





lamb i = 0
1
2
(lanb + m̄amb) i = 1

m̄anb i = 2

, δ̄χ̄i = δ̄Fab





lam̄b i = 0
1
2
(lanb + mam̄b) i = 1

manb i = 2

. (2.12)

In Newman–Penrose notation, equation (2.8) becomes

(D− 2ρ) δ̄φ1 − (δ̄ + π − 2α) δ̄φ0 = 2π δ̄Jl, (2.13a)

(2.13b)

(D− ρ+ 2ǫ) δ̄φ2 − (δ̄ + 2π) δ̄φ1 = 2π δ̄Jm̄, (2.13c)

(2.13d)

where, for any vector va, we define vl ≡ vala, vn ≡ vana, etc.

2.2. Teukolsky formalism

Next, we turn to the Teukolsky formalism. The key to the Teukolsky formalism is that, in Kerr,
there exists a Killing spinor ζAB, which is symmetric and satisfies the Killing spinor equation
[11]

∇A′
(AζBC) = 0. (2.14)

Consider a principal spin basis (o, ι), which is a spin basis whose associated null tetrad has the
property (in Kerr) that the only non-zero component of the Weyl tensor Cabcd is given by

Ψ2 ≡ Cabcdl
ambm̄cnd. (2.15)

In this spin basis, there is also a scalar ζ such that

ζAB = ζo(AιB), (2.16)

and ζ 3
√
Ψ2 is constant (see [2] for a proof, and more details). Note that, given ζAB, ζ can be

determined up to a sign by

ζ2 = −2ζABζ
AB, (2.17)

but ζAB is only defined up to an overall constant. The Killing spinor defines the Killing–Yano
tensor fab via [2]

fAA′BB′ = iǫA′B′ζAB − iǫABζ̄A′B′ , (2.18)

which can be used to define the Killing tensor Kab via

Kab = fac f
c
b. (2.19)

5
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In terms of the scalar ζ and the principal spin basis (o, ι), we can define the master variables
sΩ by [12]

sΩ =

{
ζ2 δ̄φ2 s = −1

δ̄φ0 s = 1
. (2.20)

Thesemaster variables can also bewritten in terms of an operator acting on the vector potential:
for |s| = 1,

sMa δ̄A
a ≡ sΩ, (2.21)

where

(2.22)

The master variables satisfy the Teukolsky equation:

s� sΩ = 8π sτ · |s|T. (2.23)

The operator on the left-hand side, s�, is a second-order differential operator (the Teukolsky
operator) given by, for s > 0 [12]

(2.24a)

(2.24b)

On the right-hand side of the Teukolsky equation (2.23) is the source term. For |s| = 1, we
have that 1Ta = δ̄Ja and, reading off from equations (3.6) and (3.8) of [12], we have4

(2.25)

One can show that the procedure in [12] that was used to derive the Teukolsky equation (2.23)
is equivalent to the operator equation [13]

s� sM = sτ · |s|E. (2.26)

4Note that these expressions for sτ a are not unique, since sτ
a acts on the space of divergenceless vector fields. That

is, the Teukolsky equation (2.23) is preserved under the transformation sτ
a → sτ

a
+ λ∇a.

6
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In addition to decoupling the equations of motion for φ0 and φ2 from those for φ1, the
Teukolsky formalism has the advantage that it results in separation of variables in a particular
coordinate system and choice of null tetrad [12]. The coordinate system is Boyer–Lindquist
coordinates {t, r, θ,φ}, where the metric satisfies

ds2 = dt2 − Σ

(
dr2

∆
+ dθ2

)
− (r2 + a2)sin2 θdφ2 − 2Mr

Σ

(
a sin2 θdφ− dt

)2
, (2.27)

where∆ = r2 − 2Mr+ a2 andΣ = r2 + a2 cos2θ = |ζ|2, where we have normalized ζAB such
that

ζ = r − ia cos θ. (2.28)

The null tetrad associated with the principal spin basis in which the Teukolsky equation
separates is the Kinnersley tetrad, defined by [12]

~l =
r2 + a2

∆
∂t + ∂r +

a

∆
∂φ, ~n =

1
2Σ

[
(r2 + a2)∂t −∆∂r + a∂φ

]
, (2.29)

~m =
1√
2ζ̄

(
ia sin θ∂t + ∂θ +

i
sin θ

∂φ

)
. (2.30)

This spin basis has non-zero spin coefficients

ρ = −1
ζ
, µ = − ∆

2Σζ
, γ = µ+

r −M

2Σ
, (2.31)

β =
cot θ

2
√
2ζ̄

, π = α+ β̄ =
ia√
2ζ2

sin θ, τ = − ia√
2Σ

sin θ. (2.32)

We define the following operators [14, 15], for integral parameters n and s:

Dn = ∂r+
r2 + a2

∆
∂t+

a

∆
∂φ+2n

r−M

∆
, L s = ∂θ − i

(
a sin θ∂t+

1
sin θ

∂φ

)
+ s cot θ.

(2.33)

We also define the operators D
+
n and L

+
n , where the ‘+’ operation is defined by taking ∂t →

−∂t and ∂φ →−∂φ, and so it follows that L+
s = L s.5 These operators act on Fourier modes

fmωe
i(mφ−ωt) to yield the operators Dnmω and L smω:

Dn

[
fmω ei(mφ−ωt)

]
= ei(mφ−ωt)

Dnmω fmω ,

L s

[
fmω ei(mφ−ωt)

]
= ei(mφ−ωt)

L smω fmω ,
(2.34)

where

Dnmω ≡ ∂r +
iKmω
∆

+ 2n
r−M

∆
, L smω ≡ ∂θ + Qmω + s cot θ, (2.35)

and

Kmω ≡ am− ω(r2 + a2), Qmω ≡ m csc θ − aω sin θ. (2.36)

5As with δ, we take L s f to mean L s f , not L s f .

7
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Note that we follow the sign convention for Kmω of Chandrasekhar [14].
We now consider the Teukolsky equation (2.23) in Boyer–Lindquist coordinates. Define the

following Fourier modes sΩ̃mω(r, θ) for sΩ by

sΩ(t, r, θ,φ) =
∫ ∞

−∞
dω

∞∑

m=0

ei(mφ−ωt)
sΩ̃mω(r, θ). (2.37)

In terms of these modes and the operators in equation (2.35), the Teukolsky equation (2.23)
(without sources) becomes [12]

[
∆D(1−s)±m±ωD0∓m∓ω + L (1−s)∓m∓ωL s±m±ω ± 2(2s− 1)iω(r − ia cos θ)

]

×∆
(s±s)/2

±sΩ̃mω(r, θ) = 0 (2.38)

(for s > 0). This equation separates in r and θ, and so one can write the following expansion:

sΩ(t, r, θ,φ) =
∫ ∞

−∞
dω

∞∑

l=|s|

∑

|m|6l

ei(mφ−ωt)
sΘlmω(θ) sΩ̂lmω(r), (2.39)

and upon substituting this expansion into the Teukolsky equation (2.23) (againwithout sources)
one finds that

[
L (1−s)∓m∓ωL s±m±ω ± 2(2s− 1)ωa cos θ + ±sλlmω

]
±sΘlmω(θ) = 0, (2.40a)

[
∆D(1−s)±m±ωD0∓m∓ω ± 2(2s− 1)iωr − ±sΘlmω

]
∆

(s±s)/2
±sΩ̂lmω(r) = 0 (2.40b)

(for s > 0). The separation constant ±sλlmω reduces to l(l+ 1)− s(s− 1) in the Schwarzschild
limit, and so l(l+ 1) for the electromagnetic case [12, 14].

The functions sΘlmω(θ) are solutions to an eigenvalue problem for a separation constant
sλlmω that are regular on [0, π]. We fix their definition by noting that the symmetries of
equation (2.40a) imply that we can choose these functions to be real, and also to satisfy

sΘlmω(θ) = (−1)m+s −sΘl(−m)(−ω)(θ), sΘlmω(π − θ) = (−1)l+m −sΘlmω(θ),

(2.41)

with the separation constant also being real and satisfying

sλlmω = −sλlmω = sλl(−m)(−ω). (2.42)

For different l, the functions sΘlmω(θ) are orthogonal, and we normalize them by requiring that

∫ π

0
dθ sΘlmω(θ) sΘl′ mω(θ) sin θdθ = δll′ . (2.43)

The functions ei(mφ−ωt)
sΘlmω(θ) are known as the spin-weighted spheroidal harmonics, and are

orthogonal for different l, m, and ω.
The functions sΩ̂lmω(r) occur as coefficients of the expansion of sΩ in the spin-weighted

spheroidal harmonics. Since they obey equation (2.40b), which is invariant under the oper-
ation of complex conjugation followed by (m,ω)→ (−m,−ω), we can define two linearly

8
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independent solutions, labelled by their eigenvalue p = ±1 under this operation [multiplied
by a conventional factor of (−1)m+s]:

s
Ω̂lmωp(r) =

1
2

[
sΩ̂lmω(r)+ p(−1)m+s sΩ̂l(−m)(−ω)(r)

]
. (2.44)

Depending on the situation, it may be convenient to expand the master variables either as in
equation (2.39), or as

sΩ(t, r, θ,φ) =
∫ ∞

−∞
dω

∞∑

l=|s|

∑

|m|6l

∑

p=±1

ei(mφ−ωt)
sΘlmω(θ) sΩ̂lmωp(r). (2.45)

In particular, the complex conjugate of the master variables has a natural expansion in this
form:

sΩ(t, r, θ,φ) =
∫ ∞

−∞
dω

∞∑

l=|s|

∑

|m|6l

∑

p=±1

p ei(mφ−ωt)
−sΘlmω(θ) sΩ̂lmωp(r), (2.46)

from equations (2.41) and (2.44).

3. Symmetry operators

A symmetry operator, as defined by Kalnins et al [16], is an R-linear operator that maps the
space of solutions to the equations of motion into itself. For complexified solutions to real
equations of motion, for example, there exists a trivial symmetry operator defined by complex
conjugation.

In [6], Carter found a symmetry operatorD that mapped the space of solutions to the scalar
field equation to itself, given by

D ≡ ∇aK
ab∇b. (3.1)

This symmetry operator explicitly depends on the Killing tensor in the Kerr spacetime. The
symmetry operators which we discuss in this paper are constructed, instead, from the Killing
spinor ζAB that can be used to define the Killing tensor, as we did in section 2.2.

In the remainder of this section, we review three classes of symmetry operators, and
review one particular consequence of symmetry operators in Kerr, the Teukolsky–Starobinsky
identities.

3.1. Killing vectors

An example of a symmetry operator is given by the action of the Lie derivative by a Killing
vector, since this operator commutes with all derivative operators in the equations of motion.
This operator is first-order, in the sense that it contains only one derivative acting on the solu-
tion. In the case of spin 1, there are, in fact, two symmetry operators defined by a Killing vector
ξa: the first is just the normal Lie derivative £ξ, and the second (defined by Andersson et al
[8]) is the mapping

ξLa
b δ̄Ab ≡ ξA′

B
1FAB

c δ̄Ac, (3.2)

where 1FAB
c is defined in equation (2.7). The latter is the first example of a gauge-invariant

symmetry operator, in the sense that

ξL · dλ = 0, (3.3)

9
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while the former is a gauge-covariant symmetry operator, since

£ξdλ = d£ξλ, (3.4)

which is still exact. A gauge-invariant symmetry operator has fixed the gauge,whereas a gauge-
covariant symmetry operator still retains gauge freedom through the original vector potential.

Consider a symmetry operatorwhich is constructed from 1F , like ξL in equation (3.2). Such
a symmetry operator may map δ̄A to a vector potential which has an entirely anti-self-dual or
self-dual exterior derivative. Such symmetry operators are then considered to be of the first or
second kind , respectively. For example, ξL is of the first kind. This can be seen as follows:

1FA′B′
c
ξLc

d δ̄Ad = ∇A
(A′

(
ξB′)

B
1FAB

c δ̄Ac
)
=

(
∇(A

(A′ξB′)
B))

1FAB
c δ̄Ac, (3.5)

which vanishes since∇(aξb) = 0. Note that, in spin 1 (with no sources), anymapping to a vector
field with a(n) (anti-)self-dual exterior derivative is a symmetry operator: if ∗dδ̄A = ±idδ̄A,
then

d∗d δ̄A = ±id2 δ̄A = 0. (3.6)

and so Maxwell’s equations are automatically satisfied. This completes the proof that ξL is a
symmetry operator.

Higher-order symmetry operators can be created by composing these first-order symmetry
operators, but they are reducible, in the same sense that Killing tensors that are products of
Killing vectors are reducible. In Kerr, there are many higher-order symmetry operators that are
irreducible, which we will discuss in sections 3.2 and 3.3.

3.2. First kind

Another class of symmetry operators is given by separation of variables. The separability of a
differential equation in two variables (r and θ in the case of the Teukolsky equation in Kerr)
implies that there are two operators whose eigenfunctions span the space of solutions. As an
explicit example, consider the case of a separable differential equation in two variables x1 and
x2:

[
L1(x1, ∂x1 , . . .)+ L2(x2, ∂x2 , . . .)

]
P(x1, x2) = 0. (3.7)

By the separability of this equation, one can write a general solution as

P(x1, x2) =
∑

λ

Pλ
1 (x1)P

λ
2 (x2), (3.8)

where

L1P
λ
1 (x1) = λPλ

1 (x1), L2P
λ
2 (x2) = −λPλ

2 (x2). (3.9)

The operators L1 and L2 act as symmetry operators, since

L1P(x1, x2) =
∑

λ

λPλ
1 (x1)P

λ
2 (x2), L2P(x1, x2) = −

∑

λ

λPλ
1 (x1)P

λ
2 (x2), (3.10)

which are both separately solutions to (3.7), using equations (3.9).
Since the Teukolsky equation (2.23) separates in r and θ, there is a symmetry operator on

the space of master variables associated with this separation. As shown in [17], there exists a

10



Class. Quantum Grav. 37 (2020) 185021 A M Grant and É É Flanagan

symmetry operator of the first kind ΛAB
CD that maps the space of spinor fields δ̄φAB satisfying

equation (2.8) with JAA
′
= 0 to itself, which corresponds to the symmetry operator on the space

of master variables derived from separation of variables in r and θ. However, this is a symmetry
operator for the spinor field; in this paper, we are concerned with symmetry operators for the
space of vector potentials, as those are the ones that we will use with the symplectic product in
section 4.2 below. A second-order symmetry operator of the first kind, for the vector potential,
was defined by [18] as

AAA′
b δ̄Ab = −1

3

(
∇BB′ ζ̄A′

B′
)

2NA
BCD

1FCD
e δ̄Ae + ζ̄A′

B′∇BB′
(
2NA

BCD
1FCD

e δ̄Ae
)
,

(3.11)

where we have defined, for any symmetric spinor field SAB,

2NAB
CDSCD ≡ ζ(A

CSB)C. (3.12)

Since oAιB 2NAB
CDSCD = 0 by equation (2.16), 2N sets to zero the middle scalar S1 of SAB

[from equation (2.9)].

3.3. Second kind

Next, we move on to the symmetry operators which correspond to the Teukolsky–Starobinsky
identities [13, 19, 20]. These are the symmetry operators which most clearly generalize to the
case of linearized gravity. There are two approaches to deriving these symmetry operators:
either one starts by writing down the most general symmetry operator, as was done in [18] to
derive the results in section 3.2, or one uses the properties of the operator Teukolsky formalism,
as presented in section 2.2.

Using the approach of deriving the most generic operator, which works for spin 1/2 [7], a
symmetry operator of the second kind, mapping between spinor fields, was found by Kalnins
et al [17] (and later corrected in [16]). Similarly, Andersson, Bäckdahl, and Blue wrote down
the most generic second-order symmetry operator of the second kind for vector potentials in
Kerr [18]:

BAA′
b δ̄Ab =

1
3

(
∇CA′ζB

C
)

2NA
BCD

1FCD
e δ̄Ae + ζA

B∇CA′
(
2NB

CDE
1FDE

f δ̄A f

)
. (3.13)

Torres del Castillo [20], similarly, found a mapping between vector potentials of the form

1TAA′ b δ̄Ab = ζ−2∇B
A′
(
ζ2ζACζBD 1FCD

e δ̄A
e
)
, (3.14)

which is a symmetry operator in algebraically general spacetimes as well. However, these
symmetry operators do not obviously generalize to spin 2, since the proofs of their validity
depend crucially on using equation (2.8), which does not have a clean (and gauge-invariant)
generalization to spin 2.

An approach that does have a clear generalization is due to Wald, which relies on the oper-
ator Teukolsky formalism [13]. We define the following notion of the adjoint: for tensor fields
φ and ψ of rank p and q, respectively, and any linear differential operatorL that takes tensor

11
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fields of rank p to q, then we say thatL† is the adjoint ofL if there exists a vector field ja[φ,ψ]
such that6

ψ · (L · φ)− φ · (L† · ψ) ≡ ∇a j
a[φ,ψ]. (3.15)

With this definition, sE is self-adjoint, and so we can take the adjoint of equation (2.26) to
obtain

|s|E · sτ
†
= sM

†
s�

†. (3.16)

Applying this new operator equation to a solution to the adjoint equation s�
†Φ = 0, we obtain

|s|E · sτ
†
Φ = 0. (3.17)

Thus, for example, ±1τ
†
aΦ is a vector potential that solves Maxwell’s equations. Using (3.19a)

and (2.25), we have that

(3.18)

Such a solutionΦ that generates a vector potential is referred to as aDebye potential. As was
first noted by Cohen and Kegeles [19], s�† =−s�, which can be derived from equation (3.15)
and

D†
= −D− (ǫ+ ǭ)+ ρ+ ρ̄, (3.19a)

(3.19b)

δ† = −δ + ᾱ− β + τ − π̄. (3.19c)

Therefore, one can use solutions to the vacuum Teukolsky equation (2.23) −s�−sΦ = 0 to get
new solutions, since from equations (3.16) and (2.26),

±s� ±sM· sτ †
−sΦ = 0, ±s� ±sM· sτ † −sΦ = 0. (3.20)

These are sometimes called the Teukolsky–Starobinsky identities, and we discuss them further
in section 3.5. Thus, there exist two operators ±SM ·−S τ † which map the space of master vari-
ables with s = −S to the space of master variables with s = ±S, and two operators SM· −Sτ †

which map the space of complex conjugatedmaster variables with s = S to the space of master
variables S = ±s.

We can also form the following operators that act on the vector potential (where |s| = 1):

sCab ≡ sτ
†
a −sM

b. (3.21)

If δ̄Aa is a source-free solution to Maxwell’s equations, then from equations (3.21), (3.16), and
(2.26), we have

|s|E · sC · δ̄A = 0. (3.22)

These operators therefore act as symmetry operators for the vector potential in Kerr.

6 If there is no restriction on the domain of L, the operator L which satisfies equation (3.15) is unique.

12
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The operators ±1C are symmetry operators of the second kind, since for a source-free solu-
tion δ̄Aa of Maxwell’s equations, the only non-zero combinations of 1F and 1F acting on

±1C · δ̄A are

(
1F · sC · δ̄A

)
0
= −1

2

{
(D+ ǫ − ǭ− ρ)(D+ 2ǫ+ ρ)ζ2 δ̄φ2 s = 1

(δ̄ − β̄ − α+ π̄)(δ̄ − 2α− π)ζ2 δ̄φ0 s = −1
, (3.23a)

(3.23b)

(3.23c)

Note that the s = 1 version of equation (3.23a) is the same as the s = −1 version of
equation (3.23c), up to a transformation of the form la ↔ na andma ↔ m̄a. This same transfor-
mation gives the s = −1 version of equation (3.23a) from the s = 1 version of equation (3.23c),
as well as the s = −1 version of equation (3.23b) from the s = 1 version of equation (3.23b).

3.4. Issues of gauge

The argument given in section 3.3 implies that there exist two symmetry operators of the sec-
ond kind, given by ±1C. Similarly, the existence of symmetry operators of the second kind
result in the four Teukolsky–Starobinsky identities [the second equation in (3.20), which is
four equations because of the two choices of s and the two choices of ±]. However, the four
Teukolsky–Starobinsky identities are in fact related, which imply that ±1C · δ̄A are related by
a gauge transformation. To see this, note that Maxwell’s equations in a vacuum can be written
in the form

Dζ2 δ̄φ1 = (δ̄ − 2α− π)ζ2 δ̄φ0, (3.24a)

(3.24b)

δ̄ζ2 δ̄φ1 = (D+ 2ǫ+ ρ)ζ2 δ̄φ2, (3.24c)

(3.24d)

so that, using the Newman–Penrose commutators (see [10]),

(
1F · (+1C− −1C) · δ̄A

)
0
= −1

2
[(D+ ǫ− ǭ−ρ)δ̄− (δ̄− β̄−α+ π̄)D]ζ2 δ̄φ1 = 0, (3.25a)

(3.25b)

(3.25c)

13
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Note that these equations hold both for real and complexified solutions toMaxwell’s equations.
These equations mean that the two different operators 1C and −1C are equivalent up to gauge.
Furthermore, since equations (3.23) agree with the results of Torres del Castillo (up to constant
multiplicative factors) [20], our operators ±1C are the same as T in equation (3.14), up to
constant factors and gauge.

3.5. Teukolsky–Starobinsky identities

In this section, we show that the symmetry operators in section 3.3 are in a sense ‘diagonal’,
multiplying each term in the expansion (2.46) of the complex conjugated master vari-

ables by a constant. Consider the symmetry operators ±1M
a
1τ

†
a and ±1M

a
−1τ

†
a that [from

equation (3.20)]map the space of complex conjugatedmaster variableswith s = −1 and s = 1,
respectively, to the space of master variables with s = ±1. One can show that these symmetry
operators can be written in terms of purely radial and purely angular operators, the so called
‘spin-inversion’ operators:

1M
a
1τ

†
a = −1

2
D

2
0, −1M

a
−1τ

†
a = −1

8
∆
(
D

+
0

)2
∆, (3.26a)

1M
a
−1τ

†
a = −1

4
L

+

0 L
+

1 , −1M
a
1τ

†
a = −1

4
L 0L 1. (3.26b)

The existence of these operators imply certain relationships between ±1Θlmω(θ), as well
as between ±1Ω̂lmω(r), assuming that ±1Ω are generated by the same vector potential via
equations (2.12) and (2.20).

We start with the operators in equation (3.26b). Since these operators are purely angu-
lar, equations (2.46) and (3.20) imply that 1M

a
−1τ

† maps solutions to equation (2.40a) for

s = −1 to solutions for s = 1. Similarly, −1M
a
1τ

† maps solutions for s = 1 to solutions for
s = −1. Since the solutions ±sΘlmω(θ), for a given l, m, ω, and s, are fully determined (up to
normalization) by the boundary conditions of regularity on [0,π], we have that

L 0(±m)(±ω)L 1(±m)(±ω) ±1Θlmω(θ) ≡ ±1Blmω ∓1Θlmω(θ), (3.27)

for some constants ±1Blmω . These constants are determined by the normalization of ±1Θlmω(θ)
in equation (2.43); one finds that [14]

1Blmω = −1Blmω ≡ Blmω, B2
lmω = 1λ

2
lmω − 4α2

mωω
2, (3.28)

where α2
mω = a2 − am/ω. The sign of Blmω is fixed by setting aω = 0, at which point

equation (3.27) relates spin-weighted spherical harmonics, and one finds that Blmω > 0 [15].
Equation (3.27) is sometimes known as the angular Teukolsky–Starobinsky identity, where
Blmω is the Teukolsky–Starobinsky constant.

Next, we consider the radial version of the Teukolsky–Starobinsky identity. Here, we
note that the operators in equation (3.26a) are purely radial, and moreover (when acting
on Fourier modes) invariant under complex conjugation composed with the transformation

(m,ω)→ (−m,−ω). Therefore the operator 1M
a
1τ

†
a [by equations (2.46) and (3.20), as above]

maps solutions to equation (2.40b) for s = −1 to solutions for s = 1. Similarly, −1M
a
−1τ

†
a

maps solutions s = 1 to s = −1. In both cases, these maps preserve the value of p of the
solutions. That is,

14
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∆D
2
0(±m)(±ω)∆

(1±1)/2
±1Ω̂lmωp(r) = ±1Clmωp ∓1∆

(1∓1)/2
∓1Ω̂lmωp(r). (3.29)

There is a relationship between the constants Blmω and ±1Clmωp. To see this, note that from
equations (2.46), (3.27), and (3.29),

∓1M
a
±1τ

†
a ∓1Ω = −1

4

∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p=±1

pBlmω ei(mφ−ωt)
∓1Θlmω(θ) ∓1Ω̂lmωp(r),

(3.30a)

∓1M
a
∓1τ

†
a ±1Ω = − 1

22±1

∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p=±1

p±1Clmωp e
i(mφ−ωt)

∓1Θlmω(θ) ∓1Ω̂lmωp(r).

(3.30b)

Now, equation (3.25) implies that, for |s| = 1,

sM
a
sτ

†
a −sΩ = sM

a
−sτ

†
a sΩ, (3.31)

and so

±1Clmωp = 2±1Blmω. (3.32)

Thus, in particular, we find that

∆D
2
0(±m)(±ω)∆

(1±1)/2
±1Ω̂lmω(r) = 2±1Blmω ∓1∆

(1∓1)/2
∓1Ω̂lmω(r). (3.33)

At this point, in equations (3.30) and (3.32), we have determined the action of the symmetry

operators sM
a
sτ

†
a and sM

a
−sτ

†
a on the expansionof the (complex conjugated)master variables.

However, one can also show that sC is diagonal on the space of vector potentials, assuming a
particular expansion of the vector potential. We now construct this expansion, assuming (for
simplicity) that the vector potential is purely radiative.

First, given a master variable sΩ which comes from the vector potential, we need to define
Debye potentials ±1ψ such that

sΩ = sM
a
sτ

†
a −sψ = sM

a
−sτ

†
a sψ. (3.34)

This can be done by using an expansion for sψ of the form (2.39), where

s
ψ̂lmωp(r) = − 4

pBlmω
s
Ω̂lmωp(r), (3.35)

as a consequence of the linearity in each term in the expansions in equations (3.30). Define the
vector potentials ±1δ̄Aa by

±1δ̄Aa = ±1τ
†
a ∓1ψ, (3.36)

so that there is now a natural expansion for ±1δ̄Aa of the following form:

±1δ̄Aa =

∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p=±1

( ±1δ̄Almωp)a, (3.37)
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where

( ±1δ̄Almωp)a = ±1τ
†
a

[
ei(mφ−ωt)

∓1Θlmω(θ) ∓1ψ̂lmωp(r)
]
. (3.38)

The vector potentials ±1δ̄Aa are both vector potentials, like δ̄Aa, which yield sΩ when acted
upon by sM

a as in equation (2.21), and so they are the same up to gauge. The gauge conditions
that these vector potentials satisfy are given by

1δ̄Aal
a
= 0, −1δ̄Aan

a
= 0, (3.39)

which are (respectively) called the ingoing and outgoing radiation gauge condition.
We finally consider the action of our symmetry operators sC on ±1δ̄Aa We find that

sCab ±1δ̄Aa = sτ
†
a −sM

b
±1τ

†
b ∓1ψ = sτ

†
a −sΩ

= −1
4

∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p=±1

pBlmω sτ
†
a

[
ei(mφ−ωt)

sΘlmω(θ) sψ̂lmωp(r)
]

= −1
4

∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p=±1

pBlmω( sAlmωp)a. (3.40)

This shows that, apart from a complex conjugation, the effect of applying the symmetry oper-
ator sC is to multiply each term in this expansion by a constant. We can add monopole terms
to ±1δ̄Aa in equation (3.40), but this will not change the result since ±1C depends only on δ̄φ0

and δ̄φ2 (which only have l > 1).

4. Conserved currents

4.1. Previous currents

In terms of symmetry operators, two types of conserved currents were constructed in [8]: for
two independent variations δ̄1 and δ̄2, and for two symmetry operators −O and +O of the
first and second kind, respectively, they showed that the currents defined by

EZ jAA′ [
−O, δ̄1A, δ̄2A] ≡ δ̄1φBA

−OB
A′
c δ̄2Ac, (4.1a)

C jAA′ [
+O, δ̄1A, δ̄2A] ≡ δ̄1χ̄B′A′

+OA
B′c δ̄2Ac, (4.1b)

were conserved, as a consequence of equation (2.8), 1F · +O = 0, and 1F · −O = 0. The
prefixes ‘EZ’ and ‘C’ for these currents denote the fact that these currents, in the classification
scheme of [8] and section 5, are either ‘energy/zilch’ currents or ‘chiral’ currents.

Another natural means of generating conserved currents is to use a symmetry operator in
conjunction with a conserved stress–energy tensor. For example, we have that

Tab[δ̄1A, δ̄2A] =
1
2π

δ̄1φAB δ̄2φ̄A′B′ (4.2)

is a conserved stress–energy tensor, satisfying ∇aTab = 0 for any pair of variations δ̄1 and
δ̄2. The factor of 2π is conventional, and present in order for it to reduce to the normal
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stress–energy tensor of electromagnetism when δ̄1 = δ̄2. Given a Killing vector ξa, one can
construct a conserved current

ξ j
a[δ̄1A, δ̄2A] = 2πξbT

ab[δ̄1A, δ̄2A]. (4.3)

The current in equation (5.11) of [8] is of this form. Note also that

EZ ja[ ξL, δ̄1A, δ̄2A] = ξ ja[δ̄1A, δ̄2A]. (4.4)

4.2. Symplectic products

Given a theory that possesses a Lagrangian formulation, one method of generating conserved
quantities is to use the symplectic product. Following Burnett and Wald [9], we start with
a general Lagrangian four-form L[ψ,φ] = ∗L that is locally constructed from background
fieldsψ and dynamical fieldsφ. We consider a variation defined by δ̄, and we suppose that the
variation of the Lagrangian obeys

δ̄L[ψ,φ] ≡ E[ψ,φ] · δ̄φ+ dΘ[ψ,φ, δ̄φ], (4.5)

where Θ is the symplectic potential, and E is a tensor-valued four-form, that is, it is a tensor
with four antisymmetric indices and a number of indices that matches that of δ̄φ, such that
E · δ̄φ is a four-form. On shell, E = 0, which makes the integral of δ̄L a boundary term. Given
two variations δ̄1 and δ̄2 (which must commute), define the symplectic current by

ω[ψ,φ, δ̄1φ, δ̄2φ] ≡ δ̄1Θ[ψ,φ, δ̄2φ]− δ̄2Θ[L,ψ,φ, δ̄1φ]. (4.6)

Thus, since d and δ̄ commute,

dω = δ̄1(δ̄2L− E · δ̄2φ)− δ̄2(δ̄1L− E · δ̄1φ) = δ̄2E · δ̄1φ− δ̄1E · δ̄2φ. (4.7)

However, if δ̄1φ and δ̄2φ are both solutions to the linearized equations, so that δ̄1E = δ̄2E = 0,
then dω = 0; that is, ω is a conserved current.

In the case of the electromagnetic field, we have that

LM =
1
4
FabF

abǫ =
1
2
F ∧ ∗F, (4.8)

and so

δ̄LM = d δ̄A ∧ ∗F = δ̄A ∧ d∗F+ d( δ̄A ∧ ∗F). (4.9)

Thus, we find that the symplectic current, which we denote by ωM, is given by

ωM(δ̄1A, δ̄2A) = δ̄1A ∧ ∗ δ̄2F− δ̄2A ∧ ∗ δ̄1F. (4.10)

We define the corresponding vector current by

S j
a [δ̄1φ, δ̄2φ] ≡

(∗ω [δ̄1φ, δ̄2φ]
)a
. (4.11)

Note that this quantity is not gauge-invariant, in the sense that it is not invariant under a
change δ̄1A→ δ̄1A+ dλ. However, we have that, defining δ̄1 = δ̄ and δ̄2A = dλ,

ωM( δ̄A, dλ) = −dλ ∧ ∗ δ̄F = −d(λ∗ δ̄F), (4.12)
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where we have used that d∗δ̄F = 0 on shell, and soω is gauge-invariant up to a boundary term,
a result that carries over to linearized gravity.

We further note that the symplectic current is equivalent to the conserved currents discussed
in [8], up to a boundary term. Let δ̄2A = O · δ̄A ≡ +O · δ̄A+

−O · δ̄A for two symmetry
operators, +O and −O, where

∗d ±O = ±id ±O (4.13)

that is, we break up δ̄2F into its self-dual and anti-self-dual parts. Then we have that

ωM

[
δ̄A,O · δ̄A

]
= i δ̄A ∧ d

(
−O · δ̄A− +O · δ̄A

)
−O · δ̄A ∧ ∗ δ̄F

=
(
i δ̄F− ∗ δ̄F

)
∧ −O · δ̄A−

(
i δ̄F+

∗ δ̄F
)
∧ +O · δ̄A+ dα,

(4.14)

where

α ≡ i δ̄A ∧
(

−O · δ̄A− +O · δ̄A
)
. (4.15)

Note that the terms in parentheses are related to the self-dual and anti-self-dual parts of δ̄F:

i δ̄F± ∗ δ̄F = −2i±[ δ̄F] = ∓2∗ ±[ δ̄F], (4.16)

so that

ωM
[
δ̄A,O · δ̄A

]
= 2

[(∗+[δ̄F]
)
∧ −O · δ̄A+

(∗−[δ̄F]
)
∧ +O · δ̄A

]
+ dα.

(4.17)

Moreover, we have that

[∗( δ̄A ∧ ∗ δ̄F)]a = −1
2
δ̄Ab δ̄Fab =

1
2

(
δ̄AA

B′ δ̄χ̄A′B′ + δ̄ABA′ δ̄φAB

)
, (4.18)

and so one finds that

S ja
[
LM, δ̄A,O · δ̄A

]
= EZ ja[

−O, δ̄A, δ̄A]− C ja[
+O, δ̄A, δ̄A]+ (∗dα)a.

(4.19)

Thus, up to a non-gauge-invariant boundary term dα, the symplectic current has the same form
as that given by [8].

4.3. Summary of currents

We now list the currents defined in this paper. Our new current is given by

±1 j
a [ δ̄A] ≡ S j

a
[
±1C · δ̄A, ±1C · δ̄A

]
, (4.20)

where ±1C is defined in equation (3.21), and the symplectic product in equation (4.11). The
particular structure of this current is such that it yields a simple result in the limit of geometric
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optics. Although it is not new, we will also consider the following current given in [8], which
is defined by

A j
a [ δ̄A] ≡ EZ j

a[A, δ̄A, δ̄A], (4.21)

where A is the symmetry operator defined in equation (3.11) and EZj
a is defined by

equation (4.1a).
The key property of these conserved currents are that they are related to the Carter constant

in the geometric optics limit that we will discuss in section 5. Explicitly, we define the charge
···Q[Σ, δ̄A] for some current ···ja[Σ, δ̄A] and some spacelike hypersurfaceΣ:

···Q[Σ, δ̄A] ≡
∫

Σ
··· j

a [ δ̄A] d3Σa. (4.22)

In the geometric optics limit, these charges are all related to the sum of either the Carter con-
stants (for AQ[Σ, δ̄A]) or the squares of the Carter constants (for ±1Q[Σ, δ̄A]) of photons
passing through Σ.

Another property of these currents that we consider is their integrals over portions of null
infinity and the horizon, or fluxes. Our results in section 6 are that these fluxes are finite for

±1 j
a [ δ̄A], but infinite for A j

a [ δ̄A].

5. Geometric optics

5.1. Formalism

We now review the geometric optics (or high-frequency/eikonal) approximation for source-
free solutions to Maxwell’s equations. We assume a one-parameter family of complex, Lorenz
gauge solutions of the form

δ̄Aa = [a̟a + O(ǫ)]e−iϑ/ǫ, (5.1)

where ̟a is constrained by the normalization condition ̟a ¯̟
a = −1 and a is real. Inserting

this ansatz into the Lorenz gauge condition and Maxwell’s equations and equating coefficients
of powers of ǫ we find (see, for example, Misner et al [21]):

(a) The vector ka defined by

ka ≡ ∇aϑ, (5.2)

which represents the wavevector for an electromagnetic wave, describes a congruence of
null geodesics:

kak
a
= 0, kb∇bk

a
= 0. (5.3)

(b) The polarization vector ̟a is orthogonal to ka and is parallel-transported along these
geodesics:

ka̟a = 0, kb∇b̟
a
= 0. (5.4)

(c) The amplitude a evolves according to

∇a(a
2ka) = 0. (5.5)
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Next, since ka is null, we can write it as

kAA
′
= κAκ̄A

′
, (5.6)

for some spinor κA. We choose a second spinor λA so that (κ,λ) form a spin basis like (o, ι).
We can write the polarization vector̟a on this basis as

̟AA′
= ακAκ̄A

′
+ βλAλ̄A

′
+ eRκ

Aλ̄A
′
+ eLλ

Aκ̄A
′
, (5.7)

for some complex coefficients α, β, eR, and eL. From the condition in equation (5.4), β = 0,
and similarly we can set α = 0 by the gauge transformation δ̄Aa → δ̄Aa +∇aλ, where λ =

−iaαǫe−iϑ/ǫ, which maintains the Lorenz gauge condition.
The coefficients eL and eR parameterize the left and right circularly polarized components

of the radiation. To see this, form a tetrad from κA and λA in the form

tAA′ =
1√
2
(κAκ̄A′ + λAλ̄A′), zAA′ =

1√
2
(κAκ̄A′ − λAλ̄A′),

xAA′ =
1√
2
(κAλ̄A′ + λAκ̄A′), yAA′ =

i√
2
(κAλ̄A′ − λAκ̄A′).

(5.8)

It then follows that

̟a =
eR√
2
(xa − iya)+

eL√
2
(xa + iya). (5.9)

That is, on this basis, eR = 1, eL = 0 corresponds to right circularly polarized light and eL = 1,
eR = 0 corresponds to left circularly polarized light.

We next compute the spinor fields δ̄φAB and δ̄χ̄A′B′ that are defined by equations (2.7). To
leading order in ǫ we find that

δ̄φAB =
1
ǫ
iaeRκAκB e−iϑ/ǫ

+ O(1), δ̄χ̄A′B′ =
1
ǫ
iaeLκ̄Aκ̄B e−iϑ/ǫ

+ O(1), (5.10)

so that each spinor field contains only one circular polarization. In the case of real fields, one
is only concerned with δ̄φAB, and one finds that

δ̄φAB =
1
ǫ
iaκAκB

(
eR e−iϑ/ǫ − ēL eiϑ/ǫ

)
+ O(1). (5.11)

Note that equations (5.10) and (5.11) are invariant under the rotationκA → eiϕκA,λA → e−iϕλA,
since eR → e−2iϕeR and eL → e2iϕeL. We will be considering only real vector potentials, since
only those are physical, although we have constructed complex vector potentials via symmetry
operators.

5.2. Conserved currents in geometric optics

When we evaluate nonlinear quantities in the geometric optics limit, such as currents (which
are quadratic), we discard all rapidly oscillating terms, in effect taking a spacetime average
over a scale large compared to ǫ but small compared to the curvature scale of the background.7

Such averages will be denoted by 〈 ja〉, for currents ja.

7 See [22] for a more rigorous treatment of this averaging procedure involving weak limits.
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A simple example, for a Killing vector ξa, is given by ξbT
ab[δ̄A, δ̄A]. In the limit of

geometric optics this current becomes

〈ξbTab[ δ̄A, δ̄A]〉 =
1
ǫ2
a2

2π
kakbξb(|eR|2 + |eL|2)+ O(ǫ−1) =

1
ǫ2

Eξ

2π~
a2ka + O(ǫ−1),

(5.12)

whereEξ ≡ ξap
a is the conserved quantity with respect to ξa of a given photonwith wavevector

ka = pa/~. Although this calculation is purely classical, a factor of ~ occurs in converting
between expressions involving ka and conserved quantities (like Eξ) defined using the four-
momentum pa. Considering the electromagnetic field in this limit as a null fluid of photons
with number densityN a, one finds that [21]

1
ǫ2
a2ka = 2π~N a, (5.13)

which implies that

〈ξbTab[ δ̄A, δ̄A]〉 = EξN a
+ O(ǫ−1). (5.14)

This gives the expected result that integrating the current (5.12) over a hypersurface gives the
total Eξ (say, energy, in the case ~ξ = ∂t) of the photons crossing the hypersurface.

This example has two interesting properties. First, this is an example of a conserved current
ja that reduces in geometric optics to

〈 ja〉 = 1
ǫn
Qa2ka + O(ǫ−n+1), (5.15)

for some quantity Q. Conversely, one can show, from equation (5.5), that if ∇aj
a = 0 and

equation (5.15) holds, then Q is a conserved quantity along the integral curves of ka. The
condition (5.15) is satisfied by all currents that we consider in this paper.

Another property of this example is that the current (5.12) is not dependent on the circular
polarization parameters eR and eL. We will classify quadratic currents in the geometric optics
limit in terms of their dependence on these parameters: currents that are independent will be
called energy currents, currents that are proportional to |eR|2 − |eL|2 will be called zilch cur-
rents, and currents that are proportional to eRēL or eLēR will be called chiral or anti-chiral
currents, respectively. The simplest example of a zilch current is the current

〈ξbTab[ δ̄A, ξL · δ̄A]〉 = 1
ǫ3

E2
ξ

2π~2
(|eR|2 − |eL|2)a2ka + O(ǫ−2), (5.16)

where the symmetry operator ξL is defined in equation (3.2).
Equation (5.16) also shows that zilch currents can yield conserved quantities in geometric

optics that are quadratic in the four-momentum. One can show this generally: energy cur-
rents yield conserved quantities that have odd powers of the ka, zilch currents yield conserved
quantities that have even powers of the ka, and chiral and antichiral currents yield conserved
quantities that depend on κA and κ̄A

′
individually, in addition to ka. As such, all of the currents

that we consider in this paper are zilch currents.
We now consider the geometric optics limits of the currents that we defined in section 4.3.

We begin with the conserved current A j
a [ δ̄A] in equation (4.21). Using equations (3.11) and
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(4.1a), one finds that

〈 A ja [δ̄A]〉 = − 1
ǫ3

iK
4~2

(|eR|2 − |eL|2)a2ka + O(ǫ−2). (5.17)

This moreover uses the fact that

∣∣ζABκAκB
∣∣2 = 1

2
K/~2. (5.18)

Consider now the charge AQ[Σ, δ̄A] obtained by integrating this current over a hypersurface
Σ. As in the case of the example (5.12), equation (5.17) means that AQ[Σ, δ̄A] is proportional
to the sum of the Carter constants of the photons passing through Σ. Considering the case of
the current ±1 j

a [δ̄A] in equation (4.20), we note that

1CAA
′
b δ̄A

b
= − 1

ǫ2
a

2
ζ2oAoBκBκ̄

A′ (ιCκ
C)2

(
eR e−iϑ/ǫ

+ ēL eiϑ/ǫ
)
, (5.19)

and so

〈 1 ja [δ̄A]〉 =
1
ǫ5

iK2

16~4
(|eR|2 − |eL|2)a2ka + O(ǫ−4). (5.20)

The interpretation of this expression is that the charge 1Q[Σ, δ̄A] is proportional to the sum of
the squares of the Carter constants of the photons passing throughΣ. Moreover, one can easily
show that, at least in the limit of geometric optics,

〈 −1 ja [δ̄A]〉 = 〈 1 ja [δ̄A]〉+ O(ǫ−4), (5.21)

and so we do not need to separately compute the current −1 ja [δ̄A].

6. Fluxes at null infinity and the horizon

In order for a conserved current in Kerr to be physically useful, its fluxes should be finite when
evaluated at null infinity and at the horizon. In this section, we determine which of the currents
in section 4.3 satisfy this requirement. As one might be interested in the particular values of
these fluxes (if they are useful for calculating the rate of change of the Carter constant of a
charged particle, for example), we also give the values of these fluxes in equations (6.11) (for

±1 j
a[ 1δ̄A,Σ]), using the expansion for 1δ̄Aa given in equation (3.37).

6.1. Definitions

We define the fluxes of our currents through the horizon and null infinity by the following
expressions (for details on how one arrives at these expressions, see appendix A of [23]):

d2 ···Q

dvdΩ

∣∣∣∣
H+

≡ lim
r→r+ ,fixed v

(
Σna − 1

2
∆la

)
··· ja,

d2 ···Q

dudΩ

∣∣∣∣
H−

= lim
r→r+ ,fixed u

(
Σna − 1

2
∆la

)
··· ja,

(6.1a)

d2 ···Q

dudΩ

∣∣∣∣
I

+

= lim
r−→∞,fixed u

r2
(
na − 1

2
la
)

··· ja,

d2 ···Q

dvdΩ

∣∣∣∣
I

−
= lim

r−→∞,fixed v
r2
(
na − 1

2
la
)

··· ja.

(6.1b)
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Here, the vector Σa −∆la/2 is equal to the volume element dΣa for each of these surfaces,
divided by either dudΩ or dvdΩ, where dΩ is the element of solid angle:

dΩ ≡ sin θdθ

{
dψ atH+,I−

dχ atH−,I+
, (6.2)

where ψ and χ are defined by

ψ ≡ φ+

∫
adr
∆

, χ = φ−
∫

adr
∆

. (6.3)

From equation (6.1a), it is apparent that the relevant components of the currents constructed
in this paper are those along la and na. In particular,

1 jl [δ̄A] = −i Im [( 1C · δ̄A)m̄( 1F · 1C · δ̄A)0],

1 jn [δ̄A] = −i Im [( 1C · δ̄A)n( 1F · 1C · δ̄A)1], (6.4a)

−1 jn [δ̄A] = i Im [(−1C · δ̄A)m( 1F · −1C · δ̄A)2],

−1 jl [δ̄A] = i Im [(−1C · δ̄A)l( 1F · −1C · δ̄A)1], (6.4b)

as well as

(6.5a)

A jn [δ̄A] = −Σ

2

{
δ̄φ̄2[(D+ 2ǫ−ρ+ ρ̄) δ̄φ2−µ δ̄φ0]+ δ̄φ̄1

(
δ̄ + 2α−τ +π− 1

3
π̄

)
δ̄φ2

}
.

(6.5b)

6.2. Computations

Using the results section 6.1, we now determine whether the fluxes of the currents defined in
section 4.3 are finite, and if so, we determine the values of these fluxes.

We start with determiningwhich fluxes are finite. For the current A j
a [δ̄A], the flux diverges

by the following argument: the peeling theorem [11] implies that there exist solutions such that
δ̄φ2 ∼ 1/r. Since ρ− ρ̄ ∼ 1/r2,

Σ δ̄φ̄2(D+ 2ǫ− ρ+ ρ̄) δ̄φ2 ∼ 1/r (6.6)

at least, since D can lower at most by one factor of r. Equations (6.5) and (6.1a), imply that
the flux through I

+ is dominated by this piece, which, when multiplied by r2, diverges as r
in the limit r→∞. The fluxes of the current ±1 j

a[1δ̄A] are finite. Showing this can be most
easily done using equation (6.4), along with the falloffs of ±1δ̄Aa and the falloffs of

1δ̄χ̄i ≡ ( 1F · 1δ̄A)i. (6.7)

These falloffs are given in table A1, which is constructed using the methods of appendix A.
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For currents ···ja whose fluxes are finite, we use the following expansion of these fluxes:

〈
d2 ···Q

dudΩ

∣∣∣∣
I

+ ,H−

〉

u,χ

≡
∫ ∞

−∞
dω

∞∑

l,l′=1

∑

|m|6l,l′

∑

p,p′=±1

d2 ···Qll′mωpp′

dudΩ

∣∣∣∣
I

+,H−
, (6.8a)

〈
d2 ···Q

dvdΩ

∣∣∣∣
I

−,H+

〉

v,ψ

≡
∫ ∞

−∞
dω

∞∑

l,l′=1

∑

|m|6l,l′

∑

p,p′=±1

d2 ···Qll′mωpp′

dvdΩ

∣∣∣∣
I

−,H+

, (6.8b)

where on the left-hand side we average in either u and ψ or v and χ. Similarly, we write the
asymptotic form of the Debye potentials using the asymptotic form of solutions of the radial
Teukolsky equation (2.23), yielding [15]

s
ψ̂lmωp(r) =

{
Zdown
lmωp e−iωr∗/r + Z

up
lmωp e

iωr∗/r2s+1 r∗ →∞
Zin
lmωp e

−ikmωr∗/∆s
+ Zout

lmωp e
ikmω r∗ r∗ →−∞

, (6.9)

where kmω = ω − am/(2Mr+). Similarly, consider the quantities 1δ̄An, 1δ̄Am̄, −1δ̄Al, −1δ̄Am,
and 1δ̄χ̄1, which (in general) we denote by q. These quantities are all constructed linearly
from a Debye potential sψ, and so possess an expansion as in equation (3.37). Expanding
asymptotically, we define the asymptotic angular dependences

q
S
in/out/up/down
lmωp (θ) by

q(t, r, θ,φ) =
∫ ∞

−∞
dω

∞∑

l=1

∑

|m|6l

∑

p,p′=±1

× ei(mφ−ωt)





Zdown
lmωp q

Sdownlmωp(θ)r
ndownq e−iωr∗

+ Z
up
lmωp q

S
up
lmωp(θ)r

n
up
q eiωr

∗ r∗ →∞

Zin
lmωp q

Sinlmωp(θ)∆
ninq e−ikmω r∗

+ Zout
lmωp q

Soutlmωp(θ)∆
noutq eikmωr

∗ r∗ →−∞
, (6.10)

for some constants nin/out/up/downq that determine the falloffs of q, and are (effectively) given in
table A1. The asymptotic angular dependences are given in equation (A.9).

Our final results of this section are the fluxes of ±1 j
a[1δ̄A], which are given by

d2
+1Qll′mωpp′

dudΩ

∣∣∣∣∣
S

= − ipp′BlmωBl′mω
16

×




Σ+ Im

[
Zout
lmωpZ

out
l ′mωp′ 1δ̄AnS

out
lmωp(θ) 1δ̄χ1S

out
l′mωp′(θ)

]
S = H−

Im
[
Z
up
lmωpZ

up
l ′mωp′ 1δ̄AnS

up
lmωp(θ)

1δ̄χ1
S
up
l′mωp′(θ)

]
S= I

+
,

(6.11a)

d2
+1Qll′mωpp′

dvdΩ

∣∣∣∣∣
S

=
ipBlmω(Bl′mω)2

256 1Θl′mω(θ)

×




Im

[
Zin
lmωpZ

in
l ′mωp′ 1δ̄Am̄S

in
lmωp(θ)

]
S = H+

Im
[
Zdown
lmωpZ

down
l ′mωp′ 1δ̄Am̄

Sdownlmωp(θ)
]

S = I
−
, (6.11b)
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d2 −1Qll′mωpp′

dudΩ

∣∣∣∣∣
S

=
ipBlmω(Bl′mω)2

128 −1Θl′mω(θ)

×




Σ+ Im

[
Zout
lmωpZ

out
l ′mωp′ −1δ̄Am

Soutlmωp(θ)/ζ
2
+

]
S = H−

Im
[
Z
up
lmωpZ

up
l ′mωp′ −1δ̄Am

S
up
lmωp(θ)

]
S = I

+
, (6.11c)

d2 −1Qll′mωpp′

dvdΩ

∣∣∣∣∣
S

= − ipp′BlmωBl′mω
32

×




Im

[
Zin
lmωpZ

in
l ′mωp′ −1δ̄Al

Sinlmωp(θ)
1δ̄χ1

Sin
l′mωp′ (θ)

]
S = H+

Im
[
Zdown
lmωpZ

down
l ′mωp′ −1δ̄Al

Sdownlmωp(θ)
1δ̄χ1

Sdown
l′mωp′ (θ)

]
S= I

−
, (6.11d)

where Σ+ ≡ |ζ+|2, where ζ+ ≡ r+ + ia cos θ.

7. Conclusions

We have found a conserved current for electromagnetic fields whose conserved charge reduces
to a sum of positive powers of Carter constants for a stream of photons in the geometric optics
limit, and has finite fluxes at infinity. In these ways, this current generalizes the conserved cur-
rent for a complex scalar field derived by Carter [6]. In a future paper, we will provide a similar
analysis of conserved currents in linearized gravity. We also plan to explore the interactions
between these currents and a charged worldline in order to determine if useful information
about the trajectory of the body can be determined from fluxes of these currents.
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Appendix A. Asymptotic behaviour

In this appendix we prove the asymptotic falloff behaviour and angular dependence of the
vector potentials and themiddleMaxwell scalar δ̄χ̄1 that are used in section 6 using techniques
derived in [14]. First, we write these quantities in terms of differential operators acting upon
Debye potentials. Writing out equations (3.18) (for the vector potentials) and (6.7) (for δ̄χ̄1)
in Boyer–Lindquist coordinates, we find that

(1δ̄A)n = − 1

2
√
2ζ̄

(
L

+
1 − ia sin θ

ζ

)
−1ψ, (1δ̄A)m̄ = −1

2

(
D0 −

1
ζ

)
−1ψ, (A.1a)

( −1 δ̄A)l =
ζ

2
√
2

(
L 1 −

ia sin θ

ζ

)
1ψ, (−1 δ̄A)m = − ζ

4ζ̄

(
D

+

0 − 1
ζ

)
∆ 1ψ, (A.1b)

1δ̄χ̄1 = − 1

2
√
2ζ̄

[(
L

+
1 − ia sin θ

ζ̄

)
D0 −

1
ζ̄
L

+
1 − ia sin θ

ζ

(
1
ζ
− 2

ζ̄

)]
−1ψ. (A.1c)
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Since each term in the expansions of 1δ̄χ̄0 and ζ̄2 1δ̄χ̄2 are proportional to the terms in
the expansion of 1ψ [as in equation (3.35)], their asymptotic behaviour is apparent from the
asymptotics in equation (6.9).

In order to compute the asymptotic behaviour of the vector potentials and δ̄χ̄1, we use the
asymptotic behaviour of derivatives of the Debye potential ±1ψ. However, applying the naïve
approach, which uses the asymptotic expansions given in equation (6.9), along with

D0(±m)(±ω) f (r)e
±iωr∗

=
d f
dr

e±iωr∗

D0(±m)(±ω) f (r)e
∓iωr∗

=

[
d f
dr

∓ 2iω f (r)

]
e∓iωr∗




r∗ →∞ (A.2a)

D0(±m)(±ω) f (r)e
±ikmωr∗ =

d f
dr

e±iωr∗

D0(±m)(±ω) f (r)e
∓ikmωr∗ =

[
d f
dr

∓ 4Mr+

∆
ikmω f (r)

]
e∓iωr∗




r∗ →−∞ (A.2b)

results in a cancelation in the leading-order behaviour, and so subleading corrections are
required. This issue can be side-stepped using the radial Teukolsky–Starobinsky identities,
as follows: first, consider some function ±1Rlmω(r) that is a solution to the radial Teukolsky
equation (2.40b) and the radial Teukolsky–Starobinsky identity (3.33). Define

±1Ulmω = ∓2iωr + 1λlmω , ±1Vmω = ∓2iKmω , (A.3)

such that the radial Teukolsky equation (2.40b) takes the form

∆D
2
0(∓m)(∓ω)∆

(1±1)/2
±1Rlmω(r) =

(
±1Ulmω + ±1VmωD0(∓m)(∓ω)

)
∆

(1±1)/2
±1Rlmω(r). (A.4)

Using equation (3.33) on the left-hand side, one finds that [14]:

D0(∓m)(∓ω)∆
(1±1)/2

±1Rlmω(r)

≡ ±1Ξlmω∆
(1±1)/2

±1Rlmω(r)+ ±1Πlmω∆
(1∓1)/2

∓1Rlmω(r), (A.5)

where

±1Ξlmω = − ±1Ulmω

±1Vmω
= ± 1λlmω ∓ 2iωr

2iKmω
=





1
r

[
1± i 1λlmω

2ωr
+ O(1/r2)

]
r∗ →∞

∓ sλlmω ∓ 2iωr+

4iMr+kmω
r∗ →−∞

(A.6a)

±1Πlmω =
2±1Blmω

±Vmω
= ∓ Blmω

21∓1iKmω
=





± Blmω

21∓1iω
1
r2

r∗ →∞

± Blmω

22∓1iMr+kmω
r∗ →−∞

. (A.6b)

Using equations (A.2) and (A.5), we furthermore have that

1Z
down
lmω = − 8ω2

Blmω
−1Z

down
lmω , −1Z

up
lmω = − 2ω2

Blmω
1Z

up
lmω ,

1Z
in
lmω = −32M2r2+k

2
mω −1κmω

Blmω
−1Z

in
lmω , −1Z

out
lmω = −8M2r2+k

2
mω 1κmω

Blmω
1Z

out
lmω ,

(A.7)
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Table A1. Asymptotic behaviour of the solutions for electromagnetism.

Ingoing Outgoing

r∗ →−∞ r∗ →∞ r∗ →−∞ r∗ →∞
e−ikmω r∗× e−iωr∗× eikmω r

∗× eiωr
∗×

1δ̄An ∆ 1/r2 1 1

1δ̄Am̄ 1 1/r 1 1/r
−1δ̄Al 1/∆ 1 1 1/r2

−1δ̄Am 1 1/r 1 1/r

1δ̄χ̄0 1/∆ 1/r 1 1/r3

1δ̄χ̄1 1 1/r2 1 1/r2

1δ̄χ̄2 ∆ 1/r3 1 1/r

where

sκmω = 1− is(r+ −M)
2Mr+kmω

. (A.8)

Combining these asymptotic formulas with equation (A.1) yields the asymptotic falloffs
given in table A1, as well as the following angular factors:

1δ̄An
Sinlmωp(θ) = 1δ̄An

Soutlmωp(θ) = − 1

2
√
2
L

+

1 mω −1Θlmω(θ), (A.9a)

1δ̄An
Sdownlmωp(θ) = 1δ̄An

S
up
lmωp(θ) = − 1

2
√
2ζ+

(
L

+

1 mω − ia sin θ

ζ+

)
−1Θlmω(θ), (A.9b)

1δ̄Am̄
Sinlmωp(θ) = 2Mr+ikmω −1κmω −1Θlmω(θ), (A.9c)

1δ̄Am̄
Soutlmωp(θ) =

1
2

(
1λlmω + 2iωr+
4iMr+kmω

+
1
ζ+

)
−1Θlmω(θ), (A.9d)

1δ̄Am̄
Sdownlmωp(θ) = iω −1Θlmω(θ), (A.9e)

1δ̄Am̄
S
up
lmωp(θ) =

i
2

(
1λlmω
2ω

+ a cos θ

)
−1Θlmω(θ), (A.9f)

−1δ̄Al
Sinlmωp(θ) = −1δ̄Al

Soutlmωp(θ) =
ζ+

2
√
2

(
L 1 mω − ia sin θ

ζ+

)
1Θlmω , (A.9g)

−1δ̄Al
Sdownlmωp(θ) = −1δ̄Al

S
up
lmωp(θ) =

1

2
√
2
L 1 mω 1Θlmω(θ), (A.9h)

−1δ̄Am
Sinlmωp(θ) = − ζ+

4ζ̄+

(
1λlmω − 2iωr+
4iMr+kmω

− 1
ζ+

)
1Θlmω(θ), (A.9i)

−1δ̄Am
Soutlmωp(θ) = − ζ+

ζ̄+
Mr+ikmω 1κmω 1Θlmω(θ), (A.9j)

−1δ̄Am
Sdownlmωp(θ) = − i

4

(
1λlmω
2ω

− a cos θ

)
1Θlmω(θ), (A.9k)

−1δ̄Am
S
up
lmωp(θ) = − i

2
ω 1Θlmω(θ), (A.9l)
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1δ̄χ̄1
Sinlmωp(θ) =

√
2

ζ̄+
Mr+ikmω

(
L

+

1 mω − ia sin θ

ζ̄+

)
−1Θlmω(θ), (A.9m)

1δ̄χ̄1
Soutlmωp(θ) = − 1

2ζ̄+
√
2

{(
1λlmω + 2iωr+
4iMr+kmω

− 1
ζ̄+

)

− ia sin θ

[
1
ζ̄+

1λlmω + 2iωr+
4iMr+kmω

+
1
ζ+

(
1
ζ+

− 2
ζ̄+

)]}
−1Θlmω(θ),

(A.9n)

1δ̄χ̄1
Sdownlmωp(θ) =

iω√
2
L

+

1 mω −1Θlmω(θ), (A.9o)

1δ̄χ̄1
S
up
lmωp(θ) =

i

2
√
2

(
1λlmω
2ω

+ ia cos θ

)
L

+

1 mω −1Θlmω(θ). (A.9p)
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