Classical and Quantum Gravity

PAPER
Conserved currents for electromagnetic fields in the Kerr spacetime

To cite this article: Alexander M Grant and Eanna E Flanagan 2020 Class. Quantum Grav. 37 185021

View the article online for updates and enhancements.

Afp Mo 10P |€b00kS'

SOCIETY

g
8
g
£
5
2
=
i
4
k-]
g

Start exploring the collection—download the
first chapter of every title for free.

This content was downloaded from IP address 132.174.252.179 on 17/10/2020 at 13:52


https://doi.org/10.1088/1361-6382/ab995a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstziVeIyVrysRUB9FC83vm_YigC0-9Zv8jjrnfEEqfNLD6U1yghI97NfQb188XJJ2lz6db-RtYfsQCsK_71CJcaJvcNonh_RyVFCclDJ-uvBxvV7kuAYek3QXliyO8riQbNYf1leCExy_r6wMBEh16_Cl-c6j7uZSxk0zjIsHKP8GdIUa34N4-k8dyghcy-JuxMjqEfAy3l32xGwMRnanZ7NYoWUgl82d3agr1U1bI3P9cofrFX&sig=Cg0ArKJSzPo3ZniTm4xi&adurl=http://iopscience.org/books/aas

IOP Publishing Classical and Quantum Gravity
Class. Quantum Grav. 37 (2020) 185021 (29pp) https://doi.org/10.1088/1361-6382/ab995a

Conserved currents for electromagnetic
fields in the Kerr spacetime

Alexander M Grant' ©® and Eanna E Flanagan

Department of Physics, Cornell University, Ithaca, NY 14853, United States of
America

E-mail: amg425@cornell.edu

Received 2 March 2020, revised 1 June 2020
Accepted for publication 4 June 2020 @
Published 20 August 2020

CrossMark
Abstract
We construct a variety of conserved currents for test electromagnetic fields on
a Kerr background. Our procedure, which involves the symplectic product for
electromagnetism and symmetry operators, generates the conserved currents
given by Andersson et al [2015 Surveys in Differential Geometry (Hong Kong:
International)], as well as a new conserved current. These currents reduce to the
sum of (positive powers of) the Carter constants of photons in the geometric
optics limit, and generalize the current for scalar fields discovered by Carter
[1977 Phys. Rev. D 16 3395-3414] involving the Killing tensor. We furthermore
show that the fluxes of our new current through null infinity and the horizon are
finite.

Keywords: Kerr perturbation theory, Carter constant, conserved currents
1. Introduction

Freely falling point particles in the Kerr spacetime possess a constant of motion, the Carter
constant K, associated with the existence of a Killing tensor K in this spacetime [1, 2]:

KEKabpan, (11)

where
V(aKpey = 0. (1.2)

Moreover, there exist generalizations of this Carter constant for charged particles in the
Kerr—Newman spacetime [1], as well as for spinning particles, to linear order in spin [3]. This
constant of motion, along with the energy E and axial angular momentum L, allows for the
solution of the geodesic equations in terms of first integrals.

Unlike the Carter constant, the energy and axial angular momentum of the point particle
are associated with Killing vectors ¢ and ¢, and so can be related to conserved currents T

! Author to whom any correspondence should be addressed.
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and T“b(,bb , for any field theory with a stress—energy tensor 7,,. Moreover, the fluxes of these
conserved currents determine the evolution of the energy and axial angular momentum, respec-
tively, of a point particle that couples to this field theory. Is there any similar story for the Carter
constant (1.1)?

In [4], we showed that one cannot construct conserved currents that are related to the Carter
constant in this way from arbitrary stress—energy tensors. In particular, we showed that there is
no functional of a generic stress—energy tensor and its derivatives on a spacelike hypersurface
> that reduces to the Carter constant when the stress—energy tensor describes a point particle,
and is independent of 3 whenever the stress—energy tensor is conserved.?

This result does not eliminate the existence of conserved currents related to the Carter con-
stant that are not constructed from a stress—energy tensor. In fact, it is known that scalar fields
in the Kerr spacetime possess a conserved current that generalizes the Carter constant [6], in
the following sense: in the geometric optics limit, the integral of this current over a surface
is given by the sum of the Carter constants of all of the scalar quanta that pass through this
surface. A similar current also exists for spin-1/2 fields [7]. One may ask if a current of this
sort exists for other field theories.

The main result of this paper is the construction of conserved currents for electromagnetic
fields in the Kerr spacetime that are associated with the Carter constant in the geometric optics
limit. Our method of constructing currents, using symmetry operators which map the space
of solutions to itself, together with bilinear currents, is the same as that of [6, 7]. However,
we focus primarily on symmetry operators and currents which readily generalize to linearized
gravity on the Kerr background, and in particular the symmetry operators which we consider
are not obvious generalizations of those in [6, 7].

We consider two currents, which we define in section 4.3: we denote them by ,j*[ dA]and
1J4[ 6A], defined in equations (4.21) and (4.20), respectively. Here dA is a perturbation to
the electromagnetic vector potential. The latter of these currents is new, whereas the first was
previous defined in [8]. For ,j*[ JA], we find that the geometric optics limits of this current
is proportional to K [see equation (5.17)], whereas for |, j*[ JA] the limit is proportional to
K? [see equation (5.20)].

In addition to computing the geometric optics limit of these currents, we also consider
the fluxes of these currents through null infinity and the horizon. This is motivated by the
idea that these fluxes might allow one to determine the evolution of the Carter constant of a
charged particle in Kerr that is emitting radiation. We show that the fluxes of |, j*[ dA] are
finite, giving explicit expressions for the fluxes in equations (6.11). The flux of 4j*[ JA] is
infinite at null infinity, so it would not be useful for determining the evolution of the Carter
constant.

The layout of this paper is as follows: in section 2, we review the formalism of electro-
magnetic perturbations in the Kerr spacetime, covering the spinor, Newman—Penrose, and
Teukolsky formalisms. We then, in section 3, use these formalisms to construct symmetry
operators which map the space of solutions to Maxwell’s equations to itself. Section 4 reviews
the currents that were constructed in [8], along with the symplectic product construction for
an arbitrary Lagrangian field theory (see [9], for example). We then consider the symplectic
product for electromagnetism, and show the circumstances under which the symplectic prod-
uct procedure reduces to the procedure for constructing currents given in [8]. In section 5 we
review the geometric optics limit for electromagnetism, and derive the geometric optics limits

2 Note that, using the Killing—Yano tensor f,,, (see the discussion below in section 2.2), [5] has constructed a conserved
current for generic theories using the stress—energy tensor. However, the existence of such a current does not violate
the result in [4], since it does not reduce to the Carter constant for a point particle.
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of the currents we have defined. In section 6, we compute the fluxes for these currents at null
infinity and the horizon.

In this paper we use the following conventions: we generally follow the conventions of
Penrose and Rindler [10, 11], in particular the (4, —, —, —) metric signature convention and
their convention for the sign of the Riemann tensor. Tensors with indices removed are in a
bold face font, as is typically done with differential forms. For a linear (differential) operator
’7;1“4%1’1”‘1"1 that maps tensors of rank g to rank p, we denote %IAAAapbl"'qu;,lmbq by 7 - S when
the indices are removed. Moreover, we use the convention where linear differential operators
are applied in a right associative manner, that is,

T-8R=T-(S R). (1.3)

Finally, in all calculations we implicitly use the soldering forms o, which form the isomor-
phism between the tangent space and the space of Hermitian spinors [10]. That is, we implicitly
associate indices a with AA’, b with BB, etc on two sides of an equation.

2. Electromagnetic perturbations on a Kerr background

An electromagnetic perturbation on a fixed Kerr backgroundis given by a tensor § F,;, satisfying
VOSF = 4mJ)p, (2.1)

where 6J, is a linearized source current. The ‘3’ represents the fact that this perturba-
tion is obtained from a one-parameter family of solutions [F;()), g,,(M)] to the full Ein-
stein—-Maxwell equations, defining the variation §Q(\) of a quantity Q by?

_do
50 =% = 2.2)

We are allowed to consider solely electromagnetic perturbations because §7,;, = 0, and so we
can consistently set §g,, = 0. Considering electromagnetic perturbations as variations will be
useful in section 4.2 below.

The homogeneous Maxwell’s equation is given by d6F = 0, and so there a one-form poten-
tial A such that 6F = dJA. We denote the operator that maps vector potentials into the
corresponding sources by | E:

&L =206,PVV, — VPV, (2.3)

such that, from equation (2.1),
ELBA, =8B, (2.4)
Since the theory of electromagnetic perturbations is linear, we will consider the com-

plexified solution space for convenience, in which case the Faraday tensor has six complex
components. In this case, §J, will also be complex.

3 Note that we are using a non-standard symbol, J, to denote variations instead of d. This is due to an unfortunate clash
of notation with the Newman—Penrose directional derivatives, which also include an operator denoted with 0.
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2.1. Spinor and Newman-Penrose formalism

In order to discuss the spinor and Newman—Penrose formalism of electromagnetic pertur-
bations on a Kerr background, we use the conventions and terminology of [10, 11]. By the
symmetries of the Faraday tensor, §F,, can be decomposed into symmetric spinor fields ¢,
and Oy p via

8Fup = enp 0¢an + €apdXay = [0Fu] + T[3F ). (2.5

The operations T[] and ~[-] take the self-dual and anti-self-dual parts of 5F,,, respectively,
since taking the Hodge dual of these two parts yields

*+£[3F] = +i*[6F]. (2.6)

In terms of spinors, the relationship between the vector potential and the Faraday tensor is
given by

Sdas = V" 8Aaw = | Fap’ 0A., (2.7a)

55(A’B’ = V(B/A 5AA’)A = 1]:A’B’C 5AC, (27b)

where the second equalities define the operator |Fu5°, which we will need frequently

below. When we are considering real solutions, d¢45; = 9 45. The inhomogeneous Maxwell’s
equation becomes, in spinor language,

VAB' §u8 = 215788, VABGy P = 2n57PE . (2.8)

The Newman—Penrose approach is to introduce a spin basis (o, ¢), that is, a pair of spinors o*

and /" such that 041" = —0"14 = 1. The two spinors ¢,z and 45 can be decomposed along this

spin basis into six complex scalars via the following procedure: we define, for any symmetric
spinor Suz,

So = Sap0t0B, S| = Supitof, S, = SuptiP 2.9)

The six complex scalars are then ¢, @, @, Xo, X1, and 2. One can also consider the null
tetrad given by

= OABAl, n‘ = LAZA,, me = o (2.10)
These definitions, along with oat =1, imply that [,n* = —m,m® = 1, with all other contrac-

tions between £¢, n?, m®, and in“ being zero. Denote directiogal derivatives along the members
of this tetrad by D=1V, &A= n*Va,, § = m“V,, and 6 = im“V,, and define the twelve
spin coefficients

Dop =€op — Kig, Dip =mop — €Ly,
hoy =y04 — TLa, Mg =vog —ia,
dop = Poa — oLy, Ota = pog — Bia,
50A=Oé0A—pLA, SLA:/\OA—OzLA. (2‘11)

4
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Using the tetrad (2.10), the scalars §¢; and J; can also be written as

“mP i=0 “mb i=0
1 _ 1
3¢ = 6F, E(Z“nb +m'm’) i=1, 0xi= 0Fu i(la”b +mim’) i=1.(2.12)

mn® i= m®n® i=2

In Newman—Penrose notation, equation (2.8) becomes

(D —2p)3d — (0 + 7 —20) 5o = 278, (2.13a)
(6 —27)8¢1 — (& + p— 27)3¢dg = 275 m, (2.13b)
(D — p+26)3¢p, — (0 +21) 3¢ = 27 6, (2.13¢)
(6 =7 +2B)8¢2 — (b +2u)3¢1 = 218y, (2.13d)

where, for any vector v*, we define v; = v“l,, v, = vn,, etc.

2.2. Teukolsky formalism

Next, we turn to the Teukolsky formalism. The key to the Teukolsky formalism is that, in Kerr,
there exists a Killing spinor (45, which is symmetric and satisfies the Killing spinor equation
[11]

VA uCse) = 0. (2.14)

Consider a principal spin basis (o, ¢), which is a spin basis whose associated null tetrad has the
property (in Kerr) that the only non-zero component of the Weyl tensor Cy¢q 1S given by

Uy = CopealmPin‘n. (2.15)
In this spin basis, there is also a scalar ¢ such that
Ca = CoaLp), (2.16)

and ¢/, is constant (see [2] for a proof, and more details). Note that, given 5, ¢ can be
determined up to a sign by

¢* = —20sC", 2.17)

but (45 is only defined up to an overall constant. The Killing spinor defines the Killing—Yano
tensor f,;, via [2]

fawsy = ieasCan — ieasCaps (2.18)
which can be used to define the Killing tensor K, via

Kap = faefp- (2.19)
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In terms of the scalar ¢ and the principal spin basis (o, ¢), we can define the master variables
{2 by [12]

(2.20)

SQ:{@M» s=-1
5@50 s=1

These master variables can also be written in terms of an operator acting on the vector potential:
for |s| =1,

M, 0AC = O, (2.21)
where

e — (D—e+e—pm*—(0+7——a)l* s=1

s Cld+a+B-7)n*—(b+pg+y—y)m*] s=-1" (2.22)

The master variables satisfy the Teukolsky equation:
0,8 =8m T |S|T. (2.23)
The operator on the left-hand side, ;[J, is a second-order differential operator (the Teukolsky
operator) given by, for s > 0 [12]
sO=2{[D—(2s—1)e+e—2sp—pl(L—2sy+p) — [0 —a— (25 — 1)B — 257 + 7|(6 — 2sa + 7)
—2(2s —1)(s — 1)Wq},
(2.24a)
_O=2{[A+ (25— 1)y =7+ [@][D + 2se + (25 — 1)p] — [0 + (25 — D)a + B — 7[§ + 258 + (25 — 1)7]
—2(2s — 1)(s — 1)Uy}
(2.24b)

On the right-hand side of the Teukolsky equation (2.23) is the source term. For |s| = 1, we
have that 1T, = 3J, and, reading off from equations (3.6) and (3.8) of [12], we have*

. 1{(5—5—a—27+7r)la—(D—e+e—2p—p)m“ s=1

T T Cla+y—v+2u+am*—(f+a+B+2r—7)n? s=-1"

(2.25)

One can show that the procedure in [12] that was used to derive the Teukolsky equation (2.23)
is equivalent to the operator equation [13]

SDSM =

s

T Mg (2.26)

#Note that these expressions for ;7 are not unique, since ;¢ acts on the space of divergenceless vector fields. That
is, the Teukolsky equation (2.23) is preserved under the transformation ;7% — ;7¢ 4+ AV“.

6
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In addition to decoupling the equations of motion for ¢, and ¢, from those for ¢,, the
Teukolsky formalism has the advantage that it results in separation of variables in a particular
coordinate system and choice of null tetrad [12]. The coordinate system is Boyer—Lindquist
coordinates {7, r, 0, ¢}, where the metric satisfies

dr? 2M
ds> =d? — % (% + d92) — (* + dd)sin? 0d¢? — 7’ (a sin? 0dp — dr)*,  (2.27)
where A = 1> — 2Mr + a* and X = * + a® cos*@ = |(|?, where we have normalized (5 such
that

(=r—1ia cos 0. (2.28)

The null tetrad associated with the principal spin basis in which the Teukolsky equation
separates is the Kinnersley tetrad, defined by [12]

r2+a2

=
A

a N 1
O+ 0+ R0 W= 55 (7 +a»0, — AD, +ady],  (2.29)

| .
7= ia sin 00, + 0y + ,lao> . (2.30)
2 sin 0

f\l‘

This spin basis has non-zero spin coefficients

1 A r—m
S =—— = _ 2.31
p c % 3¢ 1=t Sy (2.31)
cot 6 - ia ia
=, =a+8=—~=— sin 6, = ———— sin 6. 2.32
b= TTOtPE pa s T Y (2.52)
We define the following operators [14, 15], for integral parameters n and s:
r* +a? a r—m . . 1
D, = 0, + T8,+Z8¢+2nT, Li=0p—1 <a sin 98,+m8¢) +s cot 6.

(2.33)

We also define the operators 271 and .7, where the ‘+ operation is defined by taking 0, —
—0, and 05 — — 0y, and so it follows that £ = £ These operators act on Fourier modes
Fro€" 10 yield the operators D, and L.

@n [ﬁnw ei(m®7WZ)} - ei(ln¢7Wt)@nlnwfmwa

Ly [ 00 = DL fr o
where

Do = 0 + iKA’”“ +2nt _AM . Lo =0+ O +5 cot 0, (2.35)
and

Kpo = am — w(r* +a*), Qum, =m csc 6 —aw sin 6. (2.36)

5 As with &, we take Zf to mean .Z, f, not £ f.
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Note that we follow the sign convention for K,,,,, of Chandrasekhar [14].
We now consider the Teukolsky equation (2.23) in Boyer—Lindquist coordinates. Define the
following Fourier modes (£2,,,(r, 0) for Q2 by

dw) "€l Q. (r,6). (2.37)

m=0

SUtr, 0, 0) = /

—00

In terms of these modes and the operators in equation (2.35), the Teukolsky equation (2.23)
(without sources) becomes [12]

[A@(lfs):tm:thOIme + g(lfs)Imegs:tm:tw =+ 2(25 - 1)1LU(V —ia cos 9)]
x ACE2 0 (r0) =0 (2.38)
(for s > 0). This equation separates in r and 6, and so one can write the following expansion:
St 7,0,6) = / dw > e ©,(0) Qs (7). (2.39)
T =] <t

and upon substituting this expansion into the Teukolsky equation (2.23) (again without sources)
one finds that

[g(lfs)Imegsj:m:tw + 2(2S - 1)wa cos 0 + j:;)\lmw] j:s@lmw(e) = 0» (2403)

[A@(lﬁr)imiw @01m1w =+ 2(25 - 1)iwr - i‘yelmw} A(s:k:s)/Z isﬁlmw(r) =0 (240b)

(for s > 0). The separation constant 3\, reduces to I(/ + 1) — s(s — 1) in the Schwarzschild
limit, and so /(/ + 1) for the electromagnetic case [12, 14].

The functions ;©,,,(f) are solutions to an eigenvalue problem for a separation constant
sAmw that are regular on [0, 7]. We fix their definition by noting that the symmetries of
equation (2.40a) imply that we can choose these functions to be real, and also to satisfy

(@) = (1" Ot my—r(@)s O — ) = (= 1) _ 04,0(0),
(2.41)

with the separation constant also being real and satisfying
s)\lmw = 7s)\lmw = S)\l(fm)(fw)- (242)

For different /, the functions ;0,,,,(#) are orthogonal, and we normalize them by requiring that
/ dO O, (0) O 1, (0) sin 6dO = §yp. (2.43)
0

The functions e'™~“).0,,,.() are known as the spin-weighted spheroidal harmonics, and are
orthogonal for diffelent [, m, and w.

The functions (£2;,,,(r) occur as coefficients of the expansion of ({2 in the spin-weighted
spheroidal harmonics. Since they obey equation (2.40b), which is invariant under the oper-
ation of complex conjugation followed by (m,w) — (—m, —w), we can define two linearly

8
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independent solutions, labelled by their eigenvalue p = %1 under this operation [multiplied
by a conventional factor of (—1)""5]:

~ 1 ~ —_——————
Simop(r) = 3 {SQZW(F) + p(*l)erXSQl(fm)(fw)(r)} . (2.44)

Depending on the situation, it may be convenient to expand the master variables either as in
equation (2.39), or as

St 7,0,6) = / dw " DD 04,(0) Qumap(r). (2.45)

T =] m|<ip=21

In particular, the complex conjugate of the master variables has a natural expansion in this
form:

Q(.7.0,9) = / dw) D" D" p e ™D 0y(0) Qunap(r),  (246)

T I=|s| Im|<p==%1

from equations (2.41) and (2.44).

3. Symmetry operators

A symmetry operator, as defined by Kalnins et al [16], is an R-linear operator that maps the
space of solutions to the equations of motion into itself. For complexified solutions to real
equations of motion, for example, there exists a trivial symmetry operator defined by complex
conjugation.

In [6], Carter found a symmetry operator D that mapped the space of solutions to the scalar
field equation to itself, given by

D = VK"V, G.1)

This symmetry operator explicitly depends on the Killing tensor in the Kerr spacetime. The
symmetry operators which we discuss in this paper are constructed, instead, from the Killing
spinor (45 that can be used to define the Killing tensor, as we did in section 2.2.

In the remainder of this section, we review three classes of symmetry operators, and
review one particular consequence of symmetry operators in Kerr, the Teukolsky—Starobinsky
identities.

3.1. Killing vectors

An example of a symmetry operator is given by the action of the Lie derivative by a Killing
vector, since this operator commutes with all derivative operators in the equations of motion.
This operator is first-order, in the sense that it contains only one derivative acting on the solu-
tion. In the case of spin 1, there are, in fact, two symmetry operators defined by a Killing vector
&": the first is just the normal Lie derivative £¢, and the second (defined by Andersson et al
[8]) is the mapping

L"8A, = E°  Fap 3A., (3.2)

where | Fa5° is defined in equation (2.7). The latter is the first example of a gauge-invariant
symmetry operator, in the sense that

L-d\=0, (3.3)
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while the former is a gauge-covariant symmetry operator, since
Ledd =dLeA, (3.4)

which is still exact. A gauge-invariant symmetry operator has fixed the gauge, whereas a gauge-
covariant symmetry operator still retains gauge freedom through the original vector potential.
Consider a symmetry operator whichis constructed from | F, like ¢L in equation (3.2). Such
a symmetry operator may map JA to a vector potential which has an entirely anti-self-dual or
self-dual exterior derivative. Such symmetry operators are then considered to be of the first or
second kind, respectively. For example, ¢L is of the first kind. This can be seen as follows:

I‘FA’B’C £Lcd 6Ad = VA(A/ (gB/)B lfABC 6AC) == (V(A(AlfB/)B)) lfABC 5AC’ (35)

which vanishes since V& = 0. Note that, in spin 1 (with no sources), any mapping to a vector
field with a(n) (anti-)self-dual exterior derivative is a symmetry operator: if *ddA = +iddA,
then

d*d3A = +id*5A = 0. (3.6)

and so Maxwell’s equations are automatically satisfied. This completes the proof that (L is a
symmetry operator.

Higher-order symmetry operators can be created by composing these first-order symmetry
operators, but they are reducible, in the same sense that Killing tensors that are products of
Killing vectors are reducible. In Kerr, there are many higher-order symmetry operators that are
irreducible, which we will discuss in sections 3.2 and 3.3.

3.2. First kind

Another class of symmetry operators is given by separation of variables. The separability of a
differential equation in two variables (r and € in the case of the Teukolsky equation in Kerr)
implies that there are two operators whose eigenfunctions span the space of solutions. As an
explicit example, consider the case of a separable differential equation in two variables x; and
X2

[L1(x1, 0, - ) + Lo(x2,0x,y, .. )] Plxy, x2) = 0. (3.7

By the separability of this equation, one can write a general solution as

P(x1,x0) = Y P (x1)P5(x2), (3.8)
A

where
L1P(x1) = APY(x1),  LaPy(x2) = —AP5(x2). (3.9)

The operators £; and £, act as symmetry operators, since
LiP(x1,50) = Y APYxDPY(x2),  LaP(x1,x2) = =Y AP} (x)P(xa), (3.10)
A A

which are both separately solutions to (3.7), using equations (3.9).
Since the Teukolsky equation (2.23) separates in r and 6, there is a symmetry operator on
the space of master variables associated with this separation. As shown in [17], there exists a

10
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symmetry operator of the first kind A, ? that maps the space of spinor fields §¢, satisfying
equation (2.8) with J% = 0to itself, which corresponds to the symmetry operator on the space
of master variables derived from separation of variables in  and . However, this is a symmetry
operator for the spinor field; in this paper, we are concerned with symmetry operators for the
space of vector potentials, as those are the ones that we will use with the symplectic product in
section 4.2 below. A second-order symmetry operator of the first kind, for the vector potential,
was defined by [18] as

1 _ g _ p
AAA’bgAb = _5 (VBB’CA'B ) ZMBCD 1]:C1)e 6Ae + CA/B VBB’ (ZMBCD I-FCDE 5Ae) s
(3.11)

where we have defined, for any symmetric spinor field Su3,
2NasPSen = CaCSpe. (3.12)

Since 048 2J\fABCD Scp = 0 by equation (2.16), 2./\f sets to zero the middle scalar S| of Syp
[from equation (2.9)].

3.3. Second kind

Next, we move on to the symmetry operators which correspond to the Teukolsky—Starobinsky
identities [13, 19, 20]. These are the symmetry operators which most clearly generalize to the
case of linearized gravity. There are two approaches to deriving these symmetry operators:
either one starts by writing down the most general symmetry operator, as was done in [18] to
derive the results in section 3.2, or one uses the properties of the operator Teukolsky formalism,
as presented in section 2.2.

Using the approach of deriving the most generic operator, which works for spin 1/2 [7], a
symmetry operator of the second kind, mapping between spinor fields, was found by Kalnins
et al [17] (and later corrected in [16]). Similarly, Andersson, Backdahl, and Blue wrote down
the most generic second-order symmetry operator of the second kind for vector potentials in
Kerr [18]:

B Ay = = (Vew () sNaPP | Fep 5Ac + PV ew (JN5PF | Fpe! 8Af) . (3.13)

[OSHI

Torres del Castillo [20], similarly, found a mapping between vector potentials of the form
1 Tan" 04y = VP (ClacCop 1 FPe0A°) (3.14)

which is a symmetry operator in algebraically general spacetimes as well. However, these
symmetry operators do not obviously generalize to spin 2, since the proofs of their validity
depend crucially on using equation (2.8), which does not have a clean (and gauge-invariant)
generalization to spin 2.

An approach that does have a clear generalization is due to Wald, which relies on the oper-
ator Teukolsky formalism [13]. We define the following notion of the adjoint: for tensor fields
¢ and v of rank p and g, respectively, and any linear differential operator £ that takes tensor

1
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fields of rank p to ¢, then we say that £ is the adjoint of £ if there exists a vector field j*[¢, ]
such that®

Y (L-@)— @ (LT-P) = V. /[, P]. (3.15)

With this definition, (£ is self-adjoint, and so we can take the adjoint of equation (2.26) to
obtain

€= MO0 (3.16)
Applying this new operator equation to a solution to the adjoint equation ;[Jf® = 0, we obtain
€ Tie=o. (3.17)

Thus, for example, :HT; ® is a vector potential that solves Maxwell’s equations. Using (3.19a)
and (2.25), we have that

sTqg = &

@2

v 1 =16 +2B8+7) 4+ ma(D+2¢ + p) s=1
[—ma (D —p—29) +na(d —2a —m)]¢(? s=-1"

(3.18)

Such a solution P that generates a vector potential is referred to as a Debye potential. As was
first noted by Cohen and Kegeles [19], ,0f =_, 0, which can be derived from equation (3.15)
and

Di=-D—(c+&+p+p (3.192)
A= —A+y+75— (u+0), (3.19b)
ft=—b6+a—-B+7—n. (3.19¢)

Therefore, one can use solutions to the vacuum Teukolsky equation (2.23) _[1_;® = 0 to get
new solutions, since from equations (3.16) and (2.26),

LSO M- d=0, O, M 11 &=0. (3.20)

s

These are sometimes called the Teukolsky—Starobinsky identities, and we discuss them further
in section 3.5. Thus, there exist two operators +.sM -_s 71 which map the space of master vari-

ables with s = —S to the space of master variables with s = +S, and two operators M- 71
which map the space of complex conjugated master variables with s = S to the space of master
variables § = =£s.
We can also form the following operators that act on the vector potential (where |s| = 1):
Gl = 1M (3.21)

a —s§

If A, is a source-free solution to Maxwell’s equations, then from equations (3.21), (3.16), and
(2.26), we have

These operators therefore act as symmetry operators for the vector potential in Kerr.

OIf there is no restriction on the domain of £, the operator £ which satisfies equation (3.15) is unique.

12
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The operators ,C are symmetry operators of the second kind, since for a source-free solu-
tion JA, of Maxwell’s equations, the only non-zero combinations of | and | acting on
1C - A are

— 1 [(D+e—&—p)D+2+p)C°5 =1
(F- ¢ o4),= L] PFemempDractpcin =1 (3.23a)
21(0-B—a+m0 —20—m)C8py s=—1
(D+ete—p+p)(0+28+T) , 1
“F. . _ ! + (048 —a—7—T1)(D+ 2+ p)|¢*0¢2
R [(b=v=F+p—p)6—2a—m) o= 1
+ O —atB+T+m)(b—2y—w)](*5¢0
(3.23b)
— 1 v - 2 2 =1
(iF-.C 84),=— {(Z“”B T)(Z+ 2ﬂ+7)<25;’2 L
(B =7+7+p)(bd =2y —p)%0ho s =— (3.23¢)
Note that the s = 1 version of equation (3.23a) is the same as the s = —1 version of
equation (3.23c), up to a transformation of the form I <+ n“ and m* <» m“. This same transfor-
mation gives the s = —1 version of equation (3.23a) from the s = 1 version of equation (3.23c¢),
as well as the s = —1 version of equation (3.23b) from the s = 1 version of equation (3.23b).

3.4. Issues of gauge

The argument given in section 3.3 implies that there exist two symmetry operators of the sec-
ond kind, given by ,,C. Similarly, the existence of symmetry operators of the second kind
result in the four Teukolsky—Starobinsky identities [the second equation in (3.20), which is
four equations because of the two choices of s and the two choices of +]. However, the four
Teukolsky—Starobinsky identities are in fact related, which imply that ,,C - A are related by
a gauge transformation. To see this, note that Maxwell’s equations in a vacuum can be written
in the form

DC 8y = (6 — 2a — w2 S, (3.24a)
8¢%8p1 = (b — 2y — p)¢*8¢bo, (3.24b)
62 8¢ = (D + 2¢ + p)¢* S, (3.24¢)
©CP8hy = (6 + 28+ 7)¢8¢a, (3.24d)

so that, using the Newman—Penrose commutators (see [10]),
- 1 _ o
(F-(,€— 0)-3A), = 75[(D+6f€fp)57 (0—B—a+7)DI?6¢p, =0, (3.25a)

(\F - (1€ — ,1C)~5A)1:f%[(D+6+€fpfﬁ)A+((5+57d77’r77')5
—(h=v=F+p—p)D— (0 —a+p+7+m)d|(*5¢1 =0,
(3.25b)
_ 1
(1F - (1€ — 1C)-5A), :75[(5+&+6—T)A7(A—’y+7+u)5]<25¢1 =0.

(3.25¢)

13
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Note that these equations hold both for real and complexified solutions to Maxwell’s equations.
These equations mean that the two different operators |C and _,C are equivalent up to gauge.
Furthermore, since equations (3.23) agree with the results of Torres del Castillo (up to constant
multiplicative factors) [20], our operators ,,C are the same as 7 in equation (3.14), up to
constant factors and gauge.

3.5. Teukolsky—Starobinsky identities

In this section, we show that the symmetry operators in section 3.3 are in a sense ‘diagonal’,
multiplying each term in the expansion (2.46) of the complex conjugated master vari-

ables by a constant. Consider the symmetry operators , M ITJ and | M“ 7172 that [from
equation (3.20)] map the space of complex conjugated master variables withs = —l ands = 1,
respectively, to the space of master variables with s = 4-1. One can show that these symmetry
operators can be written in terms of purely radial and purely angular operators, the so called
‘spin-inversion’ operators:

1 — 1
M7 = 5 D, ,lMa,lni:—gA(@J)zA, (3.26a)

1 — 1
IM“,ITJ:—Z,%;,%T, ,lMalTT:—Z,sfo,sfl. (3.26b)

The existence gf these operators imply certain relationships between .0y, (d), as well
as between {u,(r), assuming that 4§} are generated by the same vector potential via
equations (2.12) and (2.20).

We start with the operators in equation (3.26b). Since these operators are purely angu-
lar, equations (2.46) and (3.20) imply that ;M“ ;7 maps solutions to equation (2.40a) for

s = —1 to solutions for s = 1. Similarly, _,M* 71 maps solutions for s = 1 to solutions for
s = —1. Since the solutions 10, (#), for a given /, m, w, and s, are fully determined (up to
normalization) by the boundary conditions of regularity on [0, 7], we have that

Lm0 L 1EmyEw) +1Omw(0) = LB +1Omw(0), (3.27)

for some constants - By,,,. These constants are determined by the normalization of 40, (6)
in equation (2.43); one finds that [14]

1Blmw == 7lBlmw = Blmwa Blzmw - 1/\2 - 4042 wZ’ (328)

Imw mw

where o2, = a?> —am/w. The sign of B, is fixed by setting aw = 0, at which point

equation (3.27) relates spin-weighted spherical harmonics, and one finds that By, > 0 [15].
Equation (3.27) is sometimes known as the angular Teukolsky—Starobinsky identity, where
B, 1s the Teukolsky—Starobinsky constant.

Next, we consider the radial version of the Teukolsky—Starobinsky identity. Here, we
note that the operators in equation (3.26a) are purely radial, and moreover (when acting
on Fourier modes) invariant under complex conjugation composed with the transformation

(m,w) — (—m, —w). Therefore the operator ;M ITJ [by equations (2.46) and (3.20), as above]

maps solutions to equation (2.40b) for s = —1 to solutions for s = 1. Similarly, _,M* 7172
maps solutions s = 1 to s = —1. In both cases, these maps preserve the value of p of the

solutions. That is,

14
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A@%(:tm)(:tw)A(lil)/z ilﬁlmwp(”) = 41 Cimop xlA(lIwz Ilﬁlmwp(”)- (3.29)

There is a relationship between the constants By, and +{Cj.,. To see this, note that from
equations (2.46), (3.27), and (3.29),

— — -
IlMa ilT:l( IIQ = 71/ dwz Z Z PBimu el ;1®lmw(9)1191mwp(r)7

=1 m|<Ip==1

(3.30a)

—_— 1 e o0 Lo ~
;1Ma 117'(]; :tlQ - 7@/ dwz Z Z pilclmwp el(mQ wi) ;1®lmw(9)IIlewp(r)-

o0

=1 |m\glp:i1
(3.30b)

Now, equation (3.25) implies that, for |s| = 1,

MTh 0= M1l Q, (3.31)
and so

ilclmwp = 2i1Blmw- (3.32)
Thus, in particular, we find that

AD ey AEV2 Qs (r) = 25 By AT (1), (3.33)

At this point, in equations (3.30) and (3.32), we have determined the action of the symmetry

operators M XT; and M 7STJ on the expansion of the (complex conjugated) master variables.
However, one can also show that (C is diagonal on the space of vector potentials, assuming a
particular expansion of the vector potential. We now construct this expansion, assuming (for
simplicity) that the vector potential is purely radiative.

First, given a master variable (€2 which comes from the vector potential, we need to define
Debye potentials 17 such that

Q= M Tl = Ml . (3.34)

This can be done by using an expansion for ;) of the form (2.39), where

N 4
Sz/]lmwp(r) = _IF Slewp(r), (3.35)

as a consequence of the linearity in each term in the expansions in equations (3.30). Define the
vector potentials +10A, by

104 = 7] 1Y, (3.36)
so that there is now a natural expansion for 1A, of the following form:
R L) 3) D) M N (337)
T =1 m|<Ip=21
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where
( ilﬁAlmw[J)a = ilTJ ei(mcbfwt) ;16111%.1(0) ;11Zlmwp(r):| . (338)

The vector potentials _ ,JA, are both vector potentials, like JA,, which yield ;2 when acted
upon by ;M as in equation (2.21), and so they are the same up to gauge. The gauge conditions
that these vector potentials satisfy are given by

A =0, A" =0, (3.39)

which are (respectively) called the ingoing and outgoing radiation gauge condition.
We finally consider the action of our symmetry operators (C on ,6A, We find that

[ e b
Ca” 1104, = 7] M ilT}I 111/’ = sTaT nY

s a

= 7%/:: dwz Z Z pBlmw XTJ |:ei(mq5fwt) s®lmw(9) sij\lmwp(r)}

=1 |m|<Ip==*1
| R
- 71/700 dwz Z Z pBlmw(sAlmwp)a- (340)
=1 |m|<Ip==*1

This shows that, apart from a complex conjugation, the effect of applying the symmetry oper-
ator (C is to multiply each term in this expansion by a constant. We can add monopole terms
to 4104, in equation (3.40), but this will not change the result since | ;C depends only on d¢,
and d¢, (which only have [ > 1).

4. Conserved currents

4.1. Previous currents

In terms of symmetry operators, two types of conserved currents were constructed in [8]: for
two independent variations &, and &,, and for two symmetry operators ~© and O of the
first and second kind, respectively, they showed that the currents defined by

pzian T O, 51A, 5rA] = 810 OB4 A, (4.1a)
. _ + /o
cia[TO, 814, 5,A1 = 51vpa O BA,, (4.1b)

were conserved, as a consequence of equation (2.8), | F - TO =0, and 17-' O =0.The
prefixes ‘EZ’ and ‘C’ for these currents denote the fact that these currents, in the classification
scheme of [8] and section 5, are either ‘energy/zilch’ currents or ‘chiral’ currents.

Another natural means of generating conserved currents is to use a symmetry operator in
conjunction with a conserved stress—energy tensor. For example, we have that

1 ~
Tuwl61A, 0,A] = 7 010402 Parpy (4.2)

is a conserved stress—energy tensor, satistying VT,;, = 0 for any pair of variations d; and
05. The factor of 27 is conventional, and present in order for it to reduce to the normal
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stress—energy tensor of electromagnetism when §; = 3,. Given a Killing vector £“, one can
construct a conserved current

Ef’[élA, 3,A] = 21E T [6,A, ,A). 4.3)
The current in equation (5.11) of [8] is of this form. Note also that

pzjal (L. BIA, A1 = (juB1A, AL (4.4)

4.2. Symplectic products

Given a theory that possesses a Lagrangian formulation, one method of generating conserved
quantities is to use the symplectic product. Following Burnett and Wald [9], we start with
a general Lagrangian four-form L[, ¢] = *L that is locally constructed from background
fields v and dynamical fields ¢. We consider a variation defined by J, and we suppose that the
variation of the Lagrangian obeys

OL[Y, ] = E[9, §] - 6 + dO[, ¢, 3], (4.5)

where O is the symplectic potential, and E is a tensor-valued four-form, that is, it is a tensor
with four antisymmetric indices and a number of indices that matches that of d¢, such that
E - §¢ is a four-form. On shell, E = 0, which makes the integral of 6L a boundary term. Given
two variations §; and §, (which must commute), define the symplectic current by

LU[¢, ¢7 51 ¢7 62¢] = 519["/)’ ¢» 5Zd)] - 52®[L7 ¢’ ¢» 51¢] (46)
Thus, since d and § commute,
dw =93(6,L — E - 9,¢p) — 0:(61L — E - 3,¢) = 0,E - 51 — 61 E - 0,¢. .7

However, if § ¢ and §, ¢ are both solutions to the linearized equations, so that 51 E = §,E = 0,
then dw = 0; that is, w is a conserved current.
In the case of the electromagnetic field, we have that

1 1
Ly = ZFa,,Fabe = 5F A*F, (4.8)

and so

0Ly = d6A NF = 0A ANd'F 4 d(6A A °F). (4.9)
Thus, we find that the symplectic current, which we denote by wy, is given by

wm(014, 5A) = 01A N "0 F — 5,A N6, F. (4.10)
We define the corresponding vector current by

5J" 1010, 201 = ("w [610, 8201)". @.11)

Note that this quantity is not gauge-invariant, in the sense that it is not invariant under a
change 514 — §;A + d\. However, we have that, defining §; = ¢ and 5,4 = d),

wm(3A,d\) = —d\ A “5F = —d(\*OF), (4.12)
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where we have used that d*6F = 0 on shell, and so w is gauge-invariant up to a boundary term,
a result that carries over to linearized gravity.

We further note that the symplectic current is equivalent to the conserved currents discussed
in [8], up to a boundary term. Let 5,4 = O - A = TO-3A + O - A for two symmetry
operators, TO and ~ O, where

*AEO = +id*0O (4.13)

that is, we break up J,F into its self-dual and anti-self-dual parts. Then we have that

wy [04,0704] =i6ANd (O34~ TO-4) ~ O BANOF

= (i0F —*3F) A O -6A — (i6F 4+ "0F) A O - 3A + dav,
(4.14)

where

a=itAn (O34~ TO5A). (4.15)
Note that the terms in parentheses are related to the self-dual and anti-self-dual parts of JF:
i0F + *6F = —2i *[3F] = 72 *[4F], (4.16)

so that

wy [0A, O 54| =2 [(**[m) ATO-3A+ (TISF) A TO- 5A} + dav.
(4.17)

Moreover, we have that

[*(3A A *6F)], = —% SAPSF . = % (5AAB’ Sxap + 0AE, 5¢AB) . (418)

and so one finds that

sja [Ln. 04, O - 3A| = gy jul ~O, 84,641 — jul TO, 84, 5A] + ("de),.
(4.19)

Thus, up to a non-gauge-invariant boundary term dev, the symplectic current has the same form
as that given by [8].

4.3. Summary of currents

We now list the currents defined in this paper. Our new current is given by

1S [0A] = ¢f* [LC-BA, L,C-FA], (4.20)

where | C is defined in equation (3.21), and the symplectic product in equation (4.11). The
particular structure of this current is such that it yields a simple result in the limit of geometric
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optics. Although it is not new, we will also consider the following current given in [8], which
is defined by

AJ [0A] = g2 J'[A, BA, JA], 4.21)

where A is the symmetry operator defined in equation (3.11) and gz/* is defined by
equation (4.1a).

The key property of these conserved currents are that they are related to the Carter constant
in the geometric optics limit that we will discuss in section 5. Explicitly, we define the charge
...Q[33, 0A] for some current ...j[%, §A] and some spacelike hypersurface 33:

LO[X,0A] = / L 13A1d°S,. (4.22)
b))

In the geometric optics limit, these charges are all related to the sum of either the Carter con-
stants (for 4 O[>, 6A]) or the squares of the Carter constants (for ., Q[, dA]) of photons
passing through 3.

Another property of these currents that we consider is their integrals over portions of null
infinity and the horizon, or fluxes. Our results in section 6 are that these fluxes are finite for
+1J* [0A], but infinite for , j* [ JA].

5. Geometric optics

5.1. Formalism

We now review the geometric optics (or high-frequency/eikonal) approximation for source-
free solutions to Maxwell’s equations. We assume a one-parameter family of complex, Lorenz
gauge solutions of the form

3A, = [aw, + O(e)le e, 5.1)

where tw, is constrained by the normalization condition w,@w* = —1 and a is real. Inserting
this ansatz into the Lorenz gauge condition and Maxwell’s equations and equating coefficients
of powers of € we find (see, for example, Misner et al [21]):

(a) The vector k* defined by
ky =V, 0, (5.2)

which represents the wavevector for an electromagnetic wave, describes a congruence of
null geodesics:

kk® =0, k°V,k* = 0. (5.3)

(b) The polarization vector w* is orthogonal to k* and is parallel-transported along these
geodesics:

ko, =0, k'V,=®=0. (5.4)
(c) The amplitude a evolves according to

Vu(a*k*) = 0. (5.3)
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Next, since k“ is null, we can write it as
A = AR, (5.6)

for some spinor x*. We choose a second spinor X so that (k, A) form a spin basis like (o, ¢).
We can write the polarization vector t” on this basis as

oM = ar R + ﬂ)\AS\A/ + eR/@A/_\A/ + eL/\ARA/, (5.7)

for some complex coefficients «, [3, er, and er. From the condition in equation (5.4), 5 = 0,
and similarly we can set & = 0 by the gauge transformation 6A, — JA, + VA, where \ =
—iacee /¢, which maintains the Lorenz gauge condition.

The coefficients e and eg parameterize the left and right circularly polarized components
of the radiation. To see this, form a tetrad from x4 and \4 in the form

1 - 1 _
faar = E(HAEA/ + M), zan = ﬁ(ﬁAﬁA’ = M),
1 . (5.8)
Xanr = E(KAS\A’ + MFa),  Yaa = \/LZ(KAS\A’ — AaRar).
It then follows that
€R . er, .
0= (=g — 1) + —F—=Xxq + 1Vy). 5.9
w, \/Z(x Ya) \/z(x Va) (5.9

That is, on this basis, eg = 1, e;, = 0 corresponds to right circularly polarized light and e;, = 1,
er = 0 corresponds to left circularly polarized light.

We next compute the spinor fields §¢,; and dx . that are defined by equations (2.7). To
leading order in € we find that

1 A 1 A
Sup = —iaerkarg ¢V + O(1), Sxaw = —iaeLkakp eV + O(1), (5.10)
€ €

so that each spinor field contains only one circular polarization. In the case of real fields, one
is only concerned with d¢,, and one finds that

1 A A
Bdbap = ~iarakp (eR e _ g e“”f) + o). 5.11)
€

Note that equations (5.10) and (5.11) are invariant under the rotation k4 — ¥ kA, A — 719\,
since egr — e 4%eg and e;, — e*¥e;. We will be considering only real vector potentials, since
only those are physical, although we have constructed complex vector potentials via symmetry
operators.

5.2. Conserved currents in geometric optics

When we evaluate nonlinear quantities in the geometric optics limit, such as currents (which
are quadratic), we discard all rapidly oscillating terms, in effect taking a spacetime average
over a scale large compared to € but small compared to the curvature scale of the background.”
Such averages will be denoted by (j*), for currents j.

7 See [22] for a more rigorous treatment of this averaging procedure involving weak limits.
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A simple example, for a Killing vector &, is given by &,T"°[6A,5A]. In the limit of
geometric optics this current becomes

1 a® 1 E
ab _ - % gapb 2 2 L Y § 27a -1
(GTIBABAD = 5 2 KR 6(er + el + O ) = S 75 ak + O,

(5.12)

where E¢ = £, p“ is the conserved quantity with respect to £, of a given photon with wavevector
k* = p®/h. Although this calculation is purely classical, a factor of & occurs in converting
between expressions involving k“ and conserved quantities (like E¢) defined using the four-
momentum p“. Considering the electromagnetic field in this limit as a null fluid of photons
with number density A%, one finds that [21]

1
—Zazk“ = 2nhN@, (5.13)
€

which implies that
(& T™[3A, 5A]) = EN“ + O(e ™). (5.14)

This gives the expected result that integrating the current (5.12) over a hypersurface gives the
total E¢ (say, energy, in the case { = 0,) of the photons crossing the hypersurface.

This example has two interesting properties. First, this is an example of a conserved current
J¢ that reduces in geometric optics to

(JY = EinQazk" +0(e"th, (5.15)

for some quantity Q. Conversely, one can show, from equation (5.5), that if V,j* =0 and
equation (5.15) holds, then Q is a conserved quantity along the integral curves of k“. The
condition (5.15) is satisfied by all currents that we consider in this paper.

Another property of this example is that the current (5.12) is not dependent on the circular
polarization parameters eg and e . We will classify quadratic currents in the geometric optics
limit in terms of their dependence on these parameters: currents that are independent will be
called energy currents, currents that are proportional to |eg|? — |er|* will be called zilch cur-
rents, and currents that are proportional to erey, or epeg will be called chiral or anti-chiral
currents, respectively. The simplest example of a zilch current is the current

2
1 E¢

3 27Th2(|eR|2 — leL))a*k" + O(e?), (5.16)

(&T™[3A, (L-5A]) =

where the symmetry operator ¢L is defined in equation (3.2).

Equation (5.16) also shows that zilch currents can yield conserved quantities in geometric
optics that are quadratic in the four-momentum. One can show this generally: energy cur-
rents yield conserved quantities that have odd powers of the k%, zilch currents yield conserved
quantities that have even powers of the k¢, and chiral and antichiral currents yield conserved
quantities that depend on x* and 7 individually, in addition to k. As such, all of the currents
that we consider in this paper are zilch currents.

We now consider the geometric optics limits of the currents that we defined in section 4.3.
We begin with the conserved current 4 [ JA] in equation (4.21). Using equations (3.11) and
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(4.1a), one finds that
1 iK
€3 4h?

This moreover uses the fact that

( 4 [0A]) = (ler)* — |eL|H)ak® + O(e™2). (5.17)

!
[Gan [ = SK /1. (5.18)

Consider now the charge ,Q[3, 6A] obtained by integrating this current over a hypersurface
Y. As in the case of the example (5.12), equation (5.17) means that ,Q[X, 0A] is proportional
to the sum of the Carter constants of the photons passing through . Considering the case of
the current ., j* [0A] in equation (4.20), we note that

. 1 , y y
ICAA » GAL = ——ngZOAoBKaBRA (1ek©)? (eR e Ve g e")/‘) , (5.19)
€
and so
. 1 iK? 2 22 4
(1Ja[0A]) = = 16h4(|eR| — leL|H)a’k, + O(e™™). (5.20)

The interpretation of this expression is that the charge ; Q[%, JA] is proportional to the sum of
the squares of the Carter constants of the photons passing through 3. Moreover, one can easily
show that, at least in the limit of geometric optics,

(_1Ja[8A1) = (ja [6A]) + O(e™*), (5.21)

and so we do not need to separately compute the current _, j, [0A].

6. Fluxes at null infinity and the horizon

In order for a conserved current in Kerr to be physically useful, its fluxes should be finite when
evaluated at null infinity and at the horizon. In this section, we determine which of the currents
in section 4.3 satisfy this requirement. As one might be interested in the particular values of
these fluxes (if they are useful for calculating the rate of change of the Carter constant of a
charged particle, for example), we also give the values of these fluxes in equations (6.11) (for
1/l 6A, X)), using the expansion for |§A, given in equation (3.37).

6.1. Definitions

We define the fluxes of our currents through the horizon and null infinity by the following
expressions (for details on how one arrives at these expressions, see appendix A of [23]):

.0 1
— li Yt — Z A i)
dvd() H+ rﬁr*l,gedv ( " 2 ) )
& (6.1a)
.0 . 1 .
= 1 Ynt — Al s
dud( H- rﬁr*l,gedu ( " 2 ) )
.0 . o o 1 .
dud€) W - r—>ig}11xedur o il s
(6.1b)

)
dvd§2

1
: 2 a " qa .
e r—>ig}11xedvr <n 21) w-Jar
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Here, the vector X — Al“/2 is equal to the volume element d>* for each of these surfaces,
divided by either dud2 or dvdS2, where d2 is the element of solid angle:

) dy atH", .7~
d€) = sin #dd , (6.2)
dy atH ,. 7"
where ¢ and x are defined by
adr adr
v=o+ [5 x=o- [ (63)

From equation (6.1a), it is apparent that the relevant components of the currents constructed
in this paper are those along /, and n,. In particular,

1ji[BA] = —iIm [(,C - 5A)a( F - ,C - 3A)],

Lin[6A] = —iIm [(,C - 3A),(,F - |C - 5A)], (6.4a)
n[8A] =iIm [(_,C - 3A),(,F - _,C - 3A)],
4 Jil6A] =ilm [(_,C - 6A)1(1_.7-'- _4,C - 3A)], (6.4b)

as well as

A1 [6A] = —g {&%[(A— 2y 4 p— [1)8do + pdoa] + 5 (5— 28+ —T+ éf) 5¢0}-,

(6.5a)

4Jn [0A] = ,% {5&2[(D+ 2 —p+p) Sy — pdeo]+ <5+ 20— T+ T — %ﬁ) 5@} .

(6.5b)

6.2. Computations

Using the results section 6.1, we now determine whether the fluxes of the currents defined in
section 4.3 are finite, and if so, we determine the values of these fluxes.
We start with determining which fluxes are finite. For the current 4 j* [A], the flux diverges

by the following argument: the peeling theorem [11] implies that there exist solutions such that
8¢, ~ 1/r.Since p— p ~ 1/7%,

NEpa(D +2e — p+p) Sy ~ 1/r (6.6)

at least, since D can lower at most by one factor of r. Equations (6.5) and (6.1a), imply that
the flux through .# " is dominated by this piece, which, when multiplied by 72, diverges as r
in the limit r — oo. The fluxes of the current ., j* [15_A] are finite. Showing this can be most
easily done using equation (6.4), along with the falloffs of +;dA, and the falloffs of

10X = (\F - 10A);. (6.7)
These falloffs are given in table A1, which is constructed using the methods of appendix A.
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For currents ...j* whose fluxes are finite, we use the following expansion of these fluxes:

.0 > / & Owme
DD (6.8
<dudQ IHH , Tt it =1 o dudQ o+ H-
@ .0 > / Z Z & Owm
= dwz vn,pp i (68b)
<dde ITHY vy OO =1 |m|<Ll pp =1 dvdQ |yt

where on the left-hand side we average in either u and v or v and x. Similarly, we write the
asymptotic form of the Debye potentials using the asymptotic form of solutions of the radial
Teukolsky equation (2.23), yielding [15]

down ﬂw'r* up iwr* 2s5+1 *
{/}\l (r) = {Zlmwp /r + Zlmwp /V r—0o0 (6.9)
s mwp B in — ik r* s Zout 1k W * ’ ’
lmwp " / A’ +7Z lmwp " r— -

where k,, = w — am/(2Mr,). Similarly, consider the quantities ;3A,, 6Am, —10A;, —16A,
and 6y, which (in general) we denote by g. These quantities are all constructed linearly
from a Debye potential 2, and so possess an expansion as in equation (3.37). Expanding

asymptotically, we define the asymptotic angular dependences qSin/ out/up/down gy by

Imwp
q(t,r,0,¢9) = /fc dwz Z Z

=1 |m|<Ip,p/==+1

down down down ﬂwr*

Zlmwp q lmwp(e)rn %

. r— o0
: - —l—Zl w l (9)}'”‘1 jwrt
x elmo—wn & mepq e pk , (6.10)
in pin ke 7™
lmwp lmo.)p(e)A e *
r’ — —oo

4 ZOut Sout (Q)An lkmwr

lmwp Imwp
for some constants niqn/ out/up/down vt determine the falloffs of q, and are (effectively) given in
table Al. The asymptotic angular dependences are given in equation (A.9).
Our final results of this section are the fluxes of |, j*[,0A], which are given by

d2 +1 Qll’mwpp’ N ipp,BlmwBl’mw
dud() 16
[ [, S0 Sy @) S=H
Im [le:;pz }:nwpl 15An lmwp(e) X1 S;}:nwp’(e)} S= j+
(6.11a)
d +1Qll’mwpp' _ ipBlmw(Bl’mw)z o, (0)
dvdQ 256

Im [ lmpr nm wp 104 lmwp(e):| S=H"

Im [Zdownzdown SAn Sdown(o)} S = jf’

Imwp®1'mwp | Imwp

« (6.11b)
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d Qll’mwn’ lpB[ (B/ ,.)2
—1 Pr mw I'mw
= O (0
dud 128 -1 lmw( )
[pemlamn L, sswgoc] s
Im [Z,‘;;’ oy ,m,w,p(e)} G g+
d ,1Qll’mwpp’ _ipp’BlmwB,/mw
dovd() 32
Im [ZEEWZ;?W,, A }i‘w(e) S;};W(e)} S=H"
x — - . (6.11d)

Imwp“1'mwp —y Imwp U'mwp!

Im [ZenZinn, o Sien(@) S @) 5=

where ¥ = |(|?, where (, = ry +ia cosf.

7. Conclusions

We have found a conserved current for electromagnetic fields whose conserved charge reduces
to a sum of positive powers of Carter constants for a stream of photons in the geometric optics
limit, and has finite fluxes at infinity. In these ways, this current generalizes the conserved cur-
rent for a complex scalar field derived by Carter [6]. In a future paper, we will provide a similar
analysis of conserved currents in linearized gravity. We also plan to explore the interactions
between these currents and a charged worldline in order to determine if useful information
about the trajectory of the body can be determined from fluxes of these currents.
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Appendix A. Asymptotic behaviour

In this appendix we prove the asymptotic falloff behaviour and angular dependence of the
vector potentials and the middle Maxwell scalar §y; that are used in section 6 using techniques
derived in [14]. First, we write these quantities in terms of differential operators acting upon
Debye potentials. Writing out equations (3.18) (for the vector potentials) and (6.7) (for dx1)
in Boyer—Lindquist coordinates, we find that

in 0
(,64), = — 2\fg (:ﬁ %) i (8A)n = —= (.@0 g) i, (Adla)
o= (21 1“;“9) W (L BAY, = — 4<< (@* é)Alw, (A.1b)
T
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Since each term in the expansions of ;5o and (> ,§Y, are proportional to the terms in
the expansion of ;¢ [as in equation (3.35)], their asymptotic behaviour is apparent from the
asymptotics in equation (6.9).

In order to compute the asymptotic behaviour of the vector potentials and 3y, we use the
asymptotic behaviour of derivatives of the Debye potential ;1. However, applying the naive
approach, which uses the asymptotic expansions given in equation (6.9), along with

o df s
@O(:tm)(:tw)f(r)eilwr — d7{ e:f:lvu
df rt— oo (A.22)
Docemyzn f(r)e™ = {d” T 2iw f (r)] efiwr
oo d -
Doemyzen (e = d—{ e
rt— —o0 (A.2b)

df  4aMrt
- T

dr A
results in a cancelation in the leading-order behaviour, and so subleading corrections are
required. This issue can be side-stepped using the radial Teukolsky—Starobinsky identities,

as follows: first, consider some function Ry, (r) that is a solution to the radial Teukolsky
equation (2.40b) and the radial Teukolsky—Starobinsky identity (3.33). Define

Domyzw f(r Ye Fikmar” — [ ik, f(r )} el

1 Ui = F2iwr + | Mo 11 Vinw = F21Ks (A.3)
such that the radial Teukolsky equation (2.40b) takes the form
ADyrir A2 LR = (U + 11 Voo Do) A2 L Ry(r). (A4)
Using equation (3.33) on the left-hand side, one finds that [14]:

@0(11n)(1w)A(1i1)/2 :i:lRZ"M(r)

= jﬂElmwA(H:l)/2 i]lew(r) + i]l_llmwA(lIl)/2 Illew(r)a (AS)
where
1 1 1)\lmw 2 *
- :_:tlUlmw::tl)‘lmw$21wr: ; b= 2w +0(1/V) rreo
+1 5 mw Voo 2iK,,., - AN F 21wr A oo
4iMrt ki,
(A.6a)
Blmw 1 *
o 2:‘:lBlmw o Blmw o 21]F1iwr72 rreo
ilHlmw - v - szlIl' - B . (Aéb)
+ Vmw K e o
25 iM ko
Using equations (A.2) and (A.5), we furthermore have that
8w? 2w?
Zt =z =g P
mw mw
R2MAR, K 8M22 K2, |k A
in mw —1"vmw in Zout — +"mw 1Vmw Zout
1“Imw Blmw —1%Imw> Imw Blmw Imw?
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Table A1. Asymptotic behaviour of the solutions for electromagnetism.

Ingoing Outgoing

r'— —oo r*—oo r— —oor*—oo
e—ikmwr* % e—iwr* % eikme* % eiwr* %

1GA, A 1/r? 1 1
10A5 1 1/r 1 1/r
_10A, 1/A 1 1/7
_\5A,, 1 1/r 1 1/r
10X0 1/A 1/r 1 1/r
10X1 1 1/r? 1 1/r?
102 A 1/r 1 1/r
where
is(ry — M)
w=1—-— " A8
st 2Mr Ko (A8

Combining these asymptotic formulas with equation (A.1) yields the asymptotic falloffs
given in table A1, as well as the following angular factors:

S ®) = 30,5 (0) = —3 fxlmw,lezmww), (A.92)

down " ia sin 0

u 1
1SR = Sy = — 5 <$1m—g+ ) 1Ouma(6).  (A9b)
Jr

167\,71S}:1nwp(9) = 2Mr+1kmw _1Fmw 71®lmw(9): (A9C)
1 A + 2iwr 1
_ gout _ 1 1Amw + L
16Ar71Slmw[7(9) ) ( M7 o + CJF) 71®lmw(9)y (A.94d)
A Simp(0) = iw 1 Opu(0), (A.9e)
1 Al
A 1mwp(9) ( 21 +a cos 9) _19mu(0), (A.9f)
. ia sin 0
,15741 ;?nwp(e) = 715A1S?r;,1;p(9) 2\/— (gl mw ?) 1®lmw: (A9g)
oA Sheen(0) = sarSim,p(0) = \/—gl meo 1 Ot (0), (A.9h)
CJr 1>\lmw - 2iwr+ X
)/ = T = Y mw 9 A.
A lmwp( ) = 4C+ 4iMry o, C+ 1O (0), (A.91)
Simop(0) = S Mk O (0) (A.9))
_%Am lmwp C_ 1K 1 Bmw 1 ©Qmw B 7]
down )‘lmw
4 Simap(0) = 4 2 9 €08 0) 1O (0), (A.9k)
u i
5 Simap®) = =50 1O (0), (A.9])
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ia sin 6
Imw
i

sou () — 71 1A + 2iwry s
1 St 2§ V2 4iMr 4 Ky, C+

— ja sin @ [11)\1"“—’—21&)” + gi (1 - —2)]} _19mu(0),
+

-1 ®lmw(9)a (Agm)

X1 lmwp(

f) — \/ZMrJrikmw (z
C+

§+ 41Mr+kmw §+ CJr
(A.9n)
5, Shp (@ )= \f L o 1O (0), (A.90)
) = < 1 o cos 9) L Oum(0). (A.9p)
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