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CrossMark
Abstract

We analyze the asymptotic symmetries and their associated charges at spatial
infinity in four-dimensional asymptotically-flat spacetimes. We use the covari-
ant formalism of Ashtekar and Hansen where the asymptotic fields and sym-
metries live on the three-manifold of spatial directions at spatial infinity, repre-
sented by a timelike unit-hyperboloid (or de Sitter space). Using the covariant
phase space formalism, we derive formulae for the charges corresponding to
asymptotic supertranslations and Lorentz symmetries at spatial infinity. With
the motivation of, eventually, proving that these charges match with those
defined on null infinity—as has been conjectured by Strominger—we do not
impose any restrictions on the choice of conformal factor in contrast to previ-
ous work on this problem. Since we work with a general conformal factor we
expect that our charge expressions will be more suitable to prove the matching
of the Lorentz charges at spatial infinity to those defined on null infinity, as has
been recently shown for the supertranslation charges.

Keywords: general relativity, asymptotic symmetries, spatial infinity

1. Introduction

In general relativity, the asymptotic symmetries of asymptotically-flat spacetimes at both

past and future null infinity are elements of the infinite-dimensional Bondi—Metzner—Sachs

(BMS) group [1, 2] (see [3, 4] for recent reviews). It has been conjectured by Stro-
minger [5] that the (a priori independent) BMS groups at past and future null infinity are
related via an antipodal reflection near spatial infinity. This matching relation gives a global

‘diagonal’ asymptotic symmetry group for general relativity. If similar matching conditions

3 Author to whom any correspondence should be addressed.
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relate the gravitational fields, then there exist infinitely many conservation laws in classical
gravitational scattering between the incoming fluxes associated with the BMS group at past
null infinity and the outgoing fluxes of the corresponding (antipodally identified) BMS group
at future null infinity. These conservation laws are also related to soft graviton theorems
[6-11], gravitational memory effects [6, 7, 12—16] and the black hole information para-
dox [17-19] (see [20] for a detailed review of recent developments and a complete list of
references).

Such matching conditions on the asymptotic symmetries and fields have been shown in
Maxwell theory on a background Minkowski spacetime [21] and in general asymptotically-
flat spacetimes [22]. In the gravitational case, the matching of the supertranslation symmetries
and supermomentum charges has also be proven for linearized perturbations on a Minkowski
background [23] and in general asymptotically-flat spacetimes [24]. For the translation symme-
tries these reduce to the much older result of [25] which shows that the Bondi four-momentum
on future and past null infinity matches the four-momentum at spatial infinity.

The main technique used in [21-24] to prove these matching conditions is to ‘interpolate’
between the symmetries and charges at past and future null infinities using the field equations
and the asymptotic symmetries and charges defined near spatial infinity. In a background
Minkowski spacetime this analysis can be done using asymptotic Bondi—Sachs coordinates
near each null infinity and asymptotic Beig—Schmidt coordinates near spatial infinity. Using
the explicit transformations between these coordinate systems the matching conditions can be
shown to hold for Maxwell fields and linearized gravity on Minkowski spacetime [21, 23]. But
in general asymptotically-flat spacetimes the transformations between the asymptotic coor-
dinates is not known explicitly. In this case the covariant formulation of asymptotic-flatness
given by Ashtekar and Hansen [26], which treats both null and spatial infinities in a unified
spacetime-covariant manner, has proven fruitful to analyze the matching of the symmetries and
charges [22, 24].

However, for the charges associated with the Lorentz symmetries such matching conditions
between past and future null infinity have not yet been proven, except for the case of stationary
spacetimes [27]. With an eye toward establishing these conjectured matching conditions for
Lorentz symmetries and charges we revisit the formulation of the asymptotic symmetries and
charges at spatial infinity.

The asymptotic behavior at spatial infinity can be studied using many different (but related)
formalisms. Since our primary motivation is to, ultimately, make contact with null infinity it
will be more useful to use a spacetime covariant formalism without using any (3 + 1) decom-
position of the spacetime by spacelike hypersurfaces [28—30]. Such a four-dimensional for-
mulation of asymptotic-flatness at spatial infinity can be be given using suitable asymptotic
coordinates as formulated by Beig and Schmidt [31]. The asymptotic symmetries and charges
using the asymptotic expansion of the metric in these coordinates have been worked out in
detail [31-33]. But as mentioned above, the relation between the Beig—Schmidt coordinates
and the coordinates adapted to null infinity (like the Bondi—Sachs coordinates) is not known in
general spacetimes. Thus, we will use the coordinate independent formalism of Ashtekar and
Hansen [26, 34] (definition 2.1) to investigate the symmetries and their associated charges at
spatial infinity*.

The asymptotic behavior of the gravitational field for any asymptotically-flat spacetime
is most conveniently described in a conformally-related unphysical spacetime, the Penrose

4The relation between the Ashtekar—Hansen formalism and the Beig—Schmidt coordinates is summarized in
appendix A.
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conformal-completion. In the unphysical spacetime, null infinities .# are smooth null bound-
aries while spatial infinity is a boundary point i which is the vertex of ‘the light cone
at infinity’ formed by .#*. For Minkowski spacetime the unphysical spacetime is smooth
(in fact, analytic) at i. However, in more general spacetimes, the unphysical metric is not
even once-differentiable at spatial infinity unless the ADM mass of the spacetime vanishes
[26], and the unphysical spacetime manifold does not have a smooth differential structure
at i°. Thus, in the Ashtekar—Hansen formalism, instead of working directly at the point
i® where sufficiently smooth structure is unavailable, one works on a ‘blowup’—the space
of spatial directions at i’—given by a timelike-unit-hyperboloid .7# in the tangent space
at i°. Suitably conformally rescaled fields, whose limits to i depend on the direction of
approach, induce smooth fields on 72 and we can study these smooth limiting fields using
standard differential calculus on 2. For instance, in Maxwell theory the rescaled field ten-
sor Q2F,, and in general relativity the rescaled (unphysical) Weyl tensor O'2Copea (where Q)
is the conformal factor used in the Penrose conformal completion) admit regular direction-
dependent limits to i°, and these fields induce smooth tensor fields on 7. Similarly, the
Maxwell gauge transformations and vector fields in the physical spacetime (suitably rescaled)
admit regular direction-dependent limits which generate the asymptotic symmetries at i° (see
section 6).

The asymptotic symmetries in general relativity at spatial infinity have also been studied
in detail in the Ashtekar—Hansen formalism [26, 34]. However in deriving the charges asso-
ciated with these symmetries Ashtekar and Hansen reduced the asymptotic symmetry algebra
from the infinite-dimensional spi algebra to the Poincaré algebra consisting only of translations
and Lorentz transformations. This reduction was accomplished by demanding that the ‘leading
order’ magnetic part of the Weyl tensor, given by a tensor B, on ¢ (see equation (4.5)), van-
ish and additionally choosing the conformal factor near ° so that the tensor potential K, for
B, also vanishes (see remark 6.3). This restriction was also imposed in [32, 35]. In the work of
Compere and Dehouck in [33], the condition B,;, = 0 was not imposed however, they also spe-
cialized to a conformal factor where the trace A K, (Where K’ denotes the inverse of the met-
ric on J¢) was set to vanish. As we will show below (see section 7.3) the charges of the Lorentz
symmetries at spatial infinity are not conformally-invariant but shift by the charge of a super-
translation. This is entirely analogous to the supertranslation ambiguities in the Lorentz charges
at null infinity. Thus, when matching the Lorentz charges at spatial infinity to those at past and
future null infinity, one would need to perform this matching in the ‘same’ choice of conformal
factor in all three regions. A priori, it is not clear what the special choices of conformal factor
chosen in the above mentioned analyses imply at null infinity. Thus, we will not impose any
such restrictions on the conformal factor and not impose any conditions on K, (apart from its
equations of motion arising from the Einstein equation) in our analysis. As we will show, one
peculiar consequence of keeping a completely unrestricted conformal factor will be that our
charges will not be exactly conserved but will have a non-vanishing flux through regions of .5¢’
(except for pure translations). Thus, these charges are not associated with the point i® at spatial
infinity, but with cross-sections of the ‘blowup’ 5#°. This is not a serious drawback; as shown in
[22,24] for matching the symmetries and charges at null infinity, one only requires that the fotal
flux of the charges through all of .7¢ vanish but there can be a non-vanishing flux through local
regions of 5. Thus, our main goal in this work is to analyze the symmetries and charges in gen-
eral relativity without imposing any restrictions on the choice of conformal factor near spatial
infinity.

In our analysis of the asymptotic charges we will use the covariant phase space formal-
ism described below. Since the relevant quantities in the covariant phase space are defined in

3
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terms of the physical metric and their perturbations, we first analyze the conditions on the cor-
responding unphysical quantities so that they preserve the asymptotic-flatness conditions and
the universal structure at i® (section 5). To derive the asymptotic symmetry algebra we then
consider a physical metric perturbation £¢§,, generated by an infinitesimal diffeomorphism
and demand that it preserve the asymptotic conditions in the unphysical spacetime in the limit
to i. This will provide us with the following description of the asymptotic symmetries at i°
(section 6). The asymptotic symmetry algebra spi is parametrized by a pair (f, X“) where f is
any smooth function and X“ is a Killing field on .7¢. The function f parametrizes the super-
translations and X“ parametrize the Lorentz symmetries. The spi algebra is then a semi-direct
sum of the Lorentz algebra with the infinite-dimensional abelian subalgebra of supertransla-
tions. Note that this is the same as the asymptotic symmetries derived in [26, 34]. The only
difference in our analysis is that we obtain the symmetries by analyzing the conditions on dif-
feomorphisms in the physical spacetime instead of using the unphysical spacetime directly as
in [26, 34].

To obtain the charges associated with these symmetries, the primary quantity of interest
is the symplectic current derived from the Lagrangian of a theory (see, [36, 37] for details).
The symplectic current w(g; 98, 628), is a local and covariant three-form which is an antisym-
metric bilinear in two metric perturbations, d¢ on the physical spacetime. It can be shown that
when the second perturbation 68, = £¢§.» is the perturbation corresponding to an infinitesimal
diffeomorphism generated by a vector field £&* we have

w(g:08, £c8) = d[0Q¢ — &£ - 0(3)], (1.1

where we have assumed that g, satisfies the equations of motion and 64, satisfies the lin-
earized equations of motion. The two-form Q¢ is the Noether charge associated with the
vector field €% and the three-form 0(08) is the symplectic potential [36, 37]. If we integrate
equation (1.1) over a three-dimensional surface 3. with boundary 93 we get

/ I8 62, £e8] = / 50c — € - 6(58). (12)
)

b

To define the asymptotic charges at spatial infinity, we would like to evaluate equation (1.2)
when the surface ¥ extends to a suitably regular three-surface at i in the unphysical spacetime.
Given the low amount of differentiability at i’ the appropriate condition is that 3 extends to a
C”! surface at i°. The limit of the boundary X to i corresponds to a two-sphere cross-section
S of the unit-hyperboloid .7Z in the Ashtekar—Hansen formalism. Then, the limiting integral
on the right-hand side of equation (1.2) (with the asymptotic conditions imposed on the metric
perturbations as well as the symmetries) will define a perturbed charge on S associated with
the asymptotic symmetry generated by £“. However, even though the explicit expressions for
the integrand on the right-hand side of equation (1.2) are well-known (see for instance [37]),
computing this limiting integral is difficult. So we will use an alternative strategy described
next.

We will show that with the appropriate asymptotic-flatness conditions at i’ the symplectic
current three-form w = wy, 1S such that 03/ Zwahc has a direction-dependent limit to i°. The
pullback of this limit to .2Z°, which we denote by w, defines a symplectic current on 7. We

show that when one of the perturbations in this symplectic current is generated by an asymptotic
spi symmetry (f, X“), we have

w(g: 98, 0rx8) = —eD*Q,(g; 08, (f. X)), (1.3)

4
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where €3 and D are the volume element and covariant derivative on 5. The covector
0.(g;0g,(f.X)) is a local and covariant functional of the background fields corresponding
to the asymptotic (unphysical) metric g,,, and linear in the asymptotic (unphysical) metric
perturbations dg,, and the asymptotic symmetry parametrized by (f, X?). Thus, we can write
the symplectic current, with one perturbation generated by an asymptotic symmetry, as a total
derivative on #Z. Then, in analogy to equation (1.2), we define the perturbed charge on a
cross-section S of 7 by the integral

/ 20, (3: 58, (f. X), (1.4)

N

where €, is the area element and u“ is a unit-timelike normal to the cross-section S within
€. We then show that when the asymptotic symmetry is a supertranslation f, the quantity
0.(g;0g, f) is integrable, i.e, it can be written as the § of some covector which is itself a
local and covariant functional of the asymptotic fields and supertranslation symmetries. Then
‘integrating’ equation (1.4) in the space of asymptotic fields, we can define a charge asso-
ciated with the supertranslations on any cross-section S of ¢ (see section 7.1). When the
asymptotic symmetry is a Lorentz symmetry parameterized by a Killing vector field X on
J€, equation (1.4) cannot be written as the ¢ of some quantity (unless we restrict to the
choice of conformal factor where h"hKa;, = 0 as described above). In this case, we will adapt
the prescription by Wald and Zoupas [37] to define an integrable charge for Lorentz sym-
metries (section 7.2). Then the change of these charges over a region A.5¢” bounded by two
cross-sections provides a flux formula for these charges. In general, these fluxes will be non-
vanishing (except for translation symmetries) unless we again restrict to the conformal factor
where h?K,;, = 0. However, as mentioned above, from the point of view of matching these
charges to those on null infinity, the special conformal choices might not be convenient and
it is not necessary to have exactly conserved charges on #. Thus, we will not restrict the
conformal factor in any way and work with charges which can have non-trivial fluxes through
some region of 7.

The rest of this paper is organized as follows. In section 2 we recall the definition of
asymptotic-flatness at spatial infinity in terms of an Ashtekar—Hansen structure. To illus-
trate our approach outlined above we first study the simpler case of Maxwell fields at spatial
infinity, and derive the associated symmetries and charges in section 3. In section 4 we then
consider the asymptotic gravitational fields and Einstein equations at spatial infinity. We also
describe the universal structure, that is the structure that is common to all spacetimes which
are asymptotically-flat at i, in section 4.1. In section 5 we analyze the conditions on metric
perturbations which preserve asymptotic flatness and obtain the limiting form of the symplec-
tic current of general relativity on the space of directions .7Z. In section 6, using the analysis
of the preceding section, we derive the asymptotic symmetry algebra (the spi algebra) by con-
sidering infinitesimal metric perturbations generated by diffeomorphisms which preserve the
asymptotic flatness conditions. In section 7 we derive the charges and fluxes corresponding
to these spi symmetries. We end with a summary and describe possible future directions in
section 8.

We collect some useful results and asides in the appendices. In appendix A we construct
a useful coordinate system near i° using the asymptotic flatness conditions on the unphysi-
cal metric and relate it to the Beig—Schmidt coordinates in the physical spacetime. Appendix
B collects useful results on the unit-hyperboloid .7¢ on Killing vector fields, symmetric ten-
sor fields and a theorem by Wald showing that (with suitable conditions) closed differential
forms are exact. Computations detailing the change in the Lorentz charge under conformal

5
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transformations are presented in appendix C. In appendix D we show that our charges are unam-
biguously defined by the the symplectic current of vacuum general relativity. In appendix E we
generalize the Lorentz charges derived in section 7.2 to include spacetimes where the ‘leading
order’ magnetic part of the Weyl tensor B, is allowed to be non-vanishing.

We use an abstract index notation with indices a, b, c, ... .for tensor fields. Quantities
defined on the physical spacetime will be denoted by a ‘hat’, while the ones on the conformally-
completed unphysical spacetime are without the ‘hat’ e.g. g, is the physical metric while g,
is the unphysical metric on the conformal-completion. We denote the spatial directions at i
by 7. Regular direction-dependent limits of tensor fields, which we will denote to be C~ ',
will be represented by a boldface symbol e.g. C,.4(77) is the limit of the (rescaled) unphys-
ical Weyl tensor along spatial directions at . The rest of our conventions follow those of
Wald [38].

2. Asymptotic-flatness at spatial infinity: Ashtekar—Hansen structure

We define spacetimes which are asymptotically-flat at null and spatial infinity using an
Ashtekar—Hansen structure [26, 34]. We use the following the notation for causal structures
from [39]: J(i°) is the causal future of a point i® in M, J(i°) is its closure, J() is its boundary
and & := J(i%) — i°. We also use the definition and notation for direction-dependent tensors
from [40], see also appendix B of [24].

Definition 2.1 (Ashtekar—Hansen structure [34]). A physical spacetime (M, g4) has an
Ashtekar—Hansen structure if there exists another unphysical spacetime (M, g,,), such
that

(a) M is C* everywhere except at a point i° where it is C!,
(b) The metric gq is C*° on M — i, and C° at i® and C~° along spatial directions at °,
(¢) There is an embedding of M into M such that J(i) = M — M,

(d) Thefe exists a function © on M, which is C* on M — i and C? at i® so that 8ab = nga;,
on M and

1. @ =0onJ@{),
2. V,.Q#0on .7,
3. AL, V,Q =0, V,V,Q = 2gum.

(e) There exists a neighborhood N of J(i®) such that (N, gu») is strongly causal and time
orientable, and in N N M the physical metric g, satisfies the vacuum Einstein equation
Ry =0,

(f) The space of integral curves of n* = gV, on J(i°) is diffeomorphic to the space of null
directions at °,

(g) The vector field ™ 'n® is complete on . for any smooth function & on M — i® such that
@ >0onMU .#and V,(w*n?) = 0on .Z.

The physical role of the conditions in definition 2.1 is to ensure that the point i is space-
like related to all points in the physical spacetime M, and represents spatial infinity, and
that null infinity % :=J(i®) — i has the usual structure. Note that the metric g, is only
0 at ¥ along spatial directions, that is, the metric is continuous but the metric connec-
tion is allowed to have limits which depend on the direction of approach to i®. This low

6
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differentiability structure is essential to allow spacetimes with non-vanishing ADM mass
[26, 34]. In the following we will only consider the behavior of the spacetime approach-
ing i along spatial directions, and we will not need the conditions corresponding to null
infinity.

For spacetimes satisfying definition 2.1 we have the following limiting structures at i’ when
approached along spatial directions.

Along spatial directions 7, := Vaﬂl/ 2is > ati® and

n®:= lim V*Q'/?, 2.1
—i0

determines a C” ' spatial unit vector field at i representing the spatial directions 77 at i’. The
space of directions 77 in 71" is a unit-hyperboloid 7.

If 7%, isa C”~! tensor field at ¥ in spatial directions then, lirrol T4 =T () is a
—

smooth tensor field on ¢ . Further, the derivatives of 7%, (7)) to all orders with respect to
the direction 77 satisfy?

e+ BT () = lim Q'Y - Q12T (2.2)
—
where 9, is the derivative with respect to the directions 77 defined by

. 1
v DT, .(7) = lim — [T, (7 + €B) — T%,_(i))]  for allv® € T,
€ €

N 0Ty (1) =0. (2.3)
The metric k,;, induced on Z# by the universal metric g, at i, satisfies

hab = gy — MMy = Oamp- 2.4

Further, if 7%, _(7]) is orthogonal to n“ in all its indices then it defines a tensor field 7%
intrinsic to 7. In this case, it follows from equation (2.4) and 9. g,, = 0 (since g, is direction-
independent at i®) that projecting all the indices in equation (2.2) using k., defines a derivative
operator D, intrinsic to .5 which is also the covariant derivative operator associated with A .
We also define

R d wC
Eabe = — N €dabe s  Eab =U Ecap, (2.5)

where €. is volume element at i° corresponding to the metric g,p, €4pc 1S the induced volume
element on 7, and €, is the induced area element on some cross-section S of 7Z with a
future-pointing timelike normal u“ such that hopu'u® = —1.

Remark 2.1 (conformal freedom). It follows from the conditions in definition 2.1 that the
allowed conformal freedom € — w(Q is such that w > 0 is smooth in M — ¥, is C>° at i and
w| = 1. From these conditions it follows that

5 The factors of /% on the right-hand side of equation (2.2) convert between V, and the derivatives with respect to
the directions; see [34, 41].
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w=1+0"a, (2.6)

where o is C” ! at . Let au(7]) := lirrol «, then from equation (2.6) we also get
—
limV,w=an,+D,c. 2.7
—i0

Note in particular, that the unphysical metric g, at i is invariant under conformal transforma-
tions. While

1
N w w! Pt + Ew_l/ZQI/ZV”w] = n“—n’. (2.8)

Thus, unit spatial directions 77, the space of directions ¢, and the induced metric on it &, are
also invariant.

3. Maxwell fields: symmetries and charges at i’

To illustrate our general strategy, we first consider the simpler case of Maxwell fields on any
fixed background spacetime satisfying definition 2.1.

In the physical spacetime M, let F,;, be the Maxwell field tensor satisfying the Maxwell
equations

g8y F 4 =0, ViFpg =0. (3.1)
In the unphysical spacetime M with F;, := F «» We have
VoF™ =0, ViFp=0. (3.2)

The Maxwell tensor F,, is smooth everywhere in the unphysical spacetime except at i’.
Analyzing the behavior of F,;, in the simple case of a static point charge in Minkowski space-
time, it can be seen that F,;, diverges in the limit to i, but QF,;, admits a direction-dependent
limit®. Hence we assume as our asymptotic condition that

111_1(} QOF 4 = Fop()is €L (3.3)

The direction-dependent limit of the Maxwell tensor, F,,, induces smooth tensor fields on
€. These are given by the ‘electric’ and ‘magnetic’ parts of the Maxwell tensor defined
by

E (i) = Fu(im”,  Bu(i) = +F (0’ (3.4)

where *F (7)) == %eah“’F (1) is the Hodge dual with respect to the unphysical volume ele-
ment €,,,¢ at i°. The electric and magnetic fields are orthogonal to n* and thus induce
intrinsic fields E, and B, on J¢. Note that F, can be reconstructed from E, and B,
using

©Note that this diverging behavior of F,;, refers to the tensor in the unphysical spacetime with the chosen C~' dif-
ferential structure at i. In an asymptotically Cartesian coordinate system of the physical spacetime, this behavior
reproduces the standard 1/ falloff for F,;, and F,, (1) is the ‘leading order’ piece at O(1/r?).

8
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Fuy = 2E;ymy,; + €acan’B’. (3.5)

The asymptotic Maxwell equations are obtained by multiplying equation (3.2) by 03?2 and
taking the limit to % in spatial directions (see [26] for details)

DE, =0, D Ey =0,
DB, =0, DB, =0.

(3.6)

To use the symplectic formalism for Maxwell theory, we will need to introduce the vector
potential as the basic dynamical field. Let A, be a vector potential for F b SO that F b = 2@[01&;,]
in the physical spacetime. Then, A, := A, is a vector potential for F,; in the unphysical space-
time. We further assume that the vector potential A, for F,;, is chosen so that 0 2A,is ¢!
at i°. Then define the asymptotic potentials

V@) =n"lim Q'2A,, A0 =hlim Q'?4,. (3.7)
—i0 —i0

Then the corresponding smooth fields V and A, induced on 7 act as potentials for the electric
and magnetic field through

1
E,=D,V, B,= 5sa”Cl),,Ac. (3.8)

Even though we do not need this form, for completeness, we note that the Maxwell equations
on ¢ (equation (3.6)) can be written in terms of the potentials V and A, as

D’V =0, D’A,=D,D'A,+24,. (3.9)
Now consider a gauge transformation of the vector potential
Ay = Ag+ Vi, (3.10)

where X\ is C~ ! at i°. Then with \(7]) :== liIIOI A, the gauge transformations of the asymptotic
—

potentials (equation (3.7)) on S is given by
VeV, A,—A,+D.A. (3.11)

Thus, the asymptotic symmetries of Maxwell fields at i° are given by the functions A
on JZ.

Remark 3.1 (special choices of gauge). The gauge freedom in the Maxwell vector poten-
tial can be used to impose further restrictions on the potential A, on 2. We illustrate the
following two gauge conditions which will have analogues in the gravitational case (see
remark 6.3).

(a) Consider the Lorenz gauge condition g% VA, = 0 on the physical vector potential A, in
the physical spacetime as used in [21, 42]. Multiplying this condition by Q! and taking
the limit to ¥, using equation (3.7) we get the asymptotic gauge condition

DA, =2V. (3.12)

Alternatively, from equation (3.11) we see that

9
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DA, — DA, + DA (3.13)
By solving a linear hyperbolic equation for A we can choose a new gauge in which

DA, = 0. (3.14)
Both these gauge conditions reduce the allowed asymptotic symmetries to

D’ =0. (3.15)

(b) If we impose the restriction B, = 0 then Dj,A;; = 0 and thus there exists a function A so
that A, = D,A.” Then using the transformation equation (3.11) we can set A, = 0. The
remaining asymptotic symmetries are just the Coulomb symmetries A = constant. This
is analogous to the condition used by Ashtekar and Hansen in the gravitational case to
reduce the asymptotic symmetries to the Poincaré algebra [26].

In what follows we will not need to impose any gauge condition on the potential A,
and our analysis will be completely gauge invariant.

Remark 3.2 (Logarithmic gauge transformations). Note that above we only considered
gauge transformations equation (3.10) where the gauge parameter A\ was C~ ! at i°. How-
ever, there is an additional ambiguity in the choice of gauge given by the logarithmic gauge
transformations of the form

Ay — Ag + Vi(In Q'20), (3.16)

where A is €7 at . Under this gauge transformation 024, is still C>~" at i, and from
equation (3.7) we have the transformations

Ve V+A, A, — A, (3.17)

where A == lirrol A which is direction-independent at i° and induces a constant function on J#.
—
From equation (3.8) we see that the fields E, and B, are invariant under this transformation.

Since our charges and fluxes, derived below, will be expressed in terms of E, we will not need
to fix this logarithmic gauge ambiguity in the potentials for electromagnetism. However, there
is an analogous logarithmic translation ambiguity in the gravitational case which we will need
to fix (see remark 4.2). Thus we now illustrate how this logarithmic gauge ambiguity can be
fixed even in electromagnetism.

Since the metric g, in the tangent space Ti° is universal and isometric to the Minkowski
metric it is invariant under the reflection of the spatial directions 77 — —7j. This gives rise to
a reflection isometry of the metric k,, on the space of directions . It was shown in [22]
that the Maxwell fields on ¢ which ‘match’ on to asymptotically-flat Maxwell fields on null
infinity are the ones where the electric field E,, is reflection-odd i.e.

E (1) = —E(—1)). (3.18)

Further, since the logarithmic gauge parameter A is direction-independent we have that, A is
reflection-even

7This follows from the fact that every one-loop in #Z is contractible to a point and hence the first de Rahm
cohomology group of F” s trivial.

10
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A®T) = A(—1. (3.19)

Using a reflection-odd E, in equation (3.8) we see that using a logarithmic gauge transforma-
tion we can demand that the potential V is also reflection-odd, so that

V() = =V(—n). (3.20)
This fixes the logarithmic gauge ambiguity in the potentials.
Let us now analyze the charges and fluxes for this theory. To do this, we start by studying
the symplectic current. In vacuum electromagnetism, this is given by:

Wabe(014, 02A) = Eqpea (511?7‘1852& - 52Fde5112\e) , (3.21)

where the indices on 0F;, have been raised with the physical metric §°. In terms of quantities
in the unphysical spacetime we have

Wape(514, 02A) = Eapea (51F“5rA, — 5F“H1A,) , (3.22)

where we have used €gpcq = Q *eapea , and 7 = Q2 g,

To obtain the limit to i we rewrite this in terms of direction-dependent quantities from
equations (3.3) and (3.7). We see that O Pwwe is €' at . The pullback of this direction-
dependent limit to .7 is then given by

w(61A, A) = —e3 (6 E‘HA, — 6E5,A,), (3.23)

where €3 = €, is the volume element on 77 .
We now take d, to correspond to a gauge transformation as in equation (3.11) to get

W(GA, 5rA) = —e30ED X = —e3D*(SE,N). (3.24)
w

where in the last step we have used the linearized Maxwell equation D,0E =0 (see
equation (3.6)). That is, the symplectic current (with one of the perturbations being gener-
ated by a gauge transformation) can be written as a total derivative of JE,\. Thus we define
the perturbed charge d Q[; S] on a cross-section S of ¢ by

SQ[X; S] = / eu“SE N, (3.25)

N

where €, = €, is the area element on S and u“ is the future-directed normal to it. Note that
this expression is manifestly integrable and defines the unperturbed charge once we choose
a reference solution on which Q[\;S] = 0 for all A and all S. For the reference solution we
choose the trivial solution F,;, = 0 so that E, = 0. Then the unperturbed charge is given by

O[A;S] = /€2uaEa>\, (3.26)

N

Let A7 be any region of .7¢ bounded by the cross-sections S, and S (with S, in the future
of S1), then the flux of the charge equation (3.26) through AJ# is given by

1
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FINAH] = — / esE D). (3.27)
AKX

Note that the flux of the charge vanishes for A = constant in which case equation (3.26) is the
Coulomb charge. The charges associated with a general smooth A are only associated with the
blowup 7 and not to i® itself. These additional charges are nevertheless useful to relate the
charges defined on past and future null infinity and derive the resulting conservation laws for
their fluxes in a scattering process; see [22].

4. Gravitational fields and Einstein equations at i’

Now we turn to a similar analysis of symmetries, charges and fluxes for general relativity. To
set the stage in this section we analyze the consequences of Einstein equations and the universal
structure common to all spacetimes satisfying definition 2.1.

Using the conformal transformation relating the unphysical Ricci tensor R, to the physical
Ricci tensor Ry, (see appendix D of [38]), the vacuum Einstein equation R, = 0 can be written
as

Sap = =207 ' Va V2 + QPVQUV g,

1/2 1/2 1 - “.1)
Q / Sab — _4va77b + 40" / 8ab — Fnanb ncnc’
where, as before, 7, = Van/ 2 and S, is given by
1
Sab = Rab - _Rgab~ (42)

6

Further, the Bianchi identity V,Rpc4. = 0 on the unphysical Riemann tensor along with
equation (4.1) gives the following equations for the unphysical Weyl tensor C,p.q (see [41]
for details).

Vie(Q ' Capjea) = 0, (4.3a)

V4 Cobed = =V 1aSpye- (4.3b)

Since the physical Ricci tensor R, vanishes, the gravitational field is completely described
by the physical Weyl tensor C,p.s. The unphysical Weyl tensor is then Cypeq = QZCa;,L.d. Since

the unphysical metric gu is C7° at i%, Q2 Cppeq is €' at © [26], and let

Capea(T) = 1im Q" Capea. 4.4)
—

The electric and magnetic parts of C.4(17) are, respectively, defined by

Eab(ﬁ) = Cacbd(ﬁ)ncnd s Bab(ﬁ) = *Cabcd(ﬁ)ncnd~ (45)

where *Cpcq(1]) = %sabef C.rea(1)). It follows from the symmetries of the Weyl tensor that both
E (1) and B,,(7) are orthogonal to n“, symmetric and traceless with the respect to the metric

12
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h,, on Z2, and thus define smooth tensor fields E,, and B, on 2, respectively. The limiting
Weyl tensor can be obtained from these fields using

C™ (7)) = 4n“n EY ) — 40| EP gy + 260 By + 2€04m“BP*. (4.6)

Further, as shown in [26], multiplying equation (4.3a) by  and taking the limit to i® gives the
equations of motion

DyEy. =0, DBy, =0. 4.7)

These are the asymptotic Einstein equations at spatial infinity. Taking the trace over the indices
a and c¢ and using the fact that E,, and B, are traceless, it also follows that

DYE,, = D"B,, = 0. (4.8)

To apply the symplectic formalism to general relativity, we will need to consider met-
ric perturbations instead of just perturbations of the Weyl tensor. As we will show below
(equation (5.8)) suitably rescaled limits of the unphysical metric perturbations can be expressed
in terms of perturbations of certain potentials for E,;, and B,, provided by the tensor S, in
equation (4.2). These potentials are obtained as follows: since g, is >0, Y 28, is €71 and
let S (7)) = lim 0'/28,,,. Define

—

ED =Sam'n” . Ka (D) :=ha by’ Scali) — hapE (i), 4.9)

which induce the fields E and K, intrinsic to .7¢. Following [26], multiplying equation (4.3b)
by 2 and taking the limit to i, along with equation (4.7) implies that

ho"n°Sy () = D,E, (4.10)

and

1 1
Ey = = 7(DDyE + haB), Ba = —ZecdaDCKf’b. (4.11)

Thus, E is a scalar potential for E,, while K, is a tensor potential for B2

The potentials E and K, are not free fields on .7Z. Suitably commuting the derivatives and
using equation (B.1) one can verify that E,;, identically satisfies equation (4.7) when written
in terms of the potential E while h"°E,, = 0 gives

D’E +3E = 0. (4.12)

On the other hand, since K,, is symmetric the magnetic field B,, in equation (4.11) is
identically traceless. Since B, is symmetric and satisfies equation (4.7), we get that

€.By. =0 = D°K,, = DK, (4.13a)

€, “D.By, =0 — D’K,, = D,D,K + 3K, — h,K, (4.13b)

8 Since B, is curl-free (equation (4.7)), there also exists a scalar potential for B, (see lemma B.1). However this
scalar potential cannot be obtained as the limit of some tensor field on spacetime.

13
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where K :=h*’K ,,, and to get equation (4.13b) we have commuted derivatives using equation
(B.1) and used equation (4.13a). Considering the potentials E and K, as the basic fields, the
asymptotic Einstein equations are given by equations (4.12) and (4.13), while the Weyl tensors
E,, and B, are derived quantities through equation (4.11).

To define the charge for asymptotic Lorentz symmetries, e.g. angular momentum in
section 7.2, we will need the ‘subleading’ part of the magnetic Weyl tensor. Following Ashtekar
and Hansen [26], we will restrict to the class of spacetimes satisfying the additional condition
B, = 0. We also require that the ‘subleading’ magnetic field defined by

Bap = lim *Capean‘1]", (4.14)
—

exists as a C” ! tensor field at . The condition B, = 0 is satisfied in any spacetime which
is either stationary or axisymmetric [43]. In appendix E we show how one can define a
‘subleading’ magnetic Weyl tensor and the Lorentz charges even when B,;, # 0. Since those
computations are more tedious we impose the above restriction in the main body of the
paper.

The consequences of this restriction are as follows. Since B, = 0 from equation (4.11) the
‘curl’ of K,;, vanishes

DK = 0. (4.15)
It follows from lemma B.1 that there exists a scalar potential k such that
K., = D,Dyk + h, k. (4.16)

The scalar potential k is a free function on 5 since the equations of motion equation (4.13) are
identically satisfied after using equation (4.16). Using the freedom in the conformal factor one
cannow set K, = 0 (see [26] and remark 6.3). Since, we do not wish to impose any restrictions
on the conformal factor, we will not demand that K, vanishes.

Note that from equation (4.14) it follows that 3, is symmetric, tangent to ¢ and traceless.
In the following we shall also need an equation of motion for 3,, which is obtained as follows:
contract the indices e and d in equation (4.3a) and multiply by 32 to get

V4 Coped = U Capead VI = 2972 Copeart”. 4.17)
Using the Hodge dual of the above equation we obtain
QPP Cacvan ) = =25 Copan 0 + 207 5 Copg V9P, (418)

The first term on the right-hand side vanishes due to the symmetries of the Weyl tensor. In the
second term on the right-hand side we substitute for the derivative of 7, using equation (4.1)
to get

1
Q2P (xCopann®) = —Z(Q'/z s Cop) (287, (4.19)

Taking the limit to i®, writing the tensor S, in terms of the gravitational potentials through
equations (4.9) and (4.10), and using B,, = 0 along with equation (4.6), we get the equation
of motion

1 .
DB, = ZscdaEL HK". (4.20)
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Remark 4.1 (conformal transformations of the asymptotic fields). Under changes of the
conformal factor €2 — w(2 we have

Saup = Sup — 2w 'V, Vpw + 4w >V ,wVpw — w’zgabvcwvcw,

(4.21)
Cabea = W Cabea-
From the conditions in remark 2.1 it follows that E;,, B,;, and E are invariant while
K, — K,, —2(D,Dycx + h o). (4.22)

Further, when B,, = 0 we also have the transformation of the ‘subleading’ magnetic Weyl
tensor 3, given by

Bas = Bap — EcaE D cv. (4.23)

4.1. The universal structure at °

In this section we summarize the universal structure at i°, that is, the structure common to all
spacetimes which are asymptotically-flat in the sense of definition 2.1 and thus is independent
of the choice of the physical spacetime under consideration.

Consider any two unphysical spacetimes (M, g.p, €2) and (M’, g4, €¥') with their respective
C>! differential structures at their spatial infinities corresponding to two different physical
spacetimes. Using a C' diffeomorphism we can identify the points representing the spatial
infinities and their tangent spaces without any loss of generality. Each of the metrics g, and
g'a» induces a metric in the tangent space 7i® which is isometric to the Minkowski metric. Thus,
the metric g, at i° is also universal. This also implies that the spatial directions 77, the space of
directions #Z and the induced metric h,;, are universal.

So far we have only used the C' differential structure. However since the differential struc-
ture at i° is slightly better, being C”!, we can identify the spacetimes at the ‘next order’. In [26]
this structure was imposed by suitably identifying spacelike geodesics in the physical space-
times. But as pointed out by [44] this identification cannot be performed except in very special
cases. Below we argue that a similar identification of the spacetimes can be done using equiv-
alence classes of C”! curves in the unphysical spacetimes. The proof is based on constructing
a suitable C”! coordinate system at i and is deferred to appendix A, we summarize the main
construction below.

Consider the unphysical spacetime (M, g.», €1), and a spacelike C'curve Iy in M passing
through i® with tangent v®. Since the curve is C”! its tangent vector v is C~°. Using the
universal metric g, at i® we can then demand that v be unit-normalized at i® and thus along
the curve I,

lim v* = 0, (4.24)

—i0

that is the curve I', points in some spatial direction 7 at . Further, since T, is C', v*V,0°
is a C”~! vector. Thus, define the acceleration of T, at i by the projection of this vector on
to I

AL, ] :=h", lim v°V 2". (4.25)
—i0

Now we define the curves I', (with tangent v*) and I, (with tangent 1) to be equivalent if
their accelerations are equal at i°. To see what this entails, note that since v* is C° and equals
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n“ in the limit to © we have that v = 7 + Q2w for some w* which is C>~" at °. Then,
from equation (4.25) we have

A“[D,] = A[Ty] <= hglim w? = 0. (4.26)
—

Thus, we have an equivalence class of curves through i pointing in each direction 77 defined
by’

Ly~ Ty = helim Q2P — by =o. (4.27)
—i

We will show in appendix A that using a C”! diffeomorphism one can identify these equiv-
alence classes of curves between any any two spacetimes (M, g, 2) and (M, g’ 4, ). Fur-
ther, we show that the conformal factors 2 and ' can also be identified in a neighborhood
of i°.

Thus, the universal structure at i consists of the point i, the tangent space 7i°, the metric
g at i and the equivalence classes of C”! curves given by equation (4.27). In addition, the
conformal factor €2 can also be chosen to be universal.

Remark 4.2 (logarithmic translations). So far we have worked with a fixed C>! differen-
tial structure in the unphysical spacetime at i°. But given a physical spacetime the unphysical
spacetime is ambiguous up to a four-parameter family of logarithmic translations at i’ which
simultaneously change the C”! differential structure and the conformal factor at i°; see [45]
or remark B.1 of [24] for details. The logarithmic translations at i’ are parameterized by a
direction-independent vector A® at i°. Any such vector can be written as

A = An® + DA, (4.28)
where A(77) = n,A“ is a function on S satisfying

D.DyA + hy A = 0. (4.29)
Under such logarithmic translations the potentials equation (4.9) transform as [45]

E—E+4A, Ku, — Ky, (4.30)

while E,, and B, are invariant. The presence of these logarithmic translations will lead to
the following issue when we define the charges for supertranslations in section 7.1. For gen-
eral supertranslations (which are not translations) our charges will depend on the potential E
instead of just the electric field E,,. Thus, even if we take the physical spacetime to be the
Minkowski spacetime our charges will not vanish due to the logarithmic translation ambigu-
ity equation (4.30) in E. Thus, now we will fix these logarithmic translations following the
argument in [45].

Since the metric g, in the tangent space 7i° is universal and isometric to the Minkowski
metric it is invariant under the reflection of the spatial directions 77 +— —1. This gives rise to a
reflection isometry of the metric k., on the space of directions 7Z°. Now it was shown in [24]
that the only spacetimes which are asymptotically-flat at spatial infinity and which ‘match’
on to asymptotically-flat spacetimes on null infinity are the ones where E, is reflection-even,
ie.

E (1) = Eap(—1)). (4.31)

9 These equivalence classes of curves form a principal bundle over 77, called Spi in [26].
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Further, since A = 1, A for the direction-independent vector A we have that, A is reflection-
odd

A@]) = —A(—7)). (4.32)

For a reflection-even E;,, from equations (4.11) and (4.29), it follows that using a logarithmic
translation we can demand that the potential E is also reflection-even, so that

E() = E(—7)). (4.33)

Having fixed the logarithmic translations in this way, E,, = 0 then implies that E = 0. In
particular, for Minkowski spacetime we have

E=0, B, =0, B,=0 (onMinkowskispacetime). (4.34)

Note that when E,, = 0, B, is conformally-invariant (see equation (4.23)) and the conditions
equation (4.34) do not depend on the conformal factor chosen for Minkowski spacetime. These
conditions will ensure that our all our charges will vanish on Minkowski spacetime. Thus, from
here on we will assume that the logarithmic translations have been fixed as above that is, we
work the choice of C! differential structure at i where the parity condition equation (4.33) is
satisfied.

5. Metric perturbations and symplectic current at i’

Now consider a one-parameter family of asymptotically-flat physical metrics g,,(\) where
8ap = 8ap(A = 0) is some chosen background spacetime. Define the physical metric perturba-
tion 4, around the background g,, by

d
Aa :5Aa ::7Aa A . 5.1
Vab = 08ab = 18 »(N) - (5.1)

We will use ‘9’ to denote perturbations of other quantities defined in a similar way.
As discussed above, the conformal factor €2 can be chosen universally, i.e., independently
of the choice of the physical metric. The unphysical metric perturbation is

68ab = Yab = L Aaps (5.2)
and we also have
00 = OV QV2 =0, on* = 5(g"m) = —"np- (5.3)

Now we investigate the conditions on the unphysical perturbation ,, which preserve
asymptotic flatness and the universal structure at i° described in section 4.1. First recall that
since the unphysical metric g, is C° and universal at i°, it follows that the unphysical metric
perturbation 7y, is C>% and Yab|p = 0. Therefore

Va1 = 1im Q712585 €71, (5.4)
—

With equations (5.3) and (5.4) we also see that dn“ = 0. Thus, the metric perturbation
also preserves the spatial directions 77 at i, the space of directions # and the metric h,,
on it.
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Now consider the universal structure given by the equivalence classes of C~! curves
through i as described in section 4.1. Consider the equivalence class of a fixed curve I,
with tangent v“. For this equivalence class to be preserved, the perturbation of equation (4.27)
must vanish. Evaluating this condition using equations (5.3) and (5.4) we obtain the
condition

"0 (1) = 0. (5.5)

In summary, equations (5.4) and (5.5) are the asymptotic conditions on the unphysical metric
perturbations which preserve the asymptotic flatness and the universal structure at i°.

The metric perturbation =y, can be directly related to the perturbations of the gravitational
potentials E and K, defined in equation (4.9). Perturbing equation (4.1) to evaluate Q'/24S,,;,
and taking the limit to i° using equations (5.3) and (5.4) we get

5Sab = llII()l Ql/Zésab = 48(0717){:776 + 477(117};)0"76 + Z’Yab - 4'ch77€77dgab~ (56)

—
Using the definition of the gravitational potentials equations (4.9) and (5.5) we obtain

6E = 2v,n'n’, (5.7a)
6K, = —2h,h, ., — hayOE. (5.7b)

Using equations (5.5) and (5.7) we can reconstruct the metric perturbation -y, (77) in terms of
the perturbed gravitational potentials on 7 as

1
Vo) = 5 [EM1, = hav) = 0Kap] - (5.8)

The linearized Einstein equations for -y, in the form equation (5.8) are then equivalent to the
linearizations of equations (4.12) and (4.13).

Next we consider the behavior of the symplectic current of vacuum general relativity near
i°. The symplectic current is given by (see [37])

1 2 A . ~d pabcdef » A
wabcz—ﬂsabcdwd with  ® = P50, NV yA1er — [1 45 21, (5.9)

where ‘[1 «> 2] denotes the preceding expression with the 1 and 2, labeling the perturbations,
interchanged and the tensor P*¢%/ is given by

pabe ~ae s fbac lAa ~be s fc ~abscd s IA crae s fi IA c~ad sef
POt = gl — Sgtighel — SgMee” — S8R + S8R, (5.10)

2 2

N —

To analyze the behavior of the symplectic current in the limit to i® we first express it in terms
of quantities in the unphysical spacetime using

Caped = Veupea, PP = Q0P [y = P4y, (5.11)

where P/ s defined through the unphysical metric by the same expression as
equation (5.10). Using these, and converting the physical derivative operator V to the unphys-
ical one V as

Vi = Vadies + X IViQ1er + VeQiiar — 8eaVeQW1a5 + (€ ¢ P, (5.12)
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we obtain

1 d
Wabe = — EabcdW

167 (5.13)
with w® = Q*zpabcdf-fﬂ,wvdﬁ,lef + Q73,20 — [1 2]

Converting to quantities which are direction-dependent at i and using equation (5.4) we
see that %/ zwabc is C>~!. The pullback w to SZ of lim 03/ zwabc is given by
—

—i0

1 p 1 . 1
w=—-———€31 277b72ab’71 - _’Ylabab'h + ’Ylf O oab — _’Ylab’)’zah —[1 < 2]
— 167 2 2

(5.14)

This expression can be considerably simplified by rewriting it in terms of the perturbed grav-
itational potentials 0E and 6K, using equation (5.8). An easy but long computation gives

w = LE3((511((52E — (52K(51E), (515)
~  64r

where, as before, K := h"’K .

6. Asymptotic symmetries at i’: the spi algebra

In this section we analyze the asymptotic symmetries at i’. We show that the diffeomorphisms
of the physical spacetime which preserve the asymptotic flatness of the spacetime (defined by
definition 2.1) generate an infinite-dimensional algebra spi. This asymptotic symmetry algebra
was obtained in [26, 34] by analyzing the infinitesimal diffeomorphisms which preserve the
universal structure at i. Here we provide an alternative derivation by considering the phys-
ical perturbations generated by such infinitesimal diffeomorphisms and demanding that the
corresponding unphysical perturbations satisfy the asymptotic conditions equations (5.4) and
(5.5).

Consider an infinitesimal diffeomorphism generated by a vector field é“ in the physical
spacetime, and let £ = é“ be the corresponding vector field in the unphysical spacetime.
For ¢“ to be a representative of an asymptotic symmetry at i the infinitesimal diffeomor-
phism generated by £° must preserve the universal structure at i°. Firstly, the infinitesimal
diffeomorphism must keep the the point i fixed and preserve the C”! differential structure
at i°. Thus, & must be C*° at i® and £¢|p = 0. This implies that Q~/2¢% is ¢>~' at i and
let

X“(ij) = lim O 12¢e, 6.1)

Now consider the physical metric perturbation ’y(fb) = 0¢8ap = L¢8ap» corresponding to an

infinitesimal diffeomorphism generated by £“. The corresponding unphysical metric perturba-
tion is given by

’yc(fb) = Qz"gﬁgab = ££gab - 4971/2557%8@. (6.2)

19



Class. Quantum Grav. 37 (2020) 165008 K Prabhu and | Shehzad

Since %ﬁ) must satisfy the asymptotic conditions at i® in equations (5.4) and (5.5), we have

that 7(? is C*% at * and vﬁ)| 0 = 0. To see the implications of these conditions first evaluate

the condition vﬁ)| » = 0 using equations (6.1) and (6.2) which gives

n X)) =0, DX =0, (6.3)

that is, the vector field X is tangent to ¢ and is a Killing vector field on it. Thus, X“ is an
element of the Lorentz algebra so(1, 3). Some useful properties of these Killing vectors and
their relationship to infinitesimal Lorentz transformations in the tangent space 7i° are collected
in appendix B.1.

Further, since both 7 and £¢g,, are C*° we must have that Q~'/2¢%, is also C°. Since
Q~1/2¢ap,| 0 = 0 (which follows from equations (6.1) and (6.3) we have that Q~'¢%5, is C”
at i° so define

i = lim Q' (6.4)

The function f on ¢ then parametrizes the supertranslations. The vector field generating

a supertranslation can be obtained as follows. Consider £ such that the corresponding X

(equation (6.1)) vanishes and x“ = linol Q¢ is ¢! so that f = x“n.. Now consider the
i

.
metric perturbation equation (6.2) corresponding to such a vector field. From equation (5.5)
we must have

hnvy =0, (6.5)
where, as before, 'yﬁ) = linol Q71249 Evaluating this condition using equation (6.2) and
—

x* = lim Q7 '¢* we get
—i0

hayX" = —Daf. (6.6)
Thus a pure supertranslation f is represented by a vector field £ such that

lim Q7 '¢* = fn® — D°f. (6.7)
—i0

In summary, the asymptotic symmetries at i’ are parameterized by a pair (f, X*) where f is
a smooth function and X“ € so(1, 3) is a smooth Killing vector field on 7.

The Lie algebra structure of these symmetries can be obtained as follows. Let £{ and &5 be
the vector fields representing the asymptotic Spi-symmetries (f;, X{) and (f,, X9) respectively.
Then the Lie bracket [, &1 = £7V,&8 — €5V ,E( of the representatives induces a Lie bracket
on the Spi-symmetries. Using equations (6.1), (6.3) and (6.4) the induced Lie bracket on the
Spi-symmetries can be computed to be

(f,Xll) - [(fl’le)’ (fZan)]’
with f = X’D,f, — XD, f,, (6.8)
X = X’D,X5 — XoD, X5

Thus, the Spi symmetries form a Lie algebra spi with the above Lie bracket structure. Note that
if X{ = X9 = O then f = X“ = O—the supertranslations form an infinite-dimensional abelian
subalgebra s. Further if X{ = 0 and X9 # O then X = 0, thus the supertranslations s are a
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Lie ideal in spi. The quotient algebra spi/s is then isomorphic to the algebra of Killing fields
on JZ i.e. the Lorentz algebra so(1, 3). Thus the Spi symmetry algebra has the structure of a
semi-direct sum

spi = so0(1,3) X s. (6.9)

The spi algebra also has a preferred four-dimensional subalgebra t of translations. These
are obtained as the supertranslations f satisfying the additional condition

D.Dyf + ha,f = 0. (6.10)

The space of solutions to the above condition is indeed four-dimensional—this can be seen
from the argument in remark 6.1 below, or by solving the equation in a suitable coordinate
system on J¢’; see equations D.204 and D.205 of [33] or equation C.12 of [24]. Further from
equation (6.8) it can be verified that the Lie bracket of a translation with any other element
of spi is again a translation, that is, the translations t are a four-dimensional Lie ideal of
spi.

Remark 6.1 (translation vectors at i’). Let v be a direction-independent vector at i°, and
v’ = fn* + f¢ where n,f* = 0. Then, since v* is direction-independent we have

0= 8avb - Dafb + habf + nb(Daf - fa)’ (611)

which then implies f, = D, f and that f satisfies equation (6.1). Thus, any vector v* € Ti’
gives rise to a Spi-translation in t. Conversely, given any translation f € t, the vector at
i® defined by (note the sign difference in the hyperboloidal component relative to equation

(6.7))
v'=fn*+Df, (6.12)

is direction-independent i.e., v* € Ti’. Thus, the Spi-translations ¢ can be represented by
vectors in Ti.

Remark 6.2 (conformal transformation of Spi symmetries). Let (f, X“) be a Spi symmetry
defined by a vector field £ as above, i.e.,

XO= lim Q20 o= lim Qg% (6.13)
—i0 —i0

For a fixed £“, consider the change in the conformal factor €2 — w(). Then, from remark 2.1
we have the transformations

1
X' X [ f ot Ly (6.14)

Note that a pure supertranslation (f, X = 0) is conformally-invariant, while a ‘pure
Lorentz’ symmetry (f = 0,X“) is not invariant but shifts by a supertranslation given by
%f xou. This further reflects the semi-direct structure of the spi algebra given in equation
(6.9).

To find the charge corresponding to the Spi-symmetries we need to evaluate the symplectic
current equation (5.15) when the perturbation denoted by 4, is generated by a Spi-symmetry.
So we now calculate the perturbations drx)E and s x)K in the gravitational potentials
corresponding to the metric perturbation equation (6.2).
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The potentials E and K, are defined in terms of (a rescaled) limit of S,;, by equation (4.9).
Consider then the change in S,; under the perturbation equation (6.2). The second term on the
right-hand side of equation (6.2) is a linearized conformal transformation (see remark 2.1) with
o = —2f. Thus, the change in E and K, induced by this linearized conformal transformation
is given by (see remark 4.1)

(5fE =0, 5fKab =4D,Dyf + fhap). (6.15)

The first term on the right-hand side of equation (6.2) is a linearized diffeomorphism and,
since S, is a local and covariant functional of g, the corresponding perturbation in S, is
£¢S,p. Explicitly computing the Lie derivative, using equations (6.1) and (6.3) gives

OxSap = 1im Q2 £eSup = X DeSup + 2t X + 28O X*. (6.16)
—i

Then, from the definition of the gravitational potentials equation (4.9) we have

oxE = £xE, OxKu = £xKap. (6.17)
As a result, under a general Spi symmetry parametrized by (f, X“) we have

oy E = LxE, Orx)Kap = LxKap +4DDyp f + hap f). (6.18)

Note that our parity condition equation (4.33) does not place any further restrictions on these
symmetries.

Remark 6.3 (special choices of conformal factor). The freedom in the conformal factor can
be used to impose further restrictions on the potential K ,,. We note the following two conditions
that have been used in prior work.

(a) From equation (4.22) we see that K := h“’K ,, transforms as
K— K—-2D*a+3a). (6.19)

Now given a choice of conformal factor so that K # 0 we can always solve a linear hyper-
bolic equation for o on % and choose a new conformal factor (as in remark 2.1) so that
in the new conformal completion K = 0. This is the choice made in [23, 32, 33]. With
this restriction on K we see from equation (6.18) that the allowed supertranslations are
reduced to functions f which satisfy

D*f+3f=0. (6.20)

(b) Consider the restricted class of spacetimes where B,, = 0. Then, the tensor K, can be
written in terms of a scalar potential k as in equation (4.16). Comparing equation (4.16)
with equation (4.22) we see that we can choose o :1/2k. Then, we can choose a new
conformal factor (as in remark 2.1) so that in the new conformal completion K,, = 0.
This is the choice made in [26, 34]. With this restriction we see from equation (6.18) that
the allowed supertranslations are reduced to the translation algebra (equation (6.1)), and
the full asymptotic symmetry algebra reduces to the Poincaré¢ algebra.

It is not clear, a priori, what such special choices of conformal factor imply at null infinity.
From the point of view of matching the Spi symmetries and charges to the ones defined on
null infinity such choices of conformal factors might not be convenient. So we will not impose
any such conditions on the conformal factor in our analysis and work with the full spi algebra.
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However, we will argue that our results reduce to those of [26, 33] when the corresponding
restrictions are imposed.

7. Spi-charges

In this section we now compute the charges associated with the Spi-symmetries. Following our
strategy we consider the symplectic current w where one of the perturbations, d,, is a perturba-
—

tion generated by an asymptotic Spi-symmetry represented by (f, X¢). Using equations (5.15)
and (6.18) we have

1
w(bg, 01 x)8) = i [6K£xE — SE£xK — 4SE(D*f + 3f)] . (7.1)
- T
We show next that, under suitable conditions, the above expression can be written as a total
derivative on JZ that is,

w(dg, dx08) = —&3 D'Q,(g; 3g; (f, X)), (7.2)

where Q, is a local and covariant functional of its arguments on J¢.

It will be convenient to do this separately for supertranslations and Lorentz symmetries. In
section 7.1, we will find that for supertranslations the functional Q,, is integrable, and defines
the supermomentum charges on cross-sections S of 5#°. Then we show in section 7.2 that for
Lorentz symmetries 0, is not integrable, in general. In this case we will adopt the prescription
of Wald and Zoupas with suitable modifications to define an integrable charge for Lorentz
symmetries. Finally, as noted in remark 6.2, a ‘pure Lorentz’ symmetry is not conformally-
invariant but shifts by a supertranslation. Similarly, we show in section 7.3 that the Lorentz
charge shifts by a supertranslation charge under conformal transformations, in accord with the
semi-direct structure of the spi algebra (equation (6.9)).

71. Charges for supertranslations: Spi-supermomentum

To define the charge for the supertranslations consider equation (7.1) for a pure supertranslation
(f,X*=0)

1
w(dg, 078) = —Jp—€3 SEMD’f +3f),
T (7.3)

= —L53D“5(EDaf — fD,E),
167

where the second line uses equation (4.12). In this case, the symplectic current can be writ-
ten in the form equation (7.2) where the Q, is manifestly integrable. Thus, we define the Spi
supermomentum charge at a cross-section S of JZ by

OIS = 7 [ & w'(ED.f — fD.E). (7.4)
T
S

Here we have chosen the charge to vanish on Minkowski spacetime where E = 0 (see
equation (4.34)). The corresponding flux is given by (using equation (4.12))

FLUAAT=QLf: 5] = QLA Sl = / e3 ED*f +30). (7.5)

AKX

_ b
167
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When f € tis a Spi-translation the charge equation (7.4) can be written in an alternative
form as follows: using equations (4.11) and (4.12) we have the identity

—fD.E + ED,f = 2E,,D" f + D" (D .EDy,f)
(7.6)

- % [DED*f +3f) — D’"EWD.Dy f + hapf)] -

The second term on the right-hand side corresponds to an exact two-form and vanishes upon
integrating on S, while the last line vanishes for translations due to equation (6.1). Hence, the
charge for any translation f € t can be written as

1
QUf: S = o~ / e, u’E,D"f, (1.7)
T

N

which reproduces the charge for translations given in [26]. Using equation (6.10) the flux of
translations vanishes across any region A.Z and thus the translation charge is independent of
the choice of cross-section S. Using the isomorphism between Spi-translations f and vectors
v®in Ti° (see remark 6.1), the translation charge in equation (7.7) defines a four-momentum
vector P at i such that

Py, = Q[ f;S]. (7.8)

Note that this relation is well-defined at i since the translation charge is independent of the
cross-section S. The vector P is precisely the ADM four-momentum at i° [46] and also coin-
cides with the limit to i® of the Bondi four-momentum on null infinity [25] (the corresponding
result for all the supertranslation charges was proven in [24]).

The charge expression equation (7.4) agrees with the results of Compere and Dehouck
[33]. Note that when the conformal factor is chosen so that K = 0 the supertranslation alge-
bra is reduced to the subalgebra satisfying equation (6.20) and the flux corresponding to such
supertranslations vanishes across any region A.¢°. As was shown in [24], to relate the super-
translation symmetries and charges at spatial infinity to the ones on null infinity, it is sufficient
that the total flux of these charges vanishes on all of .7#,'° and the flux need not vanish across
some local region A.7Z. Thus the restriction on the conformal factor imposing K = 0 is not
necessary.

Note that in [24] the supermomentum charges at spatial infinity were related to those on
null infinity using the Ashtekar—Hansen expression equation (7.7) for all supertranslations
(even those which are not translations), instead of the expression equation (7.4). On S, these
charge expressions differ by the integral of last line of equation (7.6) over some cross-section
S. However, the regularity conditions on E and f used in [24] as the spatial directions 77 limit
to null directions at i® ensure that the additional terms vanish (see, for instance, appendix. D of
[24]) and both expressions yield the same finite supermomenta in null directions which further
equals the supermomenta at null infinity. Thus, the result of [24] can also be derived using the
expression equation (7.4) for the supertranslation charges.

72. Lorentz charges with Ba, = 0

Next we will obtain a charge formula for the Lorentz symmetries. As emphasized in [26, 34],
to obtain such a charge formula one needs to consider the ‘subleading’ piece of the magnetic

10To make this rigorous it is necessary to additionally complete 7 to include the null directions at . This
construction is detailed in [22, 24].
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part of the Weyl tensor. Thus, in the following we will make the additional assumption that
B, = 0 and that the ‘subleading’ magnetic part 3., defined in equation (4.14) exists. However,
in appendix E we show how the restriction that B, vanishes can be lifted to obtain a charge
for the Lorentz symmetries.

For a ‘pure Lorentz’ symmetry (f = 0, X“) we have from equation (7.1)

w(dg,oxg) = LE3(.£XE(5K — £xKOE). (7.9)
- 641

We now want to write this as a total derivative of the form equation (7.2). To do so consider
the following tensor

1 1
Wap =8, + geﬂd(aDcEKd;,) - Bz—:athDcE. (7.10)

Using equations (4.13a), (4.15) and (4.20), we obtain
D'Wy, =0, h“W, =0. (7.11)

Note that W, is not a symmetric tensor. Further using equations (7.10) and (B.3) we have
1
D[W,*X"] = gX“DaEK, (7.12)

where *X¢ .= %e“b”D;,XC is the ‘dual’ Killing vector field to X“ (see equation (B.4)). Therefore,
equation (7.9) can be written as

1 1
w (03.0xg) = g-e3D" {5Wab*X” - §5EKXa] , (7.13)

™

which is again of the form equation (7.2). However the functional Q, in this case is not
integrable, in general. To see this consider

1 1
/52 u'Q,[0g;: X] = _§/€2 u’ {5Wa;,*Xb - §6EKX4 , (7.14)
s

N

and compute an antisymmetrized second variation to get

1
/ezu“ ((51Qa[(52g;X] - 52Qa[51g;X]) = @/szu”Xa (51K52E - 52K51E)

N N

— —/X~g(51g, 5,8). (7.15)
S

If equation (7.14) were integrable then the above antisymmetrized second variation would
vanish for all perturbations and all cross-sections S. However, since we allow arbitrary per-
turbations of both E and K, the expression on the right-hand side vanishes if and only if the
Lorentz vector field happens to be tangent to the cross-section S. However a general Lorentz
vector field is not tangent to any cross-section of .7, in particular Lorentz boosts do not pre-
serve any cross-section of .7¢”. Thus, the expression equation (7.14) is not integrable and cannot
be used to define the charge of Lorentz symmetries.
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To remedy this, note that equation (7.15) is similar to the integrability criterion derived by
Wald and Zoupas (see equation (16) of [37]). Wald and Zoupas further developed a general
prescription to define an integrable charge (‘conserved quantity’) which we now adapt to our
case. Let ©(g; dg) be a three-form on 52 which is a symplectic potential for the pullback of
the symplectic current (equation (5.15)) to 7, that is,

g(g; 018,028) = 010O(g;028) — 020(g;0,8), (7.16)

for all backgrounds and all perturbations. We also require that the choice of ® satisfy the
following conditions

(a) O is locally and covariantly constructed out of the dynamical fields (E, K,), their per-
turbations, and finitely many of their derivatives, along with the ‘universal background
structure’ ki, present on JZ.

(b) O is independent of any arbitrary choices made in specifying the background structure,
in particular, ® is conformally-invariant.

(c) ©(g;dg) = 0 for Minkowski spacetime for all perturbations dg.

In analogy to the Wald—Zoupas prescription we define the charge Q[X“; S] associated with
a Lorentz symmetry through

09[X"; 8] = /szu“Qa(ég;X“) + /X- O0g). (7.17)
s

N

From equations (7.15) and (7.16) it follows that the above defining relation is integrable
and thus defines a charge Q[X“;S] once we pick a reference solution where the charge
vanishes.

For the three-form ® we choose

1
O(g:0g):= — o, —€:E0K. (7.18)

It can be verified that this choice satisfies all the criteria listed below equation (7.16). In par-
ticular ® is conformally-invariant, and for Minkowski spacetime E = 0 (equation (4.34)) and
so ® = 0 on Minkowski spacetime for all perturbations. This choice for ® is not unique, but
we will argue in appendix D that the ambiguity in the the choice of ® does not affect our final
charge expression.

With the choice equations (7.18) and (7.14) and (7.17), we have

SQ[X“; S] = —% / & U S[Wo X — %KEXa], (7.19)
S

We define the unperturbed charge by picking the reference solution to be Minkowski spacetime
which satisfies E = 0 and 3,, = 0 (equation (4.34)). Thus, we have the charge

1 1
O[X%; 8] = —8—/52 u’[W,, X0 — gKEXa], (7.20)
T
s

The corresponding flux of the Lorentz charges is given by

1

/ e3 ELxK. (7.21)
A
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Note that the flux is essentially given by F[X“, A= fA% O(g; dxg) in analogy to the
Wald—Zoupas prescription (see equation (32) of [37]).
When the conformal factor is chosen so that K, = 0 then the Lorentz charge reduces to

1
O[X*; S| = % / e u'B, X", (7.22)
T
S

which is the expression given by [26]. Note that when the conformal factor is chosen such
that K = 0, the expression equation (7.14) is manifestly integrable and our ‘correction term’
©® (equation (7.18)) vanishes. In both these cases, the flux of the Lorentz charges vanishes
across any region AJ?Z, i.e., the Lorentz charges are identically conserved. Further, since the
vector fields X“ correspond precisely to infinitesimal Lorentz transformations A, in Ti (see
equation (B.6)), the charge defines an ‘angular momentum’ tensor J°” at i° through

TP Ay = QIX%; S, (7.23)
where the right-hand side is independent of the cross-section since the charge is conserved.

7.3. Transformation of charges under conformal changes

We now consider the transformation of the charges and fluxes for a Spi symmetry under
changes of the choice of conformal factor as discussed in remark 2.1.

Consider a pure supertranslation symmetry (f, X“ = 0). As shown in remark 6.2, a pure
supertranslation is conformally-invariant. Further from remark 4.1 the potential E is also
conformally-invariant. Thus, the charge and flux of supertranslations in equations (7.4) and
(7.5) is also conformally-invariant.

However a ‘pure Lorentz’ symmetry (f = 0,X“) is not conformally-invariant (see remark
6.2), and hence we expect that the charge and flux of a Lorentz symmetry must transform
nontrivially under changes of the conformal factor. Consider first the flux of Lorentz charges
given by equation (7.21). Using the transformation of K, (equation (4.22)) we see that this
flux expression transforms as

FIXY A — FIXG A + 3% / e3E(D* £xa + 3 £x). (7.24)
T
AF

Comparing the second term on the right-hand side to equation (7.5), we see that it is precisely
the flux of a supertranslation given by (—!/,£xc). Thus, under a change of conformal factor
the Lorentz flux shifts by the flux of a supertranslation

FIXY AS) v FIX AA) + Fl—1/2Lx0: AF). (7.25)

One can similarly verify that the Lorentz charge equation (7.20) also shifts by the charge
of a supertranslation. The explicit computation is a bit tedious and is presented in appendix C.
However, we can derive the transformation of the Lorentz charge by a more general argument
which we present below. This argument also holds in the more general case when B, # 0
considered in appendix E below.

From the transformation of the flux equation (7.25), we can deduce that the Lorentz charge
expression equation (7.20) must transform as

QIX"; S] > O[X“: S]+ Q[—1/2£xx; S] + / eou i, ], (7.26)
S
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where the second term on the right-hand side is the charge of a supertranslation (—'5r£xa)
and the third term is a possible additional term determined by a covector p, which depends
linearly on « and is divergence-free, D’ u,[ax] = 0 for all . Since « is a free function on
J¢ we can apply theorem 1 with v as the ‘dynamical field’. Thus, from equation (B.17) we
conclude that the final integral above vanishes, and that the Lorentz charge shifts by the charge
of a supertranslation (— '/ £xcv).

QXS] = QX S+ Q[—1/2Lxa; S]. (7.27)

If we restrict to the choice of conformal factor where K, = 0, so that the asymptotic sym-
metries are reduced to the Poincaré algebra and «x is a Spi-translation satisfying equation (6.10),
then equation (7.27) reproduces the transformation law given in equation (29) of [26] and
equation (6.8) of [34].

Consider the charge of any Spi-symmetry represented by (f, X“), then under a conformal
transformation the same Spi-symmetry is now represented by (f +'s£xc, X) (see remark
6.2). The total charge of the Spi-symmetry transforms as

OLf: ST+ QIX“ 81 —=QLf + 1/2£xa; ST+ QIX* S+ Q[—1/2Lxai; S,
= QLf; ST+ QIX*; S, (7.28)

that is, the charge of any Spi-symmetry is independent of the choice of conformal factor—the
change in the function f representing the symmetry is exactly compensated by the change in
the Lorentz charge given in equation (7.27).

8. Discussion

In this paper, we analyzed the asymptotic symmetries and the corresponding charges for
asymptotically-flat spacetimes at spatial infinity i° using the Ashtekar—Hansen formalism,
without any restrictions on the choice of the conformal factor at spatial infinity, which were
imposed in previous analyses. Using the covariant phase space, we considered the direction-
dependent limit of symplectic current of vacuum general relativity to spatial infinity. Using the
pullback of this limit of the symplectic current to the space of spatial directions ¢ at spatial
infinity, we obtained expressions for charges corresponding to all asymptotic symmetries. We
rederived the known expressions for supertranslation charges but more a general expression
for the Lorentz charge when conformal factor is completely unrestricted. In this case, we used
a Wald—Zoupas type correction to make the Lorentz charge integrable, which also ensures that
this charge transforms correctly under the action of a supertranslation, or equivalently, that the
charge of a general Spi-symmetry is conformally-invariant.

The main motivation behind our analysis is to eventually relate the Lorentz charges at spatial
infinity to the ones defined on null infinity. In this context, the Lorentz charge expressions
would have to be matched in the ‘same’ choice of conformal factor at both null infinity and
spatial infinity, and it is not clear what the restrictions on the conformal factor at spatial infinity
placed in previous works imply at null infinity. Thus, we hope that our more general expression
for the Lorentz charge at spatial infinity will be more useful to repeat the matching analysis
for the case of Lorentz symmetries that was done previously for Maxwell theory [22] and
supertranslations in general relativity [24]. If this works out as expected, this would imply that
the full BMS group at past null infinity is matched to the full BMS group at future null infinity
and moreover, that the incoming fluxes of all BMS symmetries through past null infinity are
equal to the outgoing fluxes of the anitpodally identified BMS symmetries through future null
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infinity. This would then prove the existence of infinitely many conservation laws, one for
each generator of the BMS group, in classical gravitational scattering in asymptotically-flat
spacetimes, as anticipated by Strominger [5].

Another avenue for future investigation would be to quantize the asymptotic fields on ¢
in the spirit of the asymptotic quantization program on null infinity [47], see also [48]. This
could lead to the possibility of relating the asymptotic ‘in-states’ on past null infinity to the
‘out-states’ on future null infinity, similar to the matching conditions in the classical theory,
and provide further insight into the structure of quantum scattering.

We also note that the asymptotic fields at spatial infinity in both Maxwell theory and gen-
eral relativity are described by smooth tensor fields living on a unit-hyperboloid 7. As is
well-known ¢ is precisely the three-dimensional de Sitter spacetime. To prove the match-
ing conditions for Maxwell and gravitational fields on ¢ with those on null infinity, .5¢ was
conformally-completed into a cylinder in the analysis of [22, 24]. It would be interesting to see
if insights from the de Sitter/CFT correspondence [49] can be applied to develop a holographic
understanding of electromagnetism and general relativity in asymptotically-flat spacetimes at
spatial infinity, perhaps similar to [50].
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Appendix A. Coordinates, universal structure and asymptotic expansions
0
near i

In this appendix we construct a suitable asymptotic coordinate system near spatial infinity.
Using these coordinates we explicitly demonstrate the universal structure near i° described in
section 4.1. We also describe the asymptotic expansion of the unphysical and physical met-
rics in these coordinates, thus making contact with the expansions used in previous works
[31-33].

Consider the unphysical spacetime (M, g,,) obtained from some physical spacetime satis-
fying definition 2.1. The unphysical metric g, at i’ induces a metric which is isometric to the
Minkowski metric in the tangent space 7i’. Thus we can introduce asymptotically Cartesian
coordinates (1, x, y, z) so that ¥ is at the origin of this coordinate system and

g, = —d* +dx* + dy* + dZ%. (A.1)

Note that x' = (1, x, y, z) define a C' coordinate system at i°. To define a C”! differential
structure we allow any other coordinate chart x"(x) such that

9%x" (x) od 0%x'(x")

10
ok & BTart A cati’. (A.2)

A collection of all coordinate charts related by equation (A.2) defines a choice of C”!-structure
on M at i, see [40] and appendix A of [22] for details.
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It is more convenient to use coordinates which are adapted to the space of unit spacelike
directions . Thus define (p, T) by

t
T I S — (A3)

VY + 2
In these coordinates the metric in 7i° takes the form
g = dp” + p* (—d7? + cosh® T545d0"d6") (A4)

where sz is the unit metric on S? in some coordinates 04, say the usual (0, ¢) coordinates.
Note that the coordinates (p, 7, 8*) are not C”! coordinates—the bases (dp, pdr, pd#*) are not
continuous but are direction-dependent at °.

The unit spatial directions 7] then correspond to the unit vectors 9, in Ti which are parame-
terized by (7, #*). The space of directions .7 is then the surface p = 1 in 7i® with the induced
metric

ha = —dr* + cosh® Ts,pd6"d6”. (A.S5)
The reflection of the directions 77 — —17 then induces the reflection isometry
(7—3 eA) — (_7—3 _eA)3 (A6)

on ##, where 8! — —6" is the antipodal reflection on S?.

So far we have only considered the structure at i°, now we extend the metric away from i°.
Since the unphysical metric g4, is C~° and limits to g, at i’ (where p = 0), it can be verified
that g,» admits an expansion in p of the form

8 = [1+ 0p + 0(p)Idp” + 2 [pAs + 0 (p)] dp(pdy”)

() ) a b (A7)
+ [ha,, + phy, +o(p)| (pdy*)(pdy”),

where y* = (T,HA) are coordinates on the unit hyperboloid, and hg,))) = h,, is the unit

hyperboloid metric. The expansion coefficients o, A, and h(az) can be considered as ten-

sor fields on #. The o(p) denotes terms which falloff faster than p in the limit to #°, that

is, Lig(l) plo(p) = 0.

For the conformal factor, one can choose
Q=p (A.3)

which can be verified to satisfy all the conditions in definition 2.1, that is, in the limit p — 0,
Q=0,V,Q=0and V,V,Q = 2g,. Before considering the physical metric lets analyze the
universal structure at i°.

From the above discussion it is clear that the metric g,, and the space of directions 57
is universal, that is, independent of which unphysical metric is chosen. What is the structure
corresponding to the equivalence classes of C”! curves described in section 4.1? Consider the
C”! curves I, through i with tangents v* = 0, in these coordinates. Further, with the choice
of conformal factor in equation (A.8) we have

B B
' =vi'rt=a1- 2pa)a—p + ph“’)“”AhW + o(p). (A.9)
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From equation (4.27) we see that the curves I', (with tangent v* = 0,) will be equivalent to
the curves I',, (with tangent 1) for all spacetimes if we can always choose A, to vanish. This
can be accomplished using the freedom in the choice of the hyperboloid coordinates y* at ‘next
order’ in p. Consider the coordinate transformation'!

psp, Y ¥+ ph DA, (A.10)

By rewriting this in terms of the Cartesian coordinates x' = (t,x,y,z), it can be verified that
the transformation equation (A.10) is a C”! coordinate transformation (equation (A.2)). It can
be also be verified that using this transformation the dpdy“ term in the metric, i.e. A,, vanishes
in the new coordinates. Thus, the curves I', and I';, can always be chosen to be equivalent.
Further, this choice can always be made in any choice of the physical spacetime. Thus, the
equivalence classes of C~! curves through i is also universal.

Having made this choice the unphysical metric takes the form

gab = [1+ 0p + 0(p)*dp* + po (p) dpdy” + p* [hﬁf}} +phy) +o(p)| dy'dy’. (A1)

To get the form of the physical metric g,, = Q_zgah we use equation (A.8) and define the
Beig—Schmidt coordinate pgs) := 1/p to obtain

2
R o .
8ab = {1 + e +o(1/ P(BS))] dpias) + ps)0(1/ pes))dpas)dy
N (A.12)

h
hS) + =2+ o(1/pws))
P(BS)

+ Plss) dy'dy”,

This is the form of the physical metric assumed by Beig and Schmidt [31].
The asymptotic potentials equation (4.9) are related to the metric coefficients in the above
expansion by

E=40, Ku=-20"+20nY). (A.13)

From these the asymptotic Weyl tensors can be computed using equation (4.11). Note that
the parity condition equation (4.33) imposed on E to eliminate the logarithmic translation
ambiguity then corresponds to

o(t,0%) = o(—1, —0"). (A.14)

From equation (A.13) it straightforward to see that our charges for supertranslations
equation (7.4) matches the expression obtained by Compere and Dehouck, equation (4.88)
of [33].

For the ‘subleading’ magnetic Weyl tensor 3,, (defined by equation (4.14) when B, = 0)
to exist, we need additional regularity conditions on the metric expansion equation (A.7). Thus,
to define 3,, we assume the ‘next order’ expansion

ga = [1+ ap + o(p)lPdp” + po(p)dpdy”
2 [0 (1 27(2) 2 aq.b (A1)
+p [hab + phyy, + phg, +0(p )} dy“dy”,

! This is essentially the unphysical spacetime version of the coordinate transformations consider in lemma 2.2 of [31].
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where 4 is a smooth tensor on 7#. Then, we have (using B, = 0)

1 1
Bup = caD B! — gscd(aDcEde) — 1—6€Cd(an)K“Kdg. (A.16)

When the conformal factor is chosen so that K,, = 0, the above expression simplifies con-
siderably. In this case, our Lorentz charge matches the one found by Compere, Dehouck and
Virmani [32]. We discuss the case when B, # 0 in appendix E.

Appendix B. Some useful relations on 7

In this appendix we collect some relations on the unit-hyperboloid .5 which are useful in the
main paper.
The Riemann tensor of .7 is given by

Ravea = hachpa — haahie. (B.1)

Using the above it is easy to derive simple expressions for commuting derivatives on tensor
fields on 72, see appendix A of [31].

B.1. Killing vector fields

Let X be a Killing vector field on 2, so that D, X;) = 0. For any Killing vector field using
equation C.3.6 of [38] and equation (B.1) we have

D.D,X. = 7?'cbad)(d = hach - hach~ (B2)
Contracting the indices a and b we get
D*X, +2X, = 0. (B.3)

Define the ‘dual’ vector field *X“ on 57 for any Killing vector field X“ by

1
X4 = Es“bCD;,XC. (B.4)

Then, using equation (B.2) we have

. 1 . . .
Da*Xb — EathL , X¢ — _Eeathh*XL — _*(*X)a , DaXh — _eabc*XL~
(B.5)

In particular D(,"X}, = 0 so *X“ is also a Killing vector field on 7. In a suitable choice of
coordinates on ¢ this relation maps Lorentz rotations and Lorentz boosts into each other, see
appendix B of [32].

The relationship between the Killing vector fields on ¢ and Lorentz transformations in the
tangent space Ti° is as follows. Let A, be a direction-independent antisymmetric tensor at i°
corresponding to an infinitesimal Lorentz transformation in 7i°. Then the direction-dependent
vector field defined by!?

X)) = A%, (B.6)

12 The relation equation (B.6) is the ‘dual’ of the relation used below equation (27) of [26].
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is tangent to S¢. Further, since A is direction-independent, 9. A, = 0. Projecting the indices
of 8.A, = 0tangentand normal to 77 in all possible ways it follows that X is a Killing vector
field on J# and

Aw = DX}, — 20, Xp) = €’ X + Ny€pieaD X, (B.7)

where the last equality uses equation (B.5). Similarly, it can be shown that if X is the Killing
vector field on JZ corresponding to A, through equation (B.6), then (—*X) is the Killing
vector field on 5 corresponding to the ‘dual’ Lorentz transformation x A, := %sab“" Ay
B.2. Symmetric tensors
Let T, be any symmetric tensor on .7Z. Then T, its curl and divergence are related by the
identity

—2T* X" + 204D T X" — D.TD, X" = D" (€T X" + 2T1.Dy*X°) .  (B.8)

where X is any Killing vector on .22 and *X“ is the corresponding ‘dual’ Killing vector
(equation (B.4)). This identity can be verified by expanding out the right-hand side and using
equations (B.1), (B.4), and (B.5). Note that the right-hand side of equation (B.8) corresponds
to an exact two-form on ., and thus vanishes when integrated over any cross-section S of
€. This gives the following useful integral identity on any cross-section S

: | -
/ e u'T,," X" = / e u’ [ecd(aD‘Tdh)X}’ - EDCT”D,;X” : (B.9)
N N

In the following lemma we show that any symmetric, curl-free tensor on ¢ admits a
scalar potential. A proof using a choice of coordinates on .7¢ can be found in appendix A
of [32]. Our proof below is adapted from similar arguments for a two-sphere in appendix A.4
of [4].

LemmaB.1. Let T, be a symmetric tensor on € with vanishing curl, i.e, DT, = 0 then
there exists a function t on F€ such that

T,y = DDyt + host. (B.10)
Proof. Let f € t be a Spi-translation so that'?
DDy f + hayf = 0. (B.11)

Note that the vector field Y : =D f is a conformal Killing field on .5¢. Any conformal
Killing field is completely determined by its conformal Killing data specified at some chosen
point p € 2 [55], which in this case is given by

(Y, DYy, DY, DD, Y")| = (D°f,0,-3f, =3D"f)] . (B.12)

Thus, there is an isomorphism between the vector space of f € t and the vector space of the
conformal Killing data f|, and D f|, at any chosen point p.

13 As shown in remark 6.1 Spi-translations can also be represented as vectors in the tangent space at i°.
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Since T, is symmetric and curl-free, using equation (B.11) we have D[c(Ta];,Db H=0.
Thus, T,,D" f is a closed one-form on .7 and thus exact,'* that is, there exists a function H
such that

T.,D"f=DH. (B.13)

Thus, T, can be viewed as a linear map from the vector space of Spi-translations to functions
on 2. Since the vector space of Spi-translations is isomorphic to the space of conformal
Killing data equation (B.12) specified at any point on 57, there exists a function ¢ and a
covector field ¢, on 57 such that

H=tf+t,Df. (B.14)
Inserting this into equation (B.13) and using equation (B.11) we get
TuD"f = Doty + hat)D" f + f(Dt — 1,). (B.15)

Since the conformal Killing data f|, and D? f|, can be freely specified at any point it follows
that ¢, = Dt and

T, =D,Dpt+ h,t. (B.16)
U

Note that the potential ¢ is not uniquely determined, since one is free to add solutions of
equation (B.11) to ¢ without affecting the tensor T',. Further, the potential is not locally and
covariantly determined by T, and finitely many of its derivatives. In particular, even if T, is
the (direction-dependent) limit to i® of some tensor field on spacetime, there may not exist any
tensor on spacetime whose limit gives the potential £.

B.3. Closed and exact forms

For some results in the main paper we need to argue that certain two-forms on .7¢ which are
closed are also exact, so that their integral on cross-sections of .7¢ vanishes. In general, not
all closed two-forms on % are exact since the topology of 5# is S> x R and the second de
Rahm cohomology group is nontrivial. However, when the closed two-forms considered are
local and covariant functionals of suitable fields (as described below) then they can be shown
to be exact by a general theorem of Wald [56].

In the theorem stated below, the differential forms p[¢, 1] under consideration will be func-
tionals of two types of fields. The ‘dynamical fields’, denoted by ¢, are arbitrary cross-sections
of some vector bundle, and we require that diz = 0 for every cross-section ¢. The form p also
can depend on some ‘background fields’, denoted by 1. The ‘background fields’ ¥ need not
have a linear structure and are allowed to satisfy (possibly nonlinear) differential equations.
Now we can state the theorem from [56].

Theorem 1 ([56]). Let plo, ] be a p-form on a d-dimensional manifold M with p < d,
which is a local and covariant functional of a collection of two sets of fields (¢,) (as
described above) and finitely many of their derivatives on M. Then, if for any ‘background

fields’

14 This follows from the fact that every one-loop in 7 is contractible to a point and hence the first de Rahm
cohomology group of F#” is trivial.
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(a) dulg,¥] = 0 for all cross-sections of the vector bundle of ‘dynamical fields’ ¢ and
(b) plo,v] = 0 for the zero cross-section ¢ = 0

then there exists a (p — 1)-form v[¢, 1] which is a local and covariant functional of (¢, )
and finitely many of their derivatives such that u[¢, V] = dv[¢, ]. That is the closed p-form
W is also exact.

Note that it is essential for this theorem that the ‘dynamical fields” have a linear structure as
the cross-sections of some vector bundle and further, the p-form ;. must be closed for all possi-
ble cross-sections of this vector bundle, i.e., one must be able to freely specify the ‘dynamical
fields” and all of their derivatives at any point of M. In contrast, the ‘background fields’ v, need
not have a linear structure and are allowed to satisfy differential equations, and in fact the set of
‘background fields’ can also be empty. Further, the proof in [56] also provides a constructive
procedure for finding the (p — 1)-form v though we will not need to use this construction.

For our applications of this theorem we will be concerned with closed two-forms on 7.
Using the volume element &, on J¢, we will write this two-form in terms of a covector g,
such that D, = 0. Then, from theorem 1 we conclude that this two-form is exact and thus

Dp bl =0 — / &2 u i [, ] = 0, (B.17)
S

for any cross-section § of 5 with €, and u® being the area element and normal to S. The
choice of the ‘dynamical fields’ ¢ depends on the particular case. Since the fields E, K, and
Bap satisty differential equations of motion (equations (4.12), (4.13), and (4.20)) they cannot be
used as the ‘dynamical fields’. Similarly, the Lorentz vector fields X form a six-dimensional
vector space and cannot be arbitrary sections of some vector bundle and also cannot be used as
the ‘dynamical fields’. Thus, these fields, along with the metric and volume form on 2, will
always be in the collection of ‘background fields’ 7).

However, the supertranslation symmetries f, the freedom in the conformal factor ax (remark
2.1) and the scalar potential k for K,;, (when B,, = 0) are free functions on ¢ and will be
used as ‘dynamical fields’ in our applications of this theorem.

Appendix C. Conformal transformation of the Lorentz charges

In section 7.3 we argued that under conformal transformations the Lorentz charge shifts by
the charge of a supertranslation (equation (7.27)). In this appendix we collect the explicit
computation of this transformation.

Using equations (4.22) and (4.23), and that E is conformally-invariant, we have the follow-
ing transformation for the tensor W, defined in equation (7.10) under changes of the conformal
factor

1 \ 1 :
Wap = W + Zeﬂd(abﬂ (D, ED‘ o + D'EDyycx] + gsabcD‘E(Dza +3a).
(C.1)

Thus, we have (note that the Lorentz vector does not transform under changes of the conformal
factor remark 6.2)

1 1
W X0 — W X + Zecd(aD”Tdb)*X” + g(Dza + 3a)D"ED X, (C.2)

35



Class. Quantum Grav. 37 (2020) 165008 K Prabhu and | Shehzad

where we have defined the shorthand T, .= D ,ED;, + D,ED o and used the last identity in
equation (B.5). Now using the identity equation (B.9) (with X“ replaced by *X“) we have

1
/ €3 U'e.y DT X" = — / ey u* {2DCTCbDaX,, + TupX"| . (C.3)
S N

A straightforward but tedious computation using the definition of T';, equations (4.12), (B.1),
and (B.3) gives

1
/ € U’ g DT X" = / e u’ {—E(Dza + 3a)(2EX, + D’ED X},)

N N

+(ED,£xo — DaE£Xa)} , (C.4)

where we have dropped terms that integrate to zero on S. Using the above in equation (C.2) we
get

1
/ e u'Wy ' XP — / e u'Wo X" + I / e, u’ [(ED,£xo — D,E £xx)
S

N N

—(D’a + 30)EX,] . (C.5)
Further, from equation (4.22) we also have

1 1 1
—gKEXa > —gKEXa + Z(Dza + 3a)EX,. (C.6)

Thus,

1 1
/ &, u’ {Wab*X” — gKEXa] — / o {Wa,,*x” — gKEXa
S

N

. (C.7)
+ Z/EQ u’(ED,£xa — D,E £xa) .
s
The Lorentz charge equation (7.20) then transforms as
1 1
QX% S] — Q[X*; 8] — F/sz u”i (ED,£xo0 — D,E£xa) . (C.8)
u

N

Comparing to equation (7.4), we recognize the last integral above as the charge of the super-
translation (—!/,£xa). Thus, the Lorentz charge shifts by the charge of a supertranslation
under changes of the conformal factor as argued in section 7.3.

Appendix D. Ambiguities in the Spi-charges

In this section we analyze the ambiguities in our procedure to define the Spi charges. We show
our Spi charges are unambiguously defined by the choice of the symplectic current for general
relativity in equations (5.14) and (5.15).
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Recall that our charges on a cross-section S of 5Z are defined by

OQI(f, X); ST:= /Ezu”Qa@g;(f,X”)) + /X-®(5g), D.1)
N

N

with @ = 0 on Minkowski spacetime as the reference solution. The covector Q,, is a local and
covariant functional of its arguments and linear in the metric perturbations and the asymptotic
symmetry satisfying equation (7.2). While the three-form ® is a symplectic potential for w
satisfying equation (7.16).

Given a fixed choice of the symplectic current, from equations (7.2) and (7.16) the
ambiguities in the choice of Q, and the ® are given by

0.(g;0g:(f. X)) — Q.(g;9g: (f. X)) + p,(g: dg: (f, X)),

(D.2)
O(dg) — O(4g) + e30E(yg),

where the covector t,(g; 0g; (f, X)) is a local and covariant functional of its arguments and
linear in the metric perturbations and the asymptotic symmetry, and further satisfies

D, (g:0g:(f. X)) =0, (D.3)

for all background spacetimes and perturbations (satisfying the background and linearized
equations of motion respectively) and all asymptotic symmetries. While the function = is any
local and covariant function of the background spacetime fields on 7.

Under these ambiguities the definition of §Q (equation (D.1)) changes by

0O[(f, X); ST — 6QI(f, XU); S1+ /szu”ua(g;ég;(f,X)) - 5/ezu“XaE(g)- (D.4)
S

N

Since the integrated charge Q is fixed by the requirement that it vanish on Minkowski spacetime
(where E = 3,, = 0), we only need to analyze the ambiguities in § Q.
We now argue that the last two integrals above must vanish under the following assumptions

(a) p, and E are local and covariant functionals of their arguments as mentioned above with
1, satisfying equation (D.3).

(b) The Lorentz charge Q[(f = 0,X“); S] must match the Ashtekar—Hansen expression when
the conformal factor is chosen such that K, = 0.

(c) The total charge Q[(f, X“); S] of any Spi symmetry is conformally-invariant.

Consider first the p,-ambiguity and the case of a pure supertranslation (f, X* = 0). Since
the ambiguity g, is linear in f we have p,(g; 0g; f = 0) = 0. Further since p,, is divergence-
free (equation (D.3)), we can use theorem 1 in the form equation (B.17) with f as ‘dynamical
field’ to conclude that the second integral on the right-hand side of equation (D.4) vanishes on
any cross-section § for a supertranslation.

Next consider the p,-ambiguity with a Lorentz transformation (f = 0,X). Since the
Lorentz vector fields X* form a six-dimensional vector space and are not allowed to be arbi-
trary cross-sections of a vector bundle, we cannot use X“ as the ‘dynamical’ fields in theorem
1. So instead, we proceed another in another way. Consider the scalar potential k for the ten-
sor K, (equation (4.16)). Since k is a completely free function on 7 it is allowed to be an
arbitrary cross-section of a vector bundle on 7. Further, whenever k = 0 we have K, = 0
and by our assumption the Lorentz charge must the one found by Ashtekar and Hansen. Thus,
the ambiguity p, = 0 whenever k = 0 for all background spacetimes and all Lorentz vector
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fields X“. Now using k as the ‘dynamical field’, from theorem 1 in the form equation (B.17),
we conclude again that the second integral on the right-hand side of equation (D.4) van-
ishes on any cross-section S for a Lorentz symmetry. Thus, the p,-ambiguity does not
affect 6 Q.

Finally, consider the ZE-ambiguity in the choice of ®. In section 7.3 we showed that the
total charge Q for any Spi-symmetry (f, X“) is invariant under conformal transformations with
our choice of ® (equation (7.18)) which implies that the charge of a ‘pure Lorentz’ symme-
try must shift by a charge of a supertranslation under changes of the conformal factor (see
equation (7.27)). It follows that for the redefined Lorentz charge to transform correctly the
integral contributed by = in equation (D.4) must be conformally-invariant. Further, for the
redefined Lorentz charge to match the one found by Ashtekar and Hansen the integral con-
tributed by = in equation (D.4) must vanish whenever K,, = 0. Since K, can be chosen to
vanish by a choice of conformal factor (see remark 6.3) this implies the Z-ambiguity does not
affect 6 Q.

In summary, our charges are unambiguously determined by the pullback of the symplectic
current equation (5.15).

Here we remark that the symplectic current three-form itself is not uniquely determined by
the Lagrangian of the theory but is ambiguous up to

w(g; 018, 028) — w(g; 18, 028) + d [§1v(g; 628) — 21/(g5 0181, (D.5)

where v(g; dg) is a local and covariant two-form and is linear in the perturbation Jg. We have
not analyzed the effect of this ambiguity on our charges.

Appendix E. Lorentz charges with B, # 0

In section 7.2 to define the Lorentz charges at i’ we imposed the condition By, = 0 to
gain access to the ‘subleading’ magnetic part 3, of the asymptotic Weyl tensor (see
equation (4.14)). In this section we show how we can define a ‘subleading’ magnetic Weyl
tensor and the Lorentz charges even when B, # 0.

If B, does not vanish, then the ‘subleading’ piece as defined by equation (4.14) does not
exist in the limit. However, consider the derivative of the magnetic part of the Weyl tensor
along n“:

lim Q'27°V ("2 % Capean 1) = 0 OeBap = 0. (E.1)
—

Since the limit of the above quantity vanishes we can now demand that its ‘next order’ part
exist, that is,

H(if) = lim NV o(Q'? % Copeannis €71 (E.2)
—

The tensor field H ,,(77) is not tangential to 7. We can compute
Hop(pn” = 1im n"nf V(@' % Capeari 1) = = 1im 0 V" (@2 5 Capearin’)
—i —

1
= ZBa,,D”E, (E.3)

where in the first line we have used the fact that *C,py is antisymmetric in the last two
indices and to get the second line we replaced the derivative of 1 using the Einstein equation
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equation (4.1), and used equations (4.5) and (4.10). Note that H,,(7)n°n"” = 0, and thus the
only remaining part of H,, is its projection to .7 on both indices. We use this projection to
define the ‘subleading’ magnetic part of the Weyl tensor, that is, instead of equation (4.14) we
now use

Bap =hah, H ,(i]). (E.4)

As before 3, is a symmetric and traceless tensor field on 5#. Note that when B, = 0,
this new definition is completely equivalent to the previous one in equation (4.14) (see also
[26]).

The generalization of the equation of motion equation (4.20) is rather tedious to obtain. We
want to compute

O Hay = lim Q29 [V (2 5 Capean )
—
— hn(')l |:(Vb,r}e)Ql/2ve(Ql/2 " Cabcdnc‘,r}d)+Ql/2nevbve(gl/2 *Cahc‘dncnd):| .
—

(E.5)

In the first term we substitute the derivative of 7 using equation (4.1) and then evaluate the
limit of the expression using equations (4.6), (4.9), (4.10) and (E.3). For the second term
on the right-hand side, we first commute the derivatives and introduce terms involving the
the Riemann tensor of the unphysical spacetime. The term with the derivatives V” and V,
interchanged vanishes in the limit while the Riemann tensor terms can be computed by decom-
posing the Riemann tensor in terms of the Weyl tensor C,;.q and S, (equation (4.2)). Then
we can evaluate the limit using equations (4.6), (4.9), and (4.10). The final limit gives the
equation

1 1 5 1 1
8'H,, = —ZacBa,,KbC - ZahBabE + ZBa,,D”E + ZscdaEch‘”’ - ZnaBch’”

— By E”. (E.6)

Using equation (E.3) and the equation of motion equation (4.7) it can be verified that the con-
traction of the above equation with n¢ is trivial. Projecting the index a on to 5 we then get
the equation of motion for 3, as

D"B,, = %scdaEcthd + %BabDbE — %DaBchbc, (E.7)
which reduces to equation (4.20) when B, = 0.

To define the Lorentz charge we now construct the generalization of the tensor W,
(equation (7.10)). Note that the only essential properties of W, used to obtain equation (7.13)
are that W, = — 11—65achDCE and DWW, = 0 using the equation of motion for 3,,. We will
further require that W, is also traceless.

To find such a W, first note that the last term in equation (E.7) can be written as the
divergence of a symmetric tensor using equations (4.8), (4.11), and (4.13)

1 : 1 : : :
— DBk = — ED“ [—2BuK + 2hapBoaK — K n)D'K — €ca@DpK“K°.] .

(E.8)
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Note that the tensor in the square brackets is not traceless. However, we can add to it the
following symmetric tensor

5
—3 [2Bek) — haBeK ™ — BuK] (E.9)

which has vanishing divergence and thus does not affect the left-hand side. With this we
define

1 _ 1 .
War =B + =€ca@D EK®y) — —€,p.KDE

8 16

3 5 1 3
— ZB,E + =B, K¢, — —h,B. K — ZB,,K E.10
5 Bab + g Dcalty) 2h bBca g Dab ( )

! €caaDmK<K? ! €oaaK DK

16 cd(at?b) e 16 cd(a®™ D) B

which satisfies
1

Wi = —RsachD”E, DW,, =0, h®wW, =0. (E.11)

Then the Lorentz charge formula takes the same form as in equation (7.20) with W,
now defined as in equation (E.10). The flux of this charge is still given by the expression
equation (7.21).

Note that when B, = 0, the second line in equation (E.10) vanishes, but the terms in
the third line are nonvanishing in general; denote these terms by a symmetric tensor T,,. It
follows from equation (E.8) that T, is divergence-free when B, = 0. Thus D(T ZbXb )=20
and TZ,,X” = 0 when the scalar potential k for K,, (equation (4.16)) vanishes. Using the
scalar potential k as the ‘dynamical field” in theorem 1 it follows from equation (B.17) that
these terms do not contribute to the Lorentz charge expression. Thus, when B,, = 0 the
Lorentz charge defined using equation (E.10) coincides with the one defined previously in
section 7.2.

Under conformal transformations we can show that

Bap > Bap — €ca@E nD o — %Baba + %DcBabD“a, (E.12)
and that equation (E.7) is invariant. The explicit computation of the transformation of the
Lorentz charge presented in appendix C now becomes much more complicated. However,
the general argument presented in section 7.3 still holds. Thus, even without the assumption
B,, = 0 we have a satisfactory definition of Lorentz charges at spatial infinity.

The Lorentz charges for B,, # 0 case were also derived by Compere and Dehouck [33]
(with K = 0) using an asymptotic expansion in Beig—Schmidt coordinates which in the
unphysical spacetime coordinates used in appendix A reads

gab = [1 + op + 0(p)*dp* + po(p)dpdy”
(E.13)

7 B+ hY) = g 0 piay + 9 + (") dy'dy”.

For (3., as defined by equation (E.4), to exist we set the logarithmic term i,, = 0. With this
condition the B, is related to the curl of the metric coefficient 43 with additional terms whose
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form is rather complicated (as compared to equation (A.16) when B,, = 0). Note that with
K = 0, our W, is a symmetric, divergence-free and traceless tensor and thus we expect that
our charge expression in this case matches with the one derived in [33] in terms of 4, but we
have not shown this explicitly.

When the logarithmic term i,;, does not vanish, our definition equation (E.4) cannot be used
for the ‘subleading’ magnetic part of the Weyl tensor. We have not explored this case in detail
but we expect the following strategy to be useful. We can assume that

QY2 % Copeanfn® = Bap + Q2 In Q2by, + Q2B + 0(Q2'/?), (E.14)

where each of the tensors By, by, and (3, are symmetric and orthogonal to 7* and admit a c!
limit to i°. Using such an expansion in the Hodge dual of equation (4.3a) we can derive the
equations of motion for the limits of B, by, and 3. Since the expression for the symplectic
current equation (7.9) is unchanged, we can use these equations of motion to define an analogue
of the tensor W, and the Lorentz charges. From the point of view of matching these charges
to those on null infinity, we expect that the spacetimes with such a logarithmic behavior at
spatial infinity would correspond to the polyhomogenous spacetimes at null infinity defined
in [57].
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