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Abstract
We analyze the asymptotic symmetries and their associated charges at spatial
infinity in four-dimensional asymptotically-flat spacetimes. We use the covari-
ant formalism of Ashtekar and Hansen where the asymptotic fields and sym-
metries live on the three-manifold of spatial directions at spatial infinity, repre-
sented by a timelike unit-hyperboloid (or de Sitter space). Using the covariant
phase space formalism, we derive formulae for the charges corresponding to
asymptotic supertranslations and Lorentz symmetries at spatial infinity. With
the motivation of, eventually, proving that these charges match with those
defined on null infinity—as has been conjectured by Strominger—we do not
impose any restrictions on the choice of conformal factor in contrast to previ-
ous work on this problem. Since we work with a general conformal factor we
expect that our charge expressions will be more suitable to prove the matching
of the Lorentz charges at spatial infinity to those defined on null infinity, as has
been recently shown for the supertranslation charges.

Keywords: general relativity, asymptotic symmetries, spatial infinity

1. Introduction

In general relativity, the asymptotic symmetries of asymptotically-flat spacetimes at both
past and future null infinity are elements of the infinite-dimensional Bondi–Metzner–Sachs
(BMS) group [1, 2] (see [3, 4] for recent reviews). It has been conjectured by Stro-
minger [5] that the (a priori independent) BMS groups at past and future null infinity are
related via an antipodal reflection near spatial infinity. This matching relation gives a global
‘diagonal’ asymptotic symmetry group for general relativity. If similar matching conditions
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relate the gravitational fields, then there exist infinitely many conservation laws in classical
gravitational scattering between the incoming fluxes associated with the BMS group at past
null infinity and the outgoing fluxes of the corresponding (antipodally identified) BMS group
at future null infinity. These conservation laws are also related to soft graviton theorems
[6–11], gravitational memory effects [6, 7, 12–16] and the black hole information para-
dox [17–19] (see [20] for a detailed review of recent developments and a complete list of
references).

Such matching conditions on the asymptotic symmetries and fields have been shown in
Maxwell theory on a background Minkowski spacetime [21] and in general asymptotically-
flat spacetimes [22]. In the gravitational case, the matching of the supertranslation symmetries
and supermomentum charges has also be proven for linearized perturbations on a Minkowski
background [23] and in general asymptotically-flat spacetimes [24]. For the translation symme-
tries these reduce to the much older result of [25] which shows that the Bondi four-momentum
on future and past null infinity matches the four-momentum at spatial infinity.

The main technique used in [21–24] to prove these matching conditions is to ‘interpolate’
between the symmetries and charges at past and future null infinities using the field equations
and the asymptotic symmetries and charges defined near spatial infinity. In a background
Minkowski spacetime this analysis can be done using asymptotic Bondi–Sachs coordinates
near each null infinity and asymptotic Beig–Schmidt coordinates near spatial infinity. Using
the explicit transformations between these coordinate systems the matching conditions can be
shown to hold for Maxwell fields and linearized gravity on Minkowski spacetime [21, 23]. But
in general asymptotically-flat spacetimes the transformations between the asymptotic coor-
dinates is not known explicitly. In this case the covariant formulation of asymptotic-flatness
given by Ashtekar and Hansen [26], which treats both null and spatial infinities in a unified
spacetime-covariantmanner, has proven fruitful to analyze the matching of the symmetries and
charges [22, 24].

However, for the charges associated with the Lorentz symmetries such matching conditions
between past and future null infinity have not yet been proven, except for the case of stationary
spacetimes [27]. With an eye toward establishing these conjectured matching conditions for
Lorentz symmetries and charges we revisit the formulation of the asymptotic symmetries and
charges at spatial infinity.

The asymptotic behavior at spatial infinity can be studied using many different (but related)
formalisms. Since our primary motivation is to, ultimately, make contact with null infinity it
will be more useful to use a spacetime covariant formalism without using any (3+ 1) decom-
position of the spacetime by spacelike hypersurfaces [28–30]. Such a four-dimensional for-
mulation of asymptotic-flatness at spatial infinity can be be given using suitable asymptotic
coordinates as formulated by Beig and Schmidt [31]. The asymptotic symmetries and charges
using the asymptotic expansion of the metric in these coordinates have been worked out in
detail [31–33]. But as mentioned above, the relation between the Beig–Schmidt coordinates
and the coordinates adapted to null infinity (like the Bondi–Sachs coordinates) is not known in
general spacetimes. Thus, we will use the coordinate independent formalism of Ashtekar and
Hansen [26, 34] (definition 2.1) to investigate the symmetries and their associated charges at
spatial infinity4.

The asymptotic behavior of the gravitational field for any asymptotically-flat spacetime
is most conveniently described in a conformally-related unphysical spacetime, the Penrose

4 The relation between the Ashtekar–Hansen formalism and the Beig–Schmidt coordinates is summarized in
appendix A.
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conformal-completion. In the unphysical spacetime, null infinitiesI± are smooth null bound-
aries while spatial infinity is a boundary point i0 which is the vertex of ‘the light cone
at infinity’ formed by I±. For Minkowski spacetime the unphysical spacetime is smooth
(in fact, analytic) at i0. However, in more general spacetimes, the unphysical metric is not
even once-differentiable at spatial infinity unless the ADM mass of the spacetime vanishes
[26], and the unphysical spacetime manifold does not have a smooth differential structure
at i0. Thus, in the Ashtekar–Hansen formalism, instead of working directly at the point
i0 where sufficiently smooth structure is unavailable, one works on a ‘blowup’—the space
of spatial directions at i0—given by a timelike-unit-hyperboloid H in the tangent space
at i0. Suitably conformally rescaled fields, whose limits to i0 depend on the direction of
approach, induce smooth fields on H and we can study these smooth limiting fields using
standard differential calculus on H . For instance, in Maxwell theory the rescaled field ten-
sor ΩFab and in general relativity the rescaled (unphysical) Weyl tensor Ω1/2Cabcd (where Ω
is the conformal factor used in the Penrose conformal completion) admit regular direction-
dependent limits to i0, and these fields induce smooth tensor fields on H . Similarly, the
Maxwell gauge transformations and vector fields in the physical spacetime (suitably rescaled)
admit regular direction-dependent limits which generate the asymptotic symmetries at i0 (see
section 6).

The asymptotic symmetries in general relativity at spatial infinity have also been studied
in detail in the Ashtekar–Hansen formalism [26, 34]. However in deriving the charges asso-
ciated with these symmetries Ashtekar and Hansen reduced the asymptotic symmetry algebra
from the infinite-dimensional spi algebra to the Poincaré algebra consisting only of translations
and Lorentz transformations. This reduction was accomplished by demanding that the ‘leading
order’ magnetic part of the Weyl tensor, given by a tensor Bab on H (see equation (4.5)), van-
ish and additionally choosing the conformal factor near i0 so that the tensor potential Kab for
Bab also vanishes (see remark 6.3). This restriction was also imposed in [32, 35]. In the work of
Compère and Dehouck in [33], the conditionBab = 0 was not imposed however, they also spe-
cialized to a conformal factor where the trace habKab (where h

ab denotes the inverse of the met-
ric onH ) was set to vanish. As wewill show below (see section 7.3) the charges of the Lorentz
symmetries at spatial infinity are not conformally-invariant but shift by the charge of a super-
translation. This is entirely analogous to the supertranslation ambiguities in the Lorentz charges
at null infinity. Thus, when matching the Lorentz charges at spatial infinity to those at past and
future null infinity, one would need to perform this matching in the ‘same’ choice of conformal
factor in all three regions. A priori, it is not clear what the special choices of conformal factor
chosen in the above mentioned analyses imply at null infinity. Thus, we will not impose any
such restrictions on the conformal factor and not impose any conditions on Kab (apart from its
equations of motion arising from the Einstein equation) in our analysis. As we will show, one
peculiar consequence of keeping a completely unrestricted conformal factor will be that our
charges will not be exactly conserved but will have a non-vanishing flux through regions ofH
(except for pure translations). Thus, these charges are not associated with the point i0 at spatial
infinity, but with cross-sections of the ‘blowup’H . This is not a serious drawback; as shown in
[22, 24] formatching the symmetries and charges at null infinity, one only requires that the total
flux of the charges through all ofH vanish but there can be a non-vanishing flux through local
regions ofH . Thus, ourmain goal in this work is to analyze the symmetries and charges in gen-
eral relativity without imposing any restrictions on the choice of conformal factor near spatial
infinity.

In our analysis of the asymptotic charges we will use the covariant phase space formal-
ism described below. Since the relevant quantities in the covariant phase space are defined in
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terms of the physical metric and their perturbations, we first analyze the conditions on the cor-
responding unphysical quantities so that they preserve the asymptotic-flatness conditions and
the universal structure at i0 (section 5). To derive the asymptotic symmetry algebra we then
consider a physical metric perturbation £ξ ĝab generated by an infinitesimal diffeomorphism
and demand that it preserve the asymptotic conditions in the unphysical spacetime in the limit
to i0. This will provide us with the following description of the asymptotic symmetries at i0

(section 6). The asymptotic symmetry algebra spi is parametrized by a pair ( f ,Xa) where f is
any smooth function and Xa is a Killing field on H . The function f parametrizes the super-
translations and Xa parametrize the Lorentz symmetries. The spi algebra is then a semi-direct
sum of the Lorentz algebra with the infinite-dimensional abelian subalgebra of supertransla-
tions. Note that this is the same as the asymptotic symmetries derived in [26, 34]. The only
difference in our analysis is that we obtain the symmetries by analyzing the conditions on dif-
feomorphisms in the physical spacetime instead of using the unphysical spacetime directly as
in [26, 34].

To obtain the charges associated with these symmetries, the primary quantity of interest
is the symplectic current derived from the Lagrangian of a theory (see, [36, 37] for details).
The symplectic currentω(ĝ; δ1ĝ, δ2ĝ), is a local and covariant three-formwhich is an antisym-
metric bilinear in two metric perturbations, δĝ on the physical spacetime. It can be shown that
when the second perturbation δĝab = £ξĝab is the perturbation corresponding to an infinitesimal
diffeomorphism generated by a vector field ξa we have

ω(ĝ; δĝ,£ξ ĝ) = d[δQξ − ξ · θ(δĝ)], (1.1)

where we have assumed that ĝab satisfies the equations of motion and δĝab satisfies the lin-
earized equations of motion. The two-form Qξ is the Noether charge associated with the
vector field ξa and the three-form θ(δĝ) is the symplectic potential [36, 37]. If we integrate
equation (1.1) over a three-dimensional surface Σ with boundary ∂Σ we get∫

Σ

ω[ĝ; δĝ,£ξ ĝ] =
∫
∂Σ

δQξ − ξ · θ(δĝ). (1.2)

To define the asymptotic charges at spatial infinity, we would like to evaluate equation (1.2)
when the surfaceΣ extends to a suitably regular three-surface at i0 in the unphysical spacetime.
Given the low amount of differentiability at i0 the appropriate condition is that Σ extends to a
C>1 surface at i0. The limit of the boundary ∂Σ to i0 corresponds to a two-sphere cross-section
S of the unit-hyperboloid H in the Ashtekar–Hansen formalism. Then, the limiting integral
on the right-hand side of equation (1.2) (with the asymptotic conditions imposed on the metric
perturbations as well as the symmetries) will define a perturbed charge on S associated with
the asymptotic symmetry generated by ξa. However, even though the explicit expressions for
the integrand on the right-hand side of equation (1.2) are well-known (see for instance [37]),
computing this limiting integral is difficult. So we will use an alternative strategy described
next.

We will show that with the appropriate asymptotic-flatness conditions at i0, the symplectic
current three-form ω ≡ ωabc is such that Ω3/2ωabc has a direction-dependent limit to i0. The
pullback of this limit to H , which we denote by ω

←
, defines a symplectic current on H . We

show that when one of the perturbations in this symplectic current is generated by an asymptotic
spi symmetry ( f ,Xa), we have

ω
←
(g; δg, δ( f ,X)g) = −ε3DaQa(g; δg, ( f ,X)), (1.3)
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where ε3 and D are the volume element and covariant derivative on H . The covector
Qa(g; δg, ( f ,X)) is a local and covariant functional of the background fields corresponding
to the asymptotic (unphysical) metric gab, and linear in the asymptotic (unphysical) metric
perturbations δgab and the asymptotic symmetry parametrized by ( f ,Xa). Thus, we can write
the symplectic current, with one perturbation generated by an asymptotic symmetry, as a total
derivative on H . Then, in analogy to equation (1.2), we define the perturbed charge on a
cross-section S of H by the integral∫

S

ε2uaQa (g; δg, ( f ,X), (1.4)

where ε2 is the area element and ua is a unit-timelike normal to the cross-section S within
H . We then show that when the asymptotic symmetry is a supertranslation f , the quantity
Qa(g; δg, f ) is integrable, i.e, it can be written as the δ of some covector which is itself a
local and covariant functional of the asymptotic fields and supertranslation symmetries. Then
‘integrating’ equation (1.4) in the space of asymptotic fields, we can define a charge asso-
ciated with the supertranslations on any cross-section S of H (see section 7.1). When the
asymptotic symmetry is a Lorentz symmetry parameterized by a Killing vector field Xa on
H , equation (1.4) cannot be written as the δ of some quantity (unless we restrict to the
choice of conformal factor where habKab = 0 as described above). In this case, we will adapt
the prescription by Wald and Zoupas [37] to define an integrable charge for Lorentz sym-
metries (section 7.2). Then the change of these charges over a region ΔH bounded by two
cross-sections provides a flux formula for these charges. In general, these fluxes will be non-
vanishing (except for translation symmetries) unless we again restrict to the conformal factor
where habKab = 0. However, as mentioned above, from the point of view of matching these
charges to those on null infinity, the special conformal choices might not be convenient and
it is not necessary to have exactly conserved charges on H . Thus, we will not restrict the
conformal factor in any way and work with charges which can have non-trivial fluxes through
some region of H .

The rest of this paper is organized as follows. In section 2 we recall the definition of
asymptotic-flatness at spatial infinity in terms of an Ashtekar–Hansen structure. To illus-
trate our approach outlined above we first study the simpler case of Maxwell fields at spatial
infinity, and derive the associated symmetries and charges in section 3. In section 4 we then
consider the asymptotic gravitational fields and Einstein equations at spatial infinity. We also
describe the universal structure, that is the structure that is common to all spacetimes which
are asymptotically-flat at i0, in section 4.1. In section 5 we analyze the conditions on metric
perturbations which preserve asymptotic flatness and obtain the limiting form of the symplec-
tic current of general relativity on the space of directions H . In section 6, using the analysis
of the preceding section, we derive the asymptotic symmetry algebra (the spi algebra) by con-
sidering infinitesimal metric perturbations generated by diffeomorphisms which preserve the
asymptotic flatness conditions. In section 7 we derive the charges and fluxes corresponding
to these spi symmetries. We end with a summary and describe possible future directions in
section 8.

We collect some useful results and asides in the appendices. In appendix A we construct
a useful coordinate system near i0 using the asymptotic flatness conditions on the unphysi-
cal metric and relate it to the Beig–Schmidt coordinates in the physical spacetime. Appendix
B collects useful results on the unit-hyperboloid H on Killing vector fields, symmetric ten-
sor fields and a theorem by Wald showing that (with suitable conditions) closed differential
forms are exact. Computations detailing the change in the Lorentz charge under conformal
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transformationsare presented in appendixC. In appendixDwe show that our charges are unam-
biguously defined by the the symplectic current of vacuum general relativity. In appendix E we
generalize the Lorentz charges derived in section 7.2 to include spacetimes where the ‘leading
order’ magnetic part of the Weyl tensor Bab is allowed to be non-vanishing.

We use an abstract index notation with indices a, b, c, . . . .for tensor fields. Quantities
defined on the physical spacetimewill be denoted by a ‘hat’, while the ones on the conformally-
completed unphysical spacetime are without the ‘hat’ e.g. ĝab is the physical metric while gab
is the unphysical metric on the conformal-completion. We denote the spatial directions at i0

by �η. Regular direction-dependent limits of tensor fields, which we will denote to be C>−1,
will be represented by a boldface symbol e.g. Cabcd(�η) is the limit of the (rescaled) unphys-
ical Weyl tensor along spatial directions at i0. The rest of our conventions follow those of
Wald [38].

2. Asymptotic-flatness at spatial infinity: Ashtekar–Hansen structure

We define spacetimes which are asymptotically-flat at null and spatial infinity using an
Ashtekar–Hansen structure [26, 34]. We use the following the notation for causal structures
from [39]: J(i0) is the causal future of a point i0 in M, J(i0) is its closure, J̇(i0) is its boundary
and I := J̇(i0)− i0. We also use the definition and notation for direction-dependent tensors
from [40], see also appendix B of [24].

Definition 2.1 (Ashtekar–Hansen structure [34]). A physical spacetime (M̂, ĝab) has an
Ashtekar–Hansen structure if there exists another unphysical spacetime (M, gab), such
that

(a) M is C∞ everywhere except at a point i0 where it is C>1,
(b) The metric gab is C∞ onM− i0, and C0 at i0 and C>0 along spatial directions at i0,
(c) There is an embedding of M̂ intoM such that J(i0) = M − M̂,
(d) There exists a function Ω on M, which is C∞ on M− i0 and C2 at i0 so that gab = Ω2ĝab

on M̂ and

1. Ω = 0 on J̇(i0),
2. ∇aΩ �= 0 on I ,
3. At i0,∇aΩ = 0,∇a∇bΩ = 2gab.

(e) There exists a neighborhood N of J̇(i0) such that (N, gab) is strongly causal and time
orientable, and in N ∩ M̂ the physical metric ĝab satisfies the vacuum Einstein equation
R̂ab = 0,

(f ) The space of integral curves of na = gab∇bΩ on J̇(i0) is diffeomorphic to the space of null
directions at i0,

(g) The vector field	−1na is complete on I for any smooth function	 onM− i0 such that
	 > 0 on M̂ ∪ I and∇a(	4na) = 0 on I .

The physical role of the conditions in definition 2.1 is to ensure that the point i0 is space-
like related to all points in the physical spacetime M̂, and represents spatial infinity, and
that null infinity I := J̇(i0)− i0 has the usual structure. Note that the metric gab is only
C>0 at i0 along spatial directions, that is, the metric is continuous but the metric connec-
tion is allowed to have limits which depend on the direction of approach to i0. This low
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differentiability structure is essential to allow spacetimes with non-vanishing ADM mass
[26, 34]. In the following we will only consider the behavior of the spacetime approach-
ing i0 along spatial directions, and we will not need the conditions corresponding to null
infinity.

For spacetimes satisfying definition 2.1 we have the following limiting structures at i0 when
approached along spatial directions.

Along spatial directions ηa :=∇aΩ
1/2 is C>−1 at i0 and

ηa := lim
→i0

∇aΩ1/2, (2.1)

determines a C>−1 spatial unit vector field at i0 representing the spatial directions �η at i0. The
space of directions �η in Ti0 is a unit-hyperboloidH .

If Ta...b... is a C>−1 tensor field at i0 in spatial directions then, lim
→i0

Ta...b... = Ta...b...(�η) is a

smooth tensor field on H . Further, the derivatives of Ta...b...(�η) to all orders with respect to
the direction �η satisfy5

∂c · · ·∂dTa...b...(�η) = lim
→i0

Ω1/2∇c · · ·Ω1/2∇dT
a...

b..., (2.2)

where ∂a is the derivative with respect to the directions �η defined by

vc∂cTa...b...(�η) := lim
ε→0

1
ε

[
Ta...b...(�η + ε�v)− Ta...b...(�η)

]
for allva ∈ TH ,

ηc∂cTa...b...(�η) := 0. (2.3)

The metric hab induced on H by the universal metric gab at i0, satisfies

hab := gab − ηaηb = ∂aηb. (2.4)

Further, if Ta...b...(�η) is orthogonal to ηa in all its indices then it defines a tensor field Ta...b...
intrinsic toH . In this case, it follows from equation (2.4) and∂c gab = 0 (since gab is direction-
independent at i0) that projecting all the indices in equation (2.2) using hab defines a derivative
operatorDa intrinsic to H which is also the covariant derivative operator associated with hab.
We also define

εabc := − ηdεdabc , εab := ucεcab, (2.5)

where εabcd is volume element at i0 corresponding to the metric gab, εabc is the induced volume
element on H , and εab is the induced area element on some cross-section S of H with a
future-pointing timelike normal ua such that habuaub = −1.

Remark 2.1 (conformal freedom). It follows from the conditions in definition 2.1 that the
allowed conformal freedom Ω �→ ωΩ is such that ω > 0 is smooth in M− i0, is C>0 at i0 and
ω|i0 = 1. From these conditions it follows that

5 The factors of Ω1/2 on the right-hand side of equation (2.2) convert between ∇a and the derivatives with respect to
the directions; see [34, 41].
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ω = 1+Ω1/2α, (2.6)

where α is C>−1 at i0. Let α(�η) := lim
→i0

α, then from equation (2.6) we also get

lim
→i0

∇aω = αηa + Daα. (2.7)

Note in particular, that the unphysical metric gab at i0 is invariant under conformal transforma-
tions. While

ηa �→ ω−2[ω1/2ηa +
1
2
ω−1/2Ω1/2∇aω] =⇒ ηa �→ ηa. (2.8)

Thus, unit spatial directions �η, the space of directionsH , and the induced metric on it hab are
also invariant.

3. Maxwell fields: symmetries and charges at i0

To illustrate our general strategy, we first consider the simpler case of Maxwell fields on any
fixed background spacetime satisfying definition 2.1.

In the physical spacetime M̂, let F̂ab be the Maxwell field tensor satisfying the Maxwell
equations

ĝacĝbd∇̂bF̂dc = 0 , ∇̂[aF̂bc] = 0. (3.1)

In the unphysical spacetimeM with Fab := F̂ab we have

∇bF
ba = 0 , ∇[aFbc] = 0. (3.2)

The Maxwell tensor Fab is smooth everywhere in the unphysical spacetime except at i0.
Analyzing the behavior of Fab in the simple case of a static point charge in Minkowski space-
time, it can be seen that Fab diverges in the limit to i0, but ΩFab admits a direction-dependent
limit6. Hence we assume as our asymptotic condition that

lim
→i0

ΩFab = Fab(�η) isC>−1. (3.3)

The direction-dependent limit of the Maxwell tensor, Fab, induces smooth tensor fields on
H . These are given by the ‘electric’ and ‘magnetic’ parts of the Maxwell tensor defined
by

Ea(�η) = Fab(�η)ηb , Ba(�η) = ∗Fab(�η)ηb. (3.4)

where ∗Fab(�η) := 1
2εab

cdFcd(�η) is the Hodge dual with respect to the unphysical volume ele-
ment εabcd at i0. The electric and magnetic fields are orthogonal to ηa and thus induce
intrinsic fields Ea and Ba on H . Note that Fab can be reconstructed from Ea and Ba
using

6 Note that this diverging behavior of Fab refers to the tensor in the unphysical spacetime with the chosen C>1 dif-
ferential structure at i0. In an asymptotically Cartesian coordinate system of the physical spacetime, this behavior
reproduces the standard 1/r2 falloff for Fab and Fab(�η) is the ‘leading order’ piece at O(1/r2).

8
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Fab = 2E[aηb] + εabcdη
cBd. (3.5)

The asymptotic Maxwell equations are obtained by multiplying equation (3.2) by Ω3/2 and
taking the limit to i0 in spatial directions (see [26] for details)

DaEa = 0 , D[aEb] = 0,

DaBa = 0 , D[aBb] = 0.
(3.6)

To use the symplectic formalism for Maxwell theory, we will need to introduce the vector
potential as the basic dynamical field. LetÂa be a vector potential for F̂ab so that F̂ab = 2∇̂[aÂb]
in the physical spacetime. Then, Aa :=Âa is a vector potential for Fab in the unphysical space-
time. We further assume that the vector potential Aa for Fab is chosen so that Ω1/2Aa is C

>−1

at i0. Then define the asymptotic potentials

V(�η) :=ηa lim
→i0

Ω1/2Aa , Aa(�η) :=ha
b lim
→i0

Ω1/2Ab. (3.7)

Then the corresponding smooth fields V andAa induced onH act as potentials for the electric
and magnetic field through

Ea = DaV , Ba =
1
2
εa

bcDbAc. (3.8)

Even though we do not need this form, for completeness, we note that the Maxwell equations
on H (equation (3.6)) can be written in terms of the potentials V and Aa as

D2V = 0 , D2Aa = DaDbAb + 2Aa. (3.9)

Now consider a gauge transformation of the vector potential

Aa �→ Aa +∇aλ, (3.10)

where λ is C>−1 at i0. Then with λ(�η) := lim
→i0

λ, the gauge transformations of the asymptotic

potentials (equation (3.7)) on H is given by

V �→ V , Aa �→ Aa + Daλ. (3.11)

Thus, the asymptotic symmetries of Maxwell fields at i0 are given by the functions λ
on H .

Remark 3.1 (special choices of gauge). The gauge freedom in the Maxwell vector poten-
tial can be used to impose further restrictions on the potential Aa on H . We illustrate the
following two gauge conditions which will have analogues in the gravitational case (see
remark 6.3).

(a) Consider the Lorenz gauge condition ĝab∇̂aÂb = 0 on the physical vector potential Âa in
the physical spacetime as used in [21, 42]. Multiplying this condition by Ω−1 and taking
the limit to i0, using equation (3.7) we get the asymptotic gauge condition

DaAa = 2V. (3.12)

Alternatively, from equation (3.11) we see that

9
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DaAa �→ DaAa + D2λ. (3.13)

By solving a linear hyperbolic equation for λ we can choose a new gauge in which

DaAa = 0. (3.14)

Both these gauge conditions reduce the allowed asymptotic symmetries to

D2λ = 0. (3.15)

(b) If we impose the restriction Ba = 0 then D[aAb] = 0 and thus there exists a function A so
that Aa = DaA.7 Then using the transformation equation (3.11) we can set Aa = 0. The
remaining asymptotic symmetries are just the Coulomb symmetries λ = constant. This
is analogous to the condition used by Ashtekar and Hansen in the gravitational case to
reduce the asymptotic symmetries to the Poincaré algebra [26].

In what follows we will not need to impose any gauge condition on the potential Aa
and our analysis will be completely gauge invariant.

Remark 3.2 (Logarithmic gauge transformations). Note that above we only considered
gauge transformations equation (3.10) where the gauge parameter λ was C>−1 at i0. How-
ever, there is an additional ambiguity in the choice of gauge given by the logarithmic gauge
transformations of the form

Aa �→ Aa +∇a(ln Ω1/2Λ), (3.16)

where Λ is C>0 at i0. Under this gauge transformation Ω1/2Aa is still C>−1 at i0, and from
equation (3.7) we have the transformations

V �→ V +Λ , Aa �→ Aa, (3.17)

whereΛ := lim
→i0

Λ which is direction-independent at i0 and induces a constant function on H .

From equation (3.8) we see that the fields Ea and Ba are invariant under this transformation.
Since our charges and fluxes, derived below, will be expressed in terms of Ea we will not need
to fix this logarithmic gauge ambiguity in the potentials for electromagnetism. However, there
is an analogous logarithmic translation ambiguity in the gravitational case which we will need
to fix (see remark 4.2). Thus we now illustrate how this logarithmic gauge ambiguity can be
fixed even in electromagnetism.

Since the metric gab in the tangent space Ti0 is universal and isometric to the Minkowski
metric it is invariant under the reflection of the spatial directions �η �→ −�η. This gives rise to
a reflection isometry of the metric hab on the space of directions H . It was shown in [22]
that the Maxwell fields on H which ‘match’ on to asymptotically-flat Maxwell fields on null
infinity are the ones where the electric field Ea is reflection-odd i.e.

Ea(�η) = −Ea(−�η). (3.18)

Further, since the logarithmic gauge parameterΛ is direction-independent we have that, Λ is
reflection-even

7 This follows from the fact that every one-loop in H is contractible to a point and hence the first de Rahm
cohomology group of H is trivial.

10
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Λ(�η) = Λ(−�η). (3.19)

Using a reflection-odd Ea in equation (3.8) we see that using a logarithmic gauge transforma-
tion we can demand that the potential V is also reflection-odd, so that

V(�η) = −V(−�η). (3.20)

This fixes the logarithmic gauge ambiguity in the potentials.

Let us now analyze the charges and fluxes for this theory. To do this, we start by studying
the symplectic current. In vacuum electromagnetism, this is given by:

ωabc(δ1A, δ2A) = ε̂abcd

(
δ1F̂

deδ2Âe − δ2F̂
deδ1Âe

)
, (3.21)

where the indices on δF̂ab have been raised with the physical metric ĝab. In terms of quantities
in the unphysical spacetime we have

ωabc(δ1A, δ2A) = εabcd
(
δ1F

deδ2Ae − δ2F
deδ1Ae

)
, (3.22)

where we have used ε̂abcd = Ω−4εabcd , and ĝab = Ω2gab.
To obtain the limit to i0 we rewrite this in terms of direction-dependent quantities from

equations (3.3) and (3.7). We see that Ω3/2ωabc is C
>−1 at i0. The pullback of this direction-

dependent limit to H is then given by

ω
←
(δ1A, δ2A) = −ε3 (δ1Eaδ2Aa − δ2Eaδ1Aa) , (3.23)

where ε3 = εabc is the volume element on H .
We now take δ2 to correspond to a gauge transformation as in equation (3.11) to get

ω
←
(δA, δλA) = −ε3δEaDaλ = −ε3Da(δEaλ). (3.24)

where in the last step we have used the linearized Maxwell equation DaδEa = 0 (see
equation (3.6)). That is, the symplectic current (with one of the perturbations being gener-
ated by a gauge transformation) can be written as a total derivative of δEaλ. Thus we define
the perturbed charge δQ[λ; S] on a cross-section S of H by

δQ[λ; S] =
∫
S

ε2uaδEaλ, (3.25)

where ε2 ≡ εab is the area element on S and ua is the future-directed normal to it. Note that
this expression is manifestly integrable and defines the unperturbed charge once we choose
a reference solution on which Q[λ; S] = 0 for all λ and all S. For the reference solution we
choose the trivial solution Fab = 0 so that Ea = 0. Then the unperturbed charge is given by

Q[λ; S] =
∫
S

ε2uaEaλ, (3.26)

LetΔH be any region ofH bounded by the cross-sections S2 and S1 (with S2 in the future
of S1), then the flux of the charge equation (3.26) throughΔH is given by

11



Class. Quantum Grav. 37 (2020) 165008 K Prabhu and I Shehzad

F [λ;ΔH] = −
∫
ΔH

ε3EaDaλ. (3.27)

Note that the flux of the charge vanishes for λ = constant in which case equation (3.26) is the
Coulomb charge. The charges associated with a general smooth λ are only associated with the
blowup H and not to i0 itself. These additional charges are nevertheless useful to relate the
charges defined on past and future null infinity and derive the resulting conservation laws for
their fluxes in a scattering process; see [22].

4. Gravitational fields and Einstein equations at i0

Now we turn to a similar analysis of symmetries, charges and fluxes for general relativity. To
set the stage in this sectionwe analyze the consequences of Einstein equations and the universal
structure common to all spacetimes satisfying definition 2.1.

Using the conformal transformation relating the unphysical Ricci tensor Rab to the physical
Ricci tensor R̂ab (see appendixD of [38]), the vacuumEinstein equation R̂ab = 0 can be written
as

Sab = −2Ω−1∇a∇bΩ+ Ω−2∇cΩ∇cΩgab,

Ω1/2Sab = −4∇aηb + 4Ω−1/2

(
gab −

1
η2

ηaηb

)
ηcη

c,
(4.1)

where, as before, ηa = ∇aΩ
1/2, and Sab is given by

Sab :=Rab −
1
6
Rgab. (4.2)

Further, the Bianchi identity ∇[aRbc]de = 0 on the unphysical Riemann tensor along with
equation (4.1) gives the following equations for the unphysical Weyl tensor Cabcd (see [41]
for details).

∇[e(Ω
−1Cab]cd) = 0, (4.3a)

∇dCabcd = −∇[aSb]c. (4.3b)

Since the physical Ricci tensor R̂ab vanishes, the gravitational field is completely described
by the physical Weyl tensor Ĉabcd . The unphysicalWeyl tensor is then Cabcd = Ω2Ĉabcd . Since
the unphysical metric gab is C>0 at i0, Ω1/2Cabcd is C>−1 at i0 [26], and let

Cabcd(�η) := lim
→i0

Ω1/2Cabcd. (4.4)

The electric and magnetic parts of Cabcd(�η) are, respectively, defined by

Eab(�η) :=Cacbd(�η)ηcηd , Bab(�η) := ∗Cabcd(�η)ηcηd. (4.5)

where ∗Cabcd(�η) := 1
2εab

efCef cd(�η). It follows from the symmetries of the Weyl tensor that both
Eab(�η) and Bab(�η) are orthogonal to ηa, symmetric and traceless with the respect to the metric
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hab on H , and thus define smooth tensor fields Eab and Bab on H , respectively. The limiting
Weyl tensor can be obtained from these fields using

Cabcd(�η) = 4η[aη[cE
b]
d] − 4h[a[cE

b]
d] + 2εabeη[cBd]e + 2εcdeη[aBb]e. (4.6)

Further, as shown in [26], multiplying equation (4.3a) by Ω and taking the limit to i0 gives the
equations of motion

D[aEb]c = 0 , D[aBb]c = 0. (4.7)

These are the asymptotic Einstein equations at spatial infinity. Taking the trace over the indices
a and c and using the fact that Eab and Bab are traceless, it also follows that

DbEab = DbBab = 0. (4.8)

To apply the symplectic formalism to general relativity, we will need to consider met-
ric perturbations instead of just perturbations of the Weyl tensor. As we will show below
(equation (5.8)) suitably rescaled limits of the unphysicalmetric perturbations can be expressed
in terms of perturbations of certain potentials for Eab and Bab provided by the tensor Sab in
equation (4.2). These potentials are obtained as follows: since gab is C>0, Ω1/2Sab is C>−1 and
let Sab(�η) := lim

→i0
Ω1/2Sab. Define

E(�η) :=Sab(�η)ηaηb , Kab(�η) :=hachbdScd(�η)− habE(�η), (4.9)

which induce the fields E and Kab intrinsic to H . Following [26], multiplying equation (4.3b)
by Ω and taking the limit to i0, along with equation (4.7) implies that

ha
bηcSbc(�η) = DaE, (4.10)

and

Eab = −1
4
(DaDbE+ habE) , Bab = −1

4
εcdaDcKd

b. (4.11)

Thus, E is a scalar potential for Eab while Kab is a tensor potential for Bab.8

The potentials E and Kab are not free fields on H . Suitably commuting the derivatives and
using equation (B.1) one can verify that Eab identically satisfies equation (4.7) when written
in terms of the potential E while habEab = 0 gives

D2E+ 3E = 0. (4.12)

On the other hand, since Kab is symmetric the magnetic field Bab in equation (4.11) is
identically traceless. Since Bab is symmetric and satisfies equation (4.7), we get that

εa
bcBbc = 0 =⇒ DbKab = DaK, (4.13a)

εa
cdDcBdb = 0 =⇒ D2Kab = DaDbK + 3Kab − habK, (4.13b)

8 Since Bab is curl-free (equation (4.7)), there also exists a scalar potential for Bab (see lemma B.1). However this
scalar potential cannot be obtained as the limit of some tensor field on spacetime.
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where K := habKab, and to get equation (4.13b) we have commuted derivatives using equation
(B.1) and used equation (4.13a). Considering the potentials E and Kab as the basic fields, the
asymptotic Einstein equations are given by equations (4.12) and (4.13), while the Weyl tensors
Eab and Bab are derived quantities through equation (4.11).

To define the charge for asymptotic Lorentz symmetries, e.g. angular momentum in
section 7.2, we will need the ‘subleading’ part of themagneticWeyl tensor. FollowingAshtekar
and Hansen [26], we will restrict to the class of spacetimes satisfying the additional condition
Bab = 0. We also require that the ‘subleading’ magnetic field defined by

βab := lim
→i0

∗Cabcdηcηd, (4.14)

exists as a C>−1 tensor field at i0. The condition Bab = 0 is satisfied in any spacetime which
is either stationary or axisymmetric [43]. In appendix E we show how one can define a
‘subleading’ magnetic Weyl tensor and the Lorentz charges even when Bab �= 0. Since those
computations are more tedious we impose the above restriction in the main body of the
paper.

The consequences of this restriction are as follows. Since Bab = 0 from equation (4.11) the
‘curl’ of Kab vanishes

D[aKb]c = 0. (4.15)

It follows from lemma B.1 that there exists a scalar potential k such that

Kab = DaDbk+ habk. (4.16)

The scalar potential k is a free function onH since the equations of motion equation (4.13) are
identically satisfied after using equation (4.16). Using the freedom in the conformal factor one
can now setKab = 0 (see [26] and remark 6.3). Since, we do not wish to impose any restrictions
on the conformal factor, we will not demand that Kab vanishes.

Note that from equation (4.14) it follows thatβab is symmetric, tangent to H and traceless.
In the following we shall also need an equation of motion for βab which is obtained as follows:
contract the indices e and d in equation (4.3a) and multiply by 3Ω to get

∇dCabcd = Ω−1Cabcd∇dΩ = 2Ω−1/2Cabcdη
d. (4.17)

Using the Hodge dual of the above equation we obtain

Ω1/2∇b(∗Cacbdηcηd) = −2 ∗ Cacbdηbηcηd + 2Ω1/2 ∗ Cacbd∇bη(cηd). (4.18)

The first term on the right-hand side vanishes due to the symmetries of the Weyl tensor. In the
second term on the right-hand side we substitute for the derivative of ηa using equation (4.1)
to get

Ω1/2∇b(∗Cacbdηcηd) = −1
4
(Ω1/2 ∗ Cacbd)(Ω1/2Sbc)ηd. (4.19)

Taking the limit to i0, writing the tensor Sab in terms of the gravitational potentials through
equations (4.9) and (4.10), and using Bab = 0 along with equation (4.6), we get the equation
of motion

Dbβab =
1
4
εcdaEcbKbd. (4.20)
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Remark 4.1 (conformal transformations of the asymptotic fields). Under changes of the
conformal factor Ω �→ ωΩ we have

Sab �→ Sab − 2ω−1∇a∇bω + 4ω−2∇aω∇bω − ω−2gab∇cω∇cω,

Cabcd �→ ω2Cabcd.
(4.21)

From the conditions in remark 2.1 it follows that Eab, Bab and E are invariant while

Kab �→ Kab − 2(DaDbα+ habα). (4.22)

Further, when Bab = 0 we also have the transformation of the ‘subleading’ magnetic Weyl
tensor βab given by

βab �→ βab − εcd(aEcb)Ddα. (4.23)

4.1. The universal structure at i0

In this section we summarize the universal structure at i0, that is, the structure common to all
spacetimes which are asymptotically-flat in the sense of definition 2.1 and thus is independent
of the choice of the physical spacetime under consideration.

Consider any two unphysical spacetimes (M, gab,Ω) and (M′, g′ab,Ω′) with their respective
C>1 differential structures at their spatial infinities corresponding to two different physical
spacetimes. Using a C1 diffeomorphism we can identify the points representing the spatial
infinities and their tangent spaces without any loss of generality. Each of the metrics gab and
g′ab induces a metric in the tangent space Ti0 which is isometric to theMinkowskimetric. Thus,
the metric gab at i0 is also universal. This also implies that the spatial directions �η, the space of
directions H and the induced metric hab are universal.

So far we have only used the C1 differential structure. However since the differential struc-
ture at i0 is slightly better, beingC>1, we can identify the spacetimes at the ‘next order’. In [26]
this structure was imposed by suitably identifying spacelike geodesics in the physical space-
times. But as pointed out by [44] this identification cannot be performed except in very special
cases. Below we argue that a similar identification of the spacetimes can be done using equiv-
alence classes of C>1 curves in the unphysical spacetimes. The proof is based on constructing
a suitable C>1 coordinate system at i0 and is deferred to appendix A, we summarize the main
construction below.

Consider the unphysical spacetime (M, gab,Ω), and a spacelike C>1 curve Γv in M passing
through i0 with tangent va. Since the curve is C>1 its tangent vector va is C>0. Using the
universal metric gab at i0 we can then demand that va be unit-normalized at i0 and thus along
the curve Γv

lim
→i0

va = ηa, (4.24)

that is the curve Γv points in some spatial direction �η at i0. Further, since Γv is C>1, vb∇bv
a

is a C>−1 vector. Thus, define the acceleration of Γv at i0 by the projection of this vector on
to H

Aa[Γv] :=hab lim
→i0

vc∇cv
b. (4.25)

Now we define the curves Γv (with tangent va) and Γη (with tangent ηa) to be equivalent if
their accelerations are equal at i0. To see what this entails, note that since va is C>0 and equals
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ηa in the limit to i0 we have that va = ηa +Ω1/2wa for some wa which is C>−1 at i0. Then,
from equation (4.25) we have

Aa[Γv] = Aa[Γη] ⇐⇒ hab lim
→i0

wb = 0. (4.26)

Thus, we have an equivalence class of curves through i0 pointing in each direction �η defined
by9

Γv ∼ Γη ⇐⇒ hab lim
→i0

Ω−1/2(vb − ηb) = 0. (4.27)

We will show in appendix A that using a C>1 diffeomorphism one can identify these equiv-
alence classes of curves between any any two spacetimes (M, gab,Ω) and (M′, g′ab,Ω′). Fur-
ther, we show that the conformal factors Ω and Ω′ can also be identified in a neighborhood
of i0.

Thus, the universal structure at i0 consists of the point i0, the tangent space Ti0, the metric
gab at i0 and the equivalence classes of C>1 curves given by equation (4.27). In addition, the
conformal factor Ω can also be chosen to be universal.

Remark 4.2 (logarithmic translations). So far we have worked with a fixed C>1 differen-
tial structure in the unphysical spacetime at i0. But given a physical spacetime the unphysical
spacetime is ambiguous up to a four-parameter family of logarithmic translations at i0 which
simultaneously change the C>1 differential structure and the conformal factor at i0; see [45]
or remark B.1 of [24] for details. The logarithmic translations at i0 are parameterized by a
direction-independent vectorΛa at i0. Any such vector can be written as

Λa = Ληa + DaΛ, (4.28)

whereΛ(�η) = ηaΛ
a is a function on H satisfying

DaDbΛ+ habΛ = 0. (4.29)

Under such logarithmic translations the potentials equation (4.9) transform as [45]

E �→ E+ 4Λ , Kab �→ Kab, (4.30)

while Eab and Bab are invariant. The presence of these logarithmic translations will lead to
the following issue when we define the charges for supertranslations in section 7.1. For gen-
eral supertranslations (which are not translations) our charges will depend on the potential E
instead of just the electric field Eab. Thus, even if we take the physical spacetime to be the
Minkowski spacetime our charges will not vanish due to the logarithmic translation ambigu-
ity equation (4.30) in E. Thus, now we will fix these logarithmic translations following the
argument in [45].

Since the metric gab in the tangent space Ti0 is universal and isometric to the Minkowski
metric it is invariant under the reflection of the spatial directions �η �→ −�η. This gives rise to a
reflection isometry of the metric hab on the space of directions H . Now it was shown in [24]
that the only spacetimes which are asymptotically-flat at spatial infinity and which ‘match’
on to asymptotically-flat spacetimes on null infinity are the ones where Eab is reflection-even,
i.e.

Eab(�η) = Eab(−�η). (4.31)

9 These equivalence classes of curves form a principal bundle over H , called Spi in [26].
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Further, sinceΛ = ηaΛ
a for the direction-independent vectorΛa we have that,Λ is reflection-

odd

Λ(�η) = −Λ(−�η). (4.32)

For a reflection-evenEab, from equations (4.11) and (4.29), it follows that using a logarithmic
translation we can demand that the potential E is also reflection-even, so that

E(�η) = E(−�η). (4.33)

Having fixed the logarithmic translations in this way, Eab = 0 then implies that E = 0. In
particular, for Minkowski spacetime we have

E = 0 , Bab = 0 , βab = 0 (onMinkowski spacetime). (4.34)

Note that when Eab = 0, βab is conformally-invariant (see equation (4.23)) and the conditions
equation (4.34) do not depend on the conformal factor chosen for Minkowski spacetime. These
conditionswill ensure that our all our chargeswill vanish onMinkowski spacetime. Thus, from
here on we will assume that the logarithmic translations have been fixed as above that is, we
work the choice of C>1 differential structure at i0 where the parity condition equation (4.33) is
satisfied.

5. Metric perturbations and symplectic current at i0

Now consider a one-parameter family of asymptotically-flat physical metrics ĝab(λ) where
ĝab = ĝab(λ = 0) is some chosen background spacetime. Define the physical metric perturba-
tion γ̂ab around the background ĝab by

γ̂ab = δĝab :=
d
dλ
ĝab(λ)

∣∣∣∣
λ=0

. (5.1)

We will use ‘δ’ to denote perturbations of other quantities defined in a similar way.
As discussed above, the conformal factor Ω can be chosen universally, i.e., independently

of the choice of the physical metric. The unphysical metric perturbation is

δgab = γab = Ω2γ̂ab, (5.2)

and we also have

δηa = δ∇aΩ
1/2 = 0 , δηa = δ(gabηb) = −γabηb. (5.3)

Now we investigate the conditions on the unphysical perturbation γab which preserve
asymptotic flatness and the universal structure at i0 described in section 4.1. First recall that
since the unphysical metric gab is C>0 and universal at i0, it follows that the unphysical metric
perturbation γab is C

>0 and γab|i0 = 0. Therefore

γab(�η) := lim
→i0

Ω−1/2γab isC
>−1, (5.4)

With equations (5.3) and (5.4) we also see that δηa = 0. Thus, the metric perturbation
also preserves the spatial directions �η at i0, the space of directions H and the metric hab
on it.
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Now consider the universal structure given by the equivalence classes of C>1 curves
through i0 as described in section 4.1. Consider the equivalence class of a fixed curve Γv

with tangent va. For this equivalence class to be preserved, the perturbation of equation (4.27)
must vanish. Evaluating this condition using equations (5.3) and (5.4) we obtain the
condition

habηcγbc(�η) = 0. (5.5)

In summary, equations (5.4) and (5.5) are the asymptotic conditions on the unphysical metric
perturbations which preserve the asymptotic flatness and the universal structure at i0.

The metric perturbation γab can be directly related to the perturbations of the gravitational
potentials E and Kab defined in equation (4.9). Perturbing equation (4.1) to evaluate Ω1/2δSab
and taking the limit to i0 using equations (5.3) and (5.4) we get

δSab = lim
→i0

Ω1/2δSab = 4∂(aγb)cη
c + 4η(aγb)cη

c + 2γab − 4γcdη
cηd gab. (5.6)

Using the definition of the gravitational potentials equations (4.9) and (5.5) we obtain

δE = 2γabη
aηb, (5.7a)

δKab = −2ha
chb

dγcd − habδE. (5.7b)

Using equations (5.5) and (5.7) we can reconstruct the metric perturbation γab(�η) in terms of
the perturbed gravitational potentials on H as

γab(�η) =
1
2

[
δE(ηaηb − hab)− δKab

]
. (5.8)

The linearized Einstein equations for γab in the form equation (5.8) are then equivalent to the
linearizations of equations (4.12) and (4.13).

Next we consider the behavior of the symplectic current of vacuum general relativity near
i0. The symplectic current is given by (see [37])

ωabc = − 1
16π

ε̂abcdŵ
d with ŵa = P̂abcdef γ̂2bc∇̂dγ̂1ef − [1 ↔ 2], (5.9)

where ‘[1 ↔ 2]’ denotes the preceding expression with the 1 and 2, labeling the perturbations,
interchanged and the tensor P̂abcdef is given by

P̂abcdef = ĝaeĝ fbĝcd − 1
2
ĝadĝbeĝ fc − 1

2
ĝabĝcdĝef − 1

2
ĝbcĝaeĝ fd +

1
2
ĝbcĝadĝef . (5.10)

To analyze the behavior of the symplectic current in the limit to i0 we first express it in terms
of quantities in the unphysical spacetime using

εabcd = Ω4ε̂abcd , Pabcdef = Ω−6P̂abcdef , γab = Ω2γ̂ab, (5.11)

where Pabcdef is defined through the unphysical metric by the same expression as
equation (5.10). Using these, and converting the physical derivative operator ∇̂ to the unphys-
ical one∇ as

∇̂dγ̂1ef = ∇dγ̂1ef +Ω−1[∇̂dΩγ̂1ef + ∇̂eΩγ̂1d f − ged∇̂aΩγ̂1a f + (e ↔ f )], (5.12)
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we obtain

ωabc = − 1
16π

εabcdw
d ,

with wa = Ω−2Pabcdef γ2bc∇dγ1ef +Ω−3γab1 ∇bΩγ2c
c − [1 ↔ 2].

(5.13)

Converting to quantities which are direction-dependent at i0 and using equation (5.4) we
see that Ω3/2ωabc is C>−1. The pullback ω

←
to H of lim

→i0
Ω3/2ωabc is given by

ω
←
= − 1

16π
ε3 ηa

(
2ηbγ2abγ1 −

1
2
γ1ab∂

bγ2 + γbc1 ∂cγ2ab −
1
2
γ1∂

bγ2ab

)
− [1 ↔ 2].

(5.14)

This expression can be considerably simplified by rewriting it in terms of the perturbed grav-
itational potentials δE and δKab using equation (5.8). An easy but long computation gives

ω
←
=

1
64π

ε3(δ1Kδ2E− δ2Kδ1E), (5.15)

where, as before, K :=habKab.

6. Asymptotic symmetries at i0: the spi algebra

In this section we analyze the asymptotic symmetries at i0. We show that the diffeomorphisms
of the physical spacetime which preserve the asymptotic flatness of the spacetime (defined by
definition 2.1) generate an infinite-dimensional algebra spi. This asymptotic symmetry algebra
was obtained in [26, 34] by analyzing the infinitesimal diffeomorphisms which preserve the
universal structure at i0. Here we provide an alternative derivation by considering the phys-
ical perturbations generated by such infinitesimal diffeomorphisms and demanding that the
corresponding unphysical perturbations satisfy the asymptotic conditions equations (5.4) and
(5.5).

Consider an infinitesimal diffeomorphism generated by a vector field ξ̂a in the physical
spacetime, and let ξa = ξ̂a be the corresponding vector field in the unphysical spacetime.
For ξa to be a representative of an asymptotic symmetry at i0 the infinitesimal diffeomor-
phism generated by ξa must preserve the universal structure at i0. Firstly, the infinitesimal
diffeomorphism must keep the the point i0 fixed and preserve the C>1 differential structure
at i0. Thus, ξa must be C>0 at i0 and ξa|i0 = 0. This implies that Ω−1/2ξa is C>−1 at i0 and
let

Xa(�η) := lim
→i0

Ω−1/2ξa. (6.1)

Now consider the physical metric perturbation γ̂(ξ)
ab = δξĝab :=£ξĝab corresponding to an

infinitesimal diffeomorphism generated by ξa. The corresponding unphysical metric perturba-
tion is given by

γ(ξ)
ab = Ω2£ξ ĝab = £ξgab − 4Ω−1/2ξcηcgab. (6.2)
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Since γ(ξ)
ab must satisfy the asymptotic conditions at i0 in equations (5.4) and (5.5), we have

that γ(ξ)
ab is C>0 at i0 and γ(ξ)

ab |i0 = 0. To see the implications of these conditions first evaluate
the condition γ(ξ)

ab |i0 = 0 using equations (6.1) and (6.2) which gives

ηaX
a(�η) = 0 , D(aXb) = 0, (6.3)

that is, the vector field Xa is tangent to H and is a Killing vector field on it. Thus, Xa is an
element of the Lorentz algebra so(1, 3). Some useful properties of these Killing vectors and
their relationship to infinitesimal Lorentz transformations in the tangent space Ti0 are collected
in appendix B.1.

Further, since both γ(ξ)
ab and £ξgab are C>0 we must have that Ω−1/2ξaηa is also C>0. Since

Ω−1/2ξaηa|i0 = 0 (which follows from equations (6.1) and (6.3) we have thatΩ−1ξaηa is C
>−1

at i0 so define

f (�η) := lim
→i0

Ω−1ξaηa. (6.4)

The function f on H then parametrizes the supertranslations. The vector field generating
a supertranslation can be obtained as follows. Consider ξa such that the corresponding Xa

(equation (6.1)) vanishes and χa := lim
→i0

Ω−1ξa is C>−1 so that f = χaηa. Now consider the

metric perturbation equation (6.2) corresponding to such a vector field. From equation (5.5)
we must have

ha
bηcγ (ξ)

bc = 0, (6.5)

where, as before, γ(ξ)
ab = lim

→i0
Ω−1/2γ(ξ)

ab . Evaluating this condition using equation (6.2) and

χa = lim
→i0

Ω−1ξa we get

habχb = −Da f . (6.6)

Thus a pure supertranslation f is represented by a vector field ξa such that

lim
→i0

Ω−1ξa = fηa − Da f . (6.7)

In summary, the asymptotic symmetries at i0 are parameterized by a pair ( f ,Xa) where f is
a smooth function and Xa ∈ so(1, 3) is a smooth Killing vector field on H .

The Lie algebra structure of these symmetries can be obtained as follows. Let ξa1 and ξ
a
2 be

the vector fields representing the asymptotic Spi-symmetries ( f1,X
a
1) and ( f2,X

a
2) respectively.

Then the Lie bracket [ξ1, ξ2]a = ξb1∇bξ
a
2 − ξb2∇bξ

a
1 of the representatives induces a Lie bracket

on the Spi-symmetries. Using equations (6.1), (6.3) and (6.4) the induced Lie bracket on the
Spi-symmetries can be computed to be

( f ,Xa) = [( f1,X
a
1), ( f2,X

a
2)],

with f = Xb
1Db f2 − Xb

2Db f1,

Xa = Xb
1DbXa

2 − Xb
2DbXa

1.

(6.8)

Thus, the Spi symmetries form a Lie algebra spiwith the above Lie bracket structure. Note that
if Xa

1 = Xa
2 = 0 then f = Xa = 0—the supertranslations form an infinite-dimensional abelian

subalgebra s. Further if Xa
1 = 0 and Xa

2 �= 0 then Xa = 0, thus the supertranslations s are a
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Lie ideal in spi. The quotient algebra spi/s is then isomorphic to the algebra of Killing fields
on H i.e. the Lorentz algebra so(1, 3). Thus the Spi symmetry algebra has the structure of a
semi-direct sum

spi ∼= so(1, 3)� s. (6.9)

The spi algebra also has a preferred four-dimensional subalgebra t of translations. These
are obtained as the supertranslations f satisfying the additional condition

DaDb f + hab f = 0. (6.10)

The space of solutions to the above condition is indeed four-dimensional—this can be seen
from the argument in remark 6.1 below, or by solving the equation in a suitable coordinate
system on H ; see equations D.204 and D.205 of [33] or equation C.12 of [24]. Further from
equation (6.8) it can be verified that the Lie bracket of a translation with any other element
of spi is again a translation, that is, the translations t are a four-dimensional Lie ideal of
spi.

Remark 6.1 (translation vectors at i0). Let va be a direction-independent vector at i0, and
va = fηa + fa where ηa fa = 0. Then, since va is direction-independent we have

0 = ∂avb = Da fb + hab f + ηb(Da f − fa), (6.11)

which then implies fa = Da f and that f satisfies equation (6.1). Thus, any vector va ∈ Ti0

gives rise to a Spi-translation in t. Conversely, given any translation f ∈ t, the vector at
i0 defined by (note the sign difference in the hyperboloidal component relative to equation
(6.7))

va := fηa + Da f , (6.12)

is direction-independent i.e., va ∈ Ti0. Thus, the Spi-translations t can be represented by
vectors in Ti0.

Remark 6.2 (conformal transformation of Spi symmetries). Let ( f ,Xa) be a Spi symmetry
defined by a vector field ξa as above, i.e.,

Xa := lim
→i0

Ω−1/2ξa , f := lim
→i0

Ω−1ξaηa. (6.13)

For a fixed ξa, consider the change in the conformal factor Ω �→ ωΩ. Then, from remark 2.1
we have the transformations

Xa �→ Xa , f �→ f +
1
2
£Xα. (6.14)

Note that a pure supertranslation ( f ,Xa = 0) is conformally-invariant, while a ‘pure
Lorentz’ symmetry ( f = 0,Xa) is not invariant but shifts by a supertranslation given by
1
2£Xα. This further reflects the semi-direct structure of the spi algebra given in equation
(6.9).

To find the charge corresponding to the Spi-symmetries we need to evaluate the symplectic
current equation (5.15) when the perturbation denoted by δ2 is generated by a Spi-symmetry.
So we now calculate the perturbations δ( f ,X)E and δ( f ,X)K in the gravitational potentials
corresponding to the metric perturbation equation (6.2).
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The potentials E and Kab are defined in terms of (a rescaled) limit of Sab by equation (4.9).
Consider then the change in Sab under the perturbation equation (6.2). The second term on the
right-hand side of equation (6.2) is a linearized conformal transformation (see remark 2.1) with
α = −2 f . Thus, the change in E and Kab induced by this linearized conformal transformation
is given by (see remark 4.1)

δ fE = 0 , δ fKab = 4(DaDb f + fhab). (6.15)

The first term on the right-hand side of equation (6.2) is a linearized diffeomorphism and,
since Sab is a local and covariant functional of gab the corresponding perturbation in Sab is
£ξSab. Explicitly computing the Lie derivative, using equations (6.1) and (6.3) gives

δXSab = lim
→i0

Ω1/2£ξSab = Xc∂cSab + 2Sc(aηb)X
c + 2Sc(a∂b)Xc. (6.16)

Then, from the definition of the gravitational potentials equation (4.9) we have

δXE = £XE , δXKab = £XKab. (6.17)

As a result, under a general Spi symmetry parametrized by ( f ,Xa) we have

δ( f ,X)E = £XE , δ( f ,X)Kab = £XKab + 4(DaDb f + hab f ). (6.18)

Note that our parity condition equation (4.33) does not place any further restrictions on these
symmetries.

Remark 6.3 (special choices of conformal factor). The freedom in the conformal factor can
be used to impose further restrictions on the potentialKab.We note the following two conditions
that have been used in prior work.

(a) From equation (4.22) we see that K :=habKab transforms as

K �→ K − 2(D2α+ 3α). (6.19)

Now given a choice of conformal factor so that K �= 0 we can always solve a linear hyper-
bolic equation for α on H and choose a new conformal factor (as in remark 2.1) so that
in the new conformal completion K = 0. This is the choice made in [23, 32, 33]. With
this restriction on K we see from equation (6.18) that the allowed supertranslations are
reduced to functions f which satisfy

D2 f + 3 f = 0. (6.20)

(b) Consider the restricted class of spacetimes where Bab = 0. Then, the tensor Kab can be
written in terms of a scalar potential k as in equation (4.16). Comparing equation (4.16)
with equation (4.22) we see that we can choose α =1/2k. Then, we can choose a new
conformal factor (as in remark 2.1) so that in the new conformal completion Kab = 0.
This is the choice made in [26, 34]. With this restriction we see from equation (6.18) that
the allowed supertranslations are reduced to the translation algebra (equation (6.1)), and
the full asymptotic symmetry algebra reduces to the Poincaré algebra.

It is not clear, a priori, what such special choices of conformal factor imply at null infinity.
From the point of view of matching the Spi symmetries and charges to the ones defined on
null infinity such choices of conformal factors might not be convenient. So we will not impose
any such conditions on the conformal factor in our analysis and work with the full spi algebra.
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However, we will argue that our results reduce to those of [26, 33] when the corresponding
restrictions are imposed.

7. Spi-charges

In this section we now compute the charges associated with the Spi-symmetries. Following our
strategy we consider the symplectic currentω

←
where one of the perturbations, δ2, is a perturba-

tion generated by an asymptotic Spi-symmetry represented by ( f ,Xa). Using equations (5.15)
and (6.18) we have

ω
←
(δg, δ( f ,X)g) =

1
64π

ε3
[
δK£XE− δE£XK − 4δE(D2 f + 3 f)

]
. (7.1)

We show next that, under suitable conditions, the above expression can be written as a total
derivative on H that is,

ω
←
(δg, δ( f ,X)g) = −ε3 DaQa(g; δg; ( f ,X)), (7.2)

where Qa is a local and covariant functional of its arguments on H .
It will be convenient to do this separately for supertranslations and Lorentz symmetries. In

section 7.1, we will find that for supertranslations the functional Qa is integrable, and defines
the supermomentum charges on cross-sections S of H . Then we show in section 7.2 that for
Lorentz symmetriesQa is not integrable, in general. In this case we will adopt the prescription
of Wald and Zoupas with suitable modifications to define an integrable charge for Lorentz
symmetries. Finally, as noted in remark 6.2, a ‘pure Lorentz’ symmetry is not conformally-
invariant but shifts by a supertranslation. Similarly, we show in section 7.3 that the Lorentz
charge shifts by a supertranslation charge under conformal transformations, in accord with the
semi-direct structure of the spi algebra (equation (6.9)).

7.1. Charges for supertranslations: Spi-supermomentum

To define the charge for the supertranslations consider equation (7.1) for a pure supertranslation
( f ,Xa = 0)

ω
←
(δg, δ fg) = − 1

16π
ε3 δE(D2 f + 3 f),

= − 1
16π

ε3Daδ(EDa f − fDaE),

(7.3)

where the second line uses equation (4.12). In this case, the symplectic current can be writ-
ten in the form equation (7.2) where the Qa is manifestly integrable. Thus, we define the Spi
supermomentum charge at a cross-section S of H by

Q[ f ; S] =
1

16π

∫
S

ε2 ua(EDa f − fDaE). (7.4)

Here we have chosen the charge to vanish on Minkowski spacetime where E = 0 (see
equation (4.34)). The corresponding flux is given by (using equation (4.12))

F [ f ;ΔH ] :=Q[ f ; S2]−Q[ f ; S1] = − 1
16π

∫
ΔH

ε3 E(D2 f + 3 f). (7.5)
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When f ∈ t is a Spi-translation the charge equation (7.4) can be written in an alternative
form as follows: using equations (4.11) and (4.12) we have the identity

− fDaE+ EDa f = 2EabDb f + Db
(
D[aEDb] f

)
− 1

2

[
DaE(D2 f + 3 f )− DbE(DaDb f + hab f )

]
.

(7.6)

The second term on the right-hand side corresponds to an exact two-form and vanishes upon
integrating on S, while the last line vanishes for translations due to equation (6.1). Hence, the
charge for any translation f ∈ t can be written as

Q[ f ; S] =
1
8π

∫
S

ε2 uaEabDb f , (7.7)

which reproduces the charge for translations given in [26]. Using equation (6.10) the flux of
translations vanishes across any regionΔH and thus the translation charge is independent of
the choice of cross-section S. Using the isomorphism between Spi-translations f and vectors
va in Ti0 (see remark 6.1), the translation charge in equation (7.7) defines a four-momentum
vector Pa at i0 such that

Pava = Q[ f ; S]. (7.8)

Note that this relation is well-defined at i0 since the translation charge is independent of the
cross-section S. The vector Pa is precisely the ADM four-momentum at i0 [46] and also coin-
cides with the limit to i0 of the Bondi four-momentum on null infinity [25] (the corresponding
result for all the supertranslation charges was proven in [24]).

The charge expression equation (7.4) agrees with the results of Compère and Dehouck
[33]. Note that when the conformal factor is chosen so that K = 0 the supertranslation alge-
bra is reduced to the subalgebra satisfying equation (6.20) and the flux corresponding to such
supertranslations vanishes across any regionΔH . As was shown in [24], to relate the super-
translation symmetries and charges at spatial infinity to the ones on null infinity, it is sufficient
that the total flux of these charges vanishes on all of H ,10 and the flux need not vanish across
some local region ΔH . Thus the restriction on the conformal factor imposing K = 0 is not
necessary.

Note that in [24] the supermomentum charges at spatial infinity were related to those on
null infinity using the Ashtekar–Hansen expression equation (7.7) for all supertranslations
(even those which are not translations), instead of the expression equation (7.4). On H , these
charge expressions differ by the integral of last line of equation (7.6) over some cross-section
S. However, the regularity conditions on E and f used in [24] as the spatial directions �η limit
to null directions at i0 ensure that the additional terms vanish (see, for instance, appendix. D of
[24]) and both expressions yield the same finite supermomenta in null directions which further
equals the supermomenta at null infinity. Thus, the result of [24] can also be derived using the
expression equation (7.4) for the supertranslation charges.

7.2. Lorentz charges with Bab = 0

Next we will obtain a charge formula for the Lorentz symmetries. As emphasized in [26, 34],
to obtain such a charge formula one needs to consider the ‘subleading’ piece of the magnetic

10 To make this rigorous it is necessary to additionally complete H to include the null directions at i0. This
construction is detailed in [22, 24].
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part of the Weyl tensor. Thus, in the following we will make the additional assumption that
Bab = 0 and that the ‘subleading’magnetic partβab defined in equation (4.14) exists. However,
in appendix E we show how the restriction that Bab vanishes can be lifted to obtain a charge
for the Lorentz symmetries.

For a ‘pure Lorentz’ symmetry ( f = 0,Xa) we have from equation (7.1)

ω
←
(δg, δXg) =

1
64π

ε3(£XEδK −£XKδE). (7.9)

We now want to write this as a total derivative of the form equation (7.2). To do so consider
the following tensor

Wab :=βab +
1
8
εcd(aDcEKd

b) −
1
16

εabcKDcE. (7.10)

Using equations (4.13a), (4.15) and (4.20), we obtain

DaWab = 0 , habWab = 0. (7.11)

Note thatWab is not a symmetric tensor. Further using equations (7.10) and (B.3) we have

Da[Wab
�Xb] =

1
8
XaDaEK, (7.12)

where �Xa := 1
2ε

abcDbXc is the ‘dual’ Killing vector field to Xa (see equation (B.4)). Therefore,
equation (7.9) can be written as

ω
←
(δg, δXg) =

1
8π

ε3Da

[
δWab

�Xb − 1
8
δEKXa

]
, (7.13)

which is again of the form equation (7.2). However the functional Qa in this case is not
integrable, in general. To see this consider∫

S

ε2 uaQa[δg;X] = − 1
8π

∫
S

ε2 ua
[
δWab

�Xb − 1
8
δEKXa

]
, (7.14)

and compute an antisymmetrized second variation to get∫
S

ε2ua
(
δ1Qa[δ2g;X]− δ2Qa[δ1g;X]

)
=

1
64π

∫
S

ε2uaXa (δ1Kδ2E− δ2Kδ1E)

= −
∫
S

X · ω
←
(δ1g, δ2g). (7.15)

If equation (7.14) were integrable then the above antisymmetrized second variation would
vanish for all perturbations and all cross-sections S. However, since we allow arbitrary per-
turbations of both E and Kab the expression on the right-hand side vanishes if and only if the
Lorentz vector field happens to be tangent to the cross-section S. However a general Lorentz
vector field is not tangent to any cross-section of H , in particular Lorentz boosts do not pre-
serve any cross-section ofH . Thus, the expression equation (7.14) is not integrable and cannot
be used to define the charge of Lorentz symmetries.
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To remedy this, note that equation (7.15) is similar to the integrability criterion derived by
Wald and Zoupas (see equation (16) of [37]). Wald and Zoupas further developed a general
prescription to define an integrable charge (‘conserved quantity’) which we now adapt to our
case. Let Θ(g; δg) be a three-form on H which is a symplectic potential for the pullback of
the symplectic current (equation (5.15)) to H , that is,

ω
←
(g; δ1g, δ2g) = δ1Θ(g; δ2g)− δ2Θ(g; δ1g), (7.16)

for all backgrounds and all perturbations. We also require that the choice of Θ satisfy the
following conditions

(a) Θ is locally and covariantly constructed out of the dynamical fields (E,Kab), their per-
turbations, and finitely many of their derivatives, along with the ‘universal background
structure’ hab present on H .

(b) Θ is independent of any arbitrary choices made in specifying the background structure,
in particular,Θ is conformally-invariant.

(c) Θ(g; δg) = 0 for Minkowski spacetime for all perturbations δg.

In analogy to the Wald–Zoupas prescription we define the chargeQ[Xa; S] associated with
a Lorentz symmetry through

δQ[Xa; S] :=
∫
S

ε2uaQa(δg;X
a)+

∫
S

X ·Θ(δg). (7.17)

From equations (7.15) and (7.16) it follows that the above defining relation is integrable
and thus defines a charge Q[Xa; S] once we pick a reference solution where the charge
vanishes.

For the three-formΘ we choose

Θ(g; δg) := − 1
64π

ε3EδK. (7.18)

It can be verified that this choice satisfies all the criteria listed below equation (7.16). In par-
ticularΘ is conformally-invariant, and for Minkowski spacetime E = 0 (equation (4.34)) and
so Θ = 0 on Minkowski spacetime for all perturbations. This choice forΘ is not unique, but
we will argue in appendix D that the ambiguity in the the choice ofΘ does not affect our final
charge expression.

With the choice equations (7.18) and (7.14) and (7.17), we have

δQ[Xa; S] = − 1
8π

∫
S

ε2 uaδ[Wab
�Xb − 1

8
KEXa], (7.19)

We define the unperturbed charge by picking the reference solution to beMinkowski spacetime
which satisfies E = 0 and βab = 0 (equation (4.34)). Thus, we have the charge

Q[Xa; S] = − 1
8π

∫
S

ε2 ua[Wab
�Xb − 1

8
KEXa], (7.20)

The corresponding flux of the Lorentz charges is given by

F [Xa,ΔH ] = − 1
64π

∫
ΔH

ε3 E£XK. (7.21)
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Note that the flux is essentially given by F [Xa,ΔH ]=
∫
ΔH Θ(g; δXg) in analogy to the

Wald–Zoupas prescription (see equation (32) of [37]).
When the conformal factor is chosen so that Kab = 0 then the Lorentz charge reduces to

Q[Xa; S] = − 1
8π

∫
S

ε2 uaβab
�Xb, (7.22)

which is the expression given by [26]. Note that when the conformal factor is chosen such
that K = 0, the expression equation (7.14) is manifestly integrable and our ‘correction term’
Θ (equation (7.18)) vanishes. In both these cases, the flux of the Lorentz charges vanishes
across any regionΔH , i.e., the Lorentz charges are identically conserved. Further, since the
vector fields Xa correspond precisely to infinitesimal Lorentz transformationsΛab in Ti0 (see
equation (B.6)), the charge defines an ‘angular momentum’ tensor Jab at i0 through

JabΛab = Q[Xa; S], (7.23)

where the right-hand side is independent of the cross-section since the charge is conserved.

7.3. Transformation of charges under conformal changes

We now consider the transformation of the charges and fluxes for a Spi symmetry under
changes of the choice of conformal factor as discussed in remark 2.1.

Consider a pure supertranslation symmetry ( f ,Xa = 0). As shown in remark 6.2, a pure
supertranslation is conformally-invariant. Further from remark 4.1 the potential E is also
conformally-invariant. Thus, the charge and flux of supertranslations in equations (7.4) and
(7.5) is also conformally-invariant.

However a ‘pure Lorentz’ symmetry ( f = 0,Xa) is not conformally-invariant (see remark
6.2), and hence we expect that the charge and flux of a Lorentz symmetry must transform
nontrivially under changes of the conformal factor. Consider first the flux of Lorentz charges
given by equation (7.21). Using the transformation of Kab (equation (4.22)) we see that this
flux expression transforms as

F [Xa;ΔH ] �→ F [Xa;ΔH ]+
1

32π

∫
ΔH

ε3E(D2£Xα+ 3£Xα). (7.24)

Comparing the second term on the right-hand side to equation (7.5), we see that it is precisely
the flux of a supertranslation given by (−1/2£Xα). Thus, under a change of conformal factor
the Lorentz flux shifts by the flux of a supertranslation

F [Xa;ΔH ] �→ F [Xa;ΔH ]+ F [−1/2£Xα;ΔH ]. (7.25)

One can similarly verify that the Lorentz charge equation (7.20) also shifts by the charge
of a supertranslation. The explicit computation is a bit tedious and is presented in appendix C.
However, we can derive the transformation of the Lorentz charge by a more general argument
which we present below. This argument also holds in the more general case when Bab �= 0
considered in appendix E below.

From the transformation of the flux equation (7.25), we can deduce that the Lorentz charge
expression equation (7.20) must transform as

Q[Xa; S] �→ Q[Xa; S]+Q[−1/2£Xα; S]+
∫
S

ε2uaμa[α], (7.26)
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where the second term on the right-hand side is the charge of a supertranslation (−1/2£Xα)
and the third term is a possible additional term determined by a covector μa which depends
linearly on α and is divergence-free, Daμa[α] = 0 for all α. Since α is a free function on
H we can apply theorem 1 with α as the ‘dynamical field’. Thus, from equation (B.17) we
conclude that the final integral above vanishes, and that the Lorentz charge shifts by the charge
of a supertranslation (−1/2£Xα).

Q[Xa; S] �→ Q[Xa; S]+Q[−1/2£Xα; S]. (7.27)

If we restrict to the choice of conformal factor where Kab = 0, so that the asymptotic sym-
metries are reduced to the Poincaré algebra andα is a Spi-translation satisfying equation (6.10),
then equation (7.27) reproduces the transformation law given in equation (29) of [26] and
equation (6.8) of [34].

Consider the charge of any Spi-symmetry represented by ( f ,Xa), then under a conformal
transformation the same Spi-symmetry is now represented by ( f +1/2£Xα,Xa) (see remark
6.2). The total charge of the Spi-symmetry transforms as

Q[ f ; S]+Q[Xa; S] �→Q[ f + 1/2£Xα; S]+Q[Xa; S]+Q[−1/2£Xα; S],

= Q[ f ; S]+Q[Xa; S], (7.28)

that is, the charge of any Spi-symmetry is independent of the choice of conformal factor—the
change in the function f representing the symmetry is exactly compensated by the change in
the Lorentz charge given in equation (7.27).

8. Discussion

In this paper, we analyzed the asymptotic symmetries and the corresponding charges for
asymptotically-flat spacetimes at spatial infinity i0 using the Ashtekar–Hansen formalism,
without any restrictions on the choice of the conformal factor at spatial infinity, which were
imposed in previous analyses. Using the covariant phase space, we considered the direction-
dependent limit of symplectic current of vacuum general relativity to spatial infinity. Using the
pullback of this limit of the symplectic current to the space of spatial directions H at spatial
infinity, we obtained expressions for charges corresponding to all asymptotic symmetries. We
rederived the known expressions for supertranslation charges but more a general expression
for the Lorentz charge when conformal factor is completely unrestricted. In this case, we used
a Wald–Zoupas type correction to make the Lorentz charge integrable, which also ensures that
this charge transforms correctly under the action of a supertranslation, or equivalently, that the
charge of a general Spi-symmetry is conformally-invariant.

Themainmotivation behind our analysis is to eventually relate the Lorentz charges at spatial
infinity to the ones defined on null infinity. In this context, the Lorentz charge expressions
would have to be matched in the ‘same’ choice of conformal factor at both null infinity and
spatial infinity, and it is not clear what the restrictions on the conformal factor at spatial infinity
placed in previousworks imply at null infinity. Thus, we hope that our more general expression
for the Lorentz charge at spatial infinity will be more useful to repeat the matching analysis
for the case of Lorentz symmetries that was done previously for Maxwell theory [22] and
supertranslations in general relativity [24]. If this works out as expected, this would imply that
the full BMS group at past null infinity is matched to the full BMS group at future null infinity
and moreover, that the incoming fluxes of all BMS symmetries through past null infinity are
equal to the outgoing fluxes of the anitpodally identified BMS symmetries through future null
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infinity. This would then prove the existence of infinitely many conservation laws, one for
each generator of the BMS group, in classical gravitational scattering in asymptotically-flat
spacetimes, as anticipated by Strominger [5].

Another avenue for future investigation would be to quantize the asymptotic fields on H
in the spirit of the asymptotic quantization program on null infinity [47], see also [48]. This
could lead to the possibility of relating the asymptotic ‘in-states’ on past null infinity to the
‘out-states’ on future null infinity, similar to the matching conditions in the classical theory,
and provide further insight into the structure of quantum scattering.

We also note that the asymptotic fields at spatial infinity in both Maxwell theory and gen-
eral relativity are described by smooth tensor fields living on a unit-hyperboloid H . As is
well-known H is precisely the three-dimensional de Sitter spacetime. To prove the match-
ing conditions for Maxwell and gravitational fields on H with those on null infinity, H was
conformally-completed into a cylinder in the analysis of [22, 24]. It would be interesting to see
if insights from the de Sitter/CFT correspondence [49] can be applied to develop a holographic
understanding of electromagnetism and general relativity in asymptotically-flat spacetimes at
spatial infinity, perhaps similar to [50].
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Appendix A. Coordinates, universal structure and asymptotic expansions
near i0

In this appendix we construct a suitable asymptotic coordinate system near spatial infinity.
Using these coordinates we explicitly demonstrate the universal structure near i0 described in
section 4.1. We also describe the asymptotic expansion of the unphysical and physical met-
rics in these coordinates, thus making contact with the expansions used in previous works
[31–33].

Consider the unphysical spacetime (M, gab) obtained from some physical spacetime satis-
fying definition 2.1. The unphysical metric gab at i0 induces a metric which is isometric to the
Minkowski metric in the tangent space Ti0. Thus we can introduce asymptotically Cartesian
coordinates (t, x, y, z) so that i0 is at the origin of this coordinate system and

gab ≡ −dt2 + dx2 + dy2 + dz2. (A.1)

Note that xi = (t, x, y, z) define a C1 coordinate system at i0. To define a C>1 differential
structure we allow any other coordinate chart x′i(x) such that

∂2x′i(x)
∂x j∂xk

and
∂2xi(x′)

∂x′ j∂x′k
areC>−1 at i0. (A.2)

A collection of all coordinate charts related by equation (A.2) defines a choice ofC>1-structure
onM at i0, see [40] and appendix A of [22] for details.
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It is more convenient to use coordinates which are adapted to the space of unit spacelike
directions H . Thus define (ρ, τ ) by

ρ2 := − t2 + x2 + y2 + z2 , tanh τ :=
t√

x2 + y2 + z2
. (A.3)

In these coordinates the metric in Ti0 takes the form

gab ≡ dρ2 + ρ2
(
−dτ 2 + cosh2 τsABdθ

AdθB
)
, (A.4)

where sAB is the unit metric on S
2 in some coordinates θA, say the usual (θ,φ) coordinates.

Note that the coordinates (ρ, τ , θA) are not C>1 coordinates—the bases (dρ, ρdτ , ρdθA) are not
continuous but are direction-dependent at i0.

The unit spatial directions �η then correspond to the unit vectors ∂ρ in Ti0 which are parame-
terized by (τ , θA). The space of directionsH is then the surface ρ = 1 in Ti0 with the induced
metric

hab ≡ −dτ 2 + cosh2 τsABdθ
AdθB. (A.5)

The reflection of the directions �η �→ −�η then induces the reflection isometry

(τ , θA) �→ (−τ ,−θA), (A.6)

on H , where θA �→ −θA is the antipodal reflection on S2.
So far we have only considered the structure at i0, now we extend the metric away from i0.

Since the unphysical metric gab is C
>0 and limits to gab at i0 (where ρ = 0), it can be verified

that gab admits an expansion in ρ of the form

gab ≡ [1+ σρ+ o(ρ)]2dρ2 + 2 [ρAa + o (ρ)] dρ(ρdya)

+
[
h(0)ab + ρh(1)ab + o(ρ)

]
(ρdya)(ρdyb),

(A.7)

where ya = (τ , θA) are coordinates on the unit hyperboloid, and h(0)ab ≡ hab is the unit
hyperboloid metric. The expansion coefficients σ, Aa and h(1)ab can be considered as ten-
sor fields on H . The o(ρ) denotes terms which falloff faster than ρ in the limit to i0, that
is, lim

ρ→0
ρ−1 o(ρ) = 0.

For the conformal factor, one can choose

Ω = ρ2, (A.8)

which can be verified to satisfy all the conditions in definition 2.1, that is, in the limit ρ→ 0,
Ω = 0,∇aΩ = 0 and∇a∇bΩ = 2gab. Before considering the physical metric lets analyze the
universal structure at i0.

From the above discussion it is clear that the metric gab and the space of directions H
is universal, that is, independent of which unphysical metric is chosen. What is the structure
corresponding to the equivalence classes of C>1 curves described in section 4.1? Consider the
C>1 curves Γv through i0 with tangents va ≡ ∂ρ in these coordinates. Further, with the choice
of conformal factor in equation (A.8) we have

ηa = ∇aΩ1/2 ≡ (1− 2ρσ)
∂

∂ρ
+ ρh(0)abAb

∂

ρ∂ya
+ o(ρ). (A.9)
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From equation (4.27) we see that the curves Γv (with tangent va ≡ ∂ρ) will be equivalent to
the curves Γη (with tangent ηa) for all spacetimes if we can always choose Aa to vanish. This
can be accomplished using the freedom in the choice of the hyperboloid coordinates ya at ‘next
order’ in ρ. Consider the coordinate transformation11

ρ �→ ρ , ya �→ ya + ρh(0)abAb. (A.10)

By rewriting this in terms of the Cartesian coordinates xi = (t, x, y, z), it can be verified that
the transformation equation (A.10) is a C>1 coordinate transformation (equation (A.2)). It can
be also be verified that using this transformation the dρdya term in the metric, i.e. Aa, vanishes
in the new coordinates. Thus, the curves Γv and Γη can always be chosen to be equivalent.
Further, this choice can always be made in any choice of the physical spacetime. Thus, the
equivalence classes of C>1 curves through i0 is also universal.

Having made this choice the unphysical metric takes the form

gab ≡ [1+ σρ+ o(ρ)]2dρ2 + ρ o (ρ) dρdya + ρ2
[
h(0)ab + ρh(1)ab + o(ρ)

]
dya dyb. (A.11)

To get the form of the physical metric ĝab = Ω−2gab we use equation (A.8) and define the
Beig–Schmidt coordinate ρ(BS) := 1/ρ to obtain

ĝab ≡
[
1+

σ

ρ(BS)
+ o(1/ρ(BS))

]2
dρ2(BS) + ρ(BS)o(1/ρ(BS))dρ(BS)dya

+ ρ2(BS)

[
h(0)ab +

h(1)ab
ρ(BS)

+ o(1/ρ(BS))

]
dyadyb,

(A.12)

This is the form of the physical metric assumed by Beig and Schmidt [31].
The asymptotic potentials equation (4.9) are related to the metric coefficients in the above

expansion by

E ≡ 4σ , Kab ≡ −2(h(1)ab + 2σh(0)ab ). (A.13)

From these the asymptotic Weyl tensors can be computed using equation (4.11). Note that
the parity condition equation (4.33) imposed on E to eliminate the logarithmic translation
ambiguity then corresponds to

σ(τ , θA) = σ(−τ ,−θA). (A.14)

From equation (A.13) it straightforward to see that our charges for supertranslations
equation (7.4) matches the expression obtained by Compère and Dehouck, equation (4.88)
of [33].

For the ‘subleading’ magnetic Weyl tensor βab (defined by equation (4.14) when Bab = 0)
to exist, we need additional regularity conditions on themetric expansion equation (A.7). Thus,
to define βab we assume the ‘next order’ expansion

gab ≡ [1+ σρ+ o(ρ)]2dρ2 + ρ o(ρ)dρdya

+ ρ2
[
h(0)ab + ρh(1)ab + ρ2h(2)ab + o(ρ2)

]
dyadyb,

(A.15)

11 This is essentially the unphysical spacetime version of the coordinate transformations consider in lemma 2.2 of [31].
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where h(2)ab is a smooth tensor on H . Then, we have (using Bab = 0)

βab = εcd(aDch(2)db) − 1
8
εcd(aDcEKd

b) −
1
16

εcd(aDb)KceKd
e. (A.16)

When the conformal factor is chosen so that Kab = 0, the above expression simplifies con-
siderably. In this case, our Lorentz charge matches the one found by Compère, Dehouck and
Virmani [32]. We discuss the case when Bab �= 0 in appendix E.

Appendix B. Some useful relations on H

In this appendix we collect some relations on the unit-hyperboloidH which are useful in the
main paper.

The Riemann tensor of H is given by

Rabcd = hachbd − hadhbc. (B.1)

Using the above it is easy to derive simple expressions for commuting derivatives on tensor
fields on H , see appendix A of [31].

B.1. Killing vector fields

Let Xa be a Killing vector field on H , so that D(aXb) = 0. For any Killing vector field using
equation C.3.6 of [38] and equation (B.1) we have

DaDbXc = RcbadXd = hacXb − habXc. (B.2)

Contracting the indices a and b we get

D2Xa + 2Xa = 0. (B.3)

Define the ‘dual’ vector field �Xa on H for any Killing vector field Xa by

�Xa :=
1
2
εabcDbXc. (B.4)

Then, using equation (B.2) we have

Da
�Xb = εabcXc , Xa = −1

2
εabcDb

�Xc = −�(�X)a , DaXb = −εabc
�Xc.

(B.5)

In particular D(a
�Xb) = 0 so �Xa is also a Killing vector field on H . In a suitable choice of

coordinates on H this relation maps Lorentz rotations and Lorentz boosts into each other, see
appendix B of [32].

The relationship between the Killing vector fields onH and Lorentz transformations in the
tangent space Ti0 is as follows. LetΛab be a direction-independent antisymmetric tensor at i0

corresponding to an infinitesimal Lorentz transformation in Ti0. Then the direction-dependent
vector field defined by12

Xa(�η) :=Λabηb, (B.6)

12 The relation equation (B.6) is the ‘dual’ of the relation used below equation (27) of [26].
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is tangent toH . Further, sinceΛab is direction-independent,∂cΛab = 0. Projecting the indices
of∂cΛab = 0 tangent and normal toH in all possible ways it follows thatXa is a Killing vector
field on H and

Λab = −DaXb − 2η[aXb] = εabc
�Xc + η[aεb]cdD

c�Xd, (B.7)

where the last equality uses equation (B.5). Similarly, it can be shown that if Xa is the Killing
vector field on H corresponding to Λab through equation (B.6), then (−�Xa) is the Killing
vector field on H corresponding to the ‘dual’ Lorentz transformation ∗Λab := 1

2εab
cdΛcd.

B.2. Symmetric tensors

Let Tab be any symmetric tensor on H . Then Tab, its curl and divergence are related by the
identity

−2Tab�Xb + 2εcd(aDcTdb)Xb − DcTcbDa
�Xb = Db

(
εabcTcdXd + 2Tc[aDb]

�Xc
)
, (B.8)

where Xa is any Killing vector on H and �Xa is the corresponding ‘dual’ Killing vector
(equation (B.4)). This identity can be verified by expanding out the right-hand side and using
equations (B.1), (B.4), and (B.5). Note that the right-hand side of equation (B.8) corresponds
to an exact two-form on H , and thus vanishes when integrated over any cross-section S of
H . This gives the following useful integral identity on any cross-section S∫

S

ε2 uaTab�Xb =

∫
S

ε2 ua
[
εcd(aDcTdb)Xb − 1

2
DcTcbDa

�Xb

]
. (B.9)

In the following lemma we show that any symmetric, curl-free tensor on H admits a
scalar potential. A proof using a choice of coordinates on H can be found in appendix A
of [32]. Our proof below is adapted from similar arguments for a two-sphere in appendix A.4
of [4].

Lemma B.1. Let Tab be a symmetric tensor onH with vanishing curl, i.e,D[cTa]b = 0 then
there exists a function t on H such that

Tab = DaDbt+ habt. (B.10)

Proof. Let f ∈ t be a Spi-translation so that13

DaDb f + hab f = 0. (B.11)

Note that the vector field Ya :=Da f is a conformal Killing field on H . Any conformal
Killing field is completely determined by its conformal Killing data specified at some chosen
point p ∈ H [55], which in this case is given by

(Ya,D[aYb],DaYa,DaDbYb)
∣∣
p
= (Da f , 0,−3 f ,−3Da f )|p. (B.12)

Thus, there is an isomorphism between the vector space of f ∈ t and the vector space of the
conformal Killing data f |p and Da f |p at any chosen point p.

13 As shown in remark 6.1 Spi-translations can also be represented as vectors in the tangent space at i0.
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Since Tab is symmetric and curl-free, using equation (B.11) we have D[c(Ta]bDb f ) = 0.
Thus, TabDb f is a closed one-form on H and thus exact,14 that is, there exists a function H
such that

TabDb f = DaH. (B.13)

Thus, Tab can be viewed as a linear map from the vector space of Spi-translations to functions
on H . Since the vector space of Spi-translations is isomorphic to the space of conformal
Killing data equation (B.12) specified at any point on H , there exists a function t and a
covector field ta on H such that

H = t f + taDa f . (B.14)

Inserting this into equation (B.13) and using equation (B.11) we get

TabDb f = (Datb + habt)Db f + f(Dat− ta). (B.15)

Since the conformal Killing data f |p and Da f |p can be freely specified at any point it follows
that ta = Dat and

Tab = DaDbt+ habt. (B.16)

�
Note that the potential t is not uniquely determined, since one is free to add solutions of

equation (B.11) to t without affecting the tensor Tab. Further, the potential is not locally and
covariantly determined by Tab and finitely many of its derivatives. In particular, even if Tab is
the (direction-dependent) limit to i0 of some tensor field on spacetime, there may not exist any
tensor on spacetime whose limit gives the potential t.

B.3. Closed and exact forms

For some results in the main paper we need to argue that certain two-forms on H which are
closed are also exact, so that their integral on cross-sections of H vanishes. In general, not
all closed two-forms on H are exact since the topology of H is S2 × R and the second de
Rahm cohomology group is nontrivial. However, when the closed two-forms considered are
local and covariant functionals of suitable fields (as described below) then they can be shown
to be exact by a general theorem of Wald [56].

In the theorem stated below, the differential formsμ[φ,ψ] under considerationwill be func-
tionals of two types of fields. The ‘dynamical fields’, denoted by φ, are arbitrary cross-sections
of some vector bundle, and we require that dμ = 0 for every cross-section φ. The form μ also
can depend on some ‘background fields’, denoted by ψ. The ‘background fields’ ψ need not
have a linear structure and are allowed to satisfy (possibly nonlinear) differential equations.
Now we can state the theorem from [56].

Theorem 1 ([56]). Let μ[φ,ψ] be a p-form on a d-dimensional manifold M with p < d,
which is a local and covariant functional of a collection of two sets of fields (φ,ψ) (as
described above) and finitely many of their derivatives on M. Then, if for any ‘background
fields’ψ

14 This follows from the fact that every one-loop in H is contractible to a point and hence the first de Rahm
cohomology group of H is trivial.
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(a) dμ[φ,ψ] = 0 for all cross-sections of the vector bundle of ‘dynamical fields’φ and
(b) μ[φ,ψ] = 0 for the zero cross-section φ = 0

then there exists a (p− 1)-form ν[φ,ψ] which is a local and covariant functional of (φ,ψ)
and finitely many of their derivatives such that μ[φ,ψ] = dν[φ,ψ]. That is the closed p-form
μ is also exact.

Note that it is essential for this theorem that the ‘dynamical fields’ have a linear structure as
the cross-sections of some vector bundle and further, the p-form μmust be closed for all possi-
ble cross-sections of this vector bundle, i.e., one must be able to freely specify the ‘dynamical
fields’ and all of their derivatives at any point ofM. In contrast, the ‘background fields’ψ, need
not have a linear structure and are allowed to satisfy differential equations, and in fact the set of
‘background fields’ can also be empty. Further, the proof in [56] also provides a constructive
procedure for finding the (p− 1)-form ν though we will not need to use this construction.

For our applications of this theorem we will be concerned with closed two-forms on H .
Using the volume element εabc on H , we will write this two-form in terms of a covector μa

such that Daμa = 0. Then, from theorem 1 we conclude that this two-form is exact and thus

Daμa[φ,ψ] = 0 =⇒
∫
S

ε2 uaμa[φ,ψ] = 0, (B.17)

for any cross-section S of H with ε2 and ua being the area element and normal to S. The
choice of the ‘dynamical fields’ φ depends on the particular case. Since the fields E, Kab and
βab satisfy differential equations ofmotion (equations (4.12), (4.13), and (4.20)) they cannot be
used as the ‘dynamical fields’. Similarly, the Lorentz vector fields Xa form a six-dimensional
vector space and cannot be arbitrary sections of some vector bundle and also cannot be used as
the ‘dynamical fields’. Thus, these fields, along with the metric and volume form on H , will
always be in the collection of ‘background fields’ ψ.

However, the supertranslation symmetries f , the freedom in the conformal factorα (remark
2.1) and the scalar potential k for Kab (when Bab = 0) are free functions on H and will be
used as ‘dynamical fields’ in our applications of this theorem.

Appendix C. Conformal transformation of the Lorentz charges

In section 7.3 we argued that under conformal transformations the Lorentz charge shifts by
the charge of a supertranslation (equation (7.27)). In this appendix we collect the explicit
computation of this transformation.

Using equations (4.22) and (4.23), and that E is conformally-invariant, we have the follow-
ing transformation for the tensorWab defined in equation (7.10) under changes of the conformal
factor

Wab �→ Wab +
1
4
εcd(aDc

[
Db)EDdα+ DdEDb)α

]
+

1
8
εabcDcE(D2α+ 3α).

(C.1)

Thus, we have (note that the Lorentz vector does not transform under changes of the conformal
factor remark 6.2)

Wab
�Xb �→ Wab

�Xb +
1
4
εcd(aDcTdb)�Xb +

1
8
(D2α+ 3α)DbEDaXb, (C.2)
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where we have defined the shorthand Tab :=DaEDbα+ DbEDaα and used the last identity in
equation (B.5). Now using the identity equation (B.9) (with Xa replaced by �Xa) we have∫

S

ε2 uaεcd(aDcTdb)�Xb = −
∫
S

ε2 ua
[
1
2
DcTcbDaXb + TabXb

]
. (C.3)

A straightforward but tedious computation using the definition of Tab, equations (4.12), (B.1),
and (B.3) gives∫

S

ε2 uaεcd(aDcTdb)�Xb =

∫
S

ε2 ua
[
−1
2
(D2α+ 3α)(2EXa + DbEDaXb)

+ (EDa£Xα− DaE£Xα)

]
, (C.4)

where we have dropped terms that integrate to zero on S. Using the above in equation (C.2) we
get ∫

S

ε2 uaWab
�Xb �→

∫
S

ε2 uaWab
�Xb +

1
4

∫
S

ε2 ua [(EDa£Xα− DaE£Xα)

−(D2α+ 3α)EXa

]
. (C.5)

Further, from equation (4.22) we also have

−1
8
KEXa �→ −1

8
KEXa +

1
4
(D2α+ 3α)EXa. (C.6)

Thus, ∫
S

ε2 ua
[
Wab

�Xb − 1
8
KEXa

]
�→

∫
S

ε2 ua
[
Wab

�Xb − 1
8
KEXa

]

+
1
4

∫
S

ε2 ua (EDa£Xα− DaE£Xα) .

(C.7)

The Lorentz charge equation (7.20) then transforms as

Q[Xa; S] �→ Q[Xa; S]− 1
16π

∫
S

ε2 ua
1
2
(EDa£Xα− DaE£Xα) . (C.8)

Comparing to equation (7.4), we recognize the last integral above as the charge of the super-
translation (−1/2£Xα). Thus, the Lorentz charge shifts by the charge of a supertranslation
under changes of the conformal factor as argued in section 7.3.

Appendix D. Ambiguities in the Spi-charges

In this section we analyze the ambiguities in our procedure to define the Spi charges. We show
our Spi charges are unambiguously defined by the choice of the symplectic current for general
relativity in equations (5.14) and (5.15).
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Recall that our charges on a cross-section S of H are defined by

δQ[( f ,Xa); S] :=
∫
S

ε2uaQa(δg; ( f ,X
a))+

∫
S

X ·Θ(δg), (D.1)

withQ = 0 on Minkowski spacetime as the reference solution. The covectorQa is a local and
covariant functional of its arguments and linear in the metric perturbations and the asymptotic
symmetry satisfying equation (7.2). While the three-form Θ is a symplectic potential for ω

←
satisfying equation (7.16).

Given a fixed choice of the symplectic current, from equations (7.2) and (7.16) the
ambiguities in the choice of Qa and theΘ are given by

Qa(g; δg; ( f ,X)) �→ Qa(g; δg; ( f ,X))+ μa(g; δg; ( f ,X)),

Θ(δg) �→ Θ(δg)+ ε3δΞ(g),
(D.2)

where the covector μa(g; δg; ( f ,X)) is a local and covariant functional of its arguments and
linear in the metric perturbations and the asymptotic symmetry, and further satisfies

Daμa(g; δg; ( f ,X)) = 0, (D.3)

for all background spacetimes and perturbations (satisfying the background and linearized
equations of motion respectively) and all asymptotic symmetries. While the function Ξ is any
local and covariant function of the background spacetime fields on H .

Under these ambiguities the definition of δQ (equation (D.1)) changes by

δQ[( f ,Xa); S] �→ δQ[( f ,Xa); S]+
∫
S

ε2uaμa(g; δg; ( f ,X))− δ

∫
S

ε2uaXaΞ(g). (D.4)

Since the integrated chargeQ is fixed by the requirement that it vanish onMinkowski spacetime
(where E = βab = 0), we only need to analyze the ambiguities in δQ.

We nowargue that the last two integrals abovemust vanish under the following assumptions

(a) μa and Ξ are local and covariant functionals of their arguments as mentioned above with
μa satisfying equation (D.3).

(b) The Lorentz chargeQ[( f = 0,Xa); S] must match the Ashtekar–Hansen expression when
the conformal factor is chosen such that Kab = 0.

(c) The total chargeQ[( f ,Xa); S] of any Spi symmetry is conformally-invariant.

Consider first the μa-ambiguity and the case of a pure supertranslation ( f ,Xa = 0). Since
the ambiguity μa is linear in f we have μa(g; δg; f = 0) = 0. Further since μa is divergence-
free (equation (D.3)), we can use theorem 1 in the form equation (B.17) with f as ‘dynamical
field’ to conclude that the second integral on the right-hand side of equation (D.4) vanishes on
any cross-section S for a supertranslation.

Next consider the μa-ambiguity with a Lorentz transformation ( f = 0,Xa). Since the
Lorentz vector fields Xa form a six-dimensional vector space and are not allowed to be arbi-
trary cross-sections of a vector bundle, we cannot use Xa as the ‘dynamical’ fields in theorem
1. So instead, we proceed another in another way. Consider the scalar potential k for the ten-
sor Kab (equation (4.16)). Since k is a completely free function on H it is allowed to be an
arbitrary cross-section of a vector bundle on H . Further, whenever k = 0 we have Kab = 0
and by our assumption the Lorentz charge must the one found by Ashtekar and Hansen. Thus,
the ambiguity μa = 0 whenever k = 0 for all background spacetimes and all Lorentz vector
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fields Xa. Now using k as the ‘dynamical field’, from theorem 1 in the form equation (B.17),
we conclude again that the second integral on the right-hand side of equation (D.4) van-
ishes on any cross-section S for a Lorentz symmetry. Thus, the μa-ambiguity does not
affect δQ.

Finally, consider the Ξ-ambiguity in the choice of Θ. In section 7.3 we showed that the
total chargeQ for any Spi-symmetry ( f ,Xa) is invariant under conformal transformationswith
our choice of Θ (equation (7.18)) which implies that the charge of a ‘pure Lorentz’ symme-
try must shift by a charge of a supertranslation under changes of the conformal factor (see
equation (7.27)). It follows that for the redefined Lorentz charge to transform correctly the
integral contributed by Ξ in equation (D.4) must be conformally-invariant. Further, for the
redefined Lorentz charge to match the one found by Ashtekar and Hansen the integral con-
tributed by Ξ in equation (D.4) must vanish whenever Kab = 0. Since Kab can be chosen to
vanish by a choice of conformal factor (see remark 6.3) this implies the Ξ-ambiguity does not
affect δQ.

In summary, our charges are unambiguously determined by the pullback of the symplectic
current equation (5.15).

Here we remark that the symplectic current three-form itself is not uniquely determined by
the Lagrangian of the theory but is ambiguous up to

ω(g; δ1g, δ2g) �→ ω(g; δ1g, δ2g)+ d [δ1ν(g; δ2g)− δ2ν(g; δ1g)] , (D.5)

where ν(g; δg) is a local and covariant two-form and is linear in the perturbation δg. We have
not analyzed the effect of this ambiguity on our charges.

Appendix E. Lorentz charges with Bab �= 0

In section 7.2 to define the Lorentz charges at i0 we imposed the condition Bab = 0 to
gain access to the ‘subleading’ magnetic part βab of the asymptotic Weyl tensor (see
equation (4.14)). In this section we show how we can define a ‘subleading’ magnetic Weyl
tensor and the Lorentz charges even when Bab �= 0.

If Bab does not vanish, then the ‘subleading’ piece as defined by equation (4.14) does not
exist in the limit. However, consider the derivative of the magnetic part of the Weyl tensor
along ηa:

lim
→i0

Ω1/2ηe∇e(Ω1/2 ∗ Cabcdηcηd) = ηe∂eBab = 0. (E.1)

Since the limit of the above quantity vanishes we can now demand that its ‘next order’ part
exist, that is,

Hab(�η) := lim
→i0

ηe∇e(Ω
1/2 ∗ Cabcdηcηd)isC>−1. (E.2)

The tensor field Hab(�η) is not tangential to H . We can compute

Hab(�η)ηb = lim
→i0

ηbηe∇e(Ω1/2 ∗ Cabcdηcηd) = − lim
→i0

ηe∇eη
b(Ω1/2 ∗ Cabcdηcηd)

=
1
4
BabDbE, (E.3)

where in the first line we have used the fact that ∗Cabcd is antisymmetric in the last two
indices and to get the second line we replaced the derivative of ηa using the Einstein equation
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equation (4.1), and used equations (4.5) and (4.10). Note that Hab(�η)ηaηb = 0, and thus the
only remaining part of Hab is its projection to H on both indices. We use this projection to
define the ‘subleading’ magnetic part of the Weyl tensor, that is, instead of equation (4.14) we
now use

βab :=ha
chb

dHcd(�η). (E.4)

As before βab is a symmetric and traceless tensor field on H . Note that when Bab = 0,
this new definition is completely equivalent to the previous one in equation (4.14) (see also
[26]).

The generalization of the equation of motion equation (4.20) is rather tedious to obtain. We
want to compute

∂bHab = lim
→i0

Ω1/2∇b
[
ηe∇e(Ω1/2 ∗ Cabcdηcηd)

]

= lim
→i0

[
(∇bηe)Ω1/2∇e(Ω1/2 ∗ Cabcdηcηd)+Ω1/2ηe∇b∇e(Ω1/2 ∗ Cabcdηcηd)

]
.

(E.5)

In the first term we substitute the derivative of ηa using equation (4.1) and then evaluate the
limit of the expression using equations (4.6), (4.9), (4.10) and (E.3). For the second term
on the right-hand side, we first commute the derivatives and introduce terms involving the
the Riemann tensor of the unphysical spacetime. The term with the derivatives ∇b and ∇e

interchanged vanishes in the limit while the Riemann tensor terms can be computed by decom-
posing the Riemann tensor in terms of the Weyl tensor Cabcd and Sab (equation (4.2)). Then
we can evaluate the limit using equations (4.6), (4.9), and (4.10). The final limit gives the
equation

∂bHab = −1
4
∂cBabKbc − 1

4
∂bBabE+

5
4
BabDbE+

1
4
εcdaEcbKdb − 1

4
ηaBbcK

bc

− ηaBbcE
bc. (E.6)

Using equation (E.3) and the equation of motion equation (4.7) it can be verified that the con-
traction of the above equation with ηa is trivial. Projecting the index a on to H we then get
the equation of motion for βab as

Dbβab =
1
4
εcdaEcbKbd +

5
4
BabDbE− 1

4
DaBbcKbc, (E.7)

which reduces to equation (4.20) when Bab = 0.
To define the Lorentz charge we now construct the generalization of the tensor Wab

(equation (7.10)). Note that the only essential properties ofWab used to obtain equation (7.13)
are thatW[ab] = − 1

16εabcKD
cE and DaWab = 0 using the equation of motion for βab. We will

further require thatWab is also traceless.
To find such a Wab, first note that the last term in equation (E.7) can be written as the

divergence of a symmetric tensor using equations (4.8), (4.11), and (4.13)

−1
4
DbBacKac = − 1

16
Da

[
−2BabK + 2habBcdKcd − εcd(aKc

b)DdK − εcd(aDb)KceKd
e

]
.

(E.8)

39



Class. Quantum Grav. 37 (2020) 165008 K Prabhu and I Shehzad

Note that the tensor in the square brackets is not traceless. However, we can add to it the
following symmetric tensor

−5
8

[
2Bc(aKc

b) − habBcdKcd − BabK
]
, (E.9)

which has vanishing divergence and thus does not affect the left-hand side. With this we
define

Wab :=βab +
1
8
εcd(aDcEKd

b) −
1
16

εabcKDcE

− 3
2
BabE+

5
4
Bc(aKc

b) −
1
2
habBcdKcd − 3

4
BabK

− 1
16

εcd(aDb)KceKd
e −

1
16

εcd(aKc
b)DdK,

(E.10)

which satisfies

W[ab] = − 1
16

εabcKDcE , DaWab = 0 , habWab = 0. (E.11)

Then the Lorentz charge formula takes the same form as in equation (7.20) with Wab

now defined as in equation (E.10). The flux of this charge is still given by the expression
equation (7.21).

Note that when Bab = 0, the second line in equation (E.10) vanishes, but the terms in
the third line are nonvanishing in general; denote these terms by a symmetric tensor Tab. It
follows from equation (E.8) that Tab is divergence-free when Bab = 0. Thus Da(T�

abX
b) = 0

and T�
abX

b = 0 when the scalar potential k for Kab (equation (4.16)) vanishes. Using the
scalar potential k as the ‘dynamical field’ in theorem 1 it follows from equation (B.17) that
these terms do not contribute to the Lorentz charge expression. Thus, when Bab = 0 the
Lorentz charge defined using equation (E.10) coincides with the one defined previously in
section 7.2.

Under conformal transformations we can show that

βab �→ βab − εcd(aEcb)Ddα− 3
2
Babα+

1
2
DcBabDcα, (E.12)

and that equation (E.7) is invariant. The explicit computation of the transformation of the
Lorentz charge presented in appendix C now becomes much more complicated. However,
the general argument presented in section 7.3 still holds. Thus, even without the assumption
Bab = 0 we have a satisfactory definition of Lorentz charges at spatial infinity.

The Lorentz charges for Bab �= 0 case were also derived by Compère and Dehouck [33]
(with K = 0) using an asymptotic expansion in Beig–Schmidt coordinates which in the
unphysical spacetime coordinates used in appendix A reads

gab ≡ [1+ σρ+ o(ρ)]2dρ2 + ρ o(ρ)dρdya

+ ρ2
[
h(0)ab + ρh(1)ab − ρ2 ln ρiab + ρ2h(2)ab + o(ρ2)

]
dyadyb.

(E.13)

For βab, as defined by equation (E.4), to exist we set the logarithmic term iab = 0. With this
condition the βab is related to the curl of the metric coefficient h(2)ab with additional terms whose
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form is rather complicated (as compared to equation (A.16) when Bab = 0). Note that with
K = 0, our Wab is a symmetric, divergence-free and traceless tensor and thus we expect that
our charge expression in this case matches with the one derived in [33] in terms of h(2)ab , but we
have not shown this explicitly.

When the logarithmic term iab does not vanish, our definition equation (E.4) cannot be used
for the ‘subleading’ magnetic part of the Weyl tensor. We have not explored this case in detail
but we expect the following strategy to be useful. We can assume that

Ω1/2 ∗ Cabcdη
cηd = Bab +Ω1/2 ln Ω1/2bab +Ω1/2βab + o(Ω1/2), (E.14)

where each of the tensorsBab, bab and βab are symmetric and orthogonal to ηa and admit aC>−1

limit to i0. Using such an expansion in the Hodge dual of equation (4.3a) we can derive the
equations of motion for the limits of Bab, bab and βab. Since the expression for the symplectic
current equation (7.9) is unchanged,we can use these equations ofmotion to define an analogue
of the tensorWab and the Lorentz charges. From the point of view of matching these charges
to those on null infinity, we expect that the spacetimes with such a logarithmic behavior at
spatial infinity would correspond to the polyhomogenous spacetimes at null infinity defined
in [57].
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