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On Minkowski spacetime, the angular momentum flux through null infinity of Maxwell fields,
computed using the stress-energy tensor, depends not only on the radiative degrees of freedom (d.o.f.), but
also on the Coulombic parts. However, the angular momentum also can be computed using other conserved
currents associated with a Killing field, such as the Noether current and the canonical current. The flux
computed using these latter two currents is purely radiative. A priori, it is not clear which of these is to be
considered the “true” flux of angular momentum for Maxwell fields. This situation carries over to Maxwell
fields on nondynamical, asymptotically flat spacetimes for fluxes associated with the Lorentz symmetries
in the asymptotic Bondi-Metzner-Sachs (BMS) algebra. We investigate this question of angular momentum
flux in the full Einstein-Maxwell theory. Using the prescription of Wald and Zoupas, we compute
the charges associated with any BMS symmetry on cross sections of null infinity. The change of these
charges along null infinity then provides a flux. For Lorentz symmetries, Maxwell fields contribute an
additional term, compared to the Wald-Zoupas charge in vacuum general relativity, to the charge on a cross
section. With this additional term, the flux associated with Lorentz symmetries, e.g., the angular
momentum flux, is purely determined by the radiative d.o.f. of the gravitational and Maxwell fields.
In fact, the contribution to this flux by Maxwell fields is given by the radiative Noether current flux and not
by the stress-energy flux.
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I. INTRODUCTION

There is a surprising fact inMaxwell electromagnetismon
Minkowski spacetime. While one typically thinks of fluxes
of energy, linear momentum, and angular momentum
radiated away to null infinity as depending only on the
radiative degrees of freedom (d.o.f.), this is not always true.
While the flux of energy and linearmomentum is completely
determined by the radiative fields, the flux of angular
momentum, when calculated using the stress-energy
tensor, also depends on the Coulombic d.o.f. [1,2]. These
Coulombic d.o.f. appear through an interaction termwith the
radiative d.o.f. and are relevant only if the total charge of the
system is nonzero. This occurs in realistic scenarios: For
instance, all of the angular momentum radiated by a charged
spinning sphere with variable angular velocity is due to the
interaction term between radiative and Coulombic d.o.f. [3].
However, there are other conserved currents for Maxwell

fields that are also naturally associated with Killing sym-
metries in Minkowski spacetime: (i) Using the Lagrangian,
one can define a Noether current for Maxwell fields which is

the natural conserved current associated with Killing sym-
metries through Noether’s theorem; (ii) similarly, using the
covariant phase space formalism, one can also define a
canonical current associated with Killing symmetries. Just
like the current defined by the stress-energy tensor, each of
these currents is conserved and can be used to define the flux
of energy and linear momentum (associated with a time or
space translation Killing field) and angular momentum
(associated with a rotational Killing field). The fluxes
through finite regions of null infinity defined by these
conserved currents differ by “boundary terms” on the cross
sections bounding this region. When one instead considers
the flux through all of null infinity, the difference between
these currents depends on the Coulombic part of Maxwell
fields evaluated at spacelike and timelike infinity, which is
nonvanishing, in general. In particular, in the context of the
electromagnetic memory [4], this difference is nonzero.
Thus, a priori it is not obvious which (if any) of these
currents defines the “correct” notion of energy and angular
momentum flux at null infinity for Maxwell fields on
Minkowski spacetime.
In this paper, we first show that the above considerations

generalize to the asymptotic symmetries in Maxwell theory
on any nondynamical, asymptotically flat background
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spacetime. In particular, one can define the fluxes through
null infinity using any of the aforementioned currents
associated with the generators of the Bondi-Metzner-
Sachs (BMS) algebra.We find that theNoether and canonical
currents define fluxes associated with all BMS symmetries,
and these fluxes are completely determined by the radiative
d.o.f. of Maxwell fields. However, the flux associated with
asymptotic Lorentz symmetries that is defined by the stress-
energy current depends also on the Coulombic part via a
boundary term exactly as in Minkowski spacetime.
Furthermore, none of these fluxes can be written as the
change of a charge computed purely on cross sections of null
infinity. Thus, working purely on null infinity, none of these
fluxes can be interpreted as the change in “energy” or
“angular momentum” on cross sections of null infinity.
To investigate this issue in more detail, we then consider

the full Einstein-Maxwell theory, with the background
metric now also considered a dynamical field. Unlike
Maxwell theory on a nondynamical background,
Einstein-Maxwell theory is diffeomorphism covariant.
Thus, we can apply the general prescription of Wald and
Zoupas [5] to define chargesQ (on any cross section of null
infinity) and their fluxes F (which are the change in
charges Q through any region of null infinity) associated
with the BMS symmetries at null infinity.
We show that if one takes the Wald-Zoupas charges for

the BMS symmetries to be defined by the same expression
as in vacuum general relativity (GR) [say,QGR, Eq. (4.26)],
then the additional contribution to their fluxes due to
Maxwell fields is indeed given by the stress-energy current.
Consequently, the flux of charges associated with asymp-
totic Lorentz symmetries, such as angular momentum, is
not purely radiative but depends also on the Coulombic
parts of Maxwell fields. However, applying the Wald-
Zoupas prescription to the full Einstein-Maxwell theory
also gives an additional contribution to the charges them-
selves due to Maxwell fields [say, QEM, Eq. (4.30)]. The
full Wald-Zoupas charge for Einstein-Maxwell theory is
then given by Q ¼ QGR þQEM. We show that the flux F
of this full Wald-Zoupas charge across any region of null
infinity is completely determined by the radiative d.o.f. of
both the gravitational and Maxwell fields at null infinity.
The contribution of Maxwell fields to this Wald-Zoupas
flux is, in fact, given by the Noether current and not the
stress-energy current. In addition, the Wald-Zoupas flux F
through all of null infinity defines a Hamiltonian generator
associated with the BMS symmetries on the radiative phase
space of Einstein-Maxwell theory at null infinity.
We further show that the additional contribution QEM

vanishes for supertranslations and does not contribute to the
supermomentum charges associated with supertranslation
symmetries. In particular, the supermomentum charge is
given by the usual formula QGR as in vacuum GR, and the
supermomentum flux gets an additional (purely radiative)
contribution from Maxwell fields which is equal to the flux

determined by the stress-energy or Noether current (as they
are equal for supertranslations). If one considers the Kerr-
Newman solution, the additional contribution QEM van-
ishes for Lorentz symmetries as well. However, for non-
stationary solutions of Einstein-Maxwell theory, QEM is
generically nonvanishing for Lorentz symmetries. Thus, in
general, the contribution due to Maxwell fields to the Wald-
Zoupas flux of Lorentz charges, e.g., angular momentum, is
not given by the flux of stress-energy but instead by the
Noether current flux.
The rest of the paper is organized as follows. In Sec. II,

we review the natural currents of Maxwell theory asso-
ciated with vector fields in a nondynamical spacetime
which are conserved for Killing vector fields. In Sec. II A,
we consider the limits of these currents to null infinity for
BMS vector fields, which need not be exact Killing vector
fields, and define the corresponding fluxes associated with
the BMS symmetries. In Sec. III, we consider Einstein-
Maxwell theory, analyze its symplectic current, and review
the asymptotic conditions at null infinity. In Sec. IV, we
consider the Wald-Zoupas prescription to define charges
and fluxes associated with the BMS algebra in Einstein-
Maxwell theory. We review the essential ingredients of the
Wald-Zoupas prescription in Sec. IVA and compute the
charges and fluxes for Einstein-Maxwell theory at null
infinity in Sec. IV B. We end with Sec. V by discussing our
main results and their implications.
Several proofs and explicit computations are relegated to

appendixes. In Appendix A, we derive useful properties
of the asymptotic symmetries of Einstein-Maxwell theory.
Some properties of stationary solutions in Einstein-
Maxwell theory at null infinity are presented in
Appendix B. In Appendix C, we collect the computations
of Maxwell contribution to the Wald-Zoupas charge in
Kerr-Newman spacetime and for a charged spinning sphere
in Minkowski spacetime.

A. Notation and conventions

Our notations and conventions are as follows: Lowercase
Latin indices from the beginning of the alphabet (a, b, etc.)
refer to abstract indices. Differential forms, when appearing
without indices, are in bold. We follow the conventions of
Wald [6] for the metric gab, Riemann tensor Rabc

d, and
differential forms. Contraction of vectors into the first index
of a differential form is denoted by “·”, e.g., X · θ≡ Xcθcab
for a vector field Xa and a 3-form θ≡ θabc.
We use the usual conformal completion definition of null

infinity I with conformal factor Ω (for a review, see [7]).
For definiteness we will consider future null infinity—
depending on the conventions, some of our formulas will
acquire an additional sign when using past null infinity
instead. Fields in the physical spacetime are denoted with
hats, while the corresponding unphysical quantities are
unhatted; e.g., ĝab is the physical spacetime metric, while
gab is the metric in the unphysical (conformally completed)
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spacetime. The conversion between the metrics and
volume elements in the physical and unphysical spacetimes
is given by

ĝab ¼Ω−2gab; ĝab ¼Ω2gab; ε̂abcd¼Ω−4εabcd: ð1:1Þ

Let na ≔ ∇aΩ. It can be shown that the conformal factor Ω
can always be chosen so that the Bondi condition

∇anb ¼̂ 0 ð1:2Þ

is satisfied, where “ ¼̂ ” denotes equality on I .
Furthermore, with this choice we also have

nana ¼ OðΩ2Þ: ð1:3Þ

We will work with this choice of conformal factor through-
out. Let qab denote the pullback of the unphysical metric
gab to I . From Eqs. (1.2) and (1.3), it follows that
qabnb ¼̂ 0 and £nqab ¼̂ 0. Thus, qab defines a degenerate
metric on I and a Riemannian metric on the space of null
generators (diffeomorphic to S2) of I .
For our computations, it will be convenient to define

some additional structure on I as follows. Let u be a
function on I such that na∇au ¼̂ 1 (i.e., u is a coordinate
along the null generators of I ) and na∂a ¼̂ ∂u. Consider
the foliation of I by a family of cross sections given by
u ¼ const. The pullback of qab to any such cross section S
defines a Riemannian metric on S. For such a choice of
foliation, there is a unique auxiliary normal vector field la

at I such that

lala ¼̂ 0; lana ¼̂ − 1; qablb ¼̂ 0: ð1:4Þ

Note that this choice of auxiliary normal is parallel trans-
ported along na, i.e., nb∇bla¼̂ 0.1

In terms of this auxiliary normal, we also have

qab ¼̂ gab þ 2nðalbÞ; qab ¼̂ gab þ 2nðalbÞ; ð1:5Þ

where qab is the “inverse metric” on the chosen foliation
relative to la. For any va satisfying nava ¼̂ lava ¼̂ 0 on I ,
we define the derivative Da on the cross sections by

Davb ≔ qacqbd∇cvd: ð1:6Þ

It is easily verified that Daqbc ¼̂ 0; i.e., Da is the metric-
compatible covariant derivative on cross sections of I .
Let ε3 ≡ εabc be the volume element on I and ε2 ≡ εab

the area element on the cross sections ofI in our choice of
foliation which we define by

εabc ≔ ldεdabc; εab ≔ −ncεcab: ð1:7Þ

These are the orientations of ε3 and ε2 that are used
by Ref. [5]. In our choice of foliation, we also have
ε3 ¼ −du ∧ ε2.
We also use the following terminology for the charges

and fluxes associated with the symmetry algebra at null
infinity. Quantities associated with asymptotic symmetries
evaluated as integrals over cross sections S ≅ S2 of null
infinity will be called “charges,” while those evaluated as
an integral over a portion ΔI of null infinity bounded by
two cross sections will be called “fluxes.” In general, fluxes
need not be the difference of any charges on the two
bounding cross sections, but the Wald-Zoupas fluxes
(defined in Sec. IV) are the change of the Wald-Zoupas
charges. When certain conditions are satisfied, the fluxes
given by the Wald-Zoupas prescription can also be con-
sidered as Hamiltonian generators on the phase space at
null infinity [see the discussion below Eq. (4.12)].

II. MAXWELL FIELDS ON A NONDYNAMICAL
BACKGROUND SPACETIME

In this section, we discuss in detail three currents that
occur in the theory of Maxwell fields associated with vector
fields on a fixed, nondynamical background spacetime: the
canonical, stress-energy, and Noether currents. We show
that, when the vector field is a Killing field of the back-
ground metric, each of these currents is conserved, and
they differ by “boundary” terms. Next, we carefully analyze
the fluxes through I defined by each of these currents
when the vector fields are asymptotic symmetries in the
BMS algebra. This serves as a primer for the remaining part
of the paper where we analyze Einstein-Maxwell theory
at I and define charges and fluxes for its asymptotic
symmetries.
The dynamical field of Maxwell electrodynamics is

given by a vector potential. It is most natural to treat the
vector potential as a connection on a Uð1Þ-principal bundle
over spacetime and perform the analysis directly on the
principal bundle [9]. Since this would need considerable
additional formalism, we will instead treat the vector
potential as a 1-form Âa on spacetime which is obtained
from the connection by making an (arbitrary) choice of
gauge. Maxwell field strength 2-form F̂ab is then

F̂ab ≔ 2∇̂½aÂb�: ð2:1Þ

To define our currents, we will consider the transformations
of the vector potential under both Maxwell gauge trans-
formations parametrized by a function λ̂ and diffeomor-
phisms generated by a vector field X̂a, which we
collectively denote by ξ̂ ¼ ðX̂a; λ̂Þ. The infinitesimal
change in the vector potential under these transformations
is given by

1All of our results can be obtained without choosing a foliation
of I and the corresponding auxiliary normal la, but some
intermediate computations become more cumbersome; see [7,8].
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δξ̂Âa ¼ £X̂Âa þ ∇̂aλ̂ ¼ X̂bF̂ba þ ∇̂aðX̂bÂb þ λ̂Þ: ð2:2Þ

Note that the vector field X̂a and the function λ̂ are
independent of any choice of gauge for Maxwell vector
potential, since they are simply vector fields and functions
on the spacetime. However, for a fixed transformation
parametrized by ξ̂, its representation in terms of a vector
field X̂a and a Maxwell gauge transformation λ̂ depends on
the choice of gauge for the vector potential Âa. Let Â

0
a ¼

Âa þ ∇̂aΛ̂ be another vector potential related to Âa by a
gauge transformation Λ̂. For a fixed ξ̂ ¼ ðX̂a; λ̂Þ, let the new
representatives under the gauge transformation by Λ̂ be
ξ̂ ¼ ðX̂0a; λ̂0Þ. Since ξ̂ is fixed, its action on the vector
potentials must be independent of the choice of gauge; that
is, δξ̂Â

0
a ¼ δξ̂Âa. Evaluating this, we have

£X̂0 Âa þ ∇̂aλ̂
0 þ ∇̂a£X̂0Λ̂ ¼ £X̂Âa þ ∇̂aλ̂: ð2:3Þ

This implies that, under a change of Maxwell gauge by Λ̂,
the representation of a fixed transformation ξ̂ ¼ ðX̂a; λ̂Þ ¼
ðX̂0a; λ̂0Þ changes as

X̂0a ¼ X̂a; λ̂0 ¼ λ̂ − £X̂Λ̂: ð2:4Þ
Consequently, the notion of a pure Maxwell gauge trans-
formation ξ̂ ¼ ðX̂a ¼ 0; λ̂Þ is well defined independently of
the choice of gauge Λ̂, but a “pure diffeomorphism” ξ̂ ¼
ðX̂a; λ̂ ¼ 0Þ is not. This is analogous to the structure of the
BMS algebra noted in Appendix A. Note also that

λ̂0 þ X̂0aÂ0
a ¼ λ̂þ X̂aÂa ð2:5Þ

is invariant under changes of Maxwell gauge.2

The Lagrangian 4-form of Maxwell electrodynamics is
given by

LEM ≔ ε̂4

�
−

1

16π
F̂2

�
; ð2:6Þ

where F̂2 ≔ ĝacĝbdF̂abF̂cd and the metric is considered to
be a nondynamical field. One can also consider Maxwell
field coupled to a charged source current of compact
support. On Minkowski spacetime, such source currents
are necessary to have a nonvanishing Coulombic part of
Maxwell field. Of course, there are asymptotically flat
spacetimes which are solutions of the source-free Maxwell
equations and have a nonvanishing Coulombic part without
introducing external sources, e.g., the Kerr-Newman

spacetimes. Since we are mostly concerned with the
behavior at null infinity, a source current of compact
support does not change our main analysis. However,
we assume the presence of such sources to enrich our
class of solutions so that also on Minkowski spacetime
there exist Maxwell field configurations with a nonzero
total charge.
Varying the Lagrangian with respect to the dynamical

field Âa gives

δLEM ¼ ε̂4

�
1

4π
ð∇̂bF̂

baÞδÂa −
1

4π
∇̂bðF̂baδÂaÞ

�
; ð2:7Þ

which yields Maxwell equations

∇̂bF̂
ba ¼ 0; ð2:8Þ

as well as a boundary term corresponding to the symplectic
potential 3-form

θEMðδÂÞ≡ −
1

4π
ε̂dabcF̂

deδÂe: ð2:9Þ
The symplectic current 3-form is then defined as

ωEM ≔ δ1θEMðδ2ÂÞ − δ2θEMðδ1ÂÞ

≡ −
1

4π
ε̂dabc½δ1F̂deδ2Âe − ð1 ↔ 2Þ�: ð2:10Þ

From this symplectic current, we construct the canonical
current for a transformationof thevector potential [Eq. (2.2)]
generated by ξ̂ ¼ ðX̂a; λ̂Þ. A priori, one may naively expect
the canonical current to involve two variations of the vector
potential. However, since Maxwell equations are linear,
the situation simplifies: Consider a one-parameter family
of vector potentials ÂaðϵÞ ≔ ð1þ ϵÞÂa. This entire family
satisfies Maxwell equations if Âa satisfies Maxwell
equations, and the variation of this family of solutions
δÂa ≔ d

dϵ ÂaðϵÞjϵ¼0 is equal to the vector potential Âa.
Therefore, for a given symmetry ξ̂ ≔ ðX̂a; λ̂Þ, where X̂a is
any vector field and λ̂ describes the change of gauge, we
define the canonical current as

JC½ξ̂� ≔ ωEMðÂ; δξ̂ÂÞ≡ ε̂dabc|̂dC

with |̂aC ¼ −
1

4π
½F̂abð£X̂Âb þ ∇̂bλ̂Þ − ĝacĝbdÂb£X̂F̂cd�:

ð2:11Þ
To define the stress-energy and Noether currents, we

also need to vary Maxwell Lagrangian with respect to the
metric ĝab.

3 In particular, by varying the Lagrangian with
respect to the nondynamical metric ĝab, we find Maxwell
stress-energy tensor T̂ab:2On a principal bundle, ξ̂ ¼ ðX̂a; λ̂Þ is a vector field on the

bundle and Eq. (2.2) is the Lie derivative of the connection with
respect to ξ̂. The Lie algebra of such vector fields also has the
structure of a semidirect sum of diffeomorphisms with the Lie
ideal of Maxwell gauge transformations [9]. The invariant in
Eq. (2.5) is then the vertical part of ξ̂ on the bundle.

3Note that varying the Lagrangian with respect to ĝab is not in
contradiction with our assumption of ĝab being nondynamical in
this section—ĝab does not satisfy any equation of motion
obtained by varying the purely Maxwell Lagrangian.
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δĝLEM ¼ ε̂4
1

2
T̂abδĝab; ð2:12Þ

where

T̂ab ≔
1

4π

�
F̂acF̂b

c −
1

4
ĝabF̂2

�
: ð2:13Þ

The associated current, the stress-energy current for some
vector field X̂a, is given by

JT≡ ε̂dabc|̂dT

with |̂aTðX̂Þ≔ T̂abX̂b¼
1

4π

�
F̂acF̂bcX̂

b−
1

4
X̂aF̂2

�
: ð2:14Þ

Given that its divergence is

∇̂a|̂aTðX̂Þ ¼ T̂ab∇̂ðaX̂bÞ; ð2:15Þ

it is clear that |̂aTðX̂Þ is conserved when X̂a is Killing.
We finally turn to the Noether current. To obtain its

expression, we consider the variation of Maxwell
Lagrangian under the transformation generated by
ξ̂ ¼ ðX̂a; λ̂Þ, where the vector potential transforms as in
Eq. (2.2) and the variation of the metric under diffeo-
morphisms is δξ̂ĝab ¼ £X̂ĝab (see the appendix of
Ref. [10]). This yields4

δξ̂LEM ¼ £X̂LEM ¼ dη½ξ̂�; ð2:16Þ

where the 3-form η½ξ̂� is given by

η½ξ̂� ¼ X̂ · LEM ¼ −
1

16π
ε̂dabcF̂

2X̂d: ð2:17Þ

The Noether current is then defined by (see the appendix of
Ref. [10])

JN½ξ̂� ≔ θEMðδξ̂ÂaÞ − η½ξ̂�≡ ε̂dabc|̂dN

with |̂aN ¼ −
1

4π
F̂ab½£X̂Âb þ ∇̂bλ̂� þ

1

16π
X̂aF̂2 :

Despite the fact that these three currents are clearly
different, in the case where the vector field X̂a is Killing, all
these currents differ only by total derivatives and constant
factors. It can be shown quite generally that the Noether and
stress-energy currents are related by a total derivative; see
the appendix of Ref. [10]. For Maxwell fields, we find by
comparing the Noether and stress-energy current that

JN½ξ̂� ¼ −JT½X̂� þ dQN½ξ̂�; ð2:19Þ

where

QN½ξ̂�≡ −
1

8π
ε̂cdabF̂

cdðX̂eÂe þ λ̂Þ: ð2:20Þ

Comparing the canonical with the Noether current, one
instead finds [after a lengthy but straightforward calculation
starting with Eq. (2.11)] that

JC½ξ̂� ¼ 2JN½ξ̂� þ dQC½ξ̂� þ KC; ð2:21Þ

where

QC½ξ̂� ≔ −
1

8π
ε̂cdabð2X̂cF̂deÂe − λ̂F̂cdÞ; ð2:22Þ

KC≔
1

2π
ε̂dabc

�
2ĝf½dF̂e�g−

1

2
F̂deĝfg

�
Âe∇̂ðfX̂gÞ: ð2:23Þ

When X̂a is a Killing vector field of the background
spacetime, the Noether and canonical current differ only
by a total derivative of QC½ξ̂� (up to a constant factor of 2).
For any Killing vector field X̂a, these currents are all

related by total derivatives, and the fact that the stress-
energy current is conserved in this case directly shows
that the other two currents are also conserved. From the
discussion under Eq. (2.2), it follows that both the stress-
energy and Noether current are invariant under Maxwell
gauge transformations, while the canonical current is
invariant only up to boundary terms. Thus, we can use
any of these currents to define a conserved quantity for
Maxwell fields associated with a Killing vector field of the
background spacetime.5 For example, if the background
spacetime is stationary with a timelike Killing field t̂a, then
any of the above defined currents with X̂a ¼ t̂a integrated
over a Cauchy surface defines a notion of “energy.”
Similarly, for an axisymmetric background with an axial
Killing field X̂a ¼ ϕ̂a, each of these currents define an
“angular momentum.” The conserved quantities defined
using these currents will then differ by boundary terms on
the Cauchy surface, at either a boundary at infinity or some
interior boundary like a black hole horizon.
The most appropriate current to use depends on the

problem at hand. The Noether current is the most natural
one associated with a symmetry through Noether’s theorem
(and, as we will show, is also the contribution due to
Maxwell fields to the Wald-Zoupas flux). On the other
hand, the stress-energy current is typically used for calcu-
lations of energy and angular momentum flux, both in

4Note that when the vector field X̂a is nonvanishing it is essen-
tial that the nondynamical metric in Maxwell Lagrangian is also
varied so that δξ̂LEM is a total derivative.

5Of course, one is free to define other conserved currents by
simply adding exact 2-forms (i.e., boundary terms) to the three
currents we have defined.
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standard textbooks for Maxwell theory in flat spacetimes
[11,12] and on fixed backgrounds [6] (in fact, problem 9.8
of Ref. [12] notes that the angular momentum flux depends
on more than just the radiative electromagnetic fields).
Furthermore, for computations of “self-force” effects on
charged sources due to electromagnetic radiation, the
useful quantity to use is the stress-energy current; see,
for instance, [3,13].
The canonical currents are associated directly to the

Hamiltonian formulation where the symplectic current
provides a natural symplectic form on the phase space.
These currents also arise in the formulation of the first law
of black hole mechanics [9,10]. By general arguments, the
positivity of the canonical energy (relative to a timelike
Killing field of the background) is also directly related to
the stability of the background black hole to perturbations
[14,15]. For axisymmetric Maxwell fields on a stationary
(but not static) and axisymmetric black hole spacetime in
GR, it was shown in Ref. [16] that the energy evaluated on a
Cauchy surface defined by the canonical current (which, in
this case, also equals the one defined by Noether current) is,
in fact, positive, whereas the energy given by the stress-
energy tensor can be made negative. Thus, the canonical
energy is the more useful quantity in the analysis of
stability of black hole spacetimes to electromagnetic
perturbations. The canonical energy is also useful to
account for the “second-order” self-force effects of small
test bodies in black hole spacetimes [17]. Similarly, the
symplectic current is useful for deriving conserved currents
associated with symmetries of the equations of motion
which need not arise from the action of a diffeomorphism
or gauge transformation [18,19].

A. Maxwell currents and fluxes at I

We now turn to comparing the fluxes through I
constructed from the various currents in the previous
section. Hereafter, we will not require that the vector field
X̂a is a Killing field but, instead, require it to be an element
of the asymptotic BMS symmetry algebra atI . In order to
make this comparison, we first list the asymptotic proper-
ties of the relevant fields at null infinity.
As usual, we perform this calculation in the unphysical

spacetime. The unphysical Maxwell field tensor is given by
Fab ¼ F̂ab, and we assume that Fab extends smoothly to
I . For the vector potential, this implies that there exists a
gauge in which Aa ¼ Âa is also smooth at I .6 Moreover,
without loss of generality—that is, for all solutions of
Maxwell equations where Fab is smooth at I—we can
further restrict the gauge freedom to the outgoing radiation
gauge

naAa ¼̂ 0: ð2:24Þ

The argument is similar to the one used for imposing the
Bondi condition (see, for instance, Sec. 11.1 of Ref. [6]):
Let Aa be a vector potential so that naAa ≠̂ 0, and consider
another vector potential A0

a related to it by a Maxwell gauge
transformation A0

a ¼ Aa þ∇aλ. Now choose λ to be a
solution of

£nλ ¼̂ − naAa: ð2:25Þ

Since this is an ordinary differential equation along the
generators of I , solutions to this equation always exist.
With this choice of λ, we have naA0

a¼̂ 0. Henceforth, we
will assume that this choice has been made for the vector
potential.
Now consider a diffeomorphism X̂a and a Maxwell

gauge transformation λ̂. We show in Appendix A that, to
preserve the asymptotic-flatness conditions on the space-
time, Xa ¼ X̂a must be smooth at I and correspond to an
element of the BMS Lie algebra. The essential conditions
on Xa atI are collected in Eqs. (A9)–(A11). Similarly, for
the transformation of the vector potential [Eq. (2.2)], to
preserve our conditions onMaxwell field we must have that
λ ¼ λ̂ is smooth at I and satisfies £nλ ¼̂ 0.
In summary, we have that

Âa ¼ Aa; F̂ab ¼ Fab; X̂a ¼ Xa; λ̂¼ λ ð2:26Þ

are all smooth at I along with the condition Eq. (2.24).
Two important quantities can be derived from the

“electric field” Fabnb at I : The first is Ea, defined by

Ea ≔ Fabnb
⟵

¼ qacFcbnb ¼ −£nA
←
a; ð2:27Þ

with the under arrow indicating the pullback to I . The
radiative d.o.f. in the electromagnetic field are contained in
Ea (or, equivalently, A

←
a). The other piece of Fabnb, which

contains nonradiative (Coulombic) information at I , is
given by Re½φ1�, defined by7

Re½φ1� ≔
1

2
Fablanb: ð2:28Þ

Maxwell equations imply that on I these two fields are
related in the following way:

2£nRe½φ1� ¼̂ qabDaEb: ð2:29Þ

6Generically, if we impose some gauge condition on Âa in the
physical spacetime, e.g., Lorenz gauge, then Aa ¼ Âa is not
guaranteed to be smooth at I in the chosen gauge; see, for
example, the case of Kerr-Newman spacetime in Appendix C.

7The notation “Re½φ1�” comes from Newman-Penrose notation
[20]. Similarly, the quantity Ea corresponds to the real and
imaginary parts of φ2 in Newman-Penrose notation.
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With these asymptotic conditions, we now evaluate the
fluxes through null infinity defined by the canonical,
Noether, and stress-energy currents for any asymptotic
symmetry ξ ¼ ðXa; λÞ as described above. Note that in this
context the vector field X̂a ¼ Xa need not be a Killing
vector field inside the physical spacetime but is required to
be a BMS vector field on I .
With our convention in Sec. I A for ε3, the pullback of a

3-form J is −Ω−4na|̂aε3, where Jabc ¼ ε̂abcd|̂d. The flux of
the canonical current is given by

FC½ξ;ΔI � ≔
Z
ΔI

JC½ξ� ¼ −
Z
ΔI

ε3Ω−4na|̂aC½ξ�

¼ −
1

4π

Z
ΔI

ε3qab
�
Eað£XAb þDbλÞ − Aa£XEb

−
1

2
EaAbDcYc

�
; ð2:30Þ

where Ya is the “pure Lorentz part” of Xa and we have used
that £Xna ¼̂ − 1

2
ðDbYbÞna [see Eq. (A9) and the text

below Eq. (A12)]. The flux of the Noether current is given
by

FN½ξ;ΔI � ≔
Z
ΔI

JN½ξ� ¼ −
Z
ΔI

ε3Ω−4na|̂aN½ξ�

¼ −
1

4π

Z
ΔI

ε3qabEað£XAb þDbλÞ; ð2:31Þ

where we have used that £nλ ¼̂ 0 [see Eq. (A15)]. The term
proportional to F2 in Eq. (2.18) does not contribute to the
flux through I , because Xana ¼̂ 0. Finally, the flux of the
stress-energy current is given by

FT½ξ;ΔI � ≔
Z
ΔI

JT½ξ� ¼ −
Z
ΔI

ε3TabnaXb

¼ −
1

4π

Z
ΔI

ε3EaðqabFbcXc þ 2Re½φ1�YaÞ:

ð2:32Þ

From the above expressions, it is apparent that all of these
fluxes vanish in the absence of electromagnetic radiation,
i.e., when Ea ¼ 0. Furthermore, the fluxes defined by the
Noether and canonical currents depend only on the radiative
modesA

←
a at null infinity. However, the stress-energy current

flux also depends on the Coulombic part Re½φ1�, as
emphasized before in Refs. [1,2]. For supertranslations
Xa ∝ na, this Coulombic term does not contribute to the
flux, since Ya ¼ 0. However, the stress-energy current flux
associated with asymptotic Lorentz symmetries, e.g., angu-
lar momentum flux, cannot be computed from just the
radiative modes.
Note that, since any BMS vector field satisfies

Ω2£Xĝab ¼̂ 0 (see the discussion in Appendix A), the

3-form term KC in Eq. (2.21) vanishes at null infinity.
Thus, from Eq. (2.21) we have on I

JN½ξ� ¼̂
1

2
½JC½ξ�− dQC½ξ��; JT½ξ� ¼̂ − JN½ξ� þ dQN½ξ�:

ð2:33Þ

That is, all three currents evaluated on I differ by exact
3-forms even when the vector field Xa is not Killing but an
element of the BMS algebra. Therefore, the fluxes of these
currents on I can be related to each other purely by
boundary terms on the cross sections S2 and S1 bounding
the region ΔI (with S2 in the future of S1).
Let us compare the fluxes onI in more detail. Consider,

first, the relation between the flux of the Noether and
canonical current. This satisfies

FN½ξ;ΔI � ≔
Z
ΔI

JNðξÞ

¼ 1

2
FC½ξ;ΔI � þ 1

2

�Z
S2

QC½ξ� −
Z
S1

QC½ξ�
�
;

ð2:34Þ

with the boundary term

Z
S
QC½ξ� ¼ −

1

4π

Z
S
ε2ðβEaAa − 2λRe½φ1�Þ; ð2:35Þ

where β is as given in Eq. (A11). This expression is rather
strange on first inspection, since both FC and FN contain
only radiative information by Eqs. (2.30) and (2.31),
respectively, and yet their difference appears to be a
boundary term that contains nonradiative information,
in the form of λRe½φ1�. This is somewhat misleading,
since, using Maxwell equation (2.29) and £nλ ¼̂ 0, this
Coulombic contribution can be rewritten in terms of purely
radiative d.o.f. as

1

4π

Z
S2

ε22λRe½φ1�−
1

4π

Z
S1

ε22λRe½φ1�¼
1

4π

Z
ΔI

ε3qabEaDbλ:

ð2:36Þ

Next, consider the relation between the flux of the stress-
energy and Noether current:

FT½ξ;ΔI � ¼ −FN½ξ;ΔI � −
�Z

S2

QN½ξ� −
Z
S1

QN½ξ�
�
;

ð2:37Þ

with

Z
S
QN½ξ� ¼ −

1

2π

Z
S
ε2Re½φ1�ðYaAa þ λÞ: ð2:38Þ
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Unsurprisingly, as there is nonradiative information in FT
but not in FN, the boundary term contains nonradiative
information.
Finally, let us consider the fluxes through all of I . The

natural boundary conditions for the electromagnetic field in
the limit u → �∞ are

Ea ¼ Oð1=juj1þϵÞ; A
←
a ¼ Oð1Þ: ð2:39Þ

These conditions ensure that the symplectic form obtained
by integrating the symplectic current over all ofI is finite.
Given that β grows at most linearly in u and Ya and λ are
independent of u (see Appendix A), we find that the fluxes
differ by

FN½ξ;I � ¼ 1

2
FC½ξ;I � þ 1

2
½QCðS∞Þ−QCðS−∞Þ�; ð2:40Þ

FT½ξ;I � ¼ −FN½ξ;I � − ½QNðS∞Þ −QNðS−∞Þ�; ð2:41Þ

where S∞ and S−∞ are the spheres at u ¼ �∞, respec-
tively, and

QCðSÞ ≔
1

2π

Z
S
ε2λRe½φ1�; ð2:42Þ

QNðSÞ ≔ −
1

2π

Z
S
ε2Re½φ1�ðYaAa þ λÞ: ð2:43Þ

As discussed below Eq. (2.35), the difference between the
canonical and Noether fluxes can also be expressed purely
in terms of the radiative d.o.f. However, the difference
between the Noether and stress-energy fluxes does depend
on the Coulombic d.o.f. even when computed over all ofI ,
except when Ya ¼ 0 and λ ¼ 0 (a pure supertranslation).

We stress once more that none of these fluxes can be
written as the difference of charges evaluated on cross
sections of null infinity. Thus, on a nondynamical back-
ground spacetime, none of these fluxes can be considered
as the change of energy or angular momentum at a
particular “time” (a cross section of null infinity), and
there is no obvious criterion to decide which of these
currents defines the flux of energy or angular momentum.

III. EINSTEIN-MAXWELL THEORY

In this section, we review the symplectic structure at I
as well as the asymptotic behavior of asymptotically flat
spacetimes in Einstein-Maxwell theory. The reader familiar
with this can safely skip to the next section.

A. Symplectic current for Einstein-Maxwell theory

Following Ref. [21], the Lagrangian for Einstein-
Maxwell theory is given by

L ¼ 1

16π
ðR̂ − F̂2Þε̂4: ð3:1Þ

As in the case of Maxwell theory, our analysis is unaffected
by adding additional matter sources of compact support or
sufficiently fast falloff at null infinity.
A variation of this Lagrangian with respect to the

dynamical fields Φ̂ ¼ ðĝab; ÂaÞ gives (raising and lowering
with the background physical metric)

δL ¼
�
−

1

16π
ðĜab − 8πT̂abÞδĝab þ

1

4π
∇̂bF̂

baδÂa

�
ε̂4

þ dθðδΦ̂Þ; ð3:2Þ

where Ĝab is the Einstein tensor of ĝab and the stress-energy
tensor T̂ab is the same as in Eq. (2.13), except that the
spacetimemetric is now also dynamical. The variations with
respect to the dynamical fields Φ̂ ¼ ðδĝab; δÂaÞ give the
Einstein equations and Maxwell equations, respectively:

Ĝab ¼ 8πT̂ab; ∇̂bF̂
ba ¼ 0: ð3:3Þ

The symplectic potential θ is given by

θðΦ̂; δΦ̂Þ≡ ε̂dabcv̂d

with v̂a ¼ 1

8π
ðĝa½bĝc�d∇̂cδĝbd − 2F̂abδÂbÞ; ð3:4Þ

where the second term is the symplectic potential of
electromagnetism from Eq. (2.9). The symplectic current
ω ≔ δ1θðδ2Φ̂Þ − δ2θðδ1Φ̂Þ is given by the sum of three
terms [see Eq. (3.12) of Ref. [21]]8

ωðδ1Φ̂; δ2Φ̂Þ≡ ε̂dabc½ŵd
GRðδ1ĝ; δ2ĝÞ þ ŵd

EMðδ1Â; δ2ÂÞ
þ ŵd

×ðδ1Φ̂; δ2Φ̂Þ�: ð3:5Þ

The first term on the right-hand side of Eq. (3.5) is the same
as the symplectic current for vacuum general relativity [see
Eqs. (41) and (42) of Ref. [5]]:

ŵa
GRðδ1ĝ; δ2ĝÞ ¼

1

16π
P̂abcdef½δ2ĝbc∇̂dδ1ĝef − ð1 ↔ 2Þ�;

ð3:6Þ

with

8Note that our expressions Eqs. (3.8) and (3.9) differ in
appearance from the ones in Eq. (3.12) of Ref. [21] only because
Ref. [21] uses the perturbed quantity δF̂ab while we prefer to use
δF̂ab.
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P̂abcdef ¼ ĝaeĝfbĝcd −
1

2
ĝadĝbeĝfc −

1

2
ĝabĝcdĝef

−
1

2
ĝbcĝaeĝfd þ 1

2
ĝbcĝadĝef: ð3:7Þ

Similarly, the second term is the symplectic current of
electromagnetism from Eq. (2.10):

ŵa
EMðδ1Â;δ2ÂÞ¼−

1

4π
ĝacĝbd½δ1F̂cdδ2Âb−ð1↔2Þ�; ð3:8Þ

while the third “cross term” is given by

ŵa
×ðδ1Φ̂; δ2Φ̂Þ ¼ −

1

4π

�
2ĝc½aF̂b�d þ 1

2
F̂abĝcd

�
δ2Âbδ1ĝcd

− ð1 ↔ 2Þ: ð3:9Þ
This cross term is unimportant for our analysis, as it vanishes
in the limit to I for asymptotically flat perturbations.

B. Asymptotic conditions and field equations at I

We now review the asymptotic behavior of Einstein-
Maxwell theory near I . We use the standard definition of
asymptotic flatness (see, for instance, [7]). The addition of
electromagnetic fields does not spoil this definition, since
Fab ¼ F̂ab has a smooth extension to I .

Using the conformal transformation relating the unphys-
ical Ricci tensor Rab to the physical Ricci tensor R̂ab (see
Appendix D of Ref. [6]), the Einstein equation Ĝab ¼
8πT̂ab can be written as

Sab ¼ −2Ω−1∇anb þΩ−2ncncgab

þ 8πΩ2

�
Tab −

1

3
gabgcdTcd

�
; ð3:10Þ

where Sab and Tab are given, respectively, by

Sab ≔ Rab −
1

6
Rgab; Tab ≔ Ω−2T̂ab: ð3:11Þ

For Maxwell fields, we have, by Eq. (2.13) and the
asymptotic conditions in Eq. (2.26),

Tab ¼
1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
: ð3:12Þ

This quantity is smooth at I by the smoothness of Fab
and gab.
As before, we assume that the conformal factor is chosen

to satisfy the Bondi condition [Eqs. (1.2) and (1.3)]:

∇anb ¼̂ 0; nana ¼ OðΩ2Þ: ð3:13Þ

Furthermore, without any loss of generality, the con-
formal factor Ω in a neighborhood ofI and the unphysical

metric gabjI at I may be assumed to be universal, i.e.,
independent of the choice of physical metric ĝab [5,22] (see
Appendix A of Ref. [23] for details of the argument). Now
consider a physical metric perturbation δĝab. Since the
conformal factor can be chosen universally, we have

δgab ¼ Ω2δĝab: ð3:14Þ

Given that the unphysical metric gabjI at I is universal,
δgab ¼̂ 0, and thus there exists a smooth tensor field τab
such that

δgab ¼ Ωτab: ð3:15Þ

Furthermore, imposing the Bondi condition on the pertur-
bations, i.e., δð∇anbÞ ¼̂ 0, we also find [see Eqs. (51)–(53)
of Ref. [5]]

τabnb ¼ Ωτa ð3:16Þ

for some smooth τa. Thus, our asymptotic conditions on the
metric perturbations imply that

τab ≔ Ω−1δgab; τa ≔ Ω−1τabnb ð3:17Þ

are smooth on I .
For Maxwell field, we will use the same conditions as in

Sec. II A; that is, Aa ¼ Âa is smooth at I and satisfies
naAa ¼̂ 0 [Eq. (2.24)].

IV. WALD-ZOUPAS CHARGES AND FLUXES

In this section, we derive the charges and fluxes
associated with asymptotic symmetries in Einstein-
Maxwell theory at null infinity using the Wald-Zoupas
prescription. We first review the Wald-Zoupas procedure
for obtaining charges and fluxes corresponding to asymp-
totic symmetries for a general diffeomorphism covariant
theory in Sec. IVA and then apply this prescription to
Einstein-Maxwell case in Sec. IV B. We show that the
contribution of Maxwell fields to the Wald-Zoupas flux is
given by the Noether current and not the stress-energy
current. Furthermore, this flux can be determined entirely
from the radiative d.o.f., and the total flux over all ofI acts
as a Hamiltonian generator on the radiative phase space.

A. Summary of the Wald-Zoupas prescription

The prescription of Wald and Zoupas can be applied to
any local and covariant theory. We review below the
essential ingredients, emphasizing the subsequent applica-
tion to Einstein-Maxwell theory.
When the dynamical fields Φ̂ satisfy the equations of

motion and δΦ̂ satisfy the linearized equations of motion,
one can show that (see [9,10,24])
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ωðΦ̂; δΦ̂; δξ̂Φ̂Þ ¼ d½δQ½ξ̂� − X̂ · θðδΦ̂Þ� ð4:1Þ

for all symmetries ξ̂, where the 2-form Q½ξ̂� is the Noether
charge associated with the symmetry ξ̂. In Einstein-
Maxwell theory, Q½ξ̂� is given by

Q½ξ̂�≡ −
1

16π
ε̂cdab∇̂cX̂d −

1

8π
ε̂cdabF̂

cdðX̂eÂe þ λ̂Þ: ð4:2Þ

The first term above is the Noether charge associated with
the vector field X̂a in vacuum general relativity [Eq. (44) in
Ref. [5]], and the second term is the Noether charge for
electromagnetism given in Eq. (2.20).
Now we consider Eq. (4.1) atI , rewritten in terms of the

unphysical fields which are smooth atI . Using Eqs. (2.26)
and (3.17), it can be verified that the symplectic current ω
[Eq. (3.5)] has a limit to I . Thus, from this point onward,
we work with the fields and symmetries in the unphysical
spacetime. Now, consider a spacelike surface Σ which
intersects I at some cross section S. Integrating Eq. (4.1)
over Σ, we then find

Z
Σ
ωðΦ; δΦ; δξΦÞ ¼

Z
S
ðδQ½ξ� − X · θðδΦÞÞ: ð4:3Þ

Since ω admits a limit to I , the integral on the left-hand
side of Eq. (4.3) is always finite. However, the 2-form
integrand on the right-hand side need not have a finite limit
toI in general. Thus, the integral on the right-hand side of
Eq. (4.3) should be understood as being defined by first
integrating over some 2-sphere in Σ and then taking the
limit of this 2-sphere to S [5]. This final limiting integral is
independent of the way in which the limits are taken,
since dωðΦ; δΦ; δξΦÞ ¼ 0.
From the above identity, it would be natural to define a

charge associated with the asymptotic symmetry ξ at S as a
function Q½ξ;S� in the phase space of the theory such that

δQ½ξ; S� ¼
Z
S
ðδQ½ξ� − X · θðδΦÞÞ ð4:4Þ

for all perturbations δΦ. However, in general, no such
charge exists, since the right-hand side is not integrable in
phase space, i.e., cannot be written as δðsomethingÞ for all
perturbations. To see this, suppose that the charge defined
in Eq. (4.4) does exist. Then, one must have ðδ1δ2 −
δ2δ1ÞQ½ξ; S� ¼ 0 for all backgrounds Φ and all perturba-
tions δ1Φ; δ2Φ (satisfying the corresponding equations of
motion). However, it is straightforward to compute that

ðδ1δ2 − δ2δ1ÞQ½ξ; S� ¼ −
Z
S
X · ωðΦ; δ1Φ; δ2ΦÞ: ð4:5Þ

Thus, a charge defined by Eq. (4.4) will exist if the right-
hand side of the above equation vanishes. This is the case in

Einstein-Maxwell theory if Xa¼̂ 0, i.e., for a pure asymp-
totic Maxwell gauge symmetry, or if Xa is tangent
to S. However, in general, the right-hand side is non-
vanishing, and one cannot define any charge Q½ξ; S�
using Eq. (4.4).
This obstruction is resolved by the rather general

prescription of Wald and Zoupas [5]. Their procedure
for defining integrable charges associated with asymptotic
symmetries can be summarized as follows: Let ΘðδΦÞ be a
symplectic potential for the pullback of ω to I , i.e.,

ω
⟵

ðδ1Φ; δ2ΦÞ ¼ δ1Θðδ2ΦÞ − δ2Θðδ1ΦÞ ð4:6Þ

for all backgrounds and all perturbations (with suitable
asymptotic conditions and equations of motion imposed).
Following Ref. [5], we require that

(i) Θ be locally and covariantly constructed out of the
dynamical fields Φ and δΦ, and finitely many of
their derivatives, along with any fields in the
“universal background structure” present at I .

(ii) Θ be independent of any arbitrary choices made in
specifying the background structure; i.e., Θ is
conformally invariant as well as invariant under
Maxwell gauge transformations on I for the
Einstein-Maxwell theory. We also require that
Θ be independent of the choice of the auxiliary
normal la and the corresponding qab used in our
computations.

(iii) ΘðδΦÞ ¼ 0 for any stationary background solution
Φ and for all (not necessarily stationary) perturba-
tions δΦ.

If such a symplectic potential Θ can be found, define
Q½ξ; S� to be a function on the phase space at I by9

δQ½ξ; S� ≔
Z
S
ðδQ½ξ� − X · θðδΦÞÞ þ

Z
S
X ·ΘðδΦÞ: ð4:7Þ

It is easily checked [using Eqs. (4.4)–(4.6)] that this expres-
sion is integrable in phase space, i.e., ðδ1δ2−δ2δ1ÞQ½ξ;S�¼0.
Together with some choice of reference solutionΦ0 onwhich
Q½ξ; S� ¼ 0 for all asymptotic symmetries ξ and all cross
sections S, Eq. (4.7) defines theWald-Zoupas chargeQ½ξ; S�
associated with the asymptotic symmetry ξ at S.
The flux of the perturbed Wald-Zoupas charge is given

by [see also Eqs. (28) and (29) of Ref. [5]]

δF ½ξ;ΔI �≔ δQ½ξ;S2�−δQ½ξ;S1�

¼−
Z
ΔI

½ω
⟵

ðδΦ;δξΦÞþd½X ·ΘðδΦÞ��: ð4:8Þ

The last term of this equation can also be written as

9Note that the first of these two integrals is defined by the
limiting procedure described below Eq. (4.3), whereas the second
is an ordinary integral, as Θ is defined directly on I .
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d½X ·ΘðδΦÞ� ¼ £XΘðδΦÞ
¼ δξΘðδΦÞ
¼ −ω

⟵
ðδΦ; δξΦÞ þ δΘðδξΦÞ; ð4:9Þ

where in the second line we have used the criteria thatΘ is a
local and covariant functional on I and that it is invariant
under Maxwell gauge transformations,10 while the third
line follows from the definition of Θ as a symplectic
potential for ω

⟵
[Eq. (4.6)]. Thus, the flux of the perturbed

Wald-Zoupas charge is

δF ½ξ;ΔI � ¼ −
Z
ΔI

δΘðδξΦÞ: ð4:10Þ

To get the unperturbed charge and flux from the
perturbed ones, we have to choose a reference solution
Φ0 on which the charges are required to vanish. Since the
ΘðδΦÞ is required to vanish on stationary backgrounds, we
choose the reference solution Φ0 to also be stationary. For
our concrete case of Einstein-Maxwell theory, we will pick
Φ0 to be Minkowski spacetime. Then, the flux of the Wald-
Zoupas charge is simply

F ½ξ;ΔI � ¼Q½ξ;S2�−Q½ξ;S1� ¼−
Z
ΔI

ΘðδξΦÞ: ð4:11Þ

Note that from Eq. (4.8) we also have

δF ½ξ;ΔI � ¼ −
Z
ΔI

ω
⟵

ðδΦ; δξΦÞ þ
Z
S2

X ·ΘðδΦÞ

−
Z
S1

X ·ΘðδΦÞ: ð4:12Þ

If the boundary terms on S2 and S1 vanish for all back-
grounds Φ and all perturbations δΦ, then F ½ξ;ΔI � also
defines a Hamiltonian generator (relative to the symplectic
current ω

⟵
) on the radiative phase space on ΔI corre-

sponding to the symmetry ξ. For general field configura-
tions, these boundary terms do not vanish on finite cross
sections of I . However, we will show below in Einstein-
Maxwell theory that, when ΔI is taken to be all of null
infinity, appropriate boundary conditions at timelike and
spacelike infinity (i.e., as juj → ∞) ensure that these
boundary terms indeed vanish for our choice of Θ.
Thus, our fluxes define the Hamiltonian generators for
Einstein-Maxwell theory on the phase space on all of I .
Remark 1 (ambiguities in the Wald-Zoupas prescrip-

tion).—For a given theory, the Wald-Zoupas prescription is
not unambiguously defined. For a given Lagrangian L, the
symplectic potential θ is ambiguous up to the redefinition

θðδΦ̂Þ ↦ θðδΦ̂Þ þ dYðδΦ̂Þ; ð4:13Þ

where YðδΦ̂Þ is a local and covariant 2-form which is a
linear functional of the perturbations δΦ̂ and finitely many
of its derivatives. This changes the symplectic current by

ωðδ1Φ̂; δ2Φ̂Þ ↦ ωðδ1Φ̂; δ2Φ̂Þ
þ d½δ1Yðδ2Φ̂Þ − δ2Yðδ1Φ̂Þ�: ð4:14Þ

Note that the addition of a boundary term to the Lagrangian
does not affect the symplectic form. Evenwith a fixed choice
of the symplectic current, the symplectic potential ΘðδΦÞ
defined on null infinity [Eq. (4.6)] is ambiguous up to

ΘðδΦÞ ↦ ΘðδΦÞ þ δWðΦÞ; ð4:15Þ

where W is a local and covariant 3-form on I . These
ambiguities then also lead to ambiguities in theWald-Zoupas
prescription for the charges and fluxes on null infinity. It was
argued by Wald and Zoupas that these ambiguities do not
affect their prescription in vacuum GR [see footnote 18 and
the arguments below Eq. (73) in Ref. [5]]. We hope that
similar arguments can also be made for Einstein-Maxwell
theory, but we do not analyze these ambiguities in detail.

B. Computation of the Wald-Zoupas charges and
fluxes at null infinity for Einstein-Maxwell theory

We now apply the above described prescription of Wald
and Zoupas to Einstein-Maxwell theory and compute the
charges and fluxes at I . Since our main focus is on the
contribution of Maxwell fields to the charges and fluxes,
we will borrow the analysis of Wald and Zoupas [5] for the
contribution of the gravitational field.
First, we compute the pullback ω

⟵
to I of the sym-

plectic current in Eq. (3.5). Using the asymptotic conditions
Eqs. (2.26) and (3.17), it can be checked that the con-
tribution from the cross term given by −Ω−4naŵa

×
[Eq. (3.9)] vanishes in the limit to I . The contribution
from Maxwell fields is easily computed to be

ωEM
⟵

ðδ1A; δ2AÞ ¼̂ − Ω−4naŵa
EMε3

¼ −
1

4π
½δ1Eaδ2Aa − δ2Eaδ1Aa�ε3: ð4:16Þ

The contribution from the metric perturbations is the most
tedious to compute. However, since the Tab for Maxwell
fields is smooth on I , the terms proportional to the
stress-energy tensor in Eq. (3.10) vanish at I , and the
computation of Ref. [5] carries over unchanged. We
therefore find [see Eq. (72) of Ref. [5]]11

10In the principal bundle language, this means Θ is a gauge-
invariant and horizontal 3-form on the bundle.

11As mentioned before, one can consider additional sources
with compact support or sufficient falloff at I without affecting
this analysis.
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ωGR
⟵

ðδ1g; δ2gÞ ¼̂ −Ω−4naŵa
GRε3

¼ −
1

32π
½δ1Nabτ

ab
2 − δ2Nabτ

ab
1 �ε3: ð4:17Þ

Here Nab is the News tensor on I defined by

Nab ≔ Sab
⟵

− ρab; ð4:18Þ

where Sab
⟵

is the pullback toI of Sab and ρab is the unique

symmetric tensor field onI constructed from the universal
structure at I in Theorem 5 of Ref. [7]. The News tensor
also satisfies the properties

Nabnb ¼̂ 0; Nabqab¼̂ 0: ð4:19Þ

Thus, the pullback to I of the symplectic current of
Einstein-Maxwell theory is given by

ω
⟵

¼ −
1

32π
½δ1Nabτ

ab
2 − δ2Nabτ

ab
1 �ε3

−
1

4π
½δ1Eaδ2Aa − δ2Eaδ1Aa�ε3: ð4:20Þ

Note that ω
⟵

is determined completely by the (perturbed)

radiative d.o.f. For Maxwell fields, it is clear that
only the perturbations of A

←
a and Ea ¼ −£nA

←
a contribute.

For the gravitational fields, the argument is more involved.
Consider the asymptotic shear of the cross sections of I
defined by

σab ≔
�
qacqbd −

1

2
qabqcd

�
∇cld; ð4:21Þ

which is related to the News tensor through

Nab ¼ 2£nσab: ð4:22Þ

Using the asymptotic conditions Eq. (3.17), the perturba-
tion of the shear generated by the metric perturbation δgab
(with fixed la, since la can be chosen independently of the
spacetime) can computed to be

δσab¼̂ −
1

2

�
qacqbd −

1

2
qabqcd

�
τcd; ð4:23Þ

that is, δσab is given by the trace-free part of τab on the
cross sections. Because of the conditions Eq. (4.19) and
that τabnb¼̂ 0 from Eq. (3.17), it is clear that only this trace-
free part of τab—equivalently, δσab—contributes to the
pullback of the symplectic current. Furthermore, from the
analysis of Ashtekar and Streubel [8], δσab is equivalent to
the perturbation in the equivalence class of derivatives
fDag defined on I , which are the radiative d.o.f. in

vacuum GR. Thus, ω
⟵

is completely determined by the

perturbed radiative d.o.f. in Einstein-Maxwell theory. The
integral of this symplectic current over all of I [when
appropriate falloff conditions are satisfied toward i0 and iþ;
see Eq. (4.33)] reproduces the symplectic form on the
radiative phase space at null infinity used by Ashtekar and
Streubel [8].
To apply theWald-Zoupas prescription, we need to find a

3-form symplectic potential ΘðδΦÞ for ω
⟵

given in

Eq. (4.20). We choose the following (see Remark 1 for
the ambiguities in the choice of Θ):

ΘðδΦÞ ¼ ΘGRðδgÞ þΘEMðδAÞ;

where ΘGRðδgÞ ¼ −
1

32π
Nabτ

abε3;

ΘEMðδAÞ ¼ −
1

4π
EaδAaε3: ð4:24Þ

Note that ΘGRðδgÞ is the symplectic potential for vacuum
GR given in Eq. (73) of Ref. [5]. The above choice of Θ
satisfies all the requirements listed below Eq. (4.6):

(i) The Θ in Eq. (4.24) is indeed a local and covariant
functional of the background fields Φ and the
perturbed fields δΦ (see also footnote 20 of Ref. [5]
for an explanation of the locality of the News
tensor).

(ii) It is also invariant under conformal transformations
and Maxwell gauge transformations12 and the choice
of the auxiliary null normal la and the “inverse
metric” qab.

(iii) As we show in Appendix B, for stationary solutions
of Einstein-Maxwell theory, we have Ea ¼ 0 and
Nab ¼ 0 on I , and thus ΘðΦ; δΦÞ, as defined
above, vanishes for all perturbations δΦ whenever
the background Φ is a stationary solution of Ein-
stein-Maxwell equations.

Having chosen a Θ as in Eq. (4.24), the Wald-Zoupas
fluxF ½ξ;ΔI � associated with an asymptotic symmetry ξ is
determined by Eq. (4.11). We now want to find the
corresponding Wald-Zoupas charge Q½ξ; S� on any cross
section S of I . Note that the Wald-Zoupas charge is
determined by Eq. (4.7), along with the requirement that it
vanish on some stationary reference solution Φ0, which we
take to be Minkowski spacetime. Although the right-hand
side of Eq. (4.7) can be directly computed, it is not very
useful to find an expression forQ½ξ; S�. We instead proceed
in the following manner: Let the Wald-Zoupas charge be
given by

Q½ξ; S� ¼ QGR½X; S� þQEM½ξ; S�; ð4:25Þ

12Note that δAa is gauge invariant, since the gauge trans-
formations are independent of the dynamical fields.
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whereQGR½X;S� is the expression for the charge in vacuum
GR [see Eq. (4.26)] and QEM½ξ; S� is the (as yet undeter-
mined) contribution due to Maxwell fields. As we will
show below, in the presence of Maxwell fields, QGR½X; S�
by itself does not satisfy Eq. (4.11) with Θ as in Eq. (4.24);
that is, QGR½X; S� is not the full Wald-Zoupas charge for
Einstein-Maxwell theory. Then, we will define Maxwell
contribution QEM½ξ; S� so that the total charge Eq. (4.25)
does satisfy Eqs. (4.11) and (4.24), and QEM½ξ; S� vanishes
in the absence of the electromagnetic field.
In vacuum GR, the Wald-Zoupas charge for a BMS

vector field Xa can be written as follows. With our
assumptions on the asymptotic conditions on the fields,
it follows that Cabcd¼̂ 0 (see Theorem 11 of Ref. [7]), and
thus, Ω−1Cabcd is smooth at I . Then QGR is given by

QGR½ξ; S� ¼
1

8π

Z
S
ε2

�
−XaðΩ−1CabcdÞlblcnd þ

1

2
βσabNab

þ YaσabDcσ
bc −

1

4
σabσ

abDcYc

�
; ð4:26Þ

where we have decomposed Xa¼̂ βna þ Ya, with Ya

tangent to the cross sections of the chosen foliation [see
Eq. (A11)]. The tensor σab is the asymptotic shear of the
cross sections defined in Eq. (4.21).
For vacuum GR, the charge expression Eq. (4.26)

coincides with the charges defined by Wald and Zoupas
[5]. Showing this explicitly is a long and tedious compu-
tation, but we argue as follows. For supertranslations,
Eq. (4.26) is the same as the supermomentum defined
by Geroch [7], which is equal to the Wald-Zoupas charge
[see Eq. (98) of Ref. [5]]. For asymptotic Lorentz sym-
metries, it was shown in Ref. [5] that the Wald-Zoupas
charge is given by the “linkage” charge13 found by Geroch
and Winicour [22], which, in turn, coincides with the above
expression as shown by Winicour [26]. The expression
Eq. (4.26) is also equal to the charge found in Ref. [27],
when the conformal factor is additionally chosen away
fromI to make the vector field la expansion-free. It is also
equal to the expression computed using Bondi coordinates
[see, for instance, Eq. (35) of Ref. [28]].
In vacuum GR, the flux of the charge Eq. (4.26) is given

by Eq. (4.11), with ΘGRð£XgÞ on the right-hand side.
However, in the presence of Maxwell fields, one gets an
additional contribution to the flux of this charge through the
asymptotic stress-energy tensor Tab. This additional con-
tribution arises through the £n of the Weyl tensor term, and
using the Bianchi identity at I we get14

QGR½X;S2�−QGR½X;S1�¼−
Z
ΔI

½ΘGRð£XgÞþTabnaXbε3�:

ð4:27Þ

If one takes QGR as the definition of the charges associated
with the BMS symmetries, then Maxwell fields contribute
to the flux only through the asymptotic stress-energy tensor
Tab (see also Appendix C of Ref. [28]). As argued in
Sec. II A and in Refs. [1,2], for Lorentz symmetries this
contribution to the flux is not purely radiative and depends
on the Coulombic part Re½φ1� of Maxwell field. However,
in the presence of Maxwell fields at I , the usual
expression Eq. (4.26) cannot be the full Wald-Zoupas
charge of the theory, as it does not satisfy Eq. (4.11) with
the full Θ in Eq. (4.24), which includes Maxwell contri-
bution ΘEMðδξAÞ.

Our goal now is to define Maxwell contribution QEM to
the Wald-Zoupas charge such that QGR þQEM satisfies
Eq. (4.11) with the fullΘ in Eq. (4.24). From Eq. (4.24), we
have for ΘEMðδξAÞ
Z
ΔI

ΘEMðδξAÞ¼−
1

4π

Z
ΔI

ε3qabEað£XAbþDbλÞ: ð4:28Þ

This is precisely the flux FN½ξ;ΔI � of the Noether current
of Maxwell theory Eq. (2.31). This relation arises because,
due to our asymptotic conditions, ΘEMðδAÞ ¼̂ θEM

⟵
ðδAÞ,

where the right-hand side is the pullback of the symplectic
potential of electromagnetism on a nondynamical back-
ground given in Eq. (2.9). It also follows that η½ξ�

⟵
¼̂ 0 [see

Eq. (2.17)], and thus, ΘEMðδξAÞ is simply the pullback of
the Noether current JN½ξ� for Maxwell theory. Thus, the
contribution of Maxwell field to the flux of the Wald-
Zoupas charge is, in fact, the Noether current and not the
stress-energy current. This flux contribution is the same as
the one obtained by Ashtekar and Streubel in Eq. (2.18) of
Ref. [8]. However, there the boundary term containing the
Coulombic contribution Re½φ1� was dropped when con-
verting to the stress-energy expression in Eq. (2.19) of
Ref. [8]. This is valid in their context, as they considered
only source-free solutions onMinkowski spacetime (so that
Re½φ1� necessarily vanishes); for the more general scenario
we are interested in, this boundary term is important and
differentiates the Noether and stress-energy current.
From the previous computations, we can relate this

Maxwell contribution to the Wald-Zoupas flux to the
stress-energy tensor using Eqs. (2.37) and (2.38) to get

QEM½ξ;S2�−QEM½ξ;S1� ¼−
Z
ΔI

½ΘEMðδξAÞ−TabnaXbε3�;

ð4:29Þ

where we have defined

13Note that for general supertranslations the “linkage” charges
and fluxes do not equal the ones obtained from Hamiltonian
methods [8] or from the Wald-Zoupas prescription; see [25].

14In the Newman-Penrose notation, the Weyl tensor terms
appearing in Eq. (4.26) are Re½ψ2� and ψ1. Their derivatives onI
along na are determined by the Bianchi identities given in
Eqs. (9.10.5) and (9.10.6) of Ref. [29].
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QEM½ξ; S� ≔
1

2π

Z
S
ε2Re½φ1�ðλþ XaAaÞ; ð4:30Þ

which is essentially Eq. (2.38) and the integral of Maxwell
Noether charge Eq. (2.20) on the cross section S.
Consequently, from Eqs. (4.27) and (4.29), it follows that
Q ¼ QGR þQEM satisfies

F ½ξ;ΔI � ¼ −
Z
ΔI

ΘðδξΦÞ ¼Q½ξ;S2�−Q½ξ;S1�: ð4:31Þ

Maxwell contribution QEM½ξ;S�¼0 when Maxwell field
Fab vanishes, and since QGR½ξ; S� ¼ 0 in Minkowski
spacetime, the full Wald-Zoupas charge Q½ξ; S� also van-
ishes in Minkowski spacetime.
In sum, the Wald-Zoupas charge for Einstein-Maxwell

theory is

Q½ξ;S� ¼ QGR½X; S� þQEM½ξ; S� ð4:32Þ
with the individual terms given by Eqs. (4.26) and (4.30),
respectively. The fluxes of the individual terms QGR and
QEM depend on the stress-energy and cannot be determined
purely from the radiative modes at null infinity. However,
from Eqs. (4.27) and (4.29), these contributions cancel
exactly, and so the flux of the full Wald-Zoupas charge Q
can be determined from the radiative modes alone.
As mentioned above, the flux F ½ξ;I � is a Hamiltonian

generator on the full radiative phase space of I , corre-
sponding to the symmetry ξ. Along I , as u → �∞, we
have

Nab ¼ Oð1=juj1þϵÞ; Ea ¼ Oð1=juj1þϵÞ ð4:33Þ
for some ϵ > 0, while τab and δAa have finite limits as
u → �∞. Note that these conditions are preserved by the
asymptotic symmetries. Furthermore, they also ensure that
the integral over all of I of the pullback of the symplectic
current [Eq. (4.20)] is finite so that we have a well-defined
symplectic form on the radiative phase space on I . Since
Xa grows at most linearly in u, from Eq. (4.24) we have that

lim
u→�∞

X ·ΘðδΦÞ ¼ 0; ð4:34Þ

and from Eq. (4.12)

δF ½ξ;I � ¼ −
Z
I

ω
⟵

ðδΦ; δξΦÞ; ð4:35Þ

for all perturbations δΦ and all backgrounds Φ. Thus, the
Wald-Zoupas flux acts as a Hamiltonian generator of the
corresponding symmetry on the radiative phase space of
Einstein-Maxwell theory on all of I .15

There are several interesting consequences of this result.
First, let us consider the behavior of the Wald-Zoupas

charges under a Maxwell gauge transformation Aa ↦
Aa þ∇aΛ with £nΛ¼̂ 0, so that naAa¼̂ 0 [Eq. (2.24)] is
preserved. The gravitational contributionQGR is, of course,
unaffected by this transformation. Similarly, the electro-
magnetic contribution QEM [Eq. (4.30)] is invariant when-
ever the asymptotic symmetry ξ is either a pure Maxwell
symmetry ξ ¼ ðXa ¼ 0; λÞ or a pure supertranslation ξ¼
ðXa ¼ fna;λÞ. However, the charge contributionQEM½Y; S�
for a “pure Lorentz symmetry” transforms nontrivially:

QEM½Y; S� ↦ QEM½Y;S� þ
1

2π

Z
S
ε2Re½φ1�£YΛ: ð4:36Þ

The second term on the right-hand side is the charge
QEM½£YΛ; S� of a pure Maxwell symmetry £YΛ. Thus,
under a change of Maxwell gauge, the electromagnetic
contribution to the charge of a Lorentz symmetry shifts by
the charge of a pure Maxwell symmetry. This is due to the
fact that the action of a “pure Lorentz symmetry” ξ ¼
ðXa ¼ Ya; λ ¼ 0Þ is not well defined independently of the
choice of gauge for Aa. This is similar to the transformation
of the Lorentz charges under a supertranslation and
essentially arises due to the fact that the asymptotic
symmetry algebra is a semidirect sum of the BMS algebra
with the Lie ideal of Maxwell transformations. In the usual
BMS algebra for vacuum GR, there is no unique Lorentz
subalgebra but instead infinitely many Lorentz subalgebras
which are related to each other by supertranslations.
Similarly, in Einstein-Maxwell theory, there is no unique
action of the Lorentz algebra on the vector potential Aa at
I but infinitely many such actions of the Lorentz algebra
which are all related by the asymptotic Maxwell sym-
metries. Note, however, that taking into account the change
of the representation of ξ in terms of Xa and λ, the charge
QEM is invariant under gauge transformations as follows
from Eq. (A18). Essentially, under Aa↦Aaþ∇aΛ, a pure
Lorentz symmetry is not invariant but transforms as

ðYa; λ ¼ 0Þ ↦ ðYa;−£YΛÞ: ð4:37Þ

The transformation of the pure Lorentz charge Eq. (4.36) is
exactly compensated by the transformation of the pure
Lorentz symmetry used to compute the charge.
The gravitational fields do not contribute to the Wald-

Zoupas charge of a pure Maxwell symmetry ξ¼ðXa¼0;λÞ,
which is given by

Q½λ;ΔI � ¼ QEM½λ;S� ≔
1

2π

Z
S
ε2Re½φ1�λ; ð4:38Þ

with the flux

15If one instead defines the flux associated with a BMS
symmetry by the right-hand side of Eq. (4.26), then such a flux
is not a Hamiltonian generator in Einstein-Maxwell theory.
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F ½λ;ΔI � ¼ 1

4π

Z
ΔI

ε3qabEaDbλ: ð4:39Þ

For λ ¼ const, the flux vanishes across any regionΔI , and
the charge is proportional to the total conserved Coulomb
charge. For a general λ (that is, λ is a function on S2), this
charge is the “soft charge” of Maxwell fields (see [1,30], for
example).
Next, consider the charge associated with a supertrans-

lation ξ ¼ ðXa ¼̂ fna; λ ¼ 0Þ. Then, the electromagnetic
contribution QEM½fn; S� to the charge vanishes, since
naAa¼̂ 0 and the supermomentum charge is given by the
same expression as in vacuum GR. Similarly, from
Eq. (4.29), Maxwell contribution to the flux of super-
momentum is also

−
Z
ΔI

ΘEMðδξAÞ ¼ −
Z
ΔI

ε3fTabnanb

¼ −
1

4π

Z
ΔI

ε3fEaEa: ð4:40Þ

Thus, the electromagnetic fields do not contribute to the
supermomentum charge and contribute to the supermo-
mentum flux only through the asymptotic stress-energy
tensor, which is purely radiative for supertranslations.
However, the situation is different for charges associated

with a Lorentz symmetry ξ ¼ ðXa ¼̂ Ya; λ ¼ 0Þ. In this
case, Maxwell fields contribute an additional term to the
Wald-Zoupas charge given by

QEM½Y; S� ≔
1

2π

Z
S
ε2Re½φ1�YaAa: ð4:41Þ

We show in Appendix C that this term vanishes for a Kerr-
Newman black hole and thus, does not affect the usual
formula for its angular momentum. However, for general
nonstationary Maxwell fields, we expect that this term is
nonvanishing. To illustrate this, we also consider a spinning
charged sphere in Minkowski spacetime [3]. The time-
dependent dipole moment of such a charge distribution
contributes nontrivially to QEM and thus, to the angular
momentum charge. A similar contribution to the angular
momentum due to Maxwell fields is also present at spatial
infinity in stationary-axisymmetric spacetimes [9,31,32].
Thus, Maxwell contribution in Eq. (4.41) would also be
relevant to show that the Lorentz charges defined on future
null infinity coincide with those defined at spatial infinity
and at past null infinity, as conjectured in Ref. [33].

V. DISCUSSION

We analyzed the fluxes of Maxwell fields associated
with the asymptotic symmetries at null infinity in any
asymptotically flat spacetime. We first considered Maxwell
theory in a nondynamical background, defining three
different currents which are naturally associated with vector

fields on the background spacetime. When the vector field
is a Killing vector field of the background spacetime, each
of these currents is conserved and differs only by boundary
terms. A similar situation occurs at null infinity when the
vector field need not be a Killing vector field but an
asymptotic symmetry element of the BMS algebra. In this
case, each of the three currents can be used to construct
fluxes associated with the asymptotic symmetry algebra
through a given region of null infinity. While the Noether
and canonical current fluxes are completely determined by
the radiative d.o.f. of Maxwell fields, the flux associated
with the asymptotic Lorentz symmetries defined by the
stress-energy current also depends on the Coulombic part
of Maxwell field. Thus, if the stress-energy flux for a
rotational symmetry is interpreted as the flux of angular
momentum through null infinity, then it cannot be deter-
mined from the radiative d.o.f. alone [1,2]. Furthermore,
none of these fluxes can be considered as the difference of
charges evaluated on cross sections of null infinity, as on a
nondynamical background spacetime, there is, in general,
no notion of an energy or angular momentum of Maxwell
fields at a particular “time” defined by a cross section of
null infinity. Therefore, there is no obvious way to decide
which of these currents defines the flux of energy or
angular momentum.
To clarify this, we coupled electromagnetism to general

relativity and considered the full Einstein-Maxwell theory
at null infinity. Now the theory is diffeomorphism invariant
and there exist charges whose differences are given by
fluxes. Specifically, the general prescription of Wald and
Zoupas [5] defines, for a given asymptotic symmetry, both
the charge on a cross section of I and the flux, which
represents the change in this charge. If one assumes the
charge expression for vacuumGR to be the definition of the
charge in Einstein-Maxwell theory as well [see Eq. (4.26)],
then the additional term that Maxwell fields contribute
to its flux is the stress-energy flux [Eq. (4.27)]. As in the
case with a nondynamical metric, this contribution depends
on the Coulombic part of Maxwell field for asymptotic
Lorentz symmetries. However, the full Wald-Zoupas
charge for Einstein-Maxwell theory contains an additional
contribution to the charge due to Maxwell fields
[Eq. (4.30)]. This additional contribution vanishes for
asymptotic supertranslations. It also vanishes for Lorentz
symmetries in the Kerr-Newman spacetime. In general,
however, for nonstationary Maxwell fields, this additional
contribution is nonzero. The flux of the full Wald-Zoupas
charge in Einstein-Maxwell theory with this additional
contribution from Maxwell fields is determined by the
radiative fields alone. The full Wald-Zoupas charge
naturally absorbs the Coulombic information contained
in the stress-energy flux, and so the contribution of
Maxwell fields to the Wald-Zoupas flux is determined
by the Noether current flux and depends only on the
radiative fields on I .

ANGULAR MOMENTUM AT NULL INFINITY IN … PHYS. REV. D 101, 044013 (2020)

044013-15



In addition, we showed, using the standard falloff
conditions for the electromagnetic and gravitational fields
near i0 and iþ, that the Wald-Zoupas flux also defines a
Hamiltonian generator associated with the asymptotic
symmetries on all of null infinity.
A similar analysis can also be carried out for other matter

fields. For GR minimally coupled to a massless Klein-
Gordon field or a conformally coupled scalar field, the
essential points have already been discussed by Wald and
Zoupas in Sec. VI of Ref. [5]. For such fields, the Wald-
Zoupas charge is given by the same expression as in
vacuum GR [Eq. (4.26)] and the scalar fields contribute to
the flux only through the stress-energy tensor. However, for
the Einstein-Yang-Mills theory, we expect that there is an
additional contribution to the Wald-Zoupas charge similar
to the case of Maxwell fields considered here. For general
theories, it should not be expected that the matter con-
tribution to the charge is the Noether charge or that the
contribution to the flux is the Noether current. For instance,
this expectation is already false in vacuum GR, where the
Wald-Zoupas charge is, in general, not given by the
Noether charge (i.e., the Komar formula); see the discus-
sion in Refs. [22,25].
As noted before, a similar additional contribution to the

angular momentum due to Maxwell fields is also present at
spatial infinity in stationary, axisymmetric spacetimes
[9,31,32]. Thus, we expect that Maxwell contribution in
Eq. (4.41) would also be relevant to show that the Lorentz
charges defined on future null infinity coincide with those
defined at spatial infinity and at past null infinity, as
conjectured in Ref. [33].

Since the Wald-Zoupas flux is purely radiative and also
the Hamiltonian generator on the radiative phase space of
Einstein-Maxwell theory, it can also be quantized using the
asymptotic quantization methods in Ref. [30].
The Wald-Zoupas prescription can also be applied to

finite null surfaces in vacuum GR [34]. For Einstein-
Maxwell theory at finite null surfaces, we expect that there
is a similar contribution to the charges and fluxes associated
with finite null boundary symmetries considered in
Ref. [34] that arises from Maxwell fields. Such an analysis
could also be useful in deriving conservation laws in
Einstein-Maxwell theory through local regions bounded
by a causal diamond similar to those in vacuum GR [35].
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APPENDIX A: ASYMPTOTIC SYMMETRIES
OF EINSTEIN-MAXWELL THEORY

AT NULL INFINITY

In this appendix, we show how the asymptotic sym-
metries of Einstein-Maxwell theory can be derived from the
asymptotic conditions on the gravitational and Maxwell
fields at null infinity. We first focus on the asymptotic
symmetries of the gravitational field, before we include the
symmetry transformations of Maxwell vector potential.
Similar arguments for vacuum general relativity were also
presented in Ref. [23].
Given a vector field X̂a ¼ Xa generating an infinitesimal

diffeomorphism £Xĝab in the physical spacetime, what are
the conditions on Xa for it to be an asymptotic symmetry
vector field? The vector field Xa needs to extend smoothly
toI to preserve the smooth differential structure there, and
the infinitesimal diffeomorphisms generated by Xa need to
preserve the asymptotic flatness conditions on the unphys-
ical metric perturbations. To make this concrete, consider
any physical metric perturbation δXĝab ¼ £X̂ĝab generated
by a diffeomorphism. The corresponding unphysical metric
perturbation is given by

δXgab ¼ Ω2£Xĝab ¼ £Xgab − 2Ω−1ncXcgab: ðA1Þ

Since δXgab has to be smooth at I , we can immediately
conclude that naXa ¼̂ 0. In other words, Xa is tangent toI .
Defining the function αðXÞ ≔ Ω−1naXa, which extends
smoothly to I , we can write the above equation as

δXgab ¼ £Xgab − 2αðXÞgab: ðA2Þ

For the perturbation δXgab to preserve the asymptotic
flatness conditions in Eq. (3.17) and the Bondi condition in
Eq. (1.2), we require that

δXgab ¼̂ 0 and nanbδXgab ¼ OðΩ2Þ: ðA3Þ

The first condition yields

£Xgab ¼̂ 2αðXÞgab: ðA4Þ

Furthermore, contracting Eq. (A2) with nb gives

nbδXgab ¼ nb∇bXa−Xb∇bna−αðXÞnaþΩ∇aαðXÞ; ðA5Þ

where we have used that the twist of na vanishes, since na is
the gradient of the conformal factor Ω. Since the left-hand
side must vanish at I , we have

nbδXgab ¼̂ 0 ⇒ £Xna ¼̂ − αðXÞna: ðA6Þ

Contracting Eq. (A5) once more with na, we find that
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nanbδXgab ¼ OðΩ2Þ ⇒ £nαðXÞ ¼̂ 0; ðA7Þ

where we used nana ¼ OðΩ2Þ [see Eq. (1.3), which
followed directly from the Bondi condition in Eq. (1.2)].
Finally, taking the pullback of Eq. (A4) to I , we find

£Xqab ¼̂ 2αðXÞqab: ðA8Þ

Hence, the asymptotic symmetries on I are generated by
vector fields Xa tangent to I satisfying

£Xna ¼̂ − αðXÞna; ðA9aÞ

£Xqab ¼̂ 2αðXÞqab; ðA9bÞ

where the function αðXÞ is smooth and £nαðXÞ ¼̂ 0 on I .
These conditions are the standard ones defining the BMS
algebra b [7,8]. When working solely on I , the function
αðXÞ can be interpreted as the infinitesimal conformal
transformation of qab induced by XajI . If Xa is given in
a neighborhood of I , αðXÞ can also be computed using

αðXÞ ¼̂ Ω−1naXa ¼̂ 1

4
∇aXa; ðA10Þ

where the second equality follows from gabδXgab ¼̂ 0.
To make these conditions more concrete, let u be an

affine parameter along the null geodesics of na on I such
that na∇au ¼̂ 1. Then any BMS vector field can be
written as

Xa ¼̂ βna þ Ya with β ¼̂ f þ 1

2
ðu − u0ÞDaYa; ðA11Þ

and

£nf ¼̂ £nYa ¼̂ 0; 2D ðaYbÞ ¼̂ qabDcYc; ðA12Þ

where Ya is tangent to the u ¼ const cross sections of I ,
Da is the covariant derivative on these cross sections
compatible with qab, and u ¼ u0 is some choice of an
“origin” cross section. The function αðXÞ in Eq. (A9) is then
given by 1

2
DaYa in this representation. Thus, any BMS

vector field is characterized by a smooth function f and a
smooth conformal Killing field Ya on S2. The function f
represents the infinite-dimensional subalgebra of super-
translations while the conformal Killing field Ya represents
a Lorentz subalgebra of the full BMS Lie algebra.
Given a fixed BMS vector field Xa, its representation in

terms of a supertranslation f and a Lorentz vector field Ya

depends on the choice of foliation given by u ¼ const. Let
u0 ¼ uþ F with £nF ¼̂ 0 be another choice of affine
parameter along na, and let f0 and Y 0a be representatives
of Xa in the new choice of foliation given by u0 ¼ const.
Then it is straightforward to verify that

f0 ¼̂ f þ £YF; Y 0a ¼̂ Ya: ðA13Þ

Therefore, the notion of a pure supertranslation (Ya ¼̂ 0) is
well defined independently of the choice of foliation, but a
pure Lorentz transformation (f ¼ 0) is not. This is ulti-
mately related to the fact that the BMS algebra is a
semidirect sum of the Lorentz algebra with the Lie ideal
of supertranslations.
Now consider a similar analysis of the transformations

of Maxwell vector potential under a symmetry ξ ¼
ðXa; λÞ, where Xa is a BMS vector field and λ ¼ λ̂. The
perturbation of Maxwell vector potential generated by an
infinitesimal transformation ξ is

δξAa ¼ £XAa þ∇aλ: ðA14Þ

This transformation needs to preserve the asymptotic
conditions of Maxwell vector potential. Since Aa is smooth
at I , λ extends smoothly to I as well. To preserve the
outgoing gauge condition imposed on the vector potential
[Eq. (2.24)] requires that naδξAa ¼̂ 0, which gives

0 ¼̂ na£XAa þ £nλ

¼̂ £XðnaAaÞ þ αðXÞnaAa þ £nλ

⇒ £nλ ¼̂ 0; ðA15Þ

where the second line uses Eq. (A9a) and the last line
follows from naAa ¼̂ 0. Thus, the asymptotic symmetries
of Einstein-Maxwell theory at I are given by ξ ¼ ðXa; λÞ,
where Xa is a BMS vector field and λ is any smooth
function on S2, the space of null generators of I .
Similar to the case of a BMS vector field, the repre-

sentation of a fixed ξ in terms of a BMS vector field Xa and
a Maxwell gauge transformation λ depends on the choice of
gauge for the background vector potential Aa. Let A0

a ¼
Aa þ∇aΛ be another vector potential related to Aa by a
gauge transformation Λ with £nΛ ¼̂ 0. For a fixed sym-
metry ξ ¼ ðXa; λÞ, let the new representatives under the
gauge transformation by Λ be ξ ¼ ðX0a; λ0Þ. Since the
symmetry ξ is fixed, its action on the vector potentials
must be independent of the choice of gauge, that is,
δξA0

a ¼ δξAa. Evaluating this, we have

£X0Aa þ∇aλ
0 þ∇a£X0Λ ¼ £XAa þ∇aλ: ðA16Þ

This implies that under a change of Maxwell gauge
by Λ the representation of a fixed symmetry ξ ¼ ðXa; λÞ ¼
ðX0a; λ0Þ changes as

X0a ¼ Xa; λ0 ¼ λ − £XΛ: ðA17Þ

Consequently, the notion of a pure Maxwell gauge trans-
formation ξ ¼ ðXa ¼ 0; λÞ is well defined independently of
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the choice of gauge Λ, but a pure BMS transformation ξ ¼
ðXa; λ ¼ 0Þ is not. This is analogous to the structure of the
BMS algebra noted above. Note also that

λ0 þ X0aA0
a ¼ λþ XaAa ðA18Þ

is invariant under changes of Maxwell gauge.16

APPENDIX B: STATIONARY SOLUTIONS
IN EINSTEIN-MAXWELL THEORY AT

NULL INFINITY

In this appendix, we show that for any stationary solution
ðĝab; ÂaÞ of Einstein-Maxwell theory, which is asymptoti-
cally flat, the radiative field Ea and the News tensor Nab
vanish at I . To do so, we will first show that any nonzero
timelike Killing vector field t̂a in the unphysical spacetime
is necessarily a nonzero supertranslation on I .17 Then, we
show that this implies that Ea ¼ 0 onI for any solution of
Maxwell equation which is stationary, i.e., £t̂F̂ab ¼ 0.
Finally, using the proof by Geroch [7], this also implies
that Nab ¼ 0.

On I , a supertranslation vector field takes the form
Xa ¼̂ fna with £nf ¼̂ 0. For our purposes we will also need
the “subleading” form of this vector field away from I ;
see, for instance, Eq. (21) of Ref. [22] and Eq. (93) of
Ref. [5]. For completeness, we collect the proof in the
following lemma.
Lemma 1.—Any vector field Xa inM such that XajI is a

BMS supertranslation is of the form

Xa ¼ fna −Ω∇af þOðΩ2Þ ðB1Þ

for some f smooth in M and £nf¼̂ 0.
Proof.—Since XajI is a BMS supertranslation, we have

Xa ¼̂ fna for some f onI satisfying £nf ¼̂ 0. Now extend
the function f arbitrarily but smoothly intoM, and thus Xa

takes the form

Xa ¼ fna þ ΩZa ðB2Þ

for some smooth Za. Then, using Eqs. (1.3) and (A10),
αðXÞ ¼̂ naZa. Using the Bondi condition [Eq. (1.2)],
Eq. (A4) for such a vector field becomes

∇ðafnbÞ þ nðaZbÞ ¼̂ ncZcgab: ðB3Þ

Taking the trace on both sides gives naZa ¼̂ 0 and,
consequently, Za ¼ −∇af. ▪
Note that we extended the function f away fromI in an

arbitrary manner. It is easy to check from Eq. (B1) that the
freedom in this extension affects only theOðΩ2Þ part of the
vector field. One can choose to fix the OðΩ2Þ part by
choosing some convenient choice of conformal factor and
coordinates (such as Bondi coordinates) away from I , but
we will not need to do so.
Now we turn to timelike Killing fields of the physical

spacetime ðM̂; ĝabÞ and show that they correspond to
nontrivial supertranslations on null infinity.
Lemma 2.—Let t̂a be a nonzero timelike Killing vector

field in the physical spacetime ðM̂; ĝabÞ. Then ta ¼ t̂a is a
nonzero supertranslation on I .
Proof.—Since £t̂ĝab ¼ 0, from Eq. (A1) it follows that

ta ¼ t̂a is aBMSvector field onI . Since t̂a is timelike in the
physical spacetime, we have ĝabt̂at̂b < 0. In the unphysical
spacetime away from null infinity (i.e., on M −I ), this
gives Ω−2gabtatb < 0. Now Ω > 0 on M −I , Ω ¼̂ 0, and
gab and ta extend smoothly to I , and thus

gabtatb ≤ 0 ðB4Þ

in M, with the equality possibly holding on I . Writing
ta ¼̂ βna þ Ya [from Eq. (A11)], we get that qabYaYb ≤ 0
onI . Sinceqab is a Riemannianmetric on the cross sections
of I and Ya is tangent to these cross sections, this means
Ya ¼̂ 0. Thus, the “Lorentz part” of ta vanishes and ta is a
BMS supertranslation.
Next, we show that this supertranslation is necessarily

nonzero onI (see also [36]). We will proceed by assuming
that ta ¼̂ 0 and show that this implies that t̂a vanishes
everywhere, contradicting the assumption that it is a non-
zero Killing vector field. Since ta is a supertranslation on
I , if ta ¼̂ 0, then from Lemma 1 we have that

ta ¼ Ω2Wa; ðB5Þ

for some smoothWa. Since t̂a is a Killing vector field in the
physical spacetime ðM̂; ĝabÞ, ta is a conformal Killing field
in the unphysical spacetime ðM; gabÞ with

£tgab ¼ 2αðtÞgab; αðtÞ ¼ Ω−1nata: ðB6Þ

Any conformal Killing field is completely determined
by its conformal Killing data specified at any point
p ∈ M [37]:

ðta;∇½atb�; αðtÞ;∇aαðtÞÞjp: ðB7Þ

Furthermore, if the conformal Killing data vanish at any
point p, then the conformal Killing field ta vanishes
everywhere. We now show that the conformal Killing data
of Eq. (B5) vanish on I . It is easy to see by a direct

16In the principal bundle picture, where ξ ¼ ðXa; λÞ is a vector
field on the bundle, the Lie algebra of such vector fields also has
the structure of a semidirect sum of diffeomorphisms with the Lie
ideal of Maxwell gauge transformations [9]. The invariant in
Eq. (A18) is then the vertical part of ξ on the bundle.

17It can further be shown that the timelike Killing field is a
BMS translation (see Lemma 1.4 of Ref. [36] and also p. 54 of
Ref. [7]), but we will not need this stronger result.

BONGA, GRANT, and PRABHU PHYS. REV. D 101, 044013 (2020)

044013-18



computation that ta, ∇½atb�, and αðtÞ vanish on I .
Computing the remaining last piece of the conformal
Killing data, we have

∇aαðtÞ ¼̂ naðnbWbÞ: ðB8Þ

To show that this vanishes at I , we evaluate £tgab ¼
2αðtÞgab with Eq. (B5) to get

4ΩnðaWbÞ þ 2Ω2∇ðaWbÞ ¼ 2ΩncWcgab: ðB9Þ

Note that this holds in a neighborhood of I and not just
on I , as a consequence of t̂a being Killing in the
physical spacetime. Multiplying the above equation by
Ω−1, taking the trace, and then taking the limit to I , we
get naWa ¼̂ 0, and so ∇aαðtÞ ¼̂ 0. Hence, all the con-
formal Killing data for the conformal Killing field of the
form Eq. (B5) vanish on I , and thus ta ¼ 0 everywhere
in M. This implies that t̂a ¼ 0 in M̂, which contradicts
the assumption that t̂a is a nonzero Killing field in the
physical spacetime. Thus, any nonzero timelike Killing
vector field in the physical spacetime is necessarily a
nonzero supertranslation on I . ▪
Finally, we show that, for a stationary solution of

Einstein-Maxwell theory, the radiative fields Nab and Ea
vanish on null infinity.18

Theorem 1.—Let ðĝab; ÂaÞ be a stationary solution of
Einstein-Maxwell theory; that is, there exists a timelike
vector field t̂a in the physical spacetime M̂ such that

£t̂ĝab ¼ 0 and £t̂F̂ab ¼ 0: ðB10Þ
Then, the radiative fields vanish on I : Nab ¼̂ 0 and
Ea ¼̂ 0.
Proof.—Consider first the stationary electromagnetic

field F̂ab, for which in the unphysical spacetime we have
£tFab ¼ 0, where as before ta ¼ t̂a. From Lemmas 1 and 2,
we have that

ta ¼ fna − Ω∇af þOðΩ2Þ ðB11Þ
for some f ≠ 0 and £nf ¼̂ 0. Evaluating the pullback of
£tFabnb ¼ 0 toI and using £tna ¼̂ 0 and £nf ¼̂ 0 (as ta is
a supertranslation) gives

£nðfEaÞ¼̂ 0: ðB12Þ
Similarly, evaluating the pullback of £tFab ¼ 0 to I , we
have

D ½aðfEb�Þ ¼̂ 0: ðB13Þ
Note that only the derivative along the cross sections Da
occurs in this equation due to Eq. (B12) and the Bondi

condition [Eq. (1.2)]. Next, evaluating lanb£tFab ¼̂ 0, we
have

0 ¼̂ lanb£tFab ¼̂ £tðFablanbÞ − Fab£tlanb

¼̂ f£nðFablanbÞ þ Fabðna£lf þ∇afÞnb
¼̂ fqabDaEb þ qabEaDbf

¼̂ qabDaðfEbÞ; ðB14Þ

where the first line uses £tna ¼̂ 0 for a supertranslation,
the second line is a straightforward computation using
Eq. (B11), and the third line uses Maxwell equation (2.29).
From Eqs. (B12)–(B14), it follows that fEa is a covector
field on the space of generators of I with vanishing curl
and divergence. Since the space of generators of I is
topologically S2 and f ≠ 0, this implies that Ea ¼ 0 for any
stationary solution.
Now, from Eq. (3.12), we have that Tabnanb ¼̂ 1

4π EaEa,
and thus for any stationary solution Tabnanb ¼̂ 0. With this
condition and the Einstein equation, it can be shown that
Nab ¼̂ 0 for any stationary spacetime (see, pp. 53–54 of
Ref. [7]). Thus, for any stationary solution of Einstein-
Maxwell equations, we have Nab ¼̂ 0 ¼̂ Ea, as we wished
to show. ▪

APPENDIX C: COMPUTATION OF QEM
IN SOME EXAMPLES

In this appendix, we give two examples of Maxwell
contribution to the Wald-Zoupas charge QEM½Y; S� of an
asymptotic Lorentz symmetry Ya. This contribution van-
ishes for the first example of Kerr-Newman spacetimes,
while for the second example of a spinning charged sphere
with variable angular velocity it is nonzero.

1. Kerr-Newman spacetime

The line element of the (physical) Kerr-Newman metric
in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ is given by (see
Appendix D.1 of Ref. [38])

ds2 ¼−
�
1−

2Mr−Q2

Σ

�
dt2−

2asin2θð2Mr−Q2Þ
Σ

dtdϕ

þ Σ
Δ
dr2þΣdθ2þððr2þa2Þ2−a2sin2θΔÞ sin

2θ

Σ
dϕ2;

ðC1Þ

with

Σ≔ r2 þ a2cos2θ and Δ≔ r2 − 2Mrþ a2 þQ2: ðC2Þ

Since we wish consider the limit toI , it is more convenient
to introduce the outgoing null coordinates xμ ¼ ðu; r; θ;ϕÞ,
with u defined by

18Note that for this result to hold it is essential that the space of
generators of I is topologically S2.
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du ¼ dt −
r2 þ a2

Δ
dr: ðC3Þ

The (physical) Kinnersley tetrad—normalized such that
l̂μn̂μ ¼ −1 and m̂μ ˆ̄mμ ¼ 1—in these coordinates is

l̂μ∂μ ¼ ∂r þ
a
Δ
∂ϕ; ðC4aÞ

n̂μ∂μ ¼
r2 þ a2

Σ
∂u −

Δ
2Σ

∂r þ
a
2Σ

∂ϕ; ðC4bÞ

m̂μ∂μ ¼
ia sin θffiffiffi

2
p ðrþ ia cos θÞ ∂r

þ 1ffiffiffi
2

p ðrþ ia cos θÞ

�
∂θ þ

i
sin θ

∂ϕ

�
: ðC4cÞ

Maxwell vector potential in these null coordinates is

Âμdxμ ¼ −
rQ
Σ

�
duþ r2 þ a2

Δ
dr − asin2θdϕ

�
; ðC5Þ

which satisfies the Lorenz gauge condition ĝμν∇̂μÂν ¼ 0.
To take the limit to I , we use the conformal factor Ω ¼

r−1 and use Ω as the new coordinate instead of r. It can be
verified that the unphysical metric gμν ¼ Ω2ĝμν is smooth in
the limit to I (that is, as Ω → 0 with fixed u; θ;ϕ). The
unphysical tetrad ðlμ; nμ; mμ; m̄μÞ, defined by

lμ∂μ ≔ Ω−2l̂μ∂μ ¼ ∂Ω þOðΩÞ; ðC6aÞ

nμ∂μ ≔ n̂μ∂μ ¼ ∂u þOðΩÞ; ðC6bÞ

mμ∂μ ≔Ω−1m̂μ∂μ ¼
1ffiffiffi
2

p
�
∂θ þ

i
sinθ

∂ϕ

�
þOðΩÞ; ðC6cÞ

is also smooth at I . The unphysical nμ defined above
coincides with the normal na ¼ gab∇bΩ at I to leading
order, but not at OðΩÞ, as this nμ does not satisfy the Bondi
condition.
The vector potential Aμ ¼ Âμ in Eq. (C5) is not smooth at

I , since lμAμ diverges as Ω → 0. However, instead,
consider the vector potential A0

μ related to Eq. (C5) by a
gauge transformation:

A0
μ ¼ Aμ −∇μðQ lnΩÞ: ðC7Þ

This new vector potential A0
μ is no longer in the Lorenz

gauge (in the physical spacetime) but is smooth atI , and it
also satisfies the outgoing radiation gauge condition
nμA0

μ ¼̂ 0. Henceforth, we use this smooth vector potential
on I and drop the “prime” from the notation.
On I , the Lorentz vector fields Ya are spanned by

the tetrads mμ and m̄μ. A direct computation using

Eqs. (C5)–(C7) gives mμAμ ¼̂ 0 and, consequently,
YaAa ¼̂ 0 for all Lorentz vector fields. Thus, in the
Kerr-Newman spacetime, Maxwell contribution to the
Lorentz charges vanishes; i.e.,QEM½Y; S� ¼ 0. In particular,
the angular momentum of the Kerr-Newman black hole
computed using the Wald-Zoupas charge (with Ya ≡ ∂ϕ)
gets no additional contribution from QEM and is thus given
by the standard result (see, for example, [39]).19

2. Spinning charged sphere in Minkowski spacetime

The above computation of the Lorentz charges in Kerr-
Newman spacetimes does not mean that the electromag-
netic contribution to the Wald-Zoupas charge for angular
momentum will always vanish. An explicit example for
which QEM is nonzero is considered in Ref. [3]: a thin
spherical shell in Minkowski spacetime, with radius R and
charge Q, spinning on a central axis with a time-dependent
angular velocity ωðtÞ. The time-dependent dipole moment
of the spherical shell is given by dðtÞ ¼ 1

3
QR2ωðtÞ.

Furthermore, Ref. [3] also assumes that the characteristic
timescale of variation of the magnetic dipole moment is
much greater that the light-travel time τ ¼ R across (half)
the sphere, that is,

∂
∂t dðtÞ ≪

dðtÞ
τ

: ðC8Þ

This is clearly not a solution to the source-free Maxwell
equations due to the presence of a source current. However,
given that the source current is compact, our analysis in the
main body of the paper still applies. We do not attempt to
solve the full Einstein-Maxwell equations for this system.
Thus, Maxwell field in this section should be thought of as
a perturbation generated by the charged sphere on the
background Minkowski spacetime.
The relevant null tetrads at I in Minkowski spacetime

can be constructed in the same manner as in the Kerr-
Newman spacetime by taking M ¼ a ¼ Q ¼ 0. To get a
smooth vector potential atI , one again needs to perform a
gauge transformation as in Eq. (C7) which takes us out of
the Lorenz gauge used in Ref. [3]. Then, from the explicit
computations in Ref. [3], it can be shown that

Re½φ1� ¼̂
1

2
Q; maAa ¼̂

iffiffiffi
2

p Γð0ÞðuÞ sin θ; ðC9Þ

where u ¼ t − r is the retarded time coordinate and we
have taken the rotation axis for the sphere to be along the
z axis. With the assumption Eq. (C8), the function Γð0ÞðuÞ is
given by

19To calculate the Wald-Zoupas charge using Eq. (4.26), one
needs to be careful to use a tetrad where the na satisfies the Bondi
condition Eqs. (1.2) and (1.3) and the corresponding la, and not
the tetrad in Eq. (C6).
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Γð0ÞðuÞ≔ ∂
∂udðuÞþ

1

10
τ2

∂3

∂u3dðuÞþ
1

280
τ4

∂5

∂u5dðuÞþ �� � ;
ðC10Þ

where � � � denotes higher-order terms.
Now, a rotational Killing vector field along the z axis is

given by Ra
ðzÞ ¼ − i

2
sin θðma − m̄aÞ. Thus, using Eqs. (C9)

and (C10), we can compute Maxwell contribution to the

charge of Ra
ðzÞ [Eq. (4.30)]—the angular momentum in the

z direction—on a u ¼ constant cross section Su to be

QEM½RðzÞ; Su� ¼
ffiffiffi
2

p

3
QΓð0ÞðuÞ: ðC11Þ

Thus, we expect that generic nonstationary Maxwell
fields will contribute a nonvanishing QEM to the Wald-
Zoupas charge for asymptotic Lorentz symmetries.
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