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On Minkowski spacetime, the angular momentum flux through null infinity of Maxwell fields,
computed using the stress-energy tensor, depends not only on the radiative degrees of freedom (d.o.f.), but
also on the Coulombic parts. However, the angular momentum also can be computed using other conserved
currents associated with a Killing field, such as the Noether current and the canonical current. The flux
computed using these latter two currents is purely radiative. A priori, it is not clear which of these is to be
considered the “true” flux of angular momentum for Maxwell fields. This situation carries over to Maxwell
fields on nondynamical, asymptotically flat spacetimes for fluxes associated with the Lorentz symmetries
in the asymptotic Bondi-Metzner-Sachs (BMS) algebra. We investigate this question of angular momentum
flux in the full Einstein-Maxwell theory. Using the prescription of Wald and Zoupas, we compute
the charges associated with any BMS symmetry on cross sections of null infinity. The change of these
charges along null infinity then provides a flux. For Lorentz symmetries, Maxwell fields contribute an
additional term, compared to the Wald-Zoupas charge in vacuum general relativity, to the charge on a cross
section. With this additional term, the flux associated with Lorentz symmetries, e.g., the angular
momentum flux, is purely determined by the radiative d.o.f. of the gravitational and Maxwell fields.
In fact, the contribution to this flux by Maxwell fields is given by the radiative Noether current flux and not

by the stress-energy flux.
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I. INTRODUCTION

There is a surprising fact in Maxwell electromagnetism on
Minkowski spacetime. While one typically thinks of fluxes
of energy, linear momentum, and angular momentum
radiated away to null infinity as depending only on the
radiative degrees of freedom (d.o.f.), this is not always true.
While the flux of energy and linear momentum is completely
determined by the radiative fields, the flux of angular
momentum, when calculated using the stress-energy
tensor, also depends on the Coulombic d.o.f. [1,2]. These
Coulombic d.o.f. appear through an interaction term with the
radiative d.o.f. and are relevant only if the total charge of the
system is nonzero. This occurs in realistic scenarios: For
instance, all of the angular momentum radiated by a charged
spinning sphere with variable angular velocity is due to the
interaction term between radiative and Coulombic d.o.f. [3].

However, there are other conserved currents for Maxwell
fields that are also naturally associated with Killing sym-
metries in Minkowski spacetime: (i) Using the Lagrangian,
one can define a Noether current for Maxwell fields which is
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the natural conserved current associated with Killing sym-
metries through Noether’s theorem; (ii) similarly, using the
covariant phase space formalism, one can also define a
canonical current associated with Killing symmetries. Just
like the current defined by the stress-energy tensor, each of
these currents is conserved and can be used to define the flux
of energy and linear momentum (associated with a time or
space translation Killing field) and angular momentum
(associated with a rotational Killing field). The fluxes
through finite regions of null infinity defined by these
conserved currents differ by “boundary terms” on the cross
sections bounding this region. When one instead considers
the flux through all of null infinity, the difference between
these currents depends on the Coulombic part of Maxwell
fields evaluated at spacelike and timelike infinity, which is
nonvanishing, in general. In particular, in the context of the
electromagnetic memory [4], this difference is nonzero.
Thus, a priori it is not obvious which (if any) of these
currents defines the “correct” notion of energy and angular
momentum flux at null infinity for Maxwell fields on
Minkowski spacetime.

In this paper, we first show that the above considerations
generalize to the asymptotic symmetries in Maxwell theory
on any nondynamical, asymptotically flat background
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spacetime. In particular, one can define the fluxes through
null infinity using any of the aforementioned currents
associated with the generators of the Bondi-Metzner-
Sachs (BMS) algebra. We find that the Noether and canonical
currents define fluxes associated with all BMS symmetries,
and these fluxes are completely determined by the radiative
d.o.f. of Maxwell fields. However, the flux associated with
asymptotic Lorentz symmetries that is defined by the stress-
energy current depends also on the Coulombic part via a
boundary term exactly as in Minkowski spacetime.
Furthermore, none of these fluxes can be written as the
change of a charge computed purely on cross sections of null
infinity. Thus, working purely on null infinity, none of these
fluxes can be interpreted as the change in “energy” or
“angular momentum” on cross sections of null infinity.

To investigate this issue in more detail, we then consider
the full Einstein-Maxwell theory, with the background
metric now also considered a dynamical field. Unlike
Maxwell theory on a nondynamical background,
Einstein-Maxwell theory is diffeomorphism covariant.
Thus, we can apply the general prescription of Wald and
Zoupas [5] to define charges Q (on any cross section of null
infinity) and their fluxes F (which are the change in
charges Q through any region of null infinity) associated
with the BMS symmetries at null infinity.

We show that if one takes the Wald-Zoupas charges for
the BMS symmetries to be defined by the same expression
as in vacuum general relativity (GR) [say, Qggr, Eq. (4.26)],
then the additional contribution to their fluxes due to
Maxwell fields is indeed given by the stress-energy current.
Consequently, the flux of charges associated with asymp-
totic Lorentz symmetries, such as angular momentum, is
not purely radiative but depends also on the Coulombic
parts of Maxwell fields. However, applying the Wald-
Zoupas prescription to the full Einstein-Maxwell theory
also gives an additional contribution to the charges them-
selves due to Maxwell fields [say, Oy, Eq. (4.30)]. The
full Wald-Zoupas charge for Einstein-Maxwell theory is
then given by Q = Qgr + Qpm. We show that the flux F
of this full Wald-Zoupas charge across any region of null
infinity is completely determined by the radiative d.o.f. of
both the gravitational and Maxwell fields at null infinity.
The contribution of Maxwell fields to this Wald-Zoupas
flux is, in fact, given by the Noether current and not the
stress-energy current. In addition, the Wald-Zoupas flux F
through all of null infinity defines a Hamiltonian generator
associated with the BMS symmetries on the radiative phase
space of Einstein-Maxwell theory at null infinity.

We further show that the additional contribution Opy
vanishes for supertranslations and does not contribute to the
supermomentum charges associated with supertranslation
symmetries. In particular, the supermomentum charge is
given by the usual formula Qgg as in vacuum GR, and the
supermomentum flux gets an additional (purely radiative)
contribution from Maxwell fields which is equal to the flux

determined by the stress-energy or Noether current (as they
are equal for supertranslations). If one considers the Kerr-
Newman solution, the additional contribution Qg van-
ishes for Lorentz symmetries as well. However, for non-
stationary solutions of Einstein-Maxwell theory, Qg is
generically nonvanishing for Lorentz symmetries. Thus, in
general, the contribution due to Maxwell fields to the Wald-
Zoupas flux of Lorentz charges, e.g., angular momentum, is
not given by the flux of stress-energy but instead by the
Noether current flux.

The rest of the paper is organized as follows. In Sec. II,
we review the natural currents of Maxwell theory asso-
ciated with vector fields in a nondynamical spacetime
which are conserved for Killing vector fields. In Sec. I A,
we consider the limits of these currents to null infinity for
BMS vector fields, which need not be exact Killing vector
fields, and define the corresponding fluxes associated with
the BMS symmetries. In Sec. III, we consider Einstein-
Maxwell theory, analyze its symplectic current, and review
the asymptotic conditions at null infinity. In Sec. IV, we
consider the Wald-Zoupas prescription to define charges
and fluxes associated with the BMS algebra in Einstein-
Maxwell theory. We review the essential ingredients of the
Wald-Zoupas prescription in Sec. IVA and compute the
charges and fluxes for Einstein-Maxwell theory at null
infinity in Sec. IV B. We end with Sec. V by discussing our
main results and their implications.

Several proofs and explicit computations are relegated to
appendixes. In Appendix A, we derive useful properties
of the asymptotic symmetries of Einstein-Maxwell theory.
Some properties of stationary solutions in Einstein-
Maxwell theory at null infinity are presented in
Appendix B. In Appendix C, we collect the computations
of Maxwell contribution to the Wald-Zoupas charge in
Kerr-Newman spacetime and for a charged spinning sphere
in Minkowski spacetime.

A. Notation and conventions

Our notations and conventions are as follows: Lowercase
Latin indices from the beginning of the alphabet (a, b, etc.)
refer to abstract indices. Differential forms, when appearing
without indices, are in bold. We follow the conventions of
Wald [6] for the metric g,,, Riemann tensor R, ¢, and
differential forms. Contraction of vectors into the first index
of a differential form is denoted by “-”, e.g., X - 0 = X“0..,;,
for a vector field X¢ and a 3-form 0 =6,

We use the usual conformal completion definition of null
infinity .# with conformal factor Q (for a review, see [7]).
For definiteness we will consider future null infinity—
depending on the conventions, some of our formulas will
acquire an additional sign when using past null infinity
instead. Fields in the physical spacetime are denoted with
hats, while the corresponding unphysical quantities are
unhatted; e.g., g, is the physical spacetime metric, while
Jap 18 the metric in the unphysical (conformally completed)

044013-2



ANGULAR MOMENTUM AT NULL INFINITY IN ...

PHYS. REV. D 101, 044013 (2020)

spacetime. The conversion between the metrics and
volume elements in the physical and unphysical spacetimes
is given by

gab:QZQab’ (11)
Let n, := V,Q. It can be shown that the conformal factor Q
can always be chosen so that the Bondi condition

A O=2 A _ O—-4
gab_Q Yab> gabcd_Q Eabed-

Vunh =0 (12)

is satisfied, where denotes equality on .7.
Furthermore, with this choice we also have

oA

n,n® = 0(Q?). (1.3)
We will work with this choice of conformal factor through-
out. Let ¢g,;, denote the pullback of the unphysical metric
Jap to Z. From Egs. (1.2) and (1.3), it follows that
gupn® =0 and £,q,, = 0. Thus, q,, defines a degenerate
metric on .# and a Riemannian metric on the space of null
generators (diffeomorphic to S?) of .#.

For our computations, it will be convenient to define
some additional structure on .# as follows. Let u be a
function on .# such that n?V, u = 1 (i.e., u is a coordinate
along the null generators of .#) and n“d, = d,. Consider
the foliation of .# by a family of cross sections given by
u = const. The pullback of ¢, to any such cross section S
defines a Riemannian metric on S. For such a choice of
foliation, there is a unique auxiliary normal vector field [*
at . such that

41, =0, fn,= -1, aupl®=0. (1.4
Note that this choice of auxiliary normal is parallel trans-
ported along n¢, i.e., n?V,1*= 0.!
In terms of this auxiliary normal, we also have
Gab = Gab T 2n(4lp), g = g +2n@P),  (1.5)
where ¢ is the “inverse metric” on the chosen foliation
relative to /. For any v, satisfying n“v, = v, = 0 on .7,
we define the derivative &, on the cross sections by
Davy = qac%dvcvw (1.6)
It is easily verified that Z,q,. = 0; i.e., ¥, is the metric-
compatible covariant derivative on cross sections of .7.

Let 5 = ¢, be the volume element on .¥ and &, = ¢,
the area element on the cross sections of .# in our choice of
foliation which we define by

'All of our results can be obtained without choosing a foliation
of .# and the corresponding auxiliary normal [, but some
intermediate computations become more cumbersome; see [7,8].

Eabe = ldgdabm Eab = _ncgcab' (17)
These are the orientations of &3 and &, that are used
by Ref. [5]. In our choice of foliation, we also have
€3 = —du A €.

We also use the following terminology for the charges
and fluxes associated with the symmetry algebra at null
infinity. Quantities associated with asymptotic symmetries
evaluated as integrals over cross sections S = S? of null
infinity will be called “charges,” while those evaluated as
an integral over a portion A.# of null infinity bounded by
two cross sections will be called “fluxes.” In general, fluxes
need not be the difference of any charges on the two
bounding cross sections, but the Wald-Zoupas fluxes
(defined in Sec. IV) are the change of the Wald-Zoupas
charges. When certain conditions are satisfied, the fluxes
given by the Wald-Zoupas prescription can also be con-
sidered as Hamiltonian generators on the phase space at
null infinity [see the discussion below Eq. (4.12)].

II. MAXWELL FIELDS ON A NONDYNAMICAL
BACKGROUND SPACETIME

In this section, we discuss in detail three currents that
occur in the theory of Maxwell fields associated with vector
fields on a fixed, nondynamical background spacetime: the
canonical, stress-energy, and Noether currents. We show
that, when the vector field is a Killing field of the back-
ground metric, each of these currents is conserved, and
they differ by “boundary” terms. Next, we carefully analyze
the fluxes through .# defined by each of these currents
when the vector fields are asymptotic symmetries in the
BMS algebra. This serves as a primer for the remaining part
of the paper where we analyze Einstein-Maxwell theory
at . and define charges and fluxes for its asymptotic
symmetries.

The dynamical field of Maxwell electrodynamics is
given by a vector potential. It is most natural to treat the
vector potential as a connection on a U(1)-principal bundle
over spacetime and perform the analysis directly on the
principal bundle [9]. Since this would need considerable
additional formalism, we will instead treat the vector
potential as a 1-form A, on spacetime which is obtained
from the connection by making an (arbitrary) choice of
gauge. Maxwell field strength 2-form £, is then

(2.1)

To define our currents, we will consider the transformations
of the vector potential under both Maxwell gauge trans-

formations parametrized by a function A and diffeomor-
phisms generated by a vector field X9 which we

collectively denote by &= (X% 1). The infinitesimal
change in the vector potential under these transformations
is given by
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5:A, = £3A, + Vi =XF,, + V (X"A, + ). (22)

Note that the vector field X and the function 1 are
independent of any choice of gauge for Maxwell vector
potential, since they are simply vector fields and functions
on the spacetime. However, for a fixed transformation
parametrized by é its representation in terms of a vector
field X* and a Maxwell gauge transformation 4 depends on
the choice of gauge for the vector potential A,. Let A, =
A, + VAaA be another vector potential related to A, by a
gauge transformation A. For a fixed £ = (X, 1), let the new

A

representatives under the gauge transformation by A be
!3: (X’ “,1’). Since (f is fixed, its action on the vector
potentials must be independent of the choice of gauge; that
is, 6§AAA; = 6$Aa. Evaluating this, we have

£oh, + VI +V oA = £,A,+V, A (2.3)

This implies that, under a change of Maxwell gauge by A,

A

the representation of a fixed transformation & = (X*, 1) =
(X'@, 1) changes as

Xe=Xe,  J=1-4£4A. (2.4)

Consequently, the notion of a pure Maxwell gauge trans-
formation & = (X¢ = 0, 1) is well defined independently of
the choice of gauge A, but a “pure diffeomorphism” E=
(X, 7 = 0) is not. This is analogous to the structure of the
BMS algebra noted in Appendix A. Note also that
I+ XAl =]+ X4, (2.5)
is invariant under changes of Maxwell gauge.2
The Lagrangian 4-form of Maxwell electrodynamics is
given by

LEM = é4 <—LFA‘2>, (26)
167
where £2 := §*@F , F ., and the metric is considered to
be a nondynamical field. One can also consider Maxwell
field coupled to a charged source current of compact
support. On Minkowski spacetime, such source currents
are necessary to have a nonvanishing Coulombic part of
Maxwell field. Of course, there are asymptotically flat
spacetimes which are solutions of the source-free Maxwell
equations and have a nonvanishing Coulombic part without
introducing external sources, e.g., the Kerr-Newman

*On a principal bundle, & = (X, 1) is a vector field on the
bundle and Eq. (2.2) is the Lie derivative of the connection with
respect to & The Lie algebra of such vector fields also has the
structure of a semidirect sum of diffeomorphisms with the Lie
ideal of Maxwell gauge transformations [9]. The invariant in
Eq. (2.5) is then the vertical part of f on the bundle.

spacetimes. Since we are mostly concerned with the
behavior at null infinity, a source current of compact
support does not change our main analysis. However,
we assume the presence of such sources to enrich our
class of solutions so that also on Minkowski spacetime
there exist Maxwell field configurations with a nonzero
total charge.

Varying the Lagrangian with respect to the dynamical

field A, gives
| I H .
6Ly = €4 |— (V, FP)6A, — —V,(F*6A,)|. (2.7)
4 4

which yields Maxwell equations
V, EP =0, (2.8)

as well as a boundary term corresponding to the symplectic
potential 3-form

. |
O\ (5A) = _Egdachd 5A,. (2.9)
The symplectic current 3-form is then defined as
wpy = 510pm(5,A) — 5,06m(51A)
1 . A
= —4—é\dabc[51Fde(32Ae - (1 <> 2)} (210)
74

From this symplectic current, we construct the canonical
current for a transformation of the vector potential [Eq. (2.2)]
generated by & = (X“, 1). A priori, one may naively expect
the canonical current to involve two variations of the vector
potential. However, since Maxwell equations are linear,
the situation simplifies: Consider a one-parameter family
of vector potentials A, (¢) := (1 + €)A,. This entire family
satisfies Maxwell equations if A, satisfies Maxwell
equations, and the variation of this family of solutions
SA, = %Aa(eﬂezo is equal to the vector potential A,.
Therefore, for a given symmetry & := (X“, 1), where X¢ is
any vector field and A describes the change of gauge, we
define the canonical current as

JC [é] = wEM(AA’ 5§AA\) = éduhcjgj

1 . PO ..
with j& = 5 [FP(£4A) 4+ VA) — §7GP1A£4F ).

(2.11)

To define the stress-energy and Noether currents, we
also need to vary Maxwell Lagrangian with respect to the
metric Qab.a In particular, by varying the Lagrangian with
respect to the nondynamical metric §,,, we find Maxwell
stress-energy tensor 7%

*Note that varying the Lagrangian with respect to §,;, is not in
contradiction with our assumption of §,, being nondynamical in
this section—g,;, does not satisfy any equation of motion
obtained by varying the purely Maxwell Lagrangian.
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D PSP
S9Lem = 845Tab5.gahv (2.12)
where
Sab 1 frac b 1 ~ab 12

The associated current, the stress-energy current for some
vector field X¢, is given by

A ~d
Jr=84upc )t

o o
with j4(X)=T"X, -1

AU A
(F”CFbCX” ——X“F2> . (2.14)
T 4

Given that its divergence is

V. j4(R) = TV Xy, (2.15)
it is clear that j%(X) is conserved when X is Killing.

We finally turn to the Noether current. To obtain its
expression, we consider the variation of Maxwell
Lagrangian under the transformation generated by
&= (X 1), where the vector potential transforms as in
Eq. (2.2) and the variation of the metric under diffeo-
morphisms iS5z, = £3Jap (see the appendix of
Ref. [10]). This yields*

OLlpm = £3Lpy = d’i[ﬂ (2.16)
where the 3-form #|&] is given by
né =X-L LV 53 (2.17)
EM 167 dabc . .

The Noether current is then defined by (see the appendix of
Ref. [10])

I [tﬂ = 0EM(5§Aa) - ’1[& = Egapeli

1 . N - 1 5
with 4 = —EF“”[;EXAZ, + Vi + EX”F2
Despite the fact that these three currents are clearly
different, in the case where the vector field X is Killing, all
these currents differ only by total derivatives and constant
factors. It can be shown quite generally that the Noether and
stress-energy currents are related by a total derivative; see
the appendix of Ref. [10]. For Maxwell fields, we find by
comparing the Noether and stress-energy current that

*Note that when the vector field X is nonvanishing it is essen-
tial that the nondynamical metric in Maxwell Lagrangian is also
varied so that 5§LEM is a total derivative.

Inlé] = —Jx[X] + dOx[E]. (2.19)

where

1 A
QN[& = _gécdabFCd(XeAe + /1) (220)
Comparing the canonical with the Noether current, one
instead finds [after a lengthy but straightforward calculation

starting with Eq. (2.11)] that

Jclé] = 2JN[E + dOc[é] + Kc, (2.21)
where
. 1 e aa
0clf] = —8—écdab (2XFdA, — JF<?), (2.22)
¥/
Kevm by (26710590 L fraegr0) 4,9, % 2.2
c=5—Edabe JYF _EF §9)ANV X, (2.23)

When X¢ is a Killing vector field of the background
spacetime, the Noether and canonical current differ only
by a total derivative of Q¢ [cﬂ (up to a constant factor of 2).

For any Killing vector field X¢, these currents are all
related by total derivatives, and the fact that the stress-
energy current is conserved in this case directly shows
that the other two currents are also conserved. From the
discussion under Eq. (2.2), it follows that both the stress-
energy and Noether current are invariant under Maxwell
gauge transformations, while the canonical current is
invariant only up to boundary terms. Thus, we can use
any of these currents to define a conserved quantity for
Maxwell fields associated with a Killing vector field of the
background spacetime.” For example, if the background
spacetime is stationary with a timelike Killing field 7, then
any of the above defined currents with X = 7 integrated
over a Cauchy surface defines a notion of “energy.”
Similarly, for an axisymmetric background with an axial

Killing field X* = $“, each of these currents define an
“angular momentum.” The conserved quantities defined
using these currents will then differ by boundary terms on
the Cauchy surface, at either a boundary at infinity or some
interior boundary like a black hole horizon.

The most appropriate current to use depends on the
problem at hand. The Noether current is the most natural
one associated with a symmetry through Noether’s theorem
(and, as we will show, is also the contribution due to
Maxwell fields to the Wald-Zoupas flux). On the other
hand, the stress-energy current is typically used for calcu-
lations of energy and angular momentum flux, both in

>Of course, one is free to define other conserved currents by
simply adding exact 2-forms (i.e., boundary terms) to the three
currents we have defined.
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standard textbooks for Maxwell theory in flat spacetimes
[11,12] and on fixed backgrounds [6] (in fact, problem 9.8
of Ref. [12] notes that the angular momentum flux depends
on more than just the radiative electromagnetic fields).
Furthermore, for computations of “self-force” effects on
charged sources due to electromagnetic radiation, the
useful quantity to use is the stress-energy current; see,
for instance, [3,13].

The canonical currents are associated directly to the
Hamiltonian formulation where the symplectic current
provides a natural symplectic form on the phase space.
These currents also arise in the formulation of the first law
of black hole mechanics [9,10]. By general arguments, the
positivity of the canonical energy (relative to a timelike
Killing field of the background) is also directly related to
the stability of the background black hole to perturbations
[14,15]. For axisymmetric Maxwell fields on a stationary
(but not static) and axisymmetric black hole spacetime in
GR, it was shown in Ref. [16] that the energy evaluated on a
Cauchy surface defined by the canonical current (which, in
this case, also equals the one defined by Noether current) is,
in fact, positive, whereas the energy given by the stress-
energy tensor can be made negative. Thus, the canonical
energy is the more useful quantity in the analysis of
stability of black hole spacetimes to electromagnetic
perturbations. The canonical energy is also useful to
account for the “second-order” self-force effects of small
test bodies in black hole spacetimes [17]. Similarly, the
symplectic current is useful for deriving conserved currents
associated with symmetries of the equations of motion
which need not arise from the action of a diffeomorphism
or gauge transformation [18,19].

A. Maxwell currents and fluxes at .7

We now turn to comparing the fluxes through .¥
constructed from the various currents in the previous
section. Hereafter, we will not require that the vector field
X is a Killing field but, instead, require it to be an element
of the asymptotic BMS symmetry algebra at .#. In order to
make this comparison, we first list the asymptotic proper-
ties of the relevant fields at null infinity.

As usual, we perform this calculation in the unphysical
spacetime. The unphysical Maxwell field tensor is given by
F,, = F,,, and we assume that F;, extends smoothly to
#. For the vector potential, this implies that there exists a
gauge in which A, = Aa is also smooth at .#.° Moreover,
without loss of generality—that is, for all solutions of
Maxwell equations where F,, is smooth at .#—we can
further restrict the gauge freedom to the outgoing radiation

gauge

®Generically, if we impose some gauge condition on A, in the
physical spacetime, e.g., Lorenz gauge, then A, = A, is not
guaranteed to be smooth at .# in the chosen gauge; see, for
example, the case of Kerr-Newman spacetime in Appendix C.

n‘A, = 0. (2.24)
The argument is similar to the one used for imposing the
Bondi condition (see, for instance, Sec. 11.1 of Ref. [6]):
Let A, be a vector potential so that n%A, # 0, and consider
another vector potential A/, related to it by a Maxwell gauge
transformation A, = A, + V, 1. Now choose 4 to be a
solution of

£,A= —nA,. (2.25)
Since this is an ordinary differential equation along the
generators of .7, solutions to this equation always exist.
With this choice of 4, we have n?A/,= 0. Henceforth, we
will assume that this choice has been made for the vector
potential.

Now consider a diffeomorphism X and a Maxwell
gauge transformation 4. We show in Appendix A that, to
preserve the asymptotic-flatness conditions on the space-
time, X¢ = X“ must be smooth at .# and correspond to an
element of the BMS Lie algebra. The essential conditions
on X at .# are collected in Eqs. (A9)—(A11). Similarly, for
the transformation of the vector potential [Eq. (2.2)], to
preserve our conditions on Maxwell field we must have that
A =1 is smooth at .# and satisfies £,1= 0.

In summary, we have that

~ A A

A=A, Fp=F, X=X9 1= (2.26)

are all smooth at .# along with the condition Eq. (2.24).
Two important quantities can be derived from the

“electric field” F,,n” at .#: The first is £,, defined by

ga = Fabnb = QaCFcbnb = _£nAa’ (227)

B

with the under arrow indicating the pullback to .#. The
radiative d.o.f. in the electromagnetic field are contained in
&, (or, equivalently, A,). The other piece of F,,n”, which

contains nonradiative (Coulombic) information at .#, is
given by Re[p,], defined by’

1
Re[(ﬂ]] = EFabla”h- (228)
Maxwell equations imply that on .# these two fields are
related in the following way:

2£,Re[p)] = ¢ D ,E,,. (2.29)

"The notation “Re [1]” comes from Newman-Penrose notation
[20]. Similarly, the quantity &£, corresponds to the real and
imaginary parts of ¢, in Newman-Penrose notation.
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With these asymptotic conditions, we now evaluate the
fluxes through null infinity defined by the canonical,
Noether, and stress-energy currents for any asymptotic
symmetry £ = (X“, 1) as described above. Note that in this
context the vector field X* = X“ need not be a Killing
vector field inside the physical spacetime but is required to
be a BMS vector field on .#.

With our convention in Sec. I A for &3, the pullback of a
3-form J is —Q~*n, j%€5, where J ;. = €,pcq”. The flux of
the canonical current is given by

Feleas)= [ Jelg=- / £s0*n, ju
AJ AT
=-— e3q* [ga (£xAp + DpA) — A £xE)
AS
-—E,A,D.Y } (2.30)

where Y is the “pure Lorentz part” of X“ and we have used
that £xn® = —1(2,Y")n" [see Eq. (A9) and the text
below Eq. (A12)]. The flux of the Noether current is given
by

FNIGASI] = /A/IN[Q = —/A¢€3Q_4”affl\1[<§]

1
= —4—/ e3q°"E,(£xAy + D3A),  (231)
N

where we have used that £,4 = 0 [see Eq. (A15)]. The term
proportional to F? in Eq. (2.18) does not contribute to the
flux through .7, because X“n, = 0. Finally, the flux of the
stress-energy current is given by

Frlgias)= | el = - /A esTunx’

1
= | EsEua X+ 2Relg )
47f AI
(2.32)

From the above expressions, it is apparent that all of these
fluxes vanish in the absence of electromagnetic radiation,
i.e., when £, = 0. Furthermore, the fluxes defined by the
Noether and canonical currents depend only on the radiative
modes A, at null infinity. However, the stress-energy current

flux also depends on the Coulombic part Re[p,], as
emphasized before in Refs. [1,2]. For supertranslations
X « n“, this Coulombic term does not contribute to the
flux, since Y = 0. However, the stress-energy current flux
associated with asymptotic Lorentz symmetries, e.g., angu-
lar momentum flux, cannot be computed from just the
radiative modes.

Note that, since any BMS vector field satisfies
Q?>£yG,, =0 (see the discussion in Appendix A), the

3-form term K¢ in Eq. (2.21) vanishes at null infinity.
Thus, from Eq. (2.21) we have on .%

Uclél-dQclE]l.  Jrlé] = —JIx[é] + dOn[E].

(2.33)

N =

Inlé] =

That is, all three currents evaluated on .# differ by exact
3-forms even when the vector field X“ is not Killing but an
element of the BMS algebra. Therefore, the fluxes of these
currents on . can be related to each other purely by
boundary terms on the cross sections S, and S; bounding
the region A.# (with S, in the future of S;).

Let us compare the fluxes on .# in more detail. Consider,
first, the relation between the flux of the Noether and
canonical current. This satisfies

FulE AT = / In(®)

= S FlEas)+ [/Qc /Qc}

(2.34)

with the boundary term

[ oct = [ extpeea, —2relpr)). (239)

where f is as given in Eq. (A11). This expression is rather
strange on first inspection, since both F¢ and Fy contain
only radiative information by Egs. (2.30) and (2.31),
respectively, and yet their difference appears to be a
boundary term that contains nonradiative information,
in the form of ARe[g;]. This is somewhat misleading,
since, using Maxwell equation (2.29) and £,4= 0, this
Coulombic contribution can be rewritten in terms of purely
radiative d.o.f. as

1 1 1

— 2AR - 2R = wg DA

477A282 e[o1] 477/S1€2 e[o1] 4”/Aj€3(] b
(2.36)

Next, consider the relation between the flux of the stress-
energy and Noether current:

Frl&8.9] = ~Fyl6 0.5 - [ [ oxi- QN[¢1],
2 | (2.37)

with

(2.38)

R

/ezRe[gol](Y”Aa +2).

044013-7



BONGA, GRANT, and PRABHU

PHYS. REV. D 101, 044013 (2020)

Unsurprisingly, as there is nonradiative information in Fr
but not in Fy, the boundary term contains nonradiative
information.

Finally, let us consider the fluxes through all of .#. The
natural boundary conditions for the electromagnetic field in
the limit u — +oo are

£, = O(1/[u]"*),

A,=0(1).  (239)

These conditions ensure that the symplectic form obtained
by integrating the symplectic current over all of . is finite.
Given that  grows at most linearly in « and Y“ and A are
independent of u (see Appendix A), we find that the fluxes
differ by

Fules s =5 Fel 71 +5Qc(5) ~ QS (240

Frl& I = -FnE I - [On(Sw) — O(S-o)].  (241)
where S, and S_,, are the spheres at u = £oo, respec-
tively, and

Qc($) =, [ exiRelp]. (242)

0u(8) = =5 [ exRelp](ra, +2). (2:4)

As discussed below Eq. (2.35), the difference between the
canonical and Noether fluxes can also be expressed purely
in terms of the radiative d.o.f. However, the difference
between the Noether and stress-energy fluxes does depend
on the Coulombic d.o.f. even when computed over all of .7,
except when Y* = 0 and 4 = 0 (a pure supertranslation).

We stress once more that none of these fluxes can be
written as the difference of charges evaluated on cross
sections of null infinity. Thus, on a nondynamical back-
ground spacetime, none of these fluxes can be considered
as the change of energy or angular momentum at a
particular “time” (a cross section of null infinity), and
there is no obvious criterion to decide which of these
currents defines the flux of energy or angular momentum.

III. EINSTEIN-MAXWELL THEORY

In this section, we review the symplectic structure at .#
as well as the asymptotic behavior of asymptotically flat
spacetimes in Einstein-Maxwell theory. The reader familiar
with this can safely skip to the next section.

A. Symplectic current for Einstein-Maxwell theory

Following Ref. [21], the Lagrangian for Einstein-
Maxwell theory is given by

| SN
=— (R - F?)é,.
1671( )é4

(3.1)

As in the case of Maxwell theory, our analysis is unaffected
by adding additional matter sources of compact support or
sufficiently fast falloff at null infinity.

A variation of this Lagrangian with respect to the
dynamical fields & = (§,,,A,) gives (raising and lowering
with the background physical metric)

1 . . 1o oap o
5L = ~Ten (G — 82T)5G,), + EV,,F”“&AH é,

+ dO(5D), (3.2)
where G, is the Einstein tensor of §,;, and the stress-energy
tensor Tab is the same as in Eq. (2.13), except that the
spacetime metric is now also dynamical. The variations with

respect to the dynamical fields & = (5§, 5A,) give the
Einstein equations and Maxwell equations, respectively:

G,, =8xT,,  V,F"=0. (3.3)
The symplectic potential @ is given by
0((13,5@) = é:dabcﬁd
1 A PO
with 94 = o (970 g1V 8,y — 2FPSA,),  (3.4)
7

where the second term is the symplectic potential of
electromagnetism from Eq. (2.9). The symplectic current
o = 5,0(6,0) — 5,0(6,®) is given by the sum of three
terms [see Eq. (3.12) of Ref. [21]]*

A A

@ (8,D;5,@) = &4 [Wig (819, 529) + W%M((SIAA’ 5,A)

+ WL (5,D,5,D)]. (3.5)
The first term on the right-hand side of Eq. (3.5) is the same

as the symplectic current for vacuum general relativity [see
Egs. (41) and (42) of Ref. [5]]:

N A A 1 pDabcde A A
WeR (19, 6,9) = EP Pedel 185GV ad1Ger — (1 <> 2)],

(3.6)
with

®Note that our expressions Egs. (3.8) and (3.9) differ in
appearance from the ones in Eq. (3.12) of Ref. [21] only because
Ref. [21] uses the perturbed quantity 5 while we prefer to use
SF .
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p ~ae Afb Ac lﬂa’*e’\c l'\a’*c'\e
Pabcdef:gaegfhgd_ig dghe gf -39 bged gef

| T R
_ Egbcgaeg/‘d 4 Egbcgadgef_ (37)
Similarly, the second term is the symplectic current of

electromagnetism from Eq. (2.10):

W%M(51A’52A)Z—Egacgbd[&ch(szAb—(l“’2)]’ (3.8)
while the third “cross term” is given by
e A s A Ul ctappla . L pabrca\ 5 2 s A
w4 (8D, 8,0) = ——— ( 209+~ FP ! ) 5,A,8,9.a
¥ 2
—(1 < 2). (3.9)

This cross term is unimportant for our analysis, as it vanishes
in the limit to .# for asymptotically flat perturbations.

B. Asymptotic conditions and field equations at .#

We now review the asymptotic behavior of Einstein-
Maxwell theory near .. We use the standard definition of
asymptotic flatness (see, for instance, [7]). The addition of
electromagnetic fields does not spoil this definition, since
F,, = F,, has a smooth extension to .Z.

Using the conformal transformation relating the unphys-
ical Ricci tensor R, to the physical Ricci tensor R, (see
Appendix D of Ref. [6]), the Einstein equation éab =
87T, can be written as

Sab = _zg_lvanb + 'Q'_zncncgab

1
+ 8”92 <Tab - ggabngTcd> ’ (310)
where S, and T, are given, respectively, by

1 N
Sab = Rab __Rgab’ Tab = Q_zTab' (311)

6

For Maxwell fields, we have, by Eq. (2.13) and the
asymptotic conditions in Eq. (2.26),

1

1 .
T, = i (Fachc - ZgabFCchd> .

(3.12)
This quantity is smooth at .# by the smoothness of F,
and g,p,.
As before, we assume that the conformal factor is chosen
to satisfy the Bondi condition [Eqgs. (1.2) and (1.3)]:
V.n,=0, n.n® = 0(Q?). (3.13)
Furthermore, without any loss of generality, the con-
formal factor Q in a neighborhood of .# and the unphysical

metric g,,| , at .# may be assumed to be universal, i.e.,
independent of the choice of physical metric §,;, [5,22] (see
Appendix A of Ref. [23] for details of the argument). Now
consider a physical metric perturbation 6g,,. Since the
conformal factor can be chosen universally, we have

89ab = QL*8Gap- (3.14)
Given that the unphysical metric g,;| , at .# is universal,
09, = 0, and thus there exists a smooth tensor field 7,
such that

5gab = Qfab- (315)
Furthermore, imposing the Bondi condition on the pertur-
bations, i.e., §(V,n,) = 0, we also find [see Egs. (51)—(53)
of Ref. [5]]

T on’ = Q1, (3.16)
for some smooth z,. Thus, our asymptotic conditions on the
metric perturbations imply that

Tab = Q_I(Sguh, Ty = Q_lra,,nb (317)
are smooth on .7,
For Maxwell field, we will use the same conditions as in

Sec. IT A; that is, A, = Aa is smooth at .# and satisfies
n‘A, =0 [Eq. (2.24)].

IV. WALD-ZOUPAS CHARGES AND FLUXES

In this section, we derive the charges and fluxes
associated with asymptotic symmetries in Einstein-
Maxwell theory at null infinity using the Wald-Zoupas
prescription. We first review the Wald-Zoupas procedure
for obtaining charges and fluxes corresponding to asymp-
totic symmetries for a general diffeomorphism covariant
theory in Sec. IVA and then apply this prescription to
Einstein-Maxwell case in Sec. IV B. We show that the
contribution of Maxwell fields to the Wald-Zoupas flux is
given by the Noether current and not the stress-energy
current. Furthermore, this flux can be determined entirely
from the radiative d.o.f., and the total flux over all of .# acts
as a Hamiltonian generator on the radiative phase space.

A. Summary of the Wald-Zoupas prescription

The prescription of Wald and Zoupas can be applied to
any local and covariant theory. We review below the
essential ingredients, emphasizing the subsequent applica-
tion to Einstein-Maxwell theory.

A

When the dynamical fields @ satisfy the equations of

motion and 5& satisfy the linearized equations of motion,
one can show that (see [9,10,24])
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o (®; 60, 5:0) = d[sQ[f] - X -0(50)]  (4.1)

for all symmetries &, where the 2-form Q[¢] is the Noether
charge associated with the symmetry f In Einstein-
Maxwell theory, Q[£] is given by

1 A viRs 1 A fed (e 4 )
Q¢ = _Eecdabv X7 - gé‘cdabF XA, +7). (42)

The first term above is the Noether charge associated with
the vector field X¢ in vacuum general relativity [Eq. (44) in
Ref. [5]], and the second term is the Noether charge for
electromagnetism given in Eq. (2.20).

Now we consider Eq. (4.1) at .#, rewritten in terms of the
unphysical fields which are smooth at .#. Using Egs. (2.26)
and (3.17), it can be verified that the symplectic current @
[Eq. (3.5)] has a limit to .#. Thus, from this point onward,
we work with the fields and symmetries in the unphysical
spacetime. Now, consider a spacelike surface X which
intersects .# at some cross section S. Integrating Eq. (4.1)
over X, we then find

/Za)(d);étb,dfd)) :/S((SQ[(S} —X-0(50)). (4.3)

Since @ admits a limit to .#, the integral on the left-hand
side of Eq. (4.3) is always finite. However, the 2-form
integrand on the right-hand side need not have a finite limit
to .# in general. Thus, the integral on the right-hand side of
Eq. (4.3) should be understood as being defined by first
integrating over some 2-sphere in X and then taking the
limit of this 2-sphere to S [5]. This final limiting integral is
independent of the way in which the limits are taken,
since dw(®; 6P, 65:P) = 0.

From the above identity, it would be natural to define a
charge associated with the asymptotic symmetry £ at S as a
function Q[&; S] in the phase space of the theory such that

50l S| = / (501 - X-0(60))  (4.4)

for all perturbations 6®. However, in general, no such
charge exists, since the right-hand side is not integrable in
phase space, i.e., cannot be written as §(something) for all
perturbations. To see this, suppose that the charge defined
in Eq. (4.4) does exist. Then, one must have (5,6, —
5,61)Q[&; S] = 0 for all backgrounds @ and all perturba-
tions 6, P, 5, (satisfying the corresponding equations of
motion). However, it is straightforward to compute that

(6,6, — 5:8,) Q[ ] = — é X-0(®:6,0,50). (45)

Thus, a charge defined by Eq. (4.4) will exist if the right-
hand side of the above equation vanishes. This is the case in

A

Einstein-Maxwell theory if X“= 0, i.e., for a pure asymp-
totic Maxwell gauge symmetry, or if X“ is tangent
to S. However, in general, the right-hand side is non-
vanishing, and one cannot define any charge QI¢;S]
using Eq. (4.4).

This obstruction is resolved by the rather general
prescription of Wald and Zoupas [5]. Their procedure
for defining integrable charges associated with asymptotic
symmetries can be summarized as follows: Let @(6®) be a
symplectic potential for the pullback of @ to .Z, i.e.,
for all backgrounds and all perturbations (with suitable
asymptotic conditions and equations of motion imposed).
Following Ref. [5], we require that

(i) O be locally and covariantly constructed out of the
dynamical fields @ and 6®, and finitely many of
their derivatives, along with any fields in the
“universal background structure” present at .&.

(i) O be independent of any arbitrary choices made in
specifying the background structure; i.e., @ is
conformally invariant as well as invariant under
Maxwell gauge transformations on .# for the
Einstein-Maxwell theory. We also require that
® be independent of the choice of the auxiliary
normal /¢ and the corresponding ¢’ used in our
computations.

(iii) O(6®) = 0 for any stationary background solution
® and for all (not necessarily stationary) perturba-
tions 0@.

If such a symplectic potential @ can be found, define

Q[£; S] to be a function on the phase space at .# by’

SQ[E 8] = /g(éQ[é] -X-0(60)) + ﬂ X-0O(5D). (4.7)

It is easily checked [using Eqs. (4.4)—(4.6)] that this expres-
sion is integrable in phase space, i.e., (5,8, — 5,5, ) Q[&;S] =0.
Together with some choice of reference solution @, on which
Q[&; S] = 0 for all asymptotic symmetries £ and all cross
sections S, Eq. (4.7) defines the Wald-Zoupas charge QI[&; S]
associated with the asymptotic symmetry ¢ at S.

The flux of the perturbed Wald-Zoupas charge is given
by [see also Egs. (28) and (29) of Ref. [5]]

OF[&A.7]:=5Q[E:5,] - 5Q[&:S)]

=— /A ][g(acp,agq)) +d[X-0(sD)]].  (4.8)

The last term of this equation can also be written as

’Note that the first of these two integrals is defined by the
limiting procedure described below Eq. (4.3), whereas the second
is an ordinary integral, as ® is defined directly on .#.
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d[X - O(6D)] = £,0(5D)
= 5:0(5®)

= —3(5(13, 5:®) + 60(5:D), (4.9)
where in the second line we have used the criteria that @ is a
local and covariant functional on .# and that it is invariant
under Maxwell gauge transformations,'® while the third
line follows from the definition of @ as a symplectic
potential for o [Eq. (4.6)]. Thus, the flux of the perturbed

Wald-Zoupas charge is

SFIEAS] = — / 50(5.®).  (4.10)

A

To get the unperturbed charge and flux from the
perturbed ones, we have to choose a reference solution
@, on which the charges are required to vanish. Since the
O(5®) is required to vanish on stationary backgrounds, we
choose the reference solution @ to also be stationary. For
our concrete case of Einstein-Maxwell theory, we will pick
@, to be Minkowski spacetime. Then, the flux of the Wald-
Zoupas charge is simply

FlEAS] = Q& S, - Q&S] :—/M@(agcb). (4.11)
Note that from Eq. (4.8) we also have
SFIE AT = — / » (50, 5.0) + / X - O(50)
AF— s,
—/S X 0(5). (4.12)

If the boundary terms on S, and S; vanish for all back-
grounds @ and all perturbations 6@, then F[&; A#] also
defines a Hamiltonian generator (relative to the symplectic
current @ ) on the radiative phase space on A.¥ corre-

sponding to the symmetry & For general field configura-
tions, these boundary terms do not vanish on finite cross
sections of .#. However, we will show below in Einstein-
Maxwell theory that, when A.7 is taken to be all of null
infinity, appropriate boundary conditions at timelike and
spacelike infinity (i.e., as |u| — oo) ensure that these
boundary terms indeed vanish for our choice of ©.
Thus, our fluxes define the Hamiltonian generators for
Einstein-Maxwell theory on the phase space on all of .#.

Remark 1 (ambiguities in the Wald-Zoupas prescrip-
tion).—For a given theory, the Wald-Zoupas prescription is
not unambiguously defined. For a given Lagrangian L, the
symplectic potential € is ambiguous up to the redefinition

0(60) 1> 9(5d) + dyY (60), (4.13)

"In the principal bundle language, this means @ is a gauge-
invariant and horizontal 3-form on the bundle.

where Y (6®) is a local and covariant 2-form which is a

linear functional of the perturbations 5& and finitely many
of its derivatives. This changes the symplectic current by

0(5,D,6,0) - 0(5,D,5,0)

+d[86,Y(6,D) — 6,Y(5,D)].  (4.14)
Note that the addition of a boundary term to the Lagrangian
does not affect the symplectic form. Even with a fixed choice
of the symplectic current, the symplectic potential @(5®)
defined on null infinity [Eq. (4.6)] is ambiguous up to
O(5D) > O(6P) + SW (D), (4.15)
where W is a local and covariant 3-form on .#. These
ambiguities then also lead to ambiguities in the Wald-Zoupas
prescription for the charges and fluxes on null infinity. It was
argued by Wald and Zoupas that these ambiguities do not
affect their prescription in vacuum GR [see footnote 18 and
the arguments below Eq. (73) in Ref. [5]]. We hope that
similar arguments can also be made for Einstein-Maxwell
theory, but we do not analyze these ambiguities in detail.

B. Computation of the Wald-Zoupas charges and
fluxes at null infinity for Einstein-Maxwell theory

We now apply the above described prescription of Wald
and Zoupas to Einstein-Maxwell theory and compute the
charges and fluxes at .#. Since our main focus is on the
contribution of Maxwell fields to the charges and fluxes,
we will borrow the analysis of Wald and Zoupas [5] for the
contribution of the gravitational field.

First, we compute the pullback @ to . of the sym-
plectic current in Eq. (3.5). Using the asymptotic conditions
Egs. (2.26) and (3.17), it can be checked that the con-
tribution from the cross term given by —Q *n,Ww¢
[Eq. (3.9)] vanishes in the limit to .. The contribution
from Maxwell fields is easily computed to be

WeMm (61A, 52A) = — Q_4navf/%M£3

-

1

=~ 01864, ~ 5,£6,A Jes. (4.16)

The contribution from the metric perturbations is the most
tedious to compute. However, since the T, for Maxwell
fields is smooth on .#, the terms proportional to the
stress-energy tensor in Eq. (3.10) vanish at ., and the
computation of Ref. [5] carries over unchanged. We
therefore find [see Eq. (72) of Ref. (511"

""As mentioned before, one can consider additional sources
with compact support or sufficient falloff at .# without affecting
this analysis.
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wcr (619.6,9) = — Q*n,Wwizes

-—

1

=3 61N 075" — 8N 71" e, (4.17)
Here N, is the News tensor on .# defined by
Nab = Sab ~ Pab> (418)

—

where S, is the pullback to .# of S,;, and p,, is the unique

symmetric tensor field on .# constructed from the universal
structure at .# in Theorem 5 of Ref. [7]. The News tensor
also satisfies the properties

Ngnb =0, N,q*= 0. (4.19)
Thus, the pullback to .# of the symplectic current of
Einstein-Maxwell theory is given by

1
= 3 [51Nab73b - 52Nab7(1lb]£3

1
515“5214“ - 525‘15114(1]83.

-l (4.20)

Note that @ is determined completely by the (perturbed)

radiative d.o.f. For Maxwell fields, it is clear that
only the perturbations of A, and £, = —£,A, contribute.

For the gravitational fields, the argument is more involved.
Consider the asymptotic shear of the cross sections of .#
defined by

1
Oap = (Qac%d ) qaqud) Vil (4.21)
which is related to the News tensor through
Nab = 2£”5ab. (422)

Using the asymptotic conditions Eq. (3.17), the perturba-
tion of the shear generated by the metric perturbation &g,
(with fixed [,, since /, can be chosen independently of the
spacetime) can computed to be

. 1 1
00, = — ) (%C%d 3 ngqu) Teds (4.23)

that is, do,;, is given by the trace-free part of 7, on the
cross sections. Because of the conditions Eq. (4.19) and
that 7,,,n”= 0 from Eq. (3.17), it is clear that only this trace-
free part of 7z,,—equivalently, do,,—contributes to the
pullback of the symplectic current. Furthermore, from the
analysis of Ashtekar and Streubel [8], do,, is equivalent to
the perturbation in the equivalence class of derivatives
{D,} defined on .#, which are the radiative d.o.f. in

vacuum GR. Thus, @ is completely determined by the

perturbed radiative d.o.f. in Einstein-Maxwell theory. The
integral of this symplectic current over all of .# [when
appropriate falloff conditions are satisfied toward i and i*;
see Eq. (4.33)] reproduces the symplectic form on the
radiative phase space at null infinity used by Ashtekar and
Streubel [8].

To apply the Wald-Zoupas prescription, we need to find a
3-form symplectic potential @(5®) for @ given in

Eq. (4.20). We choose the following (see Remark 1 for
the ambiguities in the choice of ):

O(56®) = Ogr(69) + Opy(5A),

1
where Ogg(5g) = —EN,,,;“”&,

1
Oy (94) = — - E“5A 3. (4.24)

Note that Ogg(5g) is the symplectic potential for vacuum
GR given in Eq. (73) of Ref. [5]. The above choice of ®
satisfies all the requirements listed below Eq. (4.6):

(i) The ® in Eq. (4.24) is indeed a local and covariant
functional of the background fields © and the
perturbed fields 6@ (see also footnote 20 of Ref. [5]
for an explanation of the locality of the News
tensor).

(i1) It is also invariant under conformal transformations
and Maxwell gauge transformations'? and the choice
of the auxiliary null normal /¢ and the “inverse
metric” g,

(iii) As we show in Appendix B, for stationary solutions
of Einstein-Maxwell theory, we have £, = 0 and
N, =0 on .Z, and thus O(®;6®), as defined
above, vanishes for all perturbations 6®@ whenever
the background @ is a stationary solution of Ein-
stein-Maxwell equations.

Having chosen a @ as in Eq. (4.24), the Wald-Zoupas
flux F[&; A#] associated with an asymptotic symmetry € is
determined by Eq. (4.11). We now want to find the
corresponding Wald-Zoupas charge Q[&; S| on any cross
section S of .#. Note that the Wald-Zoupas charge is
determined by Eq. (4.7), along with the requirement that it
vanish on some stationary reference solution @, which we
take to be Minkowski spacetime. Although the right-hand
side of Eq. (4.7) can be directly computed, it is not very
useful to find an expression for QJ¢; S]. We instead proceed
in the following manner: Let the Wald-Zoupas charge be
given by

Q& S| = Qarl[X; S| + Qpmlé: 81 (4.25)

“Note that 54, is gauge invariant, since the gauge trans-
formations are independent of the dynamical fields.
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where Qgr[X; S] is the expression for the charge in vacuum
GR [see Eq. (4.26)] and Qgy[&; S] is the (as yet undeter-
mined) contribution due to Maxwell fields. As we will
show below, in the presence of Maxwell fields, Qg [X; 5]
by itself does not satisfy Eq. (4.11) with ® as in Eq. (4.24);
that is, Qgr[X; S] is not the full Wald-Zoupas charge for
Einstein-Maxwell theory. Then, we will define Maxwell
contribution Qpy[&; S] so that the total charge Eq. (4.25)
does satisfy Eqgs. (4.11) and (4.24), and Qgy[¢; S] vanishes
in the absence of the electromagnetic field.

In vacuum GR, the Wald-Zoupas charge for a BMS
vector field X“ can be written as follows. With our
assumptions on the asymptotic conditions on the fields,
it follows that C,;,.,= 0 (see Theorem 11 of Ref. [7]), and
thus, Q7'C,p., is smooth at .#. Then Qgy is given by

! 1
Qarl&: 8] = /82 =X(Q ' Cupea) P10 + = fo** N
871' Ky 2

+ Y%, D 0" — %aaba"b@CYc} , (4.26)
where we have decomposed X“= pn®+ Y4, with Y¢
tangent to the cross sections of the chosen foliation [see
Eq. (A11)]. The tensor o, is the asymptotic shear of the
cross sections defined in Eq. (4.21).

For vacuum GR, the charge expression Eq. (4.26)
coincides with the charges defined by Wald and Zoupas
[5]. Showing this explicitly is a long and tedious compu-
tation, but we argue as follows. For supertranslations,
Eq. (4.26) is the same as the supermomentum defined
by Geroch [7], which is equal to the Wald-Zoupas charge
[see Eq. (98) of Ref. [5]]. For asymptotic Lorentz sym-
metries, it was shown in Ref. [5] that the Wald-Zoupas
charge is given by the “linkage” (:harge13 found by Geroch
and Winicour [22], which, in turn, coincides with the above
expression as shown by Winicour [26]. The expression
Eq. (4.26) is also equal to the charge found in Ref. [27],
when the conformal factor is additionally chosen away
from . to make the vector field /4 expansion-free. It is also
equal to the expression computed using Bondi coordinates
[see, for instance, Eq. (35) of Ref. [28]].

In vacuum GR, the flux of the charge Eq. (4.26) is given
by Eq. (4.11), with Ogr(£xg) on the right-hand side.
However, in the presence of Maxwell fields, one gets an
additional contribution to the flux of this charge through the
asymptotic stress-energy tensor T',;,. This additional con-
tribution arises through the £, of the We?/l tensor term, and
using the Bianchi identity at .# we get 4

“Note that for general supertranslations the “linkage” charges
and fluxes do not equal the ones obtained from Hamiltonian
methods [8] or from the Wald-Zoupas prescription; see [25].

In the Newman-Penrose notation, the Weyl tensor terms
appearing in Eq. (4.26) are Re[y,] and ;. Their derivatives on .&
along n“ are determined by the Bianchi identities given in
Eqgs. (9.10.5) and (9.10.6) of Ref. [29].

Q6r[X;8:] = Qar[X: 8] = —/ [OcR (£x9) +T o1 X e;5).

AS
(4.27)

If one takes Qg as the definition of the charges associated
with the BMS symmetries, then Maxwell fields contribute
to the flux only through the asymptotic stress-energy tensor
T,., (see also Appendix C of Ref. [28]). As argued in
Sec. IT A and in Refs. [1,2], for Lorentz symmetries this
contribution to the flux is not purely radiative and depends
on the Coulombic part Re[p,]| of Maxwell field. However,
in the presence of Maxwell fields at .#, the usual
expression Eq. (4.26) cannot be the full Wald-Zoupas
charge of the theory, as it does not satisfy Eq. (4.11) with
the full ® in Eq. (4.24), which includes Maxwell contri-
bution Ogy;(6:A).

Our goal now is to define Maxwell contribution Qg to
the Wald-Zoupas charge such that Qgr + Opy satisfies
Eq. (4.11) with the full @ in Eq. (4.24). From Eq. (4.24), we
have for @y (5:A)

1
/ ®EM(5§A):_4_/ £3qab5u(£xAh+‘@hi). (428)
AS T JAs

This is precisely the flux Fy[&; A#] of the Noether current
of Maxwell theory Eq. (2.31). This relation arises because,
due to our asymptotic conditions, gy (5A) = Ogy (6A),

where the right-hand side is the pullback of the symplectic
potential of electromagnetism on a nondynamical back-
ground given in Eq. (2.9). It also follows that n[&] = 0 [see

—

Eq. (2.17)], and thus, @gy(6:A) is simply the pullback of
the Noether current Jy[é] for Maxwell theory. Thus, the
contribution of Maxwell field to the flux of the Wald-
Zoupas charge is, in fact, the Noether current and not the
stress-energy current. This flux contribution is the same as
the one obtained by Ashtekar and Streubel in Eq. (2.18) of
Ref. [8]. However, there the boundary term containing the
Coulombic contribution Re[p,] was dropped when con-
verting to the stress-energy expression in Eq. (2.19) of
Ref. [8]. This is valid in their context, as they considered
only source-free solutions on Minkowski spacetime (so that
Re[g; ] necessarily vanishes); for the more general scenario
we are interested in, this boundary term is important and
differentiates the Noether and stress-energy current.
From the previous computations, we can relate this
Maxwell contribution to the Wald-Zoupas flux to the
stress-energy tensor using Eqgs. (2.37) and (2.38) to get

Qpm[&:S2) — Qpm(&: 8] = —/A] [Opn(8:A) = T pnXPe5),
(4.29)

where we have defined
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Qi8] =5 [ exRelpn](i XA, (430

which is essentially Eq. (2.38) and the integral of Maxwell
Noether charge Eq. (2.20) on the cross section S.
Consequently, from Eqs. (4.27) and (4.29), it follows that
Q = Qgr + 9QpMm satisfies

f@¢ﬂ=—AyW%®=Q@&%@@&L (431)

Maxwell contribution Qgy[£;S]=0 when Maxwell field
F,, vanishes, and since Qggr[&;S] =0 in Minkowski
spacetime, the full Wald-Zoupas charge Q[&; S] also van-
ishes in Minkowski spacetime.

In sum, the Wald-Zoupas charge for Einstein-Maxwell
theory is

Q&S] = QarlX; S| + Qrm(&; S

with the individual terms given by Eqgs. (4.26) and (4.30),
respectively. The fluxes of the individual terms Qggr and
Ogpwm depend on the stress-energy and cannot be determined
purely from the radiative modes at null infinity. However,
from Egs. (4.27) and (4.29), these contributions cancel
exactly, and so the flux of the full Wald-Zoupas charge Q
can be determined from the radiative modes alone.

As mentioned above, the flux F[&; .#] is a Hamiltonian
generator on the full radiative phase space of .#, corre-
sponding to the symmetry & Along .#, as u — £oo, we
have

(4.32)

Nap = O(1/[u]"), &, =O0(1/Ju]"*e)  (4.33)
for some ¢ > 0, while 7,, and dA, have finite limits as
u — too. Note that these conditions are preserved by the
asymptotic symmetries. Furthermore, they also ensure that
the integral over all of .# of the pullback of the symplectic
current [Eq. (4.20)] is finite so that we have a well-defined
symplectic form on the radiative phase space on .#. Since

X? grows at most linearly in u, from Eq. (4.24) we have that

liin X-0(60) =0, (4.34)
and from Eq. (4.12)
SF[& I = - / w (6, 5:D), (4.35)

for all perturbations 6@ and all backgrounds ®. Thus, the
Wald-Zoupas flux acts as a Hamiltonian generator of the
corresponding symmetry on the radiative phase space of
Einstein-Maxwell theory on all of .#."”

If one instead defines the flux associated with a BMS
symmetry by the right-hand side of Eq. (4.26), then such a flux
is not a Hamiltonian generator in Einstein-Maxwell theory.

There are several interesting consequences of this result.

First, let us consider the behavior of the Wald-Zoupas
charges under a Maxwell gauge transformation A, —
A, + VA with £,A= 0, so that n“A,= 0 [Eq. (2.24)] is
preserved. The gravitational contribution Qg is, of course,
unaffected by this transformation. Similarly, the electro-
magnetic contribution Ogy [Eq. (4.30)] is invariant when-
ever the asymptotic symmetry ¢ is either a pure Maxwell
symmetry £ = (X* = 0,1) or a pure supertranslation £ =
(X* = fn“,1). However, the charge contribution Qgy[Y; 5]
for a “pure Lorentz symmetry” transforms nontrivially:

QuulY:5] 1> Qeulr:8] 4 5 [ exRelplérh.  (436)

The second term on the right-hand side is the charge
OQpml£yA; S| of a pure Maxwell symmetry £yA. Thus,
under a change of Maxwell gauge, the electromagnetic
contribution to the charge of a Lorentz symmetry shifts by
the charge of a pure Maxwell symmetry. This is due to the
fact that the action of a “pure Lorentz symmetry” & =
(X* =Y 12 =0) is not well defined independently of the
choice of gauge for A,,. This is similar to the transformation
of the Lorentz charges under a supertranslation and
essentially arises due to the fact that the asymptotic
symmetry algebra is a semidirect sum of the BMS algebra
with the Lie ideal of Maxwell transformations. In the usual
BMS algebra for vacuum GR, there is no unique Lorentz
subalgebra but instead infinitely many Lorentz subalgebras
which are related to each other by supertranslations.
Similarly, in Einstein-Maxwell theory, there is no unique
action of the Lorentz algebra on the vector potential A, at
# but infinitely many such actions of the Lorentz algebra
which are all related by the asymptotic Maxwell sym-
metries. Note, however, that taking into account the change
of the representation of £ in terms of X“ and 4, the charge
Ogwm s invariant under gauge transformations as follows
from Eq. (A18). Essentially, under A,+—A,+V, A, a pure
Lorentz symmetry is not invariant but transforms as

(Y, A=0) > (Y9, —£yA). (4.37)
The transformation of the pure Lorentz charge Eq. (4.36) is
exactly compensated by the transformation of the pure
Lorentz symmetry used to compute the charge.

The gravitational fields do not contribute to the Wald-
Zoupas charge of a pure Maxwell symmetry £=(X“=0,41),
which is given by

QUi 7] = QuliS] =5 [ exRelprli. (438)

with the flux
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1
FliAS] :4_/]83qab5a@b/1'
A 4

T

(4.39)

For A = const, the flux vanishes across any region A.#, and
the charge is proportional to the total conserved Coulomb
charge. For a general A (that is, A is a function on S?), this
charge is the “soft charge” of Maxwell fields (see [1,30], for
example).

Next, consider the charge associated with a supertrans-
lation & = (X“= fn“ A =0). Then, the electromagnetic
contribution Qgy[fn;S] to the charge vanishes, since
n®A,= 0 and the supermomentum charge is given by the
same expression as in vacuum GR. Similarly, from
Eq. (4.29), Maxwell contribution to the flux of super-
momentum is also

- / Opyi(5:A4) = — / e Ty
AT AI

1
= —E/A(¢83fgag .

Thus, the electromagnetic fields do not contribute to the
supermomentum charge and contribute to the supermo-
mentum flux only through the asymptotic stress-energy
tensor, which is purely radiative for supertranslations.

However, the situation is different for charges associated
with a Lorentz symmetry &£ = (X*= Y% A =0). In this
case, Maxwell fields contribute an additional term to the
Wald-Zoupas charge given by

(4.40)

1
Quulris) = [ eelplrea, (441

We show in Appendix C that this term vanishes for a Kerr-
Newman black hole and thus, does not affect the usual
formula for its angular momentum. However, for general
nonstationary Maxwell fields, we expect that this term is
nonvanishing. To illustrate this, we also consider a spinning
charged sphere in Minkowski spacetime [3]. The time-
dependent dipole moment of such a charge distribution
contributes nontrivially to Qgy and thus, to the angular
momentum charge. A similar contribution to the angular
momentum due to Maxwell fields is also present at spatial
infinity in stationary-axisymmetric spacetimes [9,31,32].
Thus, Maxwell contribution in Eq. (4.41) would also be
relevant to show that the Lorentz charges defined on future
null infinity coincide with those defined at spatial infinity
and at past null infinity, as conjectured in Ref. [33].

V. DISCUSSION

We analyzed the fluxes of Maxwell fields associated
with the asymptotic symmetries at null infinity in any
asymptotically flat spacetime. We first considered Maxwell
theory in a nondynamical background, defining three
different currents which are naturally associated with vector

fields on the background spacetime. When the vector field
is a Killing vector field of the background spacetime, each
of these currents is conserved and differs only by boundary
terms. A similar situation occurs at null infinity when the
vector field need not be a Killing vector field but an
asymptotic symmetry element of the BMS algebra. In this
case, each of the three currents can be used to construct
fluxes associated with the asymptotic symmetry algebra
through a given region of null infinity. While the Noether
and canonical current fluxes are completely determined by
the radiative d.o.f. of Maxwell fields, the flux associated
with the asymptotic Lorentz symmetries defined by the
stress-energy current also depends on the Coulombic part
of Maxwell field. Thus, if the stress-energy flux for a
rotational symmetry is interpreted as the flux of angular
momentum through null infinity, then it cannot be deter-
mined from the radiative d.o.f. alone [1,2]. Furthermore,
none of these fluxes can be considered as the difference of
charges evaluated on cross sections of null infinity, as on a
nondynamical background spacetime, there is, in general,
no notion of an energy or angular momentum of Maxwell
fields at a particular “time” defined by a cross section of
null infinity. Therefore, there is no obvious way to decide
which of these currents defines the flux of energy or
angular momentum.

To clarify this, we coupled electromagnetism to general
relativity and considered the full Einstein-Maxwell theory
at null infinity. Now the theory is diffeomorphism invariant
and there exist charges whose differences are given by
fluxes. Specifically, the general prescription of Wald and
Zoupas [5] defines, for a given asymptotic symmetry, both
the charge on a cross section of .# and the flux, which
represents the change in this charge. If one assumes the
charge expression for vacuum GR to be the definition of the
charge in Einstein-Maxwell theory as well [see Eq. (4.26)],
then the additional term that Maxwell fields contribute
to its flux is the stress-energy flux [Eq. (4.27)]. As in the
case with a nondynamical metric, this contribution depends
on the Coulombic part of Maxwell field for asymptotic
Lorentz symmetries. However, the full Wald-Zoupas
charge for Einstein-Maxwell theory contains an additional
contribution to the charge due to Maxwell fields
[Eq. (4.30)]. This additional contribution vanishes for
asymptotic supertranslations. It also vanishes for Lorentz
symmetries in the Kerr-Newman spacetime. In general,
however, for nonstationary Maxwell fields, this additional
contribution is nonzero. The flux of the full Wald-Zoupas
charge in Einstein-Maxwell theory with this additional
contribution from Maxwell fields is determined by the
radiative fields alone. The full Wald-Zoupas charge
naturally absorbs the Coulombic information contained
in the stress-energy flux, and so the contribution of
Maxwell fields to the Wald-Zoupas flux is determined
by the Noether current flux and depends only on the
radiative fields on .7.
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In addition, we showed, using the standard falloff
conditions for the electromagnetic and gravitational fields
near i° and i, that the Wald-Zoupas flux also defines a
Hamiltonian generator associated with the asymptotic
symmetries on all of null infinity.

A similar analysis can also be carried out for other matter
fields. For GR minimally coupled to a massless Klein-
Gordon field or a conformally coupled scalar field, the
essential points have already been discussed by Wald and
Zoupas in Sec. VI of Ref. [5]. For such fields, the Wald-
Zoupas charge is given by the same expression as in
vacuum GR [Eq. (4.26)] and the scalar fields contribute to
the flux only through the stress-energy tensor. However, for
the Einstein-Yang-Mills theory, we expect that there is an
additional contribution to the Wald-Zoupas charge similar
to the case of Maxwell fields considered here. For general
theories, it should not be expected that the matter con-
tribution to the charge is the Noether charge or that the
contribution to the flux is the Noether current. For instance,
this expectation is already false in vacuum GR, where the
Wald-Zoupas charge is, in general, not given by the
Noether charge (i.e., the Komar formula); see the discus-
sion in Refs. [22,25].

As noted before, a similar additional contribution to the
angular momentum due to Maxwell fields is also present at
spatial infinity in stationary, axisymmetric spacetimes
[9,31,32]. Thus, we expect that Maxwell contribution in
Eq. (4.41) would also be relevant to show that the Lorentz
charges defined on future null infinity coincide with those
defined at spatial infinity and at past null infinity, as
conjectured in Ref. [33].

Since the Wald-Zoupas flux is purely radiative and also
the Hamiltonian generator on the radiative phase space of
Einstein-Maxwell theory, it can also be quantized using the
asymptotic quantization methods in Ref. [30].

The Wald-Zoupas prescription can also be applied to
finite null surfaces in vacuum GR [34]. For Einstein-
Maxwell theory at finite null surfaces, we expect that there
is a similar contribution to the charges and fluxes associated
with finite null boundary symmetries considered in
Ref. [34] that arises from Maxwell fields. Such an analysis
could also be useful in deriving conservation laws in
Einstein-Maxwell theory through local regions bounded
by a causal diamond similar to those in vacuum GR [35].
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APPENDIX A: ASYMPTOTIC SYMMETRIES
OF EINSTEIN-MAXWELL THEORY
AT NULL INFINITY

In this appendix, we show how the asymptotic sym-
metries of Einstein-Maxwell theory can be derived from the
asymptotic conditions on the gravitational and Maxwell
fields at null infinity. We first focus on the asymptotic
symmetries of the gravitational field, before we include the
symmetry transformations of Maxwell vector potential.
Similar arguments for vacuum general relativity were also
presented in Ref. [23].

Given a vector field X = X“ generating an infinitesimal
diffeomorphism £y§,, in the physical spacetime, what are
the conditions on X“ for it to be an asymptotic symmetry
vector field? The vector field X“ needs to extend smoothly
to .# to preserve the smooth differential structure there, and
the infinitesimal diffeomorphisms generated by X“ need to
preserve the asymptotic flatness conditions on the unphys-
ical metric perturbations. To make this concrete, consider
any physical metric perturbation 6yg,, = £, generated
by a diffeomorphism. The corresponding unphysical metric
perturbation is given by

SxYab = L£xGap = £xGap — 2927 1 X Gap. (A1)
Since dyg,, has to be smooth at ., we can immediately
conclude that n,X“ = 0. In other words, X is tangent to .#.
Defining the function ay) := Q'n,X“ which extends
smoothly to ., we can write the above equation as

éxgah = £Xgab - 2a(X)gah' (Az)

For the perturbation 6yg,, to preserve the asymptotic
flatness conditions in Eq. (3.17) and the Bondi condition in
Eq. (1.2), we require that

Ox9ap =0 and nn’Sxg,, = O(Q?). (A3)
The first condition yields
£x9ap = 2a(X)gab~ (A4)

Furthermore, contracting Eq. (A2) with n” gives

nh(nguh = nhvaa _vahna _a(X)na +Qvaa(x)v (AS)
where we have used that the twist of n, vanishes, since n, is
the gradient of the conformal factor Q. Since the left-hand
side must vanish at ., we have

Sy g, =0 = £ynt = — axyn’. (A06)

Contracting Eq. (A5) once more with n¢, we find that
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nnbéyg., = 0(Q%) = £,00x) = 0, (A7)
where we used n,n® = 0(Q?) [see Eq. (1.3), which
followed directly from the Bondi condition in Eq. (1.2)].
Finally, taking the pullback of Eq. (A4) to .#, we find

£xqup = 20!()()%1;- (A8)
Hence, the asymptotic symmetries on . are generated by
vector fields X tangent to .# satisfying

£xn® = —axn, (A9a)

£XQab = 2a(X) 9ab> (Agb)
where the function a(y) is smooth and £,ay) = 0 on .7.
These conditions are the standard ones defining the BMS
algebra b [7,8]. When working solely on .#, the function
a(x) can be interpreted as the infinitesimal conformal
transformation of ¢,, induced by X“| ,. If X* is given in
a neighborhood of ., a(y) can also be computed using

1
a2 QX2 VX, (A10)

where the second equality follows from ¢“*6yg,, = 0.

To make these conditions more concrete, let u be an
affine parameter along the null geodesics of n¢ on .# such
that n*V,u=1. Then any BMS vector field can be
written as

1
X< fn+Y* with pg= f—|—§(u —uy)2,Y%, (All)

and

£,f=£,Y4=0, 29V p) = qup2.Y¢,  (Al2)
where Y“ is tangent to the u = const cross sections of .7,
2, is the covariant derivative on these cross sections
compatible with ¢,,, and u = u; is some choice of an
“origin” cross section. The function ay) in Eq. (A9) is then
given by %@aY ¢ in this representation. Thus, any BMS
vector field is characterized by a smooth function f and a
smooth conformal Killing field Y on S2. The function f
represents the infinite-dimensional subalgebra of super-
translations while the conformal Killing field Y represents
a Lorentz subalgebra of the full BMS Lie algebra.

Given a fixed BMS vector field X¢, its representation in
terms of a supertranslation f and a Lorentz vector field Y
depends on the choice of foliation given by u = const. Let
u=u+F with £,F=0 be another choice of affine
parameter along n?, and let /' and Y’“ be representatives
of X“ in the new choice of foliation given by u’ = const.
Then it is straightforward to verify that

=+ £yF, Y'e =y, (A13)
Therefore, the notion of a pure supertranslation (Y* = 0) is
well defined independently of the choice of foliation, but a
pure Lorentz transformation (f = 0) is not. This is ulti-
mately related to the fact that the BMS algebra is a
semidirect sum of the Lorentz algebra with the Lie ideal
of supertranslations.

Now consider a similar analysis of the transformations
of Maxwell vector potential under a symmetry & =
(X4, 1), where X is a BMS vector field and A = 1. The
perturbation of Maxwell vector potential generated by an
infinitesimal transformation & is

0:A, = £xA, + V4. (A14)
This transformation needs to preserve the asymptotic
conditions of Maxwell vector potential. Since A, is smooth
at .#, 1 extends smoothly to .# as well. To preserve the
outgoing gauge condition imposed on the vector potential
[Eq. (2.24)] requires that n“6:A, = 0, which gives

02 nifyA, +£,)
= £x(nA,) + apn?A, + £,4

= £,A=0, (A15)
where the second line uses Eq. (A9a) and the last line
follows from n“A, = 0. Thus, the asymptotic symmetries
of Einstein-Maxwell theory at .# are given by & = (X, 1),
where X¢ is a BMS vector field and 4 is any smooth
function on S?, the space of null generators of .#.
Similar to the case of a BMS vector field, the repre-
sentation of a fixed & in terms of a BMS vector field X“ and
a Maxwell gauge transformation 4 depends on the choice of
gauge for the background vector potential A,. Let A/, =
A, + V, A be another vector potential related to A, by a
gauge transformation A with £,A = 0. For a fixed sym-
metry & = (X%, 1), let the new representatives under the
gauge transformation by A be &= (X% ). Since the
symmetry £ is fixed, its action on the vector potentials
must be independent of the choice of gauge, that is,
0:A}, = 6:A,. Evaluating this, we have
£x A, + VA +V £x A =£xA, + VA (A16)
This implies that under a change of Maxwell gauge
by A the representation of a fixed symmetry £ = (X9, 1) =
(X'?,2') changes as
X't =X AN =21—£xA. (A17)
Consequently, the notion of a pure Maxwell gauge trans-
formation ¢ = (X“ = 0, A) is well defined independently of
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the choice of gauge A, but a pure BMS transformation & =
(X9, = 0) is not. This is analogous to the structure of the
BMS algebra noted above. Note also that

X+ XAl = )+ XA, (A18)

is invariant under changes of Maxwell gauge.16

APPENDIX B: STATIONARY SOLUTIONS
IN EINSTEIN-MAXWELL THEORY AT
NULL INFINITY

In this appendix, we show that for any stationary solution
(Gap- A,) of Einstein-Maxwell theory, which is asymptoti-
cally flat, the radiative field £, and the News tensor N,
vanish at .#. To do so, we will first show that any nonzero
timelike Killing vector field 7 in the unphysical spacetime
is necessarily a nonzero supertranslation on .¢ .7 Then, we
show that this implies that £, = 0 on .# for any solution of
Maxwell equation which is stationary, ie., £F,, =0.
Finally, using the proof by Geroch [7], this also implies
that N ab — 0.

On .7, a supertranslation vector field takes the form
X4 = fn® with £, f = 0. For our purposes we will also need
the “subleading” form of this vector field away from .7;
see, for instance, Eq. (21) of Ref. [22] and Eq. (93) of
Ref. [5]. For completeness, we collect the proof in the
following lemma.

Lemma 1.—Any vector field X¢ in M such that X“| , is a
BMS supertranslation is of the form

X = fn® — QVef + 0(Q?) (BI1)
for some f smooth in M and £, f= 0.

Proof.—Since X“| , is a BMS supertranslation, we have
X*= fn“for some f on .7 satisfying £, f = 0. Now extend
the function f arbitrarily but smoothly into M, and thus X
takes the form

X = fn* 4+ QZ° (B2)
for some smooth Z“. Then, using Egs. (1.3) and (A10),
ax) = n,Z. Using the Bondi condition [Eq. (1.2)],
Eq. (A4) for such a vector field becomes

v(afnb) + n(aZb) = ncZCgab' (B3)

"®In the principal bundle picture, where & = (X9, 1) is a vector
field on the bundle, the Lie algebra of such vector fields also has
the structure of a semidirect sum of diffeomorphisms with the Lie
ideal of Maxwell gauge transformations [9]. The invariant in
Eq. (A18) is then the vertical part of £ on the bundle.

"It can further be shown that the timelike Killing field is a
BMS translation (see Lemma 1.4 of Ref. [36] and also p. 54 of
Ref. [7]), but we will not need this stronger result.

A

Taking the trace on both sides gives n,Z% =0 and,
consequently, Z, = =V, f. m

Note that we extended the function f away from .# in an
arbitrary manner. It is easy to check from Eq. (B1) that the
freedom in this extension affects only the O(Q?) part of the
vector field. One can choose to fix the O(Q?) part by
choosing some convenient choice of conformal factor and
coordinates (such as Bondi coordinates) away from .#, but
we will not need to do so.

Now we turn to timelike Killing fields of the physical
spacetime (M, §,,) and show that they correspond to
nontrivial supertranslations on null infinity.

Lemma 2.—Let 7 be a nonzero timelike Killing vector
field in the physical spacetime (M, §,,). Then t* = ¥ is a
nonzero supertranslation on .#.

Proof.-—Since £;g,, = 0, from Eq. (A1) it follows that
t* = 1*isaBMS vector field on .#. Since #“ is timelike in the
physical spacetime, we have §,,7*#* < 0. In the unphysical
spacetime away from null infinity (i.e., on M — .%), this
gives Q2g,,t°t" < 0.Now Q >0on M — .7, Q= 0, and
gup and 1 extend smoothly to ., and thus

Gapt®t? <0 (B4)
in M, with the equality possibly holding on .#. Writing
1* = Bn® + Y [from Eq. (A11)], we get that ¢, Y°Y? <0
on .Z. Since ¢, is a Riemannian metric on the cross sections
of .# and Y“ is tangent to these cross sections, this means
Y% = 0. Thus, the “Lorentz part” of #* vanishes and #* is a
BMS supertranslation.

Next, we show that this supertranslation is necessarily
nonzero on .7 (see also [36]). We will proceed by assuming
that “ = 0 and show that this implies that 7 vanishes
everywhere, contradicting the assumption that it is a non-
zero Killing vector field. Since #“ is a supertranslation on
&, if t* £ 0, then from Lemma 1 we have that

14 = QWe, (B3)
for some smooth W¢. Since 7 is a Killing vector field in the
physical spacetime (M, §,), t* is a conformal Killing field
in the unphysical spacetime (M, g,;,) with

£tgab = 2a(t)gab’ Ay = Q_lnata' (B6)

Any conformal Killing field is completely determined

by its conformal Killing data specified at any point
p €M [37]:

(ta7v[ath]9a(l‘)vvaa(t))|p' (B7)

Furthermore, if the conformal Killing data vanish at any

point p, then the conformal Killing field 7* vanishes

everywhere. We now show that the conformal Killing data

of Eq. (B5) vanish on .. It is easy to see by a direct
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computation that #, V,t,, and a; vanish on .7.
Computing the remaining last piece of the conformal
Killing data, we have
vaa(l) = na(anb)‘ (Bg)
To show that this vanishes at .#, we evaluate £,g,, =
20(;) 945 With Eq. (BS) to get
4Qn Wy + 292V<aWb) =2Qn.W¢q,,. (B9)
Note that this holds in a neighborhood of .# and not just
on .#, as a consequence of 7 being Killing in the
physical spacetime. Multiplying the above equation by
Q! taking the trace, and then taking the limit to ., we
get n,W*=0, and so V,q; = 0. Hence, all the con-
formal Killing data for the conformal Killing field of the
form Eq. (B5) vanish on ., and thus t* = 0 everywhere
in M. This implies that 7 =0 in M, which contradicts
the assumption that 7 is a nonzero Killing field in the
physical spacetime. Thus, any nonzero timelike Killing
vector field in the physical spacetime is necessarily a
nonzero supertranslation on .#. L]

Finally, we show that, for a stationary solution of
Einstein-Maxwell theory, the radiative fields N,, and &,
vanish on null infini'[y.18

Theorem 1.—Let (§,,,A,) be a stationary solution of
Einstein-Maxwell theory; that is, there exists a timelike
vector field 7 in the physical spacetime M such that

£:0ay =0 and £;F,, =0. (B10)
Then, the radiative fields vanish on #: N, =0 and
£, =0.

Proof.—Consider first the stationary electromagnetic
field £, for which in the unphysical spacetime we have
£,F,, = 0, where as before t* = . From Lemmas 1 and 2,
we have that

1= fn? = QVef + 0(Q?) (B11)

for some f # 0 and £,f = 0. Evaluating the pullback of

£,F ,n” = 0to.# and using £,n* = 0and £,f = 0 (as t* is

a supertranslation) gives
£,(f€,)2 0. (B12)

Similarly, evaluating the pullback of £,F,, = 0 to .#, we
have

D1l fE4) 2 0. (B13)
Note that only the derivative along the cross sections &,
occurs in this equation due to Eq. (B12) and the Bondi

"®Note that for this result to hold it is essential that the space of
generators of . is topologically S2.

condition [Eq. (1.2)]. Next, evaluating [“n”£,F,, = 0, we
have

0= 1902 £,F yp = £,(F y1°n?) — F o £,190
= fE,(Fapl®n®) + Fop(n£,1f + V°f)n®
= fqab@agb + qabga@bf

= 4" D.(fE). (B14)
where the first line uses £,n% = 0 for a supertranslation,
the second line is a straightforward computation using
Eq. (B11), and the third line uses Maxwell equation (2.29).
From Egs. (B12)-(B14), it follows that f&, is a covector
field on the space of generators of .# with vanishing curl
and divergence. Since the space of generators of .# is
topologically S? and f # 0, this implies that £, = 0 for any
stationary solution.

Now, from Eq. (3.12), we have that T,,n“n” = - £,£9,
and thus for any stationary solution T',,nn® = 0. With this
condition and the Einstein equation, it can be shown that
N, = 0 for any stationary spacetime (see, pp. 53-54 of
Ref. [7]). Thus, for any stationary solution of Einstein-
Maxwell equations, we have N, = 0= £, as we wished
to show. [

APPENDIX C: COMPUTATION OF Qg
IN SOME EXAMPLES

In this appendix, we give two examples of Maxwell
contribution to the Wald-Zoupas charge Qry[Y;S] of an
asymptotic Lorentz symmetry Y¢. This contribution van-
ishes for the first example of Kerr-Newman spacetimes,
while for the second example of a spinning charged sphere
with variable angular velocity it is nonzero.

1. Kerr-Newman spacetime

The line element of the (physical) Kerr-Newman metric
in Boyer-Lindquist coordinates (z, r, 8, ¢) is given by (see
Appendix D.1 of Ref. [38])

ds? — — <1 _2Mr- Q2> e 2asin’0(2Mr — Q%) dtdgp
z z
—|—§dr2 +2d6* + ((r* +a?)? - a%in@A)%d(/ﬁz,
(C1)
with
Y:=r? +a*cos’d and A:=r>-2Mr+a*+ Q% (C2)

Since we wish consider the limit to .#, it is more convenient
to introduce the outgoing null coordinates x* = (u, r, 6, @),
with u defined by
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r* + a?

du = dt — dr. (C3)

The (physical) Kinnersley tetrad—normalized such that

l"ﬁﬂ =—1 and n%”ﬁiﬂ = 1—in these coordinates is

P9, = 0,450 (C4a)
r?+ a? A a
o, = 0y — =<0, +==0y, C4b
PO =Ty T s (Cdb)
iasin@
g, — — 4S5
" V2(r +iacos )
1 i
+ Og+—0,|. (Céc
ﬁ(r—kiacos&)( ¢ sing ¢> (Cde)

Maxwell vector potential in these null coordinates is

rr + a2
A

dr — asin2€d¢> . (C5)

which satisfies the Lorenz gauge condition g’“’VAﬂAD =0.

To take the limit to .#, we use the conformal factor Q =
r~! and use Q as the new coordinate instead of r. It can be
verified that the unphysical metric g, = Q? Gy 1 smooth in
the limit to .# (that is, as Q — 0 with fixed u, 6, ¢). The
unphysical tetrad (I#, n*, m*, m*), defined by

19, = Q721"9, = g + 0(Q), (C6a)

o, = itd, = 9, + 0(Q), (C6b)

mto), = Q 't 9, = \% (ag +ﬁa¢> +0(Q), (Céc)
is also smooth at .#. The unphysical n* defined above
coincides with the normal n® = g*’V,Q at .# to leading
order, but not at O(2), as this n* does not satisfy the Bondi
condition.

The vector potential A, = A , In Eq. (C5) is not smooth at
&, since A, diverges as Q — 0. However, instead,
consider the vector potential A, related to Eq. (C5) by a
gauge transformation:

A=A, =V, (0Q). (C7)
This new vector potential Aj, is no longer in the Lorenz
gauge (in the physical spacetime) but is smooth at ., and it
also satisfies the outgoing radiation gauge condition
n”A,’l = 0. Henceforth, we use this smooth vector potential
on .# and drop the “prime” from the notation.

On .Z, the Lorentz vector fields Y“ are spanned by
the tetrads m* and m”. A direct computation using

Egs. (C5)—(C7) gives m"A, =0 and, consequently,
Y?A, =0 for all Lorentz vector fields. Thus, in the
Kerr-Newman spacetime, Maxwell contribution to the
Lorentz charges vanishes; i.e., Qpy[Y; S] = 0. In particular,
the angular momentum of the Kerr-Newman black hole
computed using the Wald-Zoupas charge (with Y = 0,)
gets no additional contribution from Qg and is thus given
by the standard result (see, for example, [39]).]9

2. Spinning charged sphere in Minkowski spacetime

The above computation of the Lorentz charges in Kerr-
Newman spacetimes does not mean that the electromag-
netic contribution to the Wald-Zoupas charge for angular
momentum will always vanish. An explicit example for
which Qg is nonzero is considered in Ref. [3]: a thin
spherical shell in Minkowski spacetime, with radius R and
charge Q, spinning on a central axis with a time-dependent
angular velocity w(#). The time-dependent dipole moment
of the spherical shell is given by d(r) =1QR*w(1).
Furthermore, Ref. [3] also assumes that the characteristic
timescale of variation of the magnetic dipole moment is
much greater that the light-travel time 7 = R across (half)
the sphere, that is,

2a,’(t) < @

ot T (C8)

This is clearly not a solution to the source-free Maxwell
equations due to the presence of a source current. However,
given that the source current is compact, our analysis in the
main body of the paper still applies. We do not attempt to
solve the full Einstein-Maxwell equations for this system.
Thus, Maxwell field in this section should be thought of as
a perturbation generated by the charged sphere on the
background Minkowski spacetime.

The relevant null tetrads at .# in Minkowski spacetime
can be constructed in the same manner as in the Kerr-
Newman spacetime by taking M =a = Q =0. To get a
smooth vector potential at ., one again needs to perform a
gauge transformation as in Eq. (C7) which takes us out of
the Lorenz gauge used in Ref. [3]. Then, from the explicit
computations in Ref. [3], it can be shown that

1

Re[p] = -0,

5 méA, = 10 () sin,

V2

where u =t —r is the retarded time coordinate and we
have taken the rotation axis for the sphere to be along the
z axis. With the assumption Eq. (C8), the function T(©) (1) is
given by

(C9)

®To calculate the Wald-Zoupas charge using Eq. (4.26), one
needs to be careful to use a tetrad where the n satisfies the Bondi
condition Egs. (1.2) and (1.3) and the corresponding /¢, and not
the tetrad in Eq. (C6).
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0 1,0 1 P
©0) (1) := — i A
o) c’)ud(uH—lOT o’ d(u)+2SOT o’ du) -,

(C10)

where - - - denotes higher-order terms.

Now, a rotational Killing vector field along the z axis is
given by R{,) = - Lsin@(m® — im®). Thus, using Eqs. (C9)
and (C10), we can compute Maxwell contribution to the

charge of R‘(lz) [Eq. (4.30)]—the angular momentum in the
z direction—on a u = constant cross section S, to be

V2

=Z0or0
3 or(u).

Qem(R(2); S.] (C11)
Thus, we expect that generic nonstationary Maxwell
fields will contribute a nonvanishing Qg to the Wald-

Zoupas charge for asymptotic Lorentz symmetries.
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