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In the first paper in this series, we introduced “persistent gravitational wave observables” as a framework
for generalizing the gravitational wave memory effect. These observables are nonlocal in time and nonzero
in the presence of gravitational radiation. We defined three specific examples of persistent observables:
a generalization of geodesic deviation that allowed for arbitrary acceleration, a holonomy observable
involving a closed curve, and an observable that can be measured using a spinning test particle. For
linearized plane waves, we showed that our observables could be determined just from one, two, and three
time integrals of the Riemann tensor along a central worldline, when the observers follow geodesics. In this
paper, we compute these three persistent observables in nonlinear plane wave spacetimes, and we find that
the fully nonlinear observables contain effects that differ qualitatively from the effects present in the
observables at linear order. Many parts of these observables can be determined from two functions, the
transverse Jacobi propagators and their derivatives (for geodesic observers). These functions, at linear
order in the spacetime curvature, reduce to the one, two, and three time integrals of the Riemann tensor

mentioned above.

DOI: 10.1103/PhysRevD.101.104033

I. INTRODUCTION

In a previous paper [1], we introduced a class of
“persistent gravitational wave observables” that general-
ize gravitational wave memory effects. We included three
specific examples of persistent observables: a generali-
zation of geodesic deviation to allow for accelerated
curves, which we called curve deviation; an observable
involving the solution of a particular differential equation
along a closed curve, which was a type of holonomy; and a
collection of observables involving the separation of a
spinning test particle from an observer, as well as the
particle’s momentum and intrinsic spin. We then explicitly
computed these three observables for perturbations off of
flat spacetime. Assuming that these perturbations repre-
sented gravitational plane waves, we found that our
observables (assuming unaccelerated observers) could
be written in terms of just one, two, and three time
integrals of the Riemann tensor along a central worldline.
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Gravitational wave memory effects are a special class of
persistent observables. In [1], we defined memory effects to
be persistent observables that are associated with boundary
symmetries and conservation laws at spacetime boundaries.
The boundary can be future null infinity (as in the case
of the initial investigations of the memory effect [2,3]; see
also the recent review [4] and references therein for later
developments) or the event horizon of a black hole [5-7].
This paper will not focus on spacetime boundaries and
will instead consider persistent observables in spacetime
interiors.

In this paper, we will consider the persistent observables
defined in [1] in the context of exact, nonlinear plane wave
spacetimes. While we explored our observables in [1] to
linear order in the curvature of the spacetime near the
observers, the nonlinear properties of these observables are
less well understood. Exact plane wave spacetimes provide
a simple context in which to study these nonlinear proper-
ties, as demonstrated in other work discussing persistent
observables in the literature (see, for example, [8—11]).

The effects we will compute in this paper will be
nonlinear in the amplitude of the gravitational waves.
Gravitational waves produced by astrophysical sources,
however, will be weak when the waves have reached any

© 2020 American Physical Society
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detector, so effects that are nonlinear in the amplitude of the
gravitational wave are not expected to be detectable by
current detectors.' Nevertheless, these effects are qualita-
tively different from linear effects, and therefore interesting
in their own right. There may also be regimes in which they
are detectable by future detectors.

A. Simplified model of geodesic deviation

To illustrate the types of distinctive effects that can arise
in persistent observables beyond the linearized approxi-
mation, we now discuss a simplified model of geodesic
deviation. Consider the following differential equation for a
function &(u):

&(u) = ef (u)é(u), (1.1)
where € < 1, and dots denote derivatives with respect to u.
This is a scalar version of the geodesic deviation equation,
where £ is the separation between two observers and ef is
the equivalent of the gravitational wave strain amplitude.
Consider the analogue of a burst of gravitational waves that
occurs between u = 0 and u = U, where f(u) = 0 for all
u < 0and u > U. For simplicity, set f(«) = 0 for u < 0 [in
general, this will imply that f(u) # 0 for u > U]. The
solution for &(u) at some time u > 0 is then given by

&(u) = a(u)é(0) + b(u)¢(0), (1.2)

where

Therefore, to second order in e,

alu) =1+ ef(w) + 51 @)
— €2 A“ du/ A”/ du//[f(u//)]z + 0(63). (1'4)

The counterpart of the first-order memory in this case is
given by the term in (1.4) linear in e [that is, f(u) after the
burst]. This function is at most linear in u, since f (u) is zero
at late times. However, even if this first-order memory is
zero, that is, if f(u) =0 for u > U, the second-order
memory is nonzero and would, in general, grow linearly
with time:

a(u>U)=Cu+D, (1.5)

'Note that the nonlinear memory effect [3] is not nonlinear in
the amplitude of the gravitational wave at the detector; rather, it
arises from a nonlinearity in Einstein’s equations in asymptoti-
cally flat spacetimes. It is much more likely to be detected by
current and future gravitational wave detectors [12—15].

where

cz—&lfdwvw%2+0@%¢o, (1.6a)

p=¢ /°° du’ /°° du"[F (") + O(¢?) £0.  (1.6b)
0 u

Since the coefficient C is nonzero, observers in this
simplified model would have a relative velocity after the
burst: at second order all nontrivial solutions must have
a(u) # 0 after the burst. At first order, there is no such
restriction on the final relative velocity, so first- and second-
order calculations yield qualitatively different results.
While Eq. (1.1) is only a simplified model of geodesic
deviation, the explicit discussion given in Sec. IIC is
qualitatively similar. For example, nonlinear plane wave
spacetimes always have a nonzero relative velocity after a
burst, often called “velocity memory” [8,11,16].

Another motivation for considering nonlinear plane
wave spacetimes is as follows. Our persistent observables
are “degenerate” in the linearized, plane wave limit, in the
sense that they can be written in terms of only three
functions (one, two, and three time integrals of the
Riemann tensor), in the case where the observers are
unaccelerated [1], even though the form of the observables
allows them to have more nonzero, independent compo-
nents than these three functions possess. This implies that
while our observables can encode a wide range of quali-
tatively different physical effects, the effects are all deter-
mined by the same, limited set of properties of the
gravitational wave. One might expect that at higher order
these degeneracies are broken. However, we instead find in
this paper that these degeneracies (or linear relationships
between observables) are replaced with nonlinear relation-
ships between observables.

An example of such a nonlinear relationship occurs in
the simplified model (1.1): it can be shown from Eq. (1.1)
that the Wronskian

W = a(u)b(u) — a(u)b(u) (1.7)

must be conserved, and by Eq. (1.3), we have W = 1. This

holds to all orders in €; however, one can use Eq. (1.3) to
show that

a(u) =1 -|—/0u du’a(u'),
b(u) =u—+ O(e), (1.8)

from which Eq. (1.7) becomes

z;(u>-1+/"duf[a(u')—a(u)] = 0(&). (1.9)

0
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The quantity (1.9) is an example of a combination of
observables that vanishes at first order in the curvature
(corresponding to a degeneracy), but is nonzero at higher
orders. This example, moreover, shows that some relation-
ships that hold at first order are approximations to fully
nonlinear relationships between observables. Much of this
paper focuses upon finding and understanding these non-
linear relationships.

B. Results

In this paper, we consider the three persistent gravita-
tional wave observables of [1] in plane wave spacetimes:

the curve deviation, holonomy, and spinning test particle
observables. The values of these three observables in plane
wave spacetimes are given in Eq. (3.11) for curve deviation,
Eq. (3.34) for the spinning test particle observables, and
Appendix A for the holonomy observable. These expres-
sions rely upon a fair amount of notation defined through-
out; for an overview, see Table I.

A key result of this paper is that the curve deviation and
holonomy observables, when considered for geodesic
curves, can be determined exactly in plane wave space-
times, to all orders in initial separation and relative velocity.
In particular, they can be written in terms of two sets of

TABLE I. A table of the symbols that occur frequently in the body of this paper.

Defining
Symbol Explanation equation
u, v, x' Brinkmann coordinates of a plane wave 2.1)
A Profile of the gravitational plane wave 2.1), (2.6)
‘, Wave vector of the plane wave (2.3)
€ab Volume form for surfaces of constant u and v 2.4)
g, One of a four-parameter family of Killing vectors in plane wave spacetimes (2.18)
7,7 Curves in plane wave spacetimes parametrized by 7 o
& é:“ Separation and relative velocity of y and 7, respectively e
yg“'a Parallel propagator along y, or unique geodesic between x and x’ (2.24)
if y is unspecified
, I(a’a, , H“’a Jacobi propagator along y, or unique geodesic between x and x’ (2.25)
if y is unspecified
K'i(u' u), H (W, u) Transverse Jacobi propagators (in the x’ directions) (2.12)
X Conserved quantity %y, (2.8)
o . Coefficients of an expansion of Q.. at nth order in Aij(u) (2.32),
for example
€, a, ¢, n Parameters of an example of a wave profile (2.37)
L€, e Plus and cross polarization matrices for an example of a wave profile (2.38)
xkk,[Q‘“...} Coefficients in an expansion of Q.. at kth order in x and /th order in x (3.1)
AgaC’D Curve deviation observable (3.3)
AKY,, AHY,, LY ., N9}, M?,, Coefficients in the expansion of Aég‘:’D (3.4)

x Set of four parameters (i, x5, x3, %4) that defines a method of linear and (3.13), (3.14)
angular momentum transport

IX(“ Tensor constructed from R“;., that is parametrized by x (3.14)

bed

x 0 12 Some quantity that is defined with respect to angular momentum

0", 0", 0 transport using a general x, x = (0,0,0,0), and »x = (1/2,0,0,0), respectively

A, B, etc. Indices on the linear and angular momentum bundle [1,21] e

XA Combined linear and angular momentum vector (%) (3.16)

A Al A A, Blocks of a matrix A4, that acts on X4 (3.18)

pp <7 PJ JP 77

XA - Holonomy of linear and angular momentum transport (3.17)

Alp(y.7im1)

é Ay 737 The above holonomy, minus the identity (3.19)

Ay (y.7571), Q% (r,7:71) Holonomy and holonomy minus identity for parallel transport (3.22)

Ay (y,7:71) “Inhomogeneous generalized holonomy” used for calculating holonomy (3.21)
for x = (0,0,0,0)

AA s(r;71)s AA (7. 7:71) Quantities which occur in the calculation of the holonomy (3.26)
for » = (1/2,0,0,0)

T, we, Coefficients that occur in a perturbative expansion of the spinning (3.33)

test particle observables
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functions and their first derivatives, which are analogous to
the functions a(u) and b(u) of Eq. (1.2), as well as their
first derivatives. These functions are the transverse com-
ponents of the Jacobi propagators (defined in Sec. II B
below), which have been extensively studied in these
spacetimes [11,17,18]. The information needed to construct
these transverse Jacobi propagators can be obtained by
measuring the displacement memory (leading and sublead-
ing [1]) and its time derivative, the relative velocity
observable, in these spacetimes. It is known that other
quantities in plane wave spacetimes, such as solutions to
the geodesic equation, can be written in terms of these
transverse Jacobi propagators as well [17]. The transverse
Jacobi propagators and their derivatives form a set of three
(and not four) independent matrix functions, because of a
constraint analogous to Eq. (1.7).

Some of the observables of [1] we compute perturba-
tively instead of exactly. The first of these are our curve
deviation and holonomy observables for nongeodesic
curves. We find that these observables can be expressed
as time integrals involving the transverse Jacobi propaga-
tors, but cannot be expressed locally in time in terms of
these propagators and their time derivatives, as they can be
for geodesic curves. Roughly, this is because these observ-
ables can be written as integrals involving the product of the
transverse Jacobi propagators and a given, but arbitrary
acceleration vector. The other observable we calculate
perturbatively is the persistent observable arising from a
spinning test particle. Here again, it does not seem possible
to express this observable locally in time in terms of
products and derivatives of transverse Jacobi propagators,
likely because this observable is also defined in terms of an
accelerating curve. Observables which cannot be written
locally in time in terms of products and derivatives of
transverse Jacobi propagators measure features of the
gravitational waves that are independent of the leading
and subleading displacement memory and the relative
velocity observables.

C. Summary and conventions

The structure of the paper is as follows. First, in Sec. II,
we review the properties of plane wave spacetimes and the
forms that the “fundamental bitensors” (parallel and Jacobi
propagators) take in these spacetimes (results that were
obtained in [17]). We also introduce the transverse Jacobi
propagators mentioned above, and we provide some
intuition for these functions by computing them in detail
at second order in the curvature and for a particular plane
wave spacetime. In Sec. III, we review the persistent
observables that we introduced in [1] and give explicit
formulas for these observables in plane wave spacetimes.
We present further discussion and our conclusions
in Sec. IV.

Throughout this paper, we use the same conventions as
those in [1]: the conventions for the metric and curvature

tensors given in Wald [19] and the conventions for
bitensors from Poisson’s review article [20] (we use a
slightly different convention for coincidence limits from
what is used in [20]; see Footnote 5). We use lowercase
Latin letters from the beginning of the alphabet (a, b, etc.)
for abstract spacetime tensor indices; for abstract tensor
indices on the linear and angular momentum bundle (see
[1,21]), we use the corresponding uppercase letters (A, B,
etc.). For convenience, we are using a convention for
bitensors where we use the same annotations for indices
as are used on the points at which the indices apply (e.g., a,
b, etc., at the point x and o', &', etc., at the point x"). We will
omit the arguments of bitensors when no ambiguity arises
due to the annotation of indices. For example, g ,(x’, x)
will be abbreviated as ¢¢,, whereas ¢*(x’, x) will only be
abbreviated as ¢ (x'), and o(x’, x) will not be abbreviated at
all. Finally, for brevity, we will occasionally take powers of
order symbols, writing, for example, O(a, b)? as shorthand
for O(a*, a’b, ab®, b*).

II. REVIEW OF PLANE WAVE SPACETIMES

In this section, we review properties of exact, nonlinear
plane wave spacetimes. These are spacetimes with metrics
that can be written, in Brinkmann coordinates (u, v, x!, x2)
[22], as

ds? = —2dudv + Ay (u)x'x/du + dx'dv/s;,

A (21)

where u is the phase of the gravitational wave and A;;(u) is
the wave proﬁle.2 The particular signs and constant factors
that have been chosen in this metric are the same as those in
[17]. Our convention for tensor components in Brinkmann
coordinates is that we use u and v as indices for u and v
components, and we use lowercase Latin letters from the
middle of the alphabet (i, j, etc.) for the remaining two
components, which we will call the transverse components.
When considering generic components in Brinkmann
coordinates, we use lowercase Greek letters from the
middle of the alphabet (i, v, etc.). For these component
indices, we use the Einstein summation convention.
Tensors which are only nonzero in their transverse (i, j,
etc.) components we denote with underlines and refer to as
being transverse.

We now list several basic features of these spacetimes
which we will need in this paper (for a review, see [24]).
The first is the existence of a null vector field ¢ which is
covariantly constant:

V£ =0. (2.2)

2 Another coordinate system, Rosen coordinates [23], is often
used in these spacetimes. This coordinate system is the nonlinear
generalization of transverse traceless gauge for linearized gravity;
see, for example, [11] for more details.
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In terms of Brinkmann coordinates, this vector field is
given by

£ = —(9,)" (2.3)

(note that our convention for # is that of [24], which differs
from that of [17] by a sign). We also define an antisym-
metric tensor

€ab = 2(dx1)[u (dxz)b] .

(2.4)

This tensor is transverse and is a volume form on surfaces
of constant u# and v. Finally, the Riemann tensor in plane
wave spacetimes is given by

Rapea = 4f[aAb] [cfd]’ (25)

where

Agy = Ayj(u)(dx'),(dx) . (2.6)
It then follows from A,,#” = 0 that the only constraint
from Einstein’s equations is that

Ty = —8TAC Lot (2.7)

Therefore, in vacuum, A%, = 0.

A. Geodesics and symmetries

We now discuss the solution of the geodesic and Killing
equations in plane wave spacetimes. Consider a geodesic y,
affinely parametrized by = and with tangent vector y“. At a
given value of 7, we denote the coordinates of y(z) by u, v,
and x'(7), and at 7, we denote the coordinates by u/, 1/,
and x'(7).}

We define the parameter

X=T7"Ca (2.8)
which is conserved along the geodesic y by Eq. (2.2). This
implies that

u=u+y(-1). (2.9)
Geodesics can be classified by whether y vanishes. For the

case y = 0, the geodesic lies entirely within a surface of
constant u, and one can show that

(2.10)

therefore, the solutions of the geodesic equation are linear
functions of 7. For the case y # 0, the geodesic equation for
x!(z) is given by

*Note that x’ (7') lacks a prime on the index ; this notation will
be justified in Sec. II B.

ii(z) = P AT (u)x (7). (2.11)
which has nontrivial solutions.

The solutions to Eq. (2.11) can be written in terms of two
functions of u and «’, K';(u', u) and H'; (', u), that satisfy
the differential equations

2K (' u) = A () KR (' u),

(2.12a)

Ol =) H'; (' )] = (u = u) A" () H ; (u' w),

(2.12b)

with the boundary conditions
K'i(u,u) = H';(u,u) =5, (2.13a)
oK' (' u)|,_, = 0uH (W, u)|,_, =0 (2.13b)

(see, for example, [17]). We call these functions the
transverse Jacobi propagators, since they are related to
the transverse components of certain bitensors called Jacobi
propagators (as we will discuss in Sec. II B). When we say
that something in plane wave spacetimes is known
“exactly,” we mean that it can be written in terms of
K';(u',u) and H' ;(u', u). The solution to Eq. (2.11) is then

x{(7) =K' (u u)x! (7) + (7 —7)H'; (' u)i/ (z),  (2.14)

where on the right-hand side «’ and u are determined from 7
and 7 by Eq. (2.9).
Next, to solve for v when y # 0, for convenience we
assume that y is timelike. Note that
w = =206 + x'(9;)" (2.15)
is a proper homothety, satisfying £,,9,, = 29, (see, for
example, [25]). As a consequence of this [26], it follows

that 7%y, + 7 is conserved along y, so one can write v’ in
terms of the coordinate v of y(7):

A 1 (1 / i v /
v =0 = ()x() - H(0)ki(r) + (7~ 7).

” (2.16)

In the above equation, one could use the values of x’(7’) and
x!(7') that were determined in Eq. (2.14) in order to write
everything in terms of 7, 7/, transverse Jacobi propagators,
and initial data. The normalization y“y, = —1 implies that

= £0.)° + H(2)0)"
— S U @) + A (@ @),

” (2.17)

which is consistent with Eq. (2.16).

104033-5



FLANAGAN, GRANT, HARTE, and NICHOLS

PHYS. REV. D 101, 104033 (2020)

The quantities K';(u',u) and H';(u', u) are also useful
for finding Killing vectors in plane wave spacetimes [17].
Plane wave spacetimes possess a four-parameter family of
Killing vector fields in addition to ¢ [24]. We denote a
member of this family by

B = —x'E;(u)¢* +E'(u)(9))", (2.18)
where the function Z'(u) is any solution to
El(u) = A';(w)E (u). (2.19)

The value of this function at any initial phase 1, determines
its values at any other u:
El(u) = K';(u, ug)Z/

'(ug) + (u = uo)H';(u, o)/ (up).

(2.20)

Since Z'(up) and (1) are four numbers, the space of
Killing vectors of the form (2.18) is four-dimensional.

Finally, we list a few useful properties of the tran-
sverse Jacobi propagators K';(u',u) and H';(u', u): first,
Eq. (2.12) implies (see, for example [17])

K (u' u)0y[(u' — w)H ; (u' u)]

— (W = uwH (' u)0, K (W u) =6 (2.21)
This relationship is an analogue of Eq. (1.7) and shows
that there are only three independent quantities among
K' (' u), H (', u), 0,K';(u',u), and ,H';(u’, u). One
can also show the following relationships hold when these
two propagators’ arguments are switched [18]:

ﬂij( u/’ I/t)

=H;'(u.u), (2.22a)

oK' (' u) = —0,K; (u, ). (2.22b)

Finally, using the fact that derivatives of the transverse
Jacobi propagators with respect to their second argument
also must satisfy Eq. (2.12), one has that [18]

8uKij(u/’ Lt) =

—(u' —w)H' (', u) A5(u),  (2.23a)

Oul(W —u)H'; (i u)) = —K';(u', u). (2.23b)

These identities are quite useful for deriving the results in
Sec. III.

*For arbitrary solutions K’ (u', u) and H';(u', u) to Egs. (2.12)
(that is, ignoring boundary conditions), we note that the quantity
in Eq. (2.21) is independent of u and «’. One can think of
this quantity as a conserved symplectic form on the space of
solutions to Egs. (2.12) [27], and Egs. (2.12) form a Hamiltonian
system [28].

B. Parallel and Jacobi propagators

In this section, we provide explicit expressions for the
parallel and Jacobi propagators, which are the bitensors that
are needed for calculating the persistent observables of [1].
These bitensors are most naturally expressed in terms of the
transverse Jacobi propagators defined in Sec. I A above.

We first review the definitions of the parallel and Jacobi
propagators in arbitrary spacetimes. The parallel and Jacobi
propagators are one-forms at x =y(zr) and vectors at
x" = y(7'), and are defined to be solutions of the following
differential equations along y: the parallel propagator , g“'a
obeys

D
@yg“ =0 (2.24)
(where D/d7’ = 79V,,), whereas the Jacobi propagators
J,K“/a and yH“'a obey
D2 ’ U /
@;,Ka P —R? /b/dl}/c }/d Kb @ (2253)

D2

(7 —0),H | =

dr —(¢' = )R 1y a7 7 Hb,

(2.25b)

Note that we are using the notation described in the
Introduction, where indices at x are denoted by a, b,
etc., whereas at x’ they are denoted by a', b/, etc. The
following boundary conditions are imposed for these
differential equations:5

K]

[Vgalb]r’—»‘r ~lr ble = — [}’Ha/ ]

blt >t

g 5ab’
(2.26a)

D . D ‘

These bitensors yg“/a, “’a, and H“ , are defined for a
given curve y which connects the pomts x and x’. In the case
where two points x and x’ lie within a convex normal
neighborhood (that is, are close enough that there is a
unique geodesic connecting them), the parallel and Jacobi
propagators that are defined in terms of this unique
geodesic are denoted simply by ¢*,, K% ,, and H? ,. For
most of this paper (except for in Appendix B) we will
restrict attention to geodesic curves y. However, even in this

These boundary conditions are given in the language of
coincidence limits (see [20]; note that our notation for coinci-
dence limits is more explicit than this reference, as we use
subscripts to indicate the limit being taken). We use the standard
convention (for example, in [20]) where indices at the point
whose limit is being taken (x" in this case) are treated as if they
were at the limiting point (x) for expressions that occur outside of
the coincidence limit.
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case, it will sometimes be necessary to specify this curve y
in the propagators J,g“/u, /K “/a, and YH“/a. This is because y
may not be the only geodesic between x and x’, when 7’ — ¢
is sufficiently large, due to the occurrence of caustics (see
[17] for a discussion of caustics in these spacetimes). To
allow for the existence of caustics, we specify the curve y
explicitly when it is needed.

In plane wave spacetimes, the parallel and Jacobi
propagators can be given in exact form when the curve
y along which they are computed is a geodesic, as shown
in [17]. This can be done by finding a convenient basis
(e,)" at y(z) and constructing a basis (e,)? at y(7'), either
using parallel transport,

D
T (el)? =0 (2.27)

(for the parallel propagator), or using the Jacobi equation,

D2
@ (ea)a - _Racbdj/c}"d(ea)b (228)
(for the Jacobi propagators). The parallel and Jacobi
propagators can then be constructed from such a basis
and its corresponding dual basis. This method is similar to
that of [29], which was used to determine the parallel
propagator in the Kerr spacetime. Two of the basis elements
are given by y* and /¢, which automatically satisfy
Eqgs. (2.27) and (2.28). For brevity, we do not give the
full details of this calculation.

Before we give the results of this calculation, we note
that one result is that

/9" = (9))"(dv);, (2.29)

by inspection of the connection coefficients of the metric
(2.1). That is, the “transverse parallel propagator” is trivial.
To simplify expressions in this paper, we will no longer
annotate the transverse indices i, j, etc., with primes in our
expressions in Brinkmann coordinates, since distinguishing
between primed and unprimed components is not necessary
in view of Eq. (2.29). However, since these indices no
longer indicate the point at which the bitensor is being
evaluated, we will explicitly indicate the dependence on
this point, which for many of the bitensors will be a
dependence on proper time or u. For example, instead of
writing yK"/l., we will write ],Kij(r’,r), and yKi/u will be
written as ,K' (7). This notation is consistent with the fact
that we referred to the x' coordinates of y(z) and y(7’) by
x!(7) and x'(7’), respectively, in Sec. IT A.

The values of the parallel and Jacobi propagators are
different based on whether the parameter y is zero or nonzero.
When y = 0 and spacetime is flat, one can show that

!

v = VKala = VHala = (aﬂ)a/(dxﬂ)m (2.30)

where, as mentioned above, x* refers to the uth Brinkmann
coordinate. When y # 0 and y is timelike, the nonzero
components of the parallel and Jacobi propagators are [17]

!

J’gu u = YKM/u = }’Hu/u = 1’ (2318')
9", =K', =,H" =1, (2.31b)
/9 (7.1) =8, (2.31¢)
n=t () = xi(zr
ygu(f)—x[ (7) =¥ (7)], (2.31d)
/9" ) = 2 () = (), 231¢)
/9" = 2)1(2 & () = & (7)) [f:(7') = ()]
+ [ A; ()2 (7)o (7) = Ay (w)x (2)2 ()],
(2.31f)
},Kij(r’, 7)=K';(u', u), (2.31g)
K (T) :}( [X'(7) — K'; (', u) ¥/ (2)], (2.31h)
/ —l)'c-*r’ T, u) = x;(7 i
}’K [(T) _)([ j( )Kz( ’ ) I( )]v (231)
y L e N L vif
}’K u ﬁ{x (T ))C,-(T) +x (T)xi(T)

- 2561‘(7’)Kij(”/» )’ (7)
+ A (W)X (7)) (7)) = Ay (u)x' (1) (7)]},

(2.31j)

yHij(T/’ 1) =H';(u,u), (2.31k)
H(©) = [H) - H 00 (0, 2310
}’Hl),i(1> = }( [jcj(fl)ﬂji(”/, u) — x;(7)], (2.31m)

Y, = 5 ) + ()

2, () H ()Y ()
+ A ()x (7)) () = Ay () (1) (7)]}-
(2.31n)

As in Eq. (2.14), v’ and u on the right-hand sides of these
equations are functions of 7’ and 7 by Eq. (2.9). Note also that
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we have written the expressions in Egs. (2.31) in terms of
x!(7') and x(7'), which can be expressed in terms of x(7) and
x(z) using Eq. (2.14).

C. Second-order transverse Jacobi propagators

We now compute general expressions for the transverse
Jacobi propagators to second order in the curvature. These
results have been previously computed in [11]. In the
context of an arbitrary plane wave spacetime, one can write
down perturbative expansions of the transverse Jacobi
propagators in powers of A’ (u):

K' (' u) = Z(”>K’](u u), (2.32a)
n=0
H(u' ) = WH (' u). (2.32b)

=
(=]

At zeroth order, from the boundary conditions in Eq. (2.31),
the transverse Jacobi propagators are
OK (' u) = OH

u' u) =5 (2.33)

—_

@Kt (' u) = DK W )(UKkj(u’, u)

1 .
/ [ {0, VR 00, ) = S AW, OK G )

(= ) OB () =+ (0 = ) OH () VHE ()

2

Higher-order terms in this expansion are then obtained by
solving Egs. (2.12) and (2.13) iteratively. At first order, the
propagators are given by

(')Kij(u’,u) — /u du///u du///Aij(u///)’

/_
Hl d " du /// i "n 2.34b
(o u) / u / —n A ™). ( )

(2.34a)

We write all higher-order corrections in terms of these first-
order terms and their derivatives, as they provide a
particularly convenient way of representing these results.
Note, however, that there is a certain amount of freedom in
how we write second-order terms, because of the truncation
of the identity (2.21) at first order. As such, there are
different ways of writing the first- and second-order
results in this section, depending upon whether one uses
all four of WK'; (', u), VH';(u',u), 9,VK';(u, u), and
9, VH! j(u',u), or some subset of three. As it results in
relatively compact equations, we use all four.

Continuing to second order, one can show (by an
integration by parts) that

_ / du” / du///{ (u/// )aum Hz ( /// )8um(1>ﬂkj(u”’, u)

N[ =

where the commutator [A, B], is given by

[A,B]*, = A* B¢, — B* A°),. (2.36)
Note that there are two types of terms that appear in
Egs. (2.35) at second order. The first are terms that are
merely squares of the final values of the first-order terms;
these are the first terms in Eqgs. (2.35a) and (2.35b). The
other two terms in both equations are qualitatively different
at second order. They are generically nonzero, even when
the final values of the first-order terms vanish, as they
depend on integrals of the first-order terms throughout the
curved region. These terms are analogous to the fourth term
in the simple model (1.4) of the Introduction.

The different terms at second order are also qualitatively
different in the following sense. Assuming a vacuum plane

(u/// _ u)[A(u///)’ (l)ﬂ(u”’, u)}ij}’

(2.35b)

|

wave, one has that A';(u) is traceless, and so VK’ ;(u', u)
and WH';(u', u) are as well. Thus, we find that the first two
terms in (2.35a) and (2.35b) are pure trace, as they are
squares of 2 x 2 symmetric, trace-free matrices, and that
the third terms are antisymmetric. Because of the existence
of pure trace terms at second order, gravitational waves
possess an effective “breathing” polarization mode [30] at
this order [11]. Note that the third (antisymmetric) term in
Eq. (2.35a) vanishes when the gravitational waves are
linearly polarized; this effect was previously noted in [10].

D. Example of a plane wave spacetime

We now illustrate the general results of Sec. IIC by
specializing to an explicit example of a plane wave
spacetime. We choose A;;(u) to vanish outside of the
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interval [0, 2zn/w], where n is a positive integer, and inside
the interval we choose

A;j(u) = ea?[V'1 — a®sin(ou) . e;;
+ asin(ou + ¢)ye;;]. (2.37)

where

(1 0) <0 1)
€= ’ XQZ *
= 0 -1 1 0

(2.38)

K';(2zn/®,0) = §'; + 2zne[V'1 — a* ' + cos(¢) «€']

This represents a wave pulse that contains n full periods
and is a mixture of + and X polarizations.6 Some special
cases are linear polarization, where ¢ = 0, and circular
polarization, where ¢p = +7/2 and a = 1/+/2. This wave
pulse also satisfies [ duA, ;(u) = 0, which (at first order)
means vanishing relative velocity at late times for observers
that are initially comoving. Gravitational waves at null
infinity are also frequently assumed to satisfy a condition
analogous to [%° duA;;(u) = 0.

Using the explicit wave profile in Eq. (2.37), we find that

- %62{[27111 + 3sin(2¢)a*]6'; — 12sin(¢p)aV' 1 — a’€’;} + O(€?), (2.39a)

H';(27nn/w,0) = §'; — 2esin(¢)a,e’;
_% |:477:2n2 + 9[0086(2¢) - 1] - 155ij —d4x sin(gb)a* /1 — a2n§ij:| + 0(63), (239]3)
0uK'j(u,0)],_pz/ = —@une*{[cos(2¢) — 1]a* + 3}6'; + O(€’), (2.39c¢)

nn

0,H'(u, 0)l\m2n /o = —®€ {\/ l1-d* e +a

zn cos(¢p) — sin(¢) i}

§';—4sin(p)aV1 —d*e;| + O(e%).

2 127zn

The terms in these expressions that are proportional to | e’ j

and e’ ; are the symmetric trace-free pieces, and as

remarked only occur at first order. As expected, Eq. (2.39¢)
implies that the ‘“velocity memory” of this waveform
vanishes at first order. At second order, there are pure
trace pieces proportional to & ; and antisymmetric pieces
proportional to ¢’ ;. As above, the antisymmetric pieces only
occur when the polarization is not linear (¢ # 0). To study
the long-time behavior of these solutions, consider the
regime where n — oo as ¢ — 0, with

1
ne~—-.
el

(2.40)

®This wave profile is periodic, so in the fully nonlinear regime
Floquet theory (see, for example, [31] and references therein) it
applies to Eq. (2.12) and its solutions. Although it is outside the
scope of this paper, it would be interesting to use this fact to
determine regions in the parameter space of €, a, and ¢ where
solutions are bounded and regions in this parameter space where
they are unbounded.

we? |:871'2]’l2 — 9a?[2zsin(2¢)n — cos(2¢p) + 1] + 15 _,

(2.39d)

|
We assume 0 < 7 < 1 so that the series (2.32) converges.
In this regime, the antisymmetric pieces in Egs. (2.39) are
subleading compared to the symmetric pieces.

II1. PERSISTENT OBSERVABLES

In this section, we review the persistent observables
that we discussed in our first paper: the curve deviation,
holonomy, and spinning test particle observables [1]. For
the first two of these observables, we can use the fact that
the geodesic equation has exact solutions in plane wave
spacetimes in terms of the transverse Jacobi propagators, as
reviewed in Sec. II B. This allows us to find expressions
which are nonperturbative in the initial separation and
relative velocity. For observables whose definitions involve
accelerated curves, see Appendix B; the results in these
cases are perturbative in the acceleration.

The spinning test particle observable, however, does not
have such a nonperturbative treatment, and so we use the
results of [1] that are perturbative in separation, specialized
to the class of plane wave spacetimes. We could have used
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FIG. 1. The common setup for all persistent observables
discussed in this paper: two timelike curves y and 7 that have
some initial separation &% at time 7, and final separation & at
time 7;. Intersecting these two curves are two planes of constant u
(the v coordinate in this diagram is suppressed). The x' coor-
dinates of the points y(z), y(71), 7(79), and 7(z; ) are also shown
in this diagram.

the same technique to derive perturbative results for the
first two observables in plane wave spacetimes, but we did
not because we already have analytic, nonperturbative
results.

We now introduce two pieces of notation that are used
extensively in this section. First, as persistent observables
are defined with respect to an interval of proper time, we
denote the initial time by 7, and the final time by 7i;
intermediate times are denoted by 7,, 73, etc. For a curve y,
points y(z,) are denoted by x, x’, x”, etc., where n is the
number of primes, so x = y(7), x' = y(r;), X" = y(1,), etc.
The coordinates of these points are given by u,, v,, and
x!(z,). This convention also holds for curves denoted by y
with some sort of diacritical marking above or below: we
apply the same diacritical mark to the point in question
as well [e.g., X' refers to 7(z;) and has coordinates &, 7,
and ¥'(7,)]. A figure showing the setup common to all

, , , u T 2 ’ o se=mr Lo
Agtp =87 — g% [E° + (71 — 70)&”] _/ de/ des, g (g® ay® — 7).
70 70

persistent observables discussed in this paper is given
in Fig. 1.

Second, many of the results in this section depend not
only upon A,;(u) and the propagators K';(u',u) and
H j(u’ , i), which are only functions of u and ', but also
upon x'(zy) and i(zy). This dependence is at most
polynomial for the observables which we consider. For
some bitensor component Q... in Brinkmann coordinates
(for simplicity we suppress the indices) that depends on
x!(7) and x'(z), we can write

Q.= Zxk)'cm [Qmm]il...ikjl...jmxi] (TO) oo xlE (TO)

k,m

X)'le(To)"').Cj”’(To). (31)
Examples of this notation occur throughout this section;
for example, in Eqgs. (3.11b) and (3.11c) the quantities
JAKY)] j(10) and ([AK ”',»]j (zg) are coefficients in the
expansion of the component AK ”/i(ro) of AK?,, in powers
of x'(zy) and x'(zg):

AKU/i(To) = X[AKﬁ/i]j(TO)xj(TO)

+ 3 [AKY ] (70) (7). (3.2)
There are often relationships between the coefficients that
occur in these expansions; see for example Eq. (3.34).

A. Curve deviation observable

The curve deviation observable is defined as follows [1].
Consider two observers following timelike curves y and 7.
At two points x and X along y and 7 (respectively), the two
observers synchronize their clocks such that x = y(z,) and
X =7(79). At y(zp), the observer following y measures the
initial separation £ (as defined using the exponential map)
and relative velocity if“ =D¢&%/dr between 7 and 7.
Moreover, the two observers monitor their accelerations
until some proper time z;, when the observer following y
measures the separation & between y(z;) and 7(z,). This
definition of final separation is known as the isochronous
correspondence [32]. The observers then compare their
final separation to a prediction based on their previous
measurements that would be correct had they been in a
flat region of spacetime during the interval from 7, to z;.
There are many possible predictions that an observer could
make, but a straightforward covariant prediction is the one
given by parallel transport. The difference between the final
separation and the prediction, which we call Ang, is our
curve deviation observable:
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In our previous paper, we showed that Afé’D could be
written perturbatively in the initial separation, initial
relative velocity, and accelerations of y and y. For con-
venience, we restrict here to the case where y and y are
geodesic. The general case is treated in Appendix B. The
particular expansion was of the form

A& = [AKY ), + LY & + N, &) P
+ [(7) = 70)AHY ) + M? , EE°

+0(5.8)°, (3:4)
which serves as a definition of the bitensors on the right-
hand side. The bitensors AK?, and AH?, are closely
related to the Jacobi propagators, as they are given by
AKY, = ,K“ - ¢ and AH",= H" — ¢ .

In plane wave spacetimes, the geodesic equation has
exact solutions in terms of transverse Jacobi propagators.
As such, curve deviation, at least restricting to the case
where there is no acceleration for either curve, will have an
exact solution, instead of a perturbative solution in the
separation of the two particles.

In order to compute the observables (3.4), we need the
separation vector in the flat regions of the plane wave
spacetime in Brinkmann coordinates. Before the burst, this
separation vector is given by

£ = (g = up)(0,)" + [¥(z0) — x'(79)](0;) = (Bg — o).

the fact that, in the flat regions, é“ = ¢*.7% —7%; this
implies [from Eq. (2.17)] that

(7 - 2)(0,)° + [F(r0) — ¥ (5)] ()"
- {i 1+ )iz — 1 + xf(ro>x,»<ro>]}fa,
(3.6)

where 7 = 797,.

At this point, we note that this calculation is greatly
simplified in the case where we assume that ity = uq (Which
implies that £/, =0) and y =y (which implies that

&, = 0). In particular, this assumption about the initial
data means that the exact solutions are guadratic in £&* and

& in general, the results are not polynomial in &9¢, and
é“fa. Note that this assumption implies that #; = u; as
well, from Eq. (2.9). Thus, we are also associating points on
the two worldlines with equal values of u, the gravitational
wave phase, so this restriction could be called the isophase
correspondence.

Taking into account these assumptions, we find that & is
given by

!

& =[x (zy) = x'(20)](9,)" = (B — vy) 2. (3.7)

We can determine the first term in this equation by using
Eq. (2.14), together with Egs. (3.5) and (3.6):

3.5 =i i i j
B3 ¥) - x() = K (. 00)8 (=0)
A similar expression holds for £, the separation vector + (71 — 70)H' j(uy, )& (z).  (3.8)
after the burst. Another piece that is required for the curve
deviation observable is the relative velocity. Here we use  For the second term, we use Egs. (2.16) and (3.6):
|
Py P 1 =i = [ . - = P .
Up — v = Vg — Vg +z({[xl(fl)xi(fl) = x'(71)Xi(71)] = [¥'(70)Xi (70) — x' (7o) Xi(z0)] }
1. . . .
= 50 1+ K 00 iy 1) 3 20 ) + € s )|
1 1 . . . .
AR 1) 0 = ) 0] = 85} 52 0)F 50 + €/ 0) o)
1 1. L
2 = ) 10)0, ) [ E ) + & a0} )|
1 o, o
+? (g — o) H*; (uy, 1)y, [(uy — o) Hyj (. ug)] [55 (70)& (7o) + ¢ (To)x"(fo)]- (3.9)

At this point, note that the curve deviation observable is defined as the result of geodesic deviation with the prediction in

flat spacetime subtracted off. This prediction is given by
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+}( {0, [(uy = ug)H,j(uy, up)] — 5ij}5cj(fo)] fa,}

B 1 1., .. T y
— {1}0 — Vg —|—? (I/tl — l/to) |:5€ (70)5[(’[0) + 5 (To)xi(’l'o):| }Lﬁ s (310)
where we have used Eq. (2.31) to compute the parallel propagator. We now use the decompositions in Egs. (3.4) and (3.1).
Since the exact solutions are quadratic in & and &, we just need to write down the components of AK“ ,, AH? ,, L ..,

N%,., and M. The nonvanishing quantities needed to compute these bitensors (and thus, the curve deviation observable)

are as follows:

AKij(Tl,T()) :Kij(ul,uo) —(Sij, (3113)
x[AKUIz’]j(TO) = 0, Kyj(uy, o) AK* (71, 79), (3.11b)
, 1
HJAKY ] i(70) = =0y, [(uy = ug)Hyj(uy, ug)|AK* (7). (3.11c¢)
X
AHij(Tl,To) :ﬂ[j(ul,u())—&ij, (311d)
x[AHyli]j(TO) = 0, Kyj(uy, uo) AH* (71, 79), (3.11e)
; 1
JAHY i (t0) = =8y, [(uy — uo) Hyj(uy. ug)|JAH (7). (3.11f)
X
, 1
L"i(ty) = EKk(i(ul’ )0y, K* j) (1, ), (3.11g)
, 1
NV (7o) = ﬂ{aul [(uy — uo) KX (e, ug)Hyj(uy, uo)] — 8;5}, (3.11h)
; 1 .
M i(7) = ?(ul — o) {Hy(i (w1, 1) 0y, [(uy — o) H* jy (uy, ug)] — 8;;} (3.11i)

The result (3.11) makes it clear that the curve deviation
observable depends only on the transverse Jacobi propa-
gators and their first derivatives at z;, with no need to
integrate any additional quantities from 7, to 7;.
Moreover, note that L'y(r,7), N'j(z).7), and
M' (71, 70) all vanish. This is a consequence of the fact
that geodesic deviation, in the case where the initial
separation lies entirely in a surface of constant u# and v,
has no corrections at second order in the separation, at least
for the components that also lie in this surface. Because of
this property, the proper time delay observable }'/a/Ang
(described in greater detail in [1]) can be expressed as

Fa A& = —x[LY (1) & (10)E (1)
+ N(70) & (20) & (1)

+My,ij(70)$ (70)& (0)]. (3.12)

B. Holonomies

The definition of our holonomy observable is as follows
[1]: consider a closed loop that is composed of segments of
two timelike curves y and 7 that are connected by two
spacelike geodesics. These spacelike geodesics intersect y
and 7 at values of proper time along each curve given by 7,
and 7. Consider initial data P¢ and J* at y(z,), where J is
antisymmetric. These initial data represent linear and angular
momenta that have been measured by an observer. For
example, they could be the linear and angular momenta
either of a point particle or of the spacetime itself. Starting
with these initial data, the observers then transport the linear
and angular momenta around the closed loop mentioned
above according to the following differential equation:

KbV, Pe — —K 4, kbJed, (3.13a)

keV . = 2plaghl, (3.13b)
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Here k¢ is the tangent to the loop and IK{ 4ed 1S @ tensor
constructed from the Riemann tensor (and the metric)
that depends on a set of four constant parameters
x = (1, %, %3, %4)"

X

K% ;= xR 4+ 3,6 R g + 536" .R% 4

+}{4R5a[65bd]. (314)
In this paper, we restrict to »; being the only nonvanishing
component of », and we further restrict the value of », to be
either O or 1/2. Equation (3.13) is solved first along y, then
along the geodesic between y(z;) and 7(z; ), then along 7 (in
the reverse direction), and then finally along the geodesic
between 7(zy) and y(zo).

The final values obtained by solving the differential

equations in Eq. (3.13) we will denote by ;{’ ¢ and .}; b As
our differential equations are linear, these final values
depend linearly on the initial data P* and J“*; the matrix
which describes the linear relationship is our holonomy
observable:

x a — X a . c A a = cd

Pe= A (y.7m)P+ Ay pim) Il (3.15a)

J = A (17271 PC + A gy 727,)J%. (3.15b)
Jp [AVENENS! PP cd\/> /> "1 . .

The motivation for this definition was discussed in
[1,21,33]; in particular, this holonomy contains the dis-
placement, relative velocity, relative proper time, and
relative rotation persistent observables for x = (0,0,0,0).

For convenience, we introduce notation used in [1,21],
where the combination of P* and J*® by a single vector X*
was denoted by

A pe
XA = Jab ) (3.16)
In this notation, Eq. (3.15) becomes
XA = Ay(y.7:7,)XP. (3.17)

We use the same notation that we used for the components

x
of A5(y,7;7) for other matrices that act on the space of
linear and angular momentum:

Aac Aacd

A _ | PP Jp

Adp = e (3.18)
JP JJ

Note that the holonomy observable is nonzero in flat
space, even though it is trivial, being given by § 5. As such,
we find it convenient to define

x

X
QA%(r.7:7) = Ay, 757) =85, (3.19)
as the persistent observable associated with the holonomy.

In general spacetimes, we needed to expand perturba-
tively in the separation and relative velocity of the two
curves y and y; for plane waves, in contrast, these
calculations can be done nonperturbatively. We perform
only the nonperturbative calculations in this section. Note
that we also continue to use the assumption that &7, = 0
and &¢, = 0, for simplicity.

We consider the holonomies for the two types of trans-
port considered in [1]: x = (0, 0, 0, 0) (affine transport) and
x = (1/2,0,0,0) (dual Killing transport). The affine trans-
port holonomy can be recast as a Poincaré transformation,
as it can be written in terms of a vector Ay“(y, 7; 7, ) and the
holonomy of the metric-compatible connection (which is
itself a Lorentz transformation) [33]. On the other hand,
the holonomy of dual Killing transport does not share this
property. Instead, it can be thought of as the final linear
and angular momentum that would arise from using
the Mathisson-Papapetrou equations to transport these
momenta around a closed curve. The holonomy of affine

0
transport we denote by A%, (y,7;7,), with the “0” indicat-
ing that % = (0,0,0,0) . The holonomy in the case of dual

1/2
Killing transport we denote by A “4;(y,7;7;), with the
“1/2” indicating that x = (1/2.0,0,0).

1. Affine transport

First, we consider the case of affine transport. Here we
take advantage of the fact that [1,33]

0

Al ) = AMr.rim), (3.20a)
0

A (r.7im) =28 o)A (. 727y, (3.200)
0 b = = b _

J/} ab (y.7:i11) = A (y. 70Ny (y.7:71),  (3.20¢)

where A%, (y,7;7;) is the holonomy of parallel transport
with respect to the usual metric-compatible connection and
Ay“(y,7;7,) is given by

g

A (r.7:m1) = & = A% (1, 7371),9" (€7 — (11 = 70)E"].
(3.21)

Therefore, all we need in order to solve for the holonomy of
affine transport is the value of the separation &% at 7; and

"Note that this is in contrast to the notation used in [1], where

we denoted this holonomy by A4 (7. 7:71).
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the holonomy A“j(y,7;7;) of the metric-compatible con-
nection around the loop.

We computed the separation £ in Sec. III A, so at this
point we merely need to compute A%, (y,7;7;); for sim-
plicity, we define

Qy(r.7:71) =A% (r.7:71) — 8% (3.22)
[in analogy to Eq. (3.19)]. Since £ is covariantly constant,
it follows that Q¢ (y,7:7,)¢" = 0. After a lengthy calcu-
lation using our expressions for the parallel propagators in
Eq. (2.31), we find that

Ay (. 7371, 79) = E(70) — E'(71) + (71 — 70)&' (71),

1

Q0 (7. 7:7) (D))" = }{ () — B, (3.23)
Q1 (7.7 P = — }{ E(ry) - E(20)) ()"
- 5 E (1) — & (xo))
X [éi(fl) - éi(fo)]fa- (3.23b)

By a lengthy calculation involving Eq. (3.21) we can also
show that

(3.24a)

i) = { (300 =) [60) = (7= )8 0]+ 380 |+ b ). (3240)

2

Equations (3.23) and (3.24) can be used to determine the

0

nonzero components of Q4,(y,7;7;), and then to find
the values of these components in plane wave spacetimes
as a function of initial data x(z,), & (7o), and &(zy).
These results are given in Appendix A, in Egs. (A2), (A3),
and (A4).

2. Dual Killing transport

We can also show that the holonomy of dual Killing
transport can be written in terms of the holonomy of affine
transport, just as that holonomy can be written in terms of
the holonomy of the metric-compatible connection. To
show this, we note that because the beginning and end of
the loop are in the flat regions of spacetime, in this region
there is no difference between affine transport and dual
Killing transport (the value of x is irrelevant, as the
Riemann tensor vanishes). Therefore, we can compute
the holonomy by using different values of » along different
segments of the loop. This yields

12 . 0
QA 7:m) = {[0c+ A'c(r.7:m)Qp(r.7:71)

+ A7) = A (i)}

x (65 + APp(ri7y)], (3.25)
where
0 172
Mp(rit) =,9%, 9 * 5 =8, (3.26a)
A — 0 1/2 A 0% 05
AMp(r.7:m) =9%4; 9 *2,9% 89" — 5. (3.26b)

[

Note that in Eq. (3.25), both A5 (y,7;7,) and A5 (7, 7: 7))
appear. The latter is defined by Eq. (3.26b), but with y =y,
which implies that X =x and X = x’; equivalently,
A?g(y,7:7,) is the same as A% (y;7,), but with the order
of the parallel propagators reversed.

Equation (3.25) implies that there is a portion of the
holonomy of dual Killing transport that is the same as the
holonomy for affine transport. This portion has the inter-
pretation of being a Poincaré transformation. We give
expressions for the components of the various pieces of
Eq. (3.25) in Appendix A. The key point to take away is
that all components of the tensors that occur can be written
solely in terms of the transverse Jacobi propagators
K';(w',u) and H';(«', u) and their derivatives.

We now discuss the number of independent nonzero

1/2

components of the holonomy S/2 Ap(y,7;7,) in plane wave
spacetimes. The holonomy (3.25), in general spacetimes, has
potentially 100 different independent, nonzero components.
Because of the five-dimensional space of Killing vector
fields in plane wave spacetimes, our final result should have
fewer independent components. The easiest way to see this is
to note that, for a given Killing vector £%, and for P¢ and J*
transported along a curve using dual Killing transport,

Q=P+ %J“”Vaf;, (3.27)

is a constant along the curve. In particular, this means that

172 112

0= f%ca(},’ 7;71)50 +§§% Cda(y’ 7;71)vc§d7 (3288')
1/2 11/2

0= f% a1, 7:71)EC +§ % (v 7:11)Velq.  (3.28b)
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The five Killing vectors for which this equation holds are
&, =7, (which satisfies V[uafh] =0), and ¢, = 5, where
=2, is given by Eq. (2.18), and thus satisfy

V[a(fh] = 2Ei(uo)f[a(dxi)b]- (3.29)
Therefore, Egs. (3.28) imply that

1/2 . 1/2 )
Q. rn) =0, Q@) =0, (3.30a)
2 1/2 . .
QuUurrn) =0 QU(r77n) =0, (3.30b)
2 12 .
QU (rm) =0, QU,(»r.7m) = 0. (3.30)

Here, Eq. (3.30a) corresponds to & = £, while Egs. (3.30b)
and (3.30c) correspond to & = E¢, and are the constraints
due to varying over the initial data Z'(uy) and E'(u,) in
Eq. (2.20), respectively. This reduces the number of possible
independent components to 50.

Comparing this general result (3.30) to our calcula-
tion, we first note that naively, the multiplication of

products in Eq. (3.25) gives nonzero values of
1/2

12
}% "y, 7;7)) and J% “ (y,7;71), but a careful inspection

of these components shows that they are zero. A sketch
of how to show this goes as follows: first, use Eqgs. (3.23)
and (3.24) to write the components of the affine trans-
port holonomy in terms of & (zy), & (z,), and their deriv-
atives, and also write out explicit expressions for the
components of A45(y,7;7;) — A%(y,7;7;) in terms of

Ei(zo) and & (1), using the results of Appendix A. Next,
use the identities satisfied by the transverse Jacobi propa-
gators in Egs. (2.22) and (2.23), and finally use Eq. (3.8)
and its derivative, but with 7, and 7; switched. Since
1/2 1/2

éi”(y’ ;7)) and J§/123 “i (y,7;7,) vanish, Eq. (3.30) holds.
Of the 50 remaining components, only 31 are nonzero,
which are given in Eq. (A12). Note, however, that these
31 components are only determined by 12 functions,
the independent components of the transverse Jacobi
propagators.

C. Observables from a spinning test particle

The last observable discussed in [1] was an observable
that an observer can measure using a spinning test particle.
The definition is as follows: consider an observer who
moves along a geodesic y, and a spinning test particle
which moves along a curve 7. The two are initially
comoving at some proper time 7. The observer measures
her initial separation from the particle, the particle’s initial
momentum, and its initial intrinsic spin per unit mass.

The observer also performs these measurements at some
later proper time 7;, and then compares the results with her
initial measurements by parallel transporting the initial
measurements to this final time. The persistent observables
are the differences between the final and initial measure-
ments, which we denote by Alf‘sl/ for separation, Ap? for
momentum, and As? for intrinsic spin per unit mass.

To describe the time evolution of a spinning test particle,
one must ascribe to the particle a worldline that represents
the center of mass of the particle (which is fixed by a spin
supplementary condition). We use the Tulczyjew condition
[34], which is

cab

Paj =0, (3.31)

where p“ and j* are the linear and angular momenta of the
spinning particle, respectively. The definition of intrinsic spin
per unit mass is also fixed by this condition and is given by

§4 = 1 eabcd

=- 3.32
2p.p° (3:32)

Phcd-

Although the observables Aé‘“/, Ap“/, and As? are, in
general, nonlinear functions of initial separation, momen-
tum, and spin, we will expand in the initial separation and
spin as we did in our previous paper®

A& = [AKY ), + L9, & + O(€2))eb

+ [T 99,8+ 0(E)]s? 4 O(s)?,  (3.33a)
! D !
Ap® =/ —pbpbdfﬁAfg +0(s)?, (3.33b)

As? = — g7 1Q%(r.7:7)) + O(E )*]s” + O(s).
(3.33c)

Expressions for these bitensors in general spacetimes
were given in Eq. (4.47) of [1] in terms of Jacobi and
parallel propagators; they can be computed in plane wave
spacetimes using that result and Eq. (2.31). Assuming that
&¢, =0, we find that

Tij(ﬁ,fo) = —)(x[Tiu],'(Tl)
- / " (= ) H (e 13) (A (1),
(3.34a)

X[T”/i]j(%) = —)(xx[T“/u]ij = auIKkj(Mu Mo)Tki(TuTo),
(3.34b)

8Note that we wrote Eq. 128 in [1] in terms of a new bitensor
¥4, Here we avoid introducing e, by using the fact that it can
be expressed in terms of the holonomy at low enough order in s“.
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T (50) = 20,y = ) gy 00) T (. ),
(3.34c)
B0y == 0 Gl (o), (3.344)

W) =~ [ ] (20)
-/ iy = 1) ()
X 0, K* (113, 1), (3.34¢)
where

(A7) (1) = Ay (335)

We do not determine the spinning test particle observables
nonperturbatively, since we are not aware of ways to solve
the fully nonlinear Mathisson-Papapetrou equations in
plane wave spacetimes.

At this point, let us focus on the observable P"';;(1),
which is an observable which does not seem able to be
expressed solely in terms of sums and products of trans-
verse Jacobi propagators and their derivatives. Using
Egs. (2.2) and (3.34c), we can show that

uy

W i(1) = =0y, dut (g — 12) K * (g, 1) (A*) (142).

U

proportional by a constant, which is not necessarily true].
As in Sec. IIT A, we conclude by computing the proper time
delay observable (but now for the spinning test particle):

MA&? = —Z[L"’ij(fo)fi(fo)fj@O)

+ T”Iij(fo)fi(fo)si(%) + 0(5, 52)}' (3-37)
Thus, ¥"',;(zo), like L" ;j(7y) in Sec. IIT A, measures a sort
of proper time delay observable, except that it gives the
dependence of this delay on spin in addition to separation.

D. Observables at second order in curvature

As in Sec. IIC, we now compute some parts of our
persistent observables at second order in curvature. We do
this both for general plane wave spacetimes and for the
specific plane wave spacetime which we introduced in
Sec. I D. We focus on the quantities L“’,-J- (79) in Eq. (3.4)
and ‘P”'ij(ro) in Eq. (3.36) in this section. These results
illustrate features of observables which can be computed
from the transverse Jacobi propagators and their deriva-
tives; other such observables are qualitatively similar.

The first observable which we compute is L”;(1p),
which is a piece of the curve deviation observable defined
by Eq. (3.4). The value of this observable in arbitrary plane
wave spacetimes is given by Eq. (3.11g). Expanding this
expression order-by-order, we find that it vanishes at zeroth
order, whereas at first order we find it is

3.36 . 1
(3.36) WL i(z9) = Eaulmﬁ(ﬁ)(uu o). (3.38)
The integrand does not appear to be in the form of a
total derivative [unless K *(ug,u;) and K;*(u;,up) are  and at second order it is
|
, 1
QLY i(z9) = 3 {( VK (uy,u) 0, VKX )y (uy, ug) + = aul[ K (uy, ug) VK (uy, ug)]
[ [ 0, 0 ) V) (339)
At second order, this observable is pure trace because it is symmetric and constructed from products of () K "j(u’ ,u), which
is itself a symmetric and trace-free 2 x 2 matrix (assuming a vacuum plane wave spacetime).
Using the wave profile (2.37), we have that
2
/ Twne
L0, _ o = = {[cos(2¢) — 1]a* + 3}6;; + O(€?). (3.40)

Note that, like 9, A’ ;(u;, uy), this observable vanishes at first order in e.
The next observable which we consider is ¥*'; ij(70), which is an observable from a spinning test particle which is defined
by Eq. (3.33a). This observable is vanishing at flrst order by Eq. (3.34e), and this equation also implies that (at second order)

p Uy 1
@y ij(To) = / duZ{auz(l)Kkl(MZv MO)auz(l)Kkj(ub Mo) +§ (Ml - Mz)[A(uz), 8142&(”21 Mo)]lj}éli- (3-41)
Uug
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As with the transverse Jacobi propagators, at second order
there are both pieces that are pure trace and pieces that are
antisymmetric (assuming a vacuum plane wave). However,
because of the factor of ¢, it is the pure trace piece which
only occurs when the wave is not linearly polarized, instead
of the antisymmetric piece.

Finally, we consider the wave profile in Eq. (2.37); we
find that

P50, = 2P 0n*aV/1 = @ sin g5
wy

wwne?

{[cos(2¢) — 1]a® + 3}e;

+0(e%). (3.42)

This expression has the same qualitative features as in the
case of a general wave profile.

IV. DISCUSSION

In this paper, we have investigated the behavior of the
persistent gravitational wave observables of [1] in non-
linear, exact plane wave spacetimes. These spacetimes
possess an important set of two functions (and their
derivatives), which we refer to as transverse Jacobi propa-
gators. Many of the geometric properties of these space-
times, such as Killing vectors and solutions to the geodesic
equation, can be written in terms of these functions. Our
primary result is that many parts of the observables
introduced in [1] can be determined just from the values
of these functions and their derivatives. We found in our
linear, plane wave results in [1] that many parts of our
observables could be written in terms of a small number of
functions, but the fact that this statement also holds in the
nonlinear context is unexpected.

The main utility of this result is that only the transverse
Jacobi propagators are necessary to determine the values of
many of our persistent observables. That is, although the
persistent observables we have defined in [1] encompass a
large number of interesting physical effects, many of these
effects are determined by just a small number of functions.
These functions, in turn, can be determined by the
displacement memory observable (which gives the trans-
verse Jacobi propagators directly) and the relative velocity
observable (which gives their derivatives).

Finally, we conclude with a few remarks about extending
our results to the class of “p p-wave” spacetimes, which are
a generalization of plane wave spacetimes where the planar
wave fronts are not homogeneous, as A; j is also a function
of x'. Such spacetimes have Jacobi and parallel propagators
that one can calculate using a procedure that is similar to
the one we carried out in this paper, but the geodesic
equation does not have exact solutions, nor are the trans-
verse Jacobi propagators solely functions of u. In plane
wave spacetimes, one only needed to determine the trans-
verse Jacobi propagators along a given timelike geodesic in

order to compute persistent observables, but in pp-wave
spacetimes one would need to determine them along all
timelike geodesics.
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APPENDIX A: VALUES OF THE HOLONOMY
OBSERVABLES

In this appendix, we give the values that our holonomy
observables take in plane wave spacetimes.

0
We start with the holonomy observable Q4 (y,7;7') for
affine transport [x = (0,0, 0,0)]. First, the components of

0
1% 4 (y,7;7) are determined from Eq. (3.20a) to be

0

Q4 rm) = Q1. 7). (A1)

From Egs. (3.20), (3.23), and (3.24), it is possible to show

0
that the remaining components of Q4 ;(y,7;7;) are

0
J%uvu<y’ 7;71) = _A)(v(y7 }_/;Tl)’ (A2a)
o o o
QU (r.7m) = Q7 7m) = =Ar (v, 771, 70),
(A2b)

0 . _ _ . _
JS},“M(% 7it) = Ay (r. 7: 1) (v, 75 11)

— A (7, 7571, 70)Q% (7. 7571). (A2¢)
0 o ‘
QY(r.7:m) = Ay (r.7:11)8

— Ay (7. 7371, 70)Q7 (7. 73 71), (A2d)
0 . .
QU (r.7in) =280 (r. i ) (r. 7). (Ae)
o o .
QU (r.7:71.70) = 2871 (v. 73 71.70) . (A2f)
0 , _ 1 , _
%“Lm‘(% 7i11) = EQL:‘(V’J’;TJ’ (A2g)
o 1.
%“uv(% Vs Tl) - _EQlu(yv Vs Tl)v (A2h)
0 . _ | U _
QY(r.7m) = 5[5’,-9%(% 7i71)

- Qiu<y’ 77 Tl)gvi(}/’ 77 Tl)]’ (Azl)
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0 . ) ' B .
Q. 7m) = =8, Q (. 7:70), (A2j)
o o

% l]uk(yv 18 Tl) = _5[leJ] u (7’ Vs Tl)' (AZk)

These expressions still involve the components of Q% (y,7;7;) and Ay“(y,7;7;). We now write each of these quantities as
an expansion in & and &%

Qy(y.7:71) = Z Z it e ey dy (T1)E CgerEN L E e (A3a)
m=1 k=0
[ee] m . .
A TiT) = 3> iy ey (T1)EV - ERET B, (A3b)
m=1 k=0

The nonzero components of the coefficients in this expansion are given by Egs. (3.23) and (3.24):

§Q l](Tl) §Qmj(71) = _814 Kl](ulv MO) (A4a)

Q15() = @, (1) = = {04, [0 =)y i, )] = ). (Adb)
529 ﬂm‘j(Tl) aul (ula uO)au]Kkj)(ulv up), (Adc)
559 MIJ(T]) aulKkt(”l?MO){aul [( MO)ﬁkj(ul’MO)] _5kj}’ (A4d)
2Q " (7) = 27 {aul [(y = uo)Hy(i (uy o)) = 8 }H{Ou, [(1 = o) HY jy (uy, up)] = )}, (Ade)
Ar'j(7,70) = 85 — (K j(uy, uo) = (uy — uo)0,, K'j (11, ug)], (A4f)
A 1.70) = 0 = 00, 1 ) (Adg)
Al (1) :)l(gA’/lji<TlvTO)’ (A4h)
;‘c[éAﬂvi]j(Tl) :)l(éArlji(Tl’TO)’ (Adi)

2081"5(11) = 1au1Ak (e, ) [K ) (uy, ug) = (wy = u0) 3, K jy (1, o), (Ad))

1 (50) = K1) = iy = 00)0, K 10)) 0 (= ) 1 0] = )

- (ul - uO)ZaMIKki<ulv MO)a H (ul7 MO) + 61/ [Kji(ul’ Mo) - (ll] - uO)aMIKji(ulv I/lo)}}, (A4k)
1 1
é'ng’?Uij(Tl) =7 (uy = uo)z{i Oy [(uy = o) Hy(i (uy, ug)] — 6k(i}aulﬁkj)(ul’ up). (Ad)

We now perform a similar calculation for the dual Killing holonomy, which is given in terms of the tensors that occur in
Eq. (3.25). The components of A%(y;7,) and A% (y,y;7,) are given by a lengthy calculation starting with Egs. (2.31).
Their components are given by
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é,ij(ﬁ 71.79) :Zx[éﬂj}i(% 7)) = _)(x[%)iu]j(y; ) = K, (ug, uy) = 8/, (AS5a)
v . 1 .
*Z[PAP dij(rim) = _)7[%,(5/)(7,11,70), (A5b)
PA]iuj(V;Tl) :)(x[}éjvuj]i(y;fl)
1 . .
= —E{Kkl(uov 11)0,, K (. o) + 0, Ki' 0y, [(uy = ug) (H* (uy, ug) — 5;%)]}, (ASc)
AMirm) =xlA ") ) = =8 (nm) = 208 ) m) = =205 A w)
= (“1 - Mo)[Kji(uov ”1) - ﬂji(uoy ”1)]7 (ASd)
uv . 1 u .
xZ[JAP u]ij(%fl) = _?jAP (ij)(y’fl)’ (ASe)
(A (rier) = 24 1 (i) (ASH)
el ilrm) =2 1)
JATJurie) = == A Yy (i) (ASe)
2lyp kAT y¥p (KDL
,-Cz[JAPUj]kz(J’,Tl) = 5k1[A Nrity) =26 [ 0l (73 T1)s (A5h)
i . 1 vi . 3
3 [JAP ]jkl(%ﬁ) )(x [JAP (]kl)(%ﬁ)? (ASi)

%uiuj(}’;rl) :)(x[JAjwuj]i(V;Tl) = 2)(2[]% muj](?’;fl)

1( — uo) [Hy (o, u1) = Kyl (ug, )]0, K;* (uy., ug)

o\
1 . . .
) [(uy = ug) Oy, Ky (., ug) — Ky (g, 1)) 0y, { (uy — ug)[H;*(uy, ug) — 5,4}, (AS5j)
A (7 m0) = 2808, (r:7,) (ASK)
el uklI\/>*t1 P ZJJ uk\/>*%1)s
2Byl (i) = Sl ")) = 28 WA "l (v 7). (AS])

Alrrmin) =xlA ) (rrn) = —lA ()

PP 17
= K (uy, ug) = &' = (uy — ug)d,,, K (uy, up), (Aba)
. 1.
,-(z[PAP u]ij(yvy;Tl) = —?PAP(ij)W,V;TpTo)’ (A6b)
- o 1 ;
fé] uj(yv}/;fl) :}(x[féj uj] (7,}’;71) = Eaulgj (u17u0>7 (A6C)

ui . uv i _ A ui . _ vi _ 3TA vi .
JAP ) = )(x[A N rrm) =AM re) =27 [JP AN rm) = =208 i(r. v )

_<u1 - uO)zaulﬁji(uh I/l()), (A6d)
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~

el A"y ) = _)?JAPM(U')(%V;TI)» (A6e)
AT vty ) = 260 A Wi . i) (A6f)
K\ 7T To p TR AVE A VE
AT Julrrien) = = [A T (71 7o) (A6g)
x21P ulkI\l> 75 *1 )(xJP (kIn\Fs 7> %15 %0)»
2 [JAP alrorn) = 5k1[JAP Hrs) - 25i(k[JA},”1)j](77}’§71)v (A6h)
i3 [JAP mu}jkl(y’ rit) = )(x [JAP m( }kl)(%%fl)» (A6i)
JAjmuJ(% 7:i71) :Zx[%"vuj]l(% 7:iT1) = 2)(2[% ") = Eaul{(ul — ug)[H;' (uy, up) = 8;'1}, (A6))
A0, yim) = 285A ML . i) (A6K)
ij uklI\/s /> t1 /1/ Ijj uk\/s/s%1)s
xz[%” Wl (v vitr) = 5kl[A Wl vsT) = 25i(k[§ "nui (v 7371, (A6l)
respectively. 4 . .
There are now two additional pieces of notation that we Q.= Z #[0 ~~]i1---ikx '(z9) -+ X"*(70).  (AB)

must introduce before determining the nonzero components
of Eq. (3.25): first, we expand A”;(y,7;7,) in powers of
the separation as

[Se]

N 0@ gy, (1T )ET -,

n=0

M@y 7:m) = (A7)

Next, it happens that in plane wave spacetimes, the
components of the coefficients in this expansion depend
on the sum ¥'(z,) = (7)) + & (7,), and not independently
on either (7)) or & (). As such, we write [in analogy to
Eq. (3.1) above] such quantities in terms of coefficients of
the following expansion:

k=0

In this notation, we can show that the components of
©45(y,7;7,) and A(y,7;7,) are related (using I" and A
for Brinkmann coordinate indices on the linear and angular
momentum bundle):

3k [OA](r.7:71) = Xk [ATAl(r 73 70). (A9)

Using this notation, the final nonzero components that
are needed are also given by a lengthy computation
involving Eqgs. (2.31):

619’ Lilr i) = s [5190 G (75 71) = 0w K (uy, ), (Al0a)

511’ jl/(}/’ Vs Tl) X [5J®P uv] (7’ I Tl) Kji(ul? MO) - aji - (ul - uO)aulgji(uh MO)? (AIOb)

LO Tl i) = <84 Oy Fim), (AL00)

'¢JP Jk 7.7 7 7)( 5”’ 11077/771 C
ij - 9. lilol 1il(y 7+

gg kl(%}’aThTo) 2)();[5]@}, kl] (7’7571)7 (AlOd)

(017 m) = 10 ). 73 71) = 2210 ") 73 71) = 0 (= wo) [H (. w0) = 6T}, (A10¢)
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] o 2
[59) Yair.7im1) = ” 59) Ty, 7371, 70) +}5[1¢g‘ (v 7:71),

)i = 1 iv = i = i v =
20 il 7)) = == (k\j\]l)(}’#;fl)‘f'(skl[gj@}), Wl 7571) = 28 [6 W17 771)s

JP z $Ip
i = 1 i
5% ujv(yvy;fl) :Eamgj (l/tl,l/t()),
1 i v -
O i 7m0) = 049 g (v 73 m1),

0. 7im) = 2, @ ). 7)),

For our final result, we first define

0 R N
Ep(r.7im) = Q%% (. 70) + Ap(r.7im) = Ap(rrim);
then Eq. (3.25) implies that

1/2 ) A 0 .
Q' (r.7s1)=E"(r.7:11) +5Li(7,7§71)$lu(7§71) +1,Apvi(7’v77271)1§%lu(7»?7§71)

+2[A "y 7m) = Aty i m) AL m) + 28 N 7 2@ (. 7 ),

1/2

Q Vily.tim) = £’ )+ AJ (7,71)]4'2[ Vi 7)) = PAJ”uj(%}’;Tl)]A “iyity),
12 ) , _
]%”ui(}’#;ﬁ) E ](7 }’,Tl)A ui(}’§1’1)+2[ uj<7 }’,71) A (}’ }’,71)}%"%(}’;11)
+ng] ui(}’,T’;Tl)—PAJFW'(%J’;TI)’
1/2 - . L A .
QU (r.7im) = () £ 22 e A () + [A(r . rim) = A" )] A (v m)

0, A ) = 0 ui =
+ A”” i m) QN ) £ 28y 7 r)Q (s 1),

1/2 . n . .
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This observable possesses 31 nonzero components, which
is fewer than the 50 that are required by the existence of a
five-dimensional space of Killing vector fields.

APPENDIX B: MODIFICATIONS DUE TO
ACCELERATION

Throughout the body of this paper, except for our
spinning test particle observable, we have only considered
the case where all curves used to define the observables are
geodesic. In that case, our results are nonperturbative in
these spacetimes. We now consider the effects of accel-
eration. In essence, the only change is that now our results
are necessarily perturbative, but fortunately only perturba-
tive in the acceleration, not in the initial separation or
relative velocity. Moreover, unlike the case where the
curves are geodesic, our final results depend on integrals,
not just sums and products, of the transverse Jacobi
propagators. Note that this also seems to be the case with
the spinning test particle observable, which was necessarily
defined using an accelerated curve.

To compute our observables for accelerated curves, note
that, given a curve y and a proper time 7, there is a unique

(A12m)

(Al2n)

(A120)

|
geodesic 7 that intersects y at 7 that has the same four-
velocity at that point. If an observable is defined with
respect to two accelerated curves y and 7, we show that this
observable can be written in terms of 7 and 7.

This process is most easily done for the holonomy
observable. First, we consider the case of the holonomy
with respect to parallel transport with the metric-compatible
connection. Using the fact that the initial and final regions
are flat, we find that

A

A (r:7:m1) = ¢\ (7. 7:11) 9

X A7, 7)) (M) (i), (BD)

The holonomy A%, (7.%;7,) has already been computed in
the body of the paper in Sec. III B. For the other two
holonomies, we can show that

(A9 Forsm) = 8% £,Q%F.7:7) + OF),  (B2)

where
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7]
Q0 (7. 7571) = / dry{(70 = 72); H o [{Q “pe (73 71) = cQ e (73 72))]

70

D

+——[(z0 = 72);H° ]

dTO

When considering the holonomy of linear and angular
momentum for a specific value of x, analogous versions of
Egs. (B1), (B2), and (B3) hold.

At this point, we note that .Q ;. (7;7;) and 259 e (P3i71)

(along with their analogues for the linear and angular
momentum transport) are given in the body of the paper in
Sec. III B. However, their versions with 7, instead of 7,
[that is, [Q9.(7;7,) and éQ“bc(f/; 7,)] are not, for any

arbitrary value of 7, € (7, 7). As the expressions for these
quantities are lengthy, we merely note that they can be
determined using the expressions in [1], once adapted to
plane wave spacetimes in Brinkmann coordinates.

We now consider the curve deviation observable, starting
with the various pieces that go into the definition of the
curve deviation in Eq. (3.3). Since it is crucial in this case,

éQabc(j};Tl) - 59 abc(j};‘[Z)]}ge”c”j}d .

U

(B3)

we make the dependence on the curves of the separation
and the curve deviation observable explicit. First,

(7)) =g wlE3.7) + 5 (7.7) - E (7.7)].  (B4)

Using the holonomy, we also find

A& (r.7) = g“’a/{Az:?{D(?, )+ a8 7.7) = E (.r) + 597 LAY (ForsT) = 89 )[E + (71 — 7)€

9% =39 (A (), (BS)
and moreover
9w =g 0397 (AN (s T)
X N (7, 7373);9 0" an- (B6)
Putting this all together, one finds that
|
(B7)

A/ _ R T T ~ ~m " T A
+59% (A (7. v3 ) / dr, / des Ay (7,7373);9 409" wr (9" 5od™" =7 )}-
70 70

The terms with holonomies in this expression are given by Eqgs. (B2) and (B3). The remaining terms are determined by

noting that

PPN @ Al Al ol
&) = [t =) HY o

0

with an analogous statement holding for & (7.7).

(B8)
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