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Abstract

Trees on farms provide environmental benefits to
society and improve agricultural productivity for
farmers. We study incentive schemes for afforesta-
tion on farms through the lens of contract theory,
designing conditional cash transfer schemes that
encourage farmers to sustain tree growth. We cap-
ture the tree growth process as a Markov chain
whose evolution is affected by the agent’s (farmer)
actions — e.g., investing costly effort or cutting the
tree for firewood. The principal has imperfect in-
formation about the agent’s costs and actions taken,
and wants to maximize long-run tree survival with
minimal payment. We show how to calculate the
optimal contract structure in our model: notably, it
can involve time-varying payments and may incen-
tivize the agent to join the program but abandon it
prematurely.

1 Introduction

The UN’s Sustainable Development Goal #15 challenges so-
ciety to sustainably manage forests, combat desertification,
halt and reverse land degradation, and halt biodiversity loss.
Afforestation and reforestation, which attempt to reverse land
degradation, have recently gained attention as a clear next
step towards achieving this goal [IPCC, 2019]. One oppor-
tunity for afforestation is to grow trees on agricultural land
owned by farmers. Mature indigenous trees on farms not
only improve biodiversity and carbon storage capacity, but
also deliver robust water and soil quality which improves the
long-term health of the farm. However, smallholder farm-
ers in developing countries often either do not grow trees or
abandon them before reaching maturity, because of the slow
and risky nature of the growing process. This is exacerbated
by farmers’ cash constraint and limited labor capacity. This
raises a large set of questions regarding how best to help farm-
ers overcome barriers and how to operationalize afforestation
programs.

A typical afforestation program offers a many-year-long
contract which is a payment schedule conditional on tree sur-
vival. Such programs have benefited from recent advance-
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ments in machine learning and Al to process remote sens-
ing data (satellite imagery), which have made it possible
to monitor land use change cheaply [Hansen et al., 2013;
Jean et al., 2019; Dao et al., 2019; Liitjens er al., 2019]. Par-
ticipants get paid a percentage of the total payment at each
monitoring round but the exact payment might be adjusted
downwards if not all the trees have survived. For example, in
[Jack, 2013], the author conducted a randomized controlled
trial in Malawi where farmers were asked to grow trees over
a period of 3 years. They were paid in equal installments af-
ter 6 months, then, 1, 2 and 3 years adjusted by the number of
survived trees. The author observed that farmers had private
information regarding their likelihood of following through to
the end of the 3 year period, and that some farmers dropped
out of the contract over time even though they all initially
agreed to take up the task. Motivated by this experiment, we
ask: if afforestation programs are designed for the long term
and at a large scale, can the program designer optimize over
the contract space to minimize abandonment of this slow and
costly task?

Our research is a first attempt to create an analytical frame-
work for afforestation incentive schemes using contract the-
ory. We set up a principal-agent model, where the principal
(referred to as she) can be an NGO, a local government, or
any buyer of ecosystem services, and the agent (referred to as
he) represents a smallholder farmer. The principal contracts
with the agent to procure tree-growing services on his farm.
The goal of the principal is to maximize the value of the trees
grown over time minus the payments issued to the agent to in-
centivize this growth. There is a large literature on canonical
contract design [Holmstrom and Milgrom, 1987; Ross, 19731,
dynamic contract design [DeMarzo and Sannikov, 2006] and,
more recently, robust contract design [Diitting er al., 2019;
Carroll, 2015]. A closely related work with ous is [Levin,
2003] which is also a dynamic contracting problem where
both adverse selection and moral hazard may be present; fur-
ther, there is two-sided limited liability. The author shows
that it is sufficient to consider stationary contracts when
searching for optimal dynamic contracts.

Our model’s defining feature is unique and specific to af-
forestation contracts, where environmental benefits depend
on the state of the world and not just a stochastic outcome
of the agent’s action. The dynamics of tree growth follow
a Markov Chain where the state space is the tree age (or,



similarly, tree height or canopy size). Natural risks and the
agent’s efforts both influence the steady state distribution of
this Markov chain. Further, the effort choices of the agent are
influenced by the natural risks, the payments from the prin-
cipal, and also their private type (e.g., green-thumb or not)
which determines the cost of their effort. The principal can
observe the state of the tree, but does not know the agent’s
type nor effort. The principal cares about who takes up the
contract, and whether and how the agent follow through in
the long run.

We show that the optimal payment structure is simple to
compute and has clear economic interpretations. For exam-
ple, if tree maintenance costs are constant over time then the
optimal payments are deceasing with time. We conclude with
some discussion of practical considerations for real-world im-
plementation.

This work contributes to a growing literature on payments
for environmental goods [Engel et al., 2008; Jayachandran et
al., 2017; Fenichel et al., 2019]. We also identify a set of
future directions in the space of market design for environ-
mental sustainability for Al and economics community.

QOutline. We set up the model in Section 2, describe the
agent’s strategy in Section 3 and solve the principal’s prob-
lem in Section 4. We conclude by discussing limitations and
extensions in Section 5.

2 Model

State space. We use a Markov chain with finite state space
S = {0,1,..., M} to model the state of a tree. M is the
number of periods (years) that a tree takes to mature. State
0 represents no tree, states 1 to M — 1 represents the grow-
ing process and the final state M represents maturity. At time
step t = 0, the agent starts in state s = 0. We assume M > 2,
so that there is at least one intermediate state before reaching
maturity. We assume the principal has a monitoring technol-
ogy available, so the state is publicly observable.

Agent actions. In every period, the agent chooses a binary
action a from set A = {0,1} where a = 0 means no effort
and a = 1 means exerting effort. The action is unobservable
to the principal. Action ¢ = 0 is costless but action a = 1
costs ¢, Vs € {0,..., M — 1} and 0 at maturity state M.!
For most of the paper we will assume constant cost per state;
that is, each agent incurs cost ¢ for every single state. The
agent type c¢ is drawn i.i.d. from CDF F with support [0, ¢].
The constant cost assumption is for technical convenience;
we will later demonstrate that our main results apply more
generally. The principal has the knowledge of the distribution
F(c) but not the agent’s individual type.

Exogenous shocks. In every period, a tree might die due to
some natural risk out of the farmer’s control. We model this
risk as a probabilistic exogenous shock- in each period where
the tree is in state s, a shock does not occur with probability

'Note that we could also interpret a = 0 as actively cutting down
the tree to use or sell, in which case ¢, captures the outside option
cost of keeping the tree.

qs. For most of the paper we assume constant shock probabil-
ity gs = g, but our results extend to state-dependent shocks
(such as younger trees being more vulnerable to natural risk).

Transition probability. The transition probabilities depend
on the agent’s behavior and exogenous shocks. If, at time ¢,
the state is s; € {0,1,..., M}, then s;y; = min{s + 1, M}
(i.e., the tree grows or stays at maturity if already mature) if
and only if the agent chooses a = 1 and no exogenous shock
occurs. Otherwise, sy+1 = 0 (i.e., the tree is lost) if a = 0 or
if the shock occurs.

Value at maturity. In state s, the principal and the agent
receives values v!” and v#, respectively, from a tree. We as-
sume values for both parties from an immature tree are zero
-vP =0andvA =0,Vs € {0,..., M — 1}. A mature tree
delivers values vl > 0 and v{; > 0.

Principal’s payment. In each round the principal can trans-
fer a payment to the agent. Payments from the principal can
depend on the state transition but not the agent’s action. We
without loss restrict attention to payments {ps }scs € Rﬂ‘f +1
where each p; is a payment conditional on a forward transi-
tion of reaching state s + 1 and the payment conditional on
transitioning to state 0 is 0; pjs is the payment the agent re-
ceives for keeping mature trees alive.

Agent utility. The agent is risk neutral and his utility is lin-
ear in the payment. In what follows, we assume the action
choice of the agent is Markovian, i.e., does not depend on
the history. This assumption is without loss in Markovian
games. In state s, if the agent chooses action a = 0, his cur-
rent state utility us(a = 0) is 0. If he chooses action a = 1,
his stage utility us(1) is ps + vf — ¢, if the tree survives and
—c, otherwise; together, his expected current state utility is
us(a=1) = gs(ps + v) — cs.

The agent discounts the future with discounting rate § < 1.
Assuming the agent chooses action a in state s, his continu-
ation utility is Y ,~ 1 6" tq (s 4)(ao(s,)) Where o(s,t) is a ran-
dom variable denoting the state after ¢ transitions from state
s, giving a total expected utility from state s of:

E[us(as) + Zétua(s,t) (aa(s,t))]' (1)

t=1

We assume that the agent always chooses the option preferred
by the principal when the agent is indifferent.

2.1 The Principal’s Problem

The principal’s objective is to maximize the long-run ex-
pected value from mature trees minus the expected cost of
incentive payments:

maxEq,p [V — Do) )
Ds

where the expectation is over the steady state distribution D
of the Markov chain. Our focus on the steady-state is mo-
tivated by the fact that, in practice, the principal will be in-
teracting with many agents who have many trees, in which
case the steady-state of the process is a proxy for the aggre-
gate outcome. Given a choice of {p}, the principal’s payoff



is determined by the agent’s utility-maximizing choice of ac-
tions, which is endogenous to this payment and induces the
steady state of the Markov chain. Last, we assume the prin-
cipal faces a limited liability constraint, which in this setting
means that all payments are non-negative.

3 The Agent’s Perspective

The agent can choose between two actions in every period,
but we note that due to the structure of the Markov process it
suffices to consider the following set of stationary strategies.

Definition 1 (The agent strategy). The set of strategies, de-
noted as ¢ € {0,..., M, o0}, correspond to choosing to ex-
ert effort only up to a certain state. Explicitly, in strategy
¢ € {1,...,M} the agent chooses to exert effort (a = 1)
in states s € 0,...,¢ — 1 and otherwise a = 0. Strategy
¢ = 0 corresponds to choosing a = 0 for all states (not par-
ticipating); and ¢ corresponds to choosing a = 1 in every
state.

For each strategy ¢, the expected cost, evaluated at some
state s, is the sum of the current period cost and the dis-
counted expected future cost of choosing ¢, denoted as
EC?(c). We can compute this cost for each ¢ < oo by solv-
ing a set of ¢+ 1 linear equations following the Markov chain
dynamics. We have

EC?(c) = ¢+ qEC?, (c) + 6(1 — QECE(c), Vs € {0,...,6 —1} (3)
ECS(c) = SECE (c) “)

= EC{(c) = Kge,Vo € {1,..., M}, 5)
where the coefficients K4 depend on ¢, 6, ¢ (exact expres-
sion omitted for space reason). EC§°(c¢) can be computed by
adjusting Eq. (4) in the above linear equations to allow the
transition from state M to itself. We include Ky = 0.

For notional convenience, we define EC(c) = ECJ(c) to
be the expected total (future discounted) cost for the agent ¢
in equilibrium, as evaluated at state 0. In this constant cost
model, we are able to observe:

K0<K1<"'<KM, K]\/[>Koo (6)

In other words, strategies ¢ < M get more costly as ¢ in-
creases, since the agent spends more time exerting effort in
expectation. The exception is ¢, which is less costly than
strategy ¢ = M because the agent can keep the tree mature
without any cost.

Similarly, we can calculate the agent’s expected total pay-
ments from a given payment plan and from having mature
trees. Given any payment plan, the expected payments of
strategy ¢ is denoted EB?(py, . ..,ps—1). Note that EB? =
0 because no payment is received when not enrolling.

We denote the expected value of a tree when the agent
chooses strategy ¢ to be Evﬁ, where Evﬁ = 0 for all strate-
gies except for ¢ = co. Ev% is proportional to v4} with some
coefficients based on the Markov chain.

Given a payment plan {p,}, the agent chooses a strat-
egy ¢ € {0,..., M, oo} that maximizes his expected utility:
EU® = EB?({ps}) — EC%(c) + Ev%.

4 Solving The Principal’s Problem

We start off by formulating the constraints faced by the prin-
cipal. Next, we investigate a reduced problem: find the
least-costly contract such that an agent with cost ¢ € [c;, ¢3)
chooses ¢ = oo (and whether any such contract exists). We
show how to compute the optimal payment schedule for this
reduced problem. We then reduce the more general original
problem in Eq. (2)t o this reduced problem, by finding an op-
timal subinterval of the agent type to target and solving the
reduced problem for that subinterval.

In order for the agent with cost ¢ to choose ¢ = oo, we
require the following M incentive compatibility constraints
dCy:veel,..., M,

EB?({ps}) — EC?(¢) <EB>({ps}) — EC™(c) + Evy. (7)

We also require the individual rationality constraint (IR) for
agent c choosing strategy ¢ = oc:

EB> —EC*(c) + Ev} > 0. (8)
4.1 Who Drops Out and When

One might expect that if a contract causes the agent with a
high cost to follow through (i.e., choose strategy co), one with
a lower cost would follow through as well. However, this is
not always the case: as we next show, the agent with lower
costs might be incentivized to drop out of the program “late”
(i.e., just before the tree reaches maturity) then reenter with a
new tree in order to collect more payments.

We now make this more formal. Denote EB?(c) to be
the minimal expected payments that type ¢ needs to receive
in order to weakly prefer strategy ¢ to co. By definition,
EB?(c) = EC?(c) — EC*®(c) + EB*® + Ev%. The term
EB?(c) measures how much expected payments an agent re-
quires in order to cause deviation from the principal’s desired
strategy, oo. The following lemma demonstrates that high-
cost types are prone to choosing early drop-out strategies and
low-cost types are prone to choosing late drop-out strategies.

Lemma 1. For any pair of ¢; < cy, in the support of
F(c), there exists a state 5 € {0,...,M} such that
Vo < 8,¢ = argmin g, ) EB®(c) and Vo > 5,¢c;, =
arg Mineee, c,] EB?(c).

Proof sketch. We show that EB(¢;) > EB°(c;) and
EBM(c;) > EBM(cy,). Further, we know that EB?(c) in-
creases in ¢. There must be an intermediate strategy where
the type that requires the minimal expected benefits switches
from high to low. The full proof is omitted due to space con-
straints.

4.2 How Much to Pay

We now construct a contract that minimizes the expected to-
tal payments required to have a given subpopulation always
complete the tree-growing process. Our first observation is
that if the agent with costs ¢; and ¢;, choose ¢ = oo, then
any agent with cost ¢ € [c, cp] will choose it as well. Tt
therefore suffices to consider subpopulations corresponding
to cost intervals. Theorem 1 describes the optimal payments
for a given cost interval.



Theorem 1. [Optimal payment schedule ] Given any subpop-
ulation [cy, cp] C supp(F), the least cost contract is the pay-
ment schedule, pg,...,p5,, that solves the following set of
M + 1 equations. Forall s € {1,...,§ —1}:

EB*(po,...,ps—1) = EC%(cp), )
Otherwise:
EB*(po, ... ,ps—1) = EC*(¢;) + EB*® + Ev} — EC*(¢;), (10)
And,

EC*(¢cp) = EB*® + Evy. a1

Proof intuition. The proof is composed of two parts. First,
the principal always improves the objective by switching pay-
ments to earlier states as long as the constraints in Eq. (7) are
satisfied. This is due to the difference in discounting factors
between the agent and the principal. Second, we identify a
small set of binding constraints. We reduce the number of
constraints from (|c|41) x (M +1) to M + 1 by utilizing the
analysis in Section 3 and Lemma 1.7 The full proof is omitted
due to space constraints.

In the rest of this section, we discuss the implications of
the optimal payment schedule described in Theorem 1.

Binding constraints. First, we discuss which constraints
are binding in the optimal solution. It’s intuitive to see that in
the optimal solution, c;,’s IR constraint binds (Eq. (11)). The
agent ¢y, is indifferent between ¢ = oo and not participating.
It’s sufficient to have IR satisfied for ¢;, because IR will also
be satisfied for all lower types. Regarding IC constraints, al-
though the principal prefers to shift payments to earlier states,
there is a limit on how much shifting is possible. As we in-
creases early stage payments (ps,Vs € {0,...,5 — 2}), the
IC constraint of the agent c;, will be violated first; this causes
cy, to choose early drop-out strategies (Eq. (9)). Similarly,
late-stage payments (ps,Vs € {§ — 1,..., M}) cannot ex-
ceed the minimal payments that keeps low-type ¢; indiffer-
ent between dropping out in intermediate stages and strat-
egy ¢ = oo (Eq. (10)). The threshold state § comes from
Lemma 1.

Take-up and follow-through behavior. Given the optimal
payment schedule, all intermediate types in [c;, ¢;] choose
¢ = o0, any types higher than c; choose ¢, and the types
lower than ¢; choose ¢j,. Even though the principal only in-
tends to have ¢ € [¢, ¢] to take up and follow through the
contract, she cannot prevent lower types ¢ < ¢; from tak-
ing up but not following through. This is consistent with
the self-selection observations made in [Jack and Jayachan-
dran, 2018]. Further, the low cost agent (¢ < ¢;) chooses
to drop out before the tree reaches maturity even in the ab-
sence of exogenous shocks. If the contract is not properly de-
signed, then this intentional drop out behavior will be exacer-
bated. In [Jack et al., 2015], the authors argue that exogenous
shocks cause participants to not follow through, thus lower-
ing program cost-efficiency. While this is consistent with our

Z|¢| can be thought as the size of the discretization of the agent
type space between ¢; and cy,; there are M IC constraints and 1 IR
constraint for each type; there are M + 1 number of limited liability
constraints

model, we further contribute to this discussion by showing
that another possible reason for drop-out is that front-loaded
payments (even the optimal payments) can incentivize some
agent type to join the program to collect early payouts but
then abandon trees.

Finding the optimal interval. To solve the optimization
problem with objective in Eq. (2), we can simply search for
the optimal interval [c;, ¢j] of the agent type that will choose
¢ = oo, where the expected payment is given by Theo-
rem 1. This can be done efficiently via discretization plus
grid search. We omit details due to space constraints.

Payment to keep a mature tree. In the optimal payment
schedule, the final state payment p,; rewards transitions from
M to M. In an afforestation program, it’s intuitive to com-
pensate a participant for tree growing efforts which involve
non-zero payments in po, ..., pp—1. Once a tree matures, it
is no longer costly for the agent to keep the tree alive. A pos-
itive payment py; may appear to be unnecessary but in the
optimal solution, the principal may have to keep paying the
agent even after a tree reaches M so that the agent does not
cut it down and reenter the program.> However, the princi-
pal does not need to pay the agent a positive price to keep a
mature tree if the value of a mature tree to the agent is large.

Corollary 1. For every cy, there is a v}, that is large enough
such that the optimal payment schedule will induce Ve < cp,
¢ to choose ¢ = 0o and py; = 0.

Although v4); is exogenous in our model, in reality it can
be partially affected by design. By working with local stake-
holders, the principal can offer tree seedling options preferred
by farmers and educate them the benefit of agroforestry (for
example, the “Trees on Farms for Biodiveristy” project at the
World Agroforestry Center #).

5 Limitations & Extensions

In our model, the agent’s cost type is the sole source of het-
erogeneity. Other potential sources of heterogeneity to con-
sider include the agent’s discounting rate and risk preference
[Thli ef al., 2016; Jack, 2013]. We assume that the principal
has the knowledge of the agent cost distribution throughout
the tree growing stages. This further advocates the need for
robustness considerations.

We also consider a model with stochastic agent costs,
where in every period, the agent cost is redrawn from some
distribution. The stochastic agent cost model aims to answer
how payments can be designed to alleviate dropout due to
stochastic shocks, including income shocks.
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planting more trees. In our model, we consider an agent who have
reached his land capacity. Thus, the agent only reenter through cut-
ting down existing trees and planting new ones.

*https://treesonfarmsforbiodiversity.com/about-trees-on-farms/


https://treesonfarmsforbiodiversity.com/about-trees-on-farms/

References

[Carroll, 2015] Gabriel Carroll. Robustness and linear con-
tracts. Am. Econ. Rev., 105(2):536-563, 2015.

[Dao er al., 2019] David Dao, Catherine Cang, Clement
Fung, Ming Zhang, Reuven Gonzales, Nick Beglinger, and
Ce Zhang. GainForest : Scaling Climate Finance for For-
est Conservation using Interpretable Machine Learning on
Satellite Imagery. ICML Clim. Chang. Work. 36th Int.
Conf. Mach. Learn., pages 5-7, 2019.

[DeMarzo and Sannikov, 2006] Peter M. DeMarzo and
Yuliy Sannikov. Optimal security design and dynamic
capital structure in a continuous-time agency model. J.
Finance, 61(6):2681-2724, 2006.

[Diitting et al., 2019] Paul Diitting, Tim Roughgarden, and
Inbal Talgam-Cohen. Simple versus optimal contracts.
ACM EC 2019 - Proc. 2019 ACM Conf. Econ. Comput.,
pages 369-387, 2019.

[Engel et al., 2008] Stefanie Engel, Stefano Pagiola, and
Sven Wunder. Designing payments for environmental ser-
vices in theory and practice: An overview of the issues.
Ecol. Econ., 65(4):663-674, 2008.

[Fenichel et al., 2019] Eli P Fenichel, Wiktor Adamowicz,
Mark S Ashton, and Jefferson S Hall. Incentive Systems
for Forest-Based Ecosystem Services with Missing Finan-

cial Service Markets. J. Assoc. Environ. Resour. Econ.,
6(2):319-347, 2019.

[Hansen et al., 20131 M. C. Hansen, A. Tyukavina P. V.
Potapov, R. Moore, M. Hancher, S. A. Turubanova, and
J. R. G. Townshend D. Thau, S. V. Stehman, S. J.
Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L.
Chini, C. O. Justice. High-Resolution Global Maps of
21st-Century Forest Cover Change. Science (80-. ).,
342(November):850-854, 2013.

[Holmstrom and Milgrom, 1987] Bengt Holmstrom and
Paul Milgrom. Aggregation and Linearity in the Pro-
vision of Intertemporal Incentives. Econometrica,
55(2):303-328, 1987.

[Thli et al., 2016] Hanna Julia Thli, Brian Chiputwa, and
Oliver Musshoff. Do changing probabilities or payoffs
in lottery-choice experiments affect risk preference out-
comes? Evidence from rural Uganda. J. Agric. Resour.
Econ., 41(2):324-345, 2016.

[TPCC, 2019] IPCC. Climate Change and Land: an IPCC
special report on climate change, desertification, land
degradation, sustainable land management, food security,
and greenhouse gas fluxes in terrestrial ecosystems, 2019.

[Jack and Jayachandran, 2018] B. Kelsey Jack and Seema
Jayachandran. Self-selection into payments for ecosys-
tem services programs. Proc. Natl. Acad. Sci., page
201802868, 2018.

[Jack et al., 2015] B. Kelsey Jack, Paulina Oliva, Christo-
pher Severen, Elizabeth Walker, and Samuel Bel. Technol-
ogy adoption under uncertainty: Take up and subsequent
investment in Zambia. Natl. Bur. Econ. Res., 21:52, 2015.

[Jack, 2013] Kelsey K. Jack. Private information and the al-
location of land use subsidies in Malawi. Am. Econ. J.
Appl. Econ., 5(3):113-135, 2013.

[Jayachandran er al., 2017] Seema Jayachandran, Joost De
Laat, Eric F Lambin, Charlotte Y Stanton, Robin Audy,
and Nancy E Thomas. Cash for carbon: A randomized
trial ofpayments for ecosystem services to reduce defor-
estation. Science (80-. )., 357(6348):267-273, 2017.

[Jean er al., 2019] Neal Jean, Sherrie Wang, Anshul Samar,
George Azzari, David Lobell, and Stefano Ermon.
Tile2Vec: Unsupervised Representation Learning for Spa-
tially Distributed Data. Proc. AAAI Conf. Artif. Intell.,
33:3967-3974, 2019.

[Levin, 2003] Jonathan Levin. Relational Incentive Con-
tracts. Am. Econ. Rev., 93(3):835-857, 2003.

[Liitjens et al., 2019] Bjorn Liitjens, Lucas Liebenwein, and
Katharina Kramer. Machine Learning-based Estimation
of Forest Carbon Stocks to increase Transparency of For-
est Preservation Efforts. NeurlPS Work. Tackling Clim.
Chang. with Al, 2019.

[Ross, 1973] S.A. Ross. The Economic Theory of Agency
: The Principal > s Problem Linked references are avail-
able on JSTOR for this article : The Economic Theory
of Agency : The Principal * s Problem. Am. Econ. Rev.,
63(2):134-139, 1973.



	Introduction
	Model
	The Principal's Problem

	The Agent's Perspective
	Solving The Principal's Problem
	Who Drops Out and When
	How Much to Pay

	Limitations & Extensions

