Session 5: Best Paper

PACT '20, October 3-7, 2020, Virtual Event, USA

Model-Based Warp Overlapped Tiling for Image Processing
Programs on GPUs

Abhinav Jangda
aabhinav@cs.umass.edu
University of Massachusetts Amherst
United States

ABSTRACT

Domain-specific languages that execute image processing pipelines
on GPUs, such as Halide and Forma, operate by 1) dividing the
image into overlapped tiles, and 2) fusing loops to improve mem-
ory locality. However, current approaches have limitations: 1) they
require intra thread block synchronization, which has a nontrivial
cost, 2) they must choose between small tiles that require more
overlapped computations or large tiles that increase shared mem-
ory access (and lowers occupancy), and 3) their autoscheduling
algorithms use simplified GPU models that can result in inefficient
global memory accesses.

We present a new approach for executing image processing
pipelines on GPUs that addresses these limitations as follows. 1) We
fuse loops to form overlapped tiles that fit in a single warp, which
allows us to use lightweight warp synchronization. 2) We introduce
hybrid tiling, which stores overlapped regions in a combination of
thread-local registers and shared memory. Thus hybrid tiling either
increases occupancy by decreasing shared memory usage or de-
creases overlapping computations using larger tiles. 3) We present
an automatic loop fusion algorithm that considers several factors
that affect the performance of GPU kernels. We implement these
techniques in PolyMage-GPU, which is a new GPU backend for
PolyMage. Our approach produces code that is faster than Halide’s
manual schedules: 1.65x faster on an NVIDIA GTX 1080Ti and
1.33% faster on an NVIDIA Tesla V100.

CCS CONCEPTS

- Software and its engineering — Compilers.

KEYWORDS

Polyhedral Optimizations; Graphics Processing Units; Image Pro-
cessing Pipelines

ACM Reference Format:

Abhinav Jangda and Arjun Guha. 2020. Model-Based Warp Overlapped
Tiling for Image Processing Programs on GPUs. In Proceedings of the 2020
International Conference on Parallel Architectures and Compilation Techniques
(PACT °20), October 37, 2020, Virtual Event, GA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3410463.3414649

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10...$15.00
https://doi.org/10.1145/3410463.3414649

317

Arjun Guha
a.guha@northeastern.edu
Northeastern University
United States

1 INTRODUCTION

Image processing programs are essential in several domains, includ-
ing computer vision, embedded vision, computational photography,
and medical imaging. These programs run on a variety of platforms,
from embedded systems to high-performance clusters that process
large amounts of image data. With the increasing demand and
sophistication of image processing computations (including real-
time requirements), there is a growing need for high-performance
implementations of image processing programs.

An image processing program is logically structured as a directed
acyclic graph of connected stages, where each stage performs per-
pixel data parallel operations on its input image and produces
an output image for dependent stages. There are several domain-
specific languages (DSLs) for writing image processing pipelines,
including Halide [22], PolyMage [19], and Forma [23]. These DSLs
allow the programmer to write independent stages in a natural
way, but still get high-performance code by applying key optimiza-
tions, including loop fusion and overlapped tiling. Loop fusion allows
the program to exploit locality, and is performed on the basis of a
schedule that is either specified by an expert [22, 23] or automat-
ically generated using heuristics [6, 14, 17, 18]. After loop fusion,
overlapped tiling [19, 22, 23] splits each stage into overlapping re-
gions (known as tiles) that can be processed in parallel without
synchronization with other tiles. On a GPU, each tile is mapped to a
thread block, which stores intermediate results (scratchpad arrays)
in shared memory.

These approaches [8, 12, 21-25, 28, 33] to overlapped tiling and
automatic loop fusion give suboptimal performance on modern
GPUs for three reasons. 1) Processing an overlapped tile per thread
block has a high synchronization cost across stages. 2) Smaller tiles
have more overlapped regions (and thus require more redundant
computation), but larger tiles require more shared memory accesses
(and thus lower occupancy). 3) State-of-the-art autoscheduling al-
gorithms for loop fusion and tile-size selection do not employ a
rich cost model for GPUs. For example, cost models in [17, 24] do
not consider the number of global memory transactions, the ability
to hide latency of global memory accesses, and occupancy.

We present PolyMage-GPU (based on PolyMage [19]), a compiler
for image processing pipelines that leverages the architecture of
modern GPUs to generates high performance code. PolyMage-GPU
exploits the fact that all threads in a warp can synchronize using
warp synchronization, which has significantly lower overhead than
thread block synchronization. In addition, modern GPUs have warp
shuffle [1, Chapter B.16] instructions that allow threads in a warp
to read each others’ register values. PolyMage-GPU uses warp shuf-
fles to lower shared memory usage and support larger overlapped
tiles. Finally, we develop a cost model for GPUs that accounts for

Session 5: Best Paper

several factors, including the number of global memory transac-
tions, occupancy, and resource utilization. We use this cost model
to determine the optimal tile and thread block sizes and loops to
fuse, using Dynamic Programming Fusion [14].

To summarize, this paper makes the following contributions.

(1) We present an approach to overlapped tiling on GPUs that
executes one overlapped tile per warp, which significantly
decreases synchronization costs (Section 4).

(2) We present hybrid tiling, which stores portions of a tile in
registers instead of shared memory, which reduces the frac-
tion of redundant computations, and reduces shared memory
utilization. This improves performance by decreasing global
memory loads and increasing occupancy. Hybrid tiling re-
lies on warp shuffle instructions available in recent GPUs
(Section 5).

(3) We present a fast automatic fusion and tile size selection algo-
rithm that considers key factors affecting the performance of
an image processing pipeline on a GPU, including the num-
ber of global memory transactions, fraction of redundant
computations, and occupancy (Section 6).

(4) We implement the aforementioned techniques in PolyMage-
GPU, which is a new GPU backend for PolyMage [19], which
is a DSL embedded in Python for writing image processing
pipelines.

(5) Using established benchmarks, we compare our approach to
manually written schedules in Halide. On a GeForce GTX
1080Ti, we achieve a speedup of 1.65X over manual schedules
and on a Tesla V100, we achieve a speedup of 1.33X over
manual schedules.

The rest of this paper is organized as follows. Section 2 dis-
cusses the architecture of NVIDIA GPUs, the PolyMage DSL, and
Dynamic Programming Fusion. Section 3 presents an overview of
our approach. Section 4 presents our technique for running one
overlapped tile per warp. Section 5 presents hybrid tiling. Section 6
presents our automatic fusion algorithm. Section 7 evaluates our
work. Section 8 discusses related work. Finally, Section 9 concludes.

Our implementation is available at bitbucket.org/abhijangda/

polymage-gpu.

2 BACKGROUND

This section first presents the essentials of GPU architecture that
are necessary for our work. We then present the PolyMage DSL
for writing image processing programs, and two key ideas that it
employs: dependence vectors and dynamic programming fusion.

2.1 NVIDIA GPU Architecture

An NVIDIA GPU consists of several Simultaneous Multiprocessors
(SM) that execute one or more thread blocks. Each SM consists of
several CUDA cores, shared memory, and registers. The number of
warps that an SM can execute concurrently depends on properties
of the running CUDA kernel: the number of thread blocks it has,
the number of threads per thread block, the shared memory used
by each thread block, and the registers used by each thread. The
occupancy is the ratio of the number of concurrently executing
warps to the maximum number of warps supported. When a warp
accesses global memory, its execution is delayed due to memory

318

1
2
3
4

PACT '20, October 3-7, 2020, Virtual Event, USA

int val = rand ();
for (int offset = 16; offset > 0;offset /= 2)
val += __shfl_sync(oxffffffff, val,
threadIdx.x+offset, warpSize);

Figure 1: CUDA kernel invoked with 32 threads in x-dimension. At
each iteration, each thread add next offset thread’s val to its val. At
the end of loop, val of the first thread contains the sum.

access latency. To hide this latency, the warp scheduler switches
execution to another warp that is ready to execute.

CUDA threads can synchronize in two ways. Thread block syn-
chronization synchronizes all threads in a block: until all warps in
the block reach the same __syncthreads statement, no warp is
allowed to proceed. However, as mentioned above, when a warp
is stalled on a global memory access, the SM tries to run another
warp. Thread block synchronization can force an SM to idle if all
warps are waiting for memory accesses to be satisfied. Contem-
porary current stencil code generators for GPUs use thread block
synchronization between producer-consumer stages (Section 8). In
contrast, warp synchronization synchronizes all threads in a warp,
and no thread can proceed until all threads in the warp reach the
synchronization point (__syncwarp). However, other warps in the
same thread block can make progress, thus it is more lightweight
than thread block synchronization.

The warp shuffle instructions [1, Chapter B.16][5] available in
recent AMD and NVIDIA GPUs allow threads to read register values
from other threads in the same warp. The __shf1_sync instruction
takes four arguments: a 32-bit mask of threads participating in
the shuffle, the variable stored in the register to read, the index
of the source thread containing the register, and the warp size.
Similarly, __shf1l_down_sync and __shf1l_up_sync read registers
from a thread with an index immediately before or after the calling
thread. Figure 1 shows an example from [4] of reduction using
__shfl_sync. For a shuffle to succeed both the calling thread and
source thread must execute the instruction.

2.2 PolyMage DSL

PolyMage [19] is a DSL embedded in Python for writing image
processing pipelines. The PolyMage compiler transforms programs
in the DSL into high-performance code for CPUs. Figure 2 shows an
image blurring program (blur) with two stages (blurx and blury).
The parameters to the pipeline are the number of rows and columns
in the image (line 1). The program first feeds the input image (img
on line 9) to blurx, and then the output of blurx to blury. Each
stage is a function mapping a multi-dimensional integer domain
to values representing intensities of image pixels (lines 19 and 24).
The domain of the function is defined at lines 12—14. blurx takes
the image as input and blurs it in the x-direction (lines 19-22).
blury blurs the output of blurx in the y-direction and produces
final output (lines 24-26). The PolyMage compiler performs loop
fusion on producer-consumer stages to improve locality and provide
parallel execution. When fusing two stages, PolyMage performs
overlapped tiling using polyhedral transformations. Two adjacent
tiles perform redundant computations to ensure that all the data
required to compute the output of a tile (known as liveouts) is
available within that tile, providing parallel execution of all tiles.
Within a tile, the output of a producer stage is transferred to its

Session 5: Best Paper

R,C = Parameter (Int,"R"),Parameter (Int,"C")
Vars

x = Variable(Int,b"x")

y = Variable(Int,"y")

c = Variable(Int,"c")

Input Image

img = Image(Float,"img" ,6[3,R+2,C+2])

O 0N A W N

==
—- o

Intervals

12 cr = Interval(Int,0,2)

13 xrow,xcol = Interval(Int,1,R),Interval(Int,0,C+1)
14 yrow,ycol = Interval(Int,1,R),Interval(Int,1,C)

15

16 cond = Condition(x,'>=',1) & Condition(x,'<=',6R) &
17 Condition(y, '<="',C) & Condition(y, '>="',1)
18

19 blurx = Function(([c,x,y],[cr,xrow,xcol]),

20 Float,"blurx")

21 blurx.defn = [Case(cond,(img(c,x-1,y) + img(c,x,y) +
22 img(c,x+1,y))/3)]

23 blury = Function(([c,x,yl,[cr,yrow,ycoll),

24 Float,"blury")

25 blury.defn = [Case(cond,(blurx(c,x,y-1) +

26 blurx(c,x,y) + blurx(c,x,y+1))/3)]

Figure 2: PolyMage DSL specification for blur.

consumer using small buffers, known as scratchpads. A scratchpad
is small enough to fit in a CPU cache, or in our work, in GPU shared
memory or registers.

2.3 Dependence Vectors

PolyMage uses dependence vectors to encode the dependencies
between consumer and producer stages. A dependence vector [32]
is the difference of the time stamps when a value is consumed
and when it is produced. For example, in the blur program, the
blury stage, at (2,c,x,y), consumes values that the blurx stage
produces at (1,c,x,y-1), (1,c,x,y), and (1,c,x,y+1). This is

captured by the dependence vectors (1,0,0,-1), (1,0,0,0), and (1,0,0,1).

2.4 Dynamic Programming Fusion

Dynamic Programming Fusion (DP-Fusion) [14] is an algorithm
that performs automatic fusion of image processing pipelines in
a few seconds. DP-Fusion finds schedules that are competitive
with take days for an autotuner, and are better than a greedy CPU
autoscheduler [18]. Instead of using a greedy algorithm and a simple
cost function, DP-Fusion enumerates all valid fusion possibilities
and uses dynamic programming combined with an analytic cost
function to significantly decrease the runtime of a combinatorial
algorithm. Among all fusion possibilities, DP-Fusion finds the best
fusion choices on the basis of the cost of candidate fused loops. The
cost of fused loops is calculated using a cost function that also uses
a model to determine tile sizes. PolyMage uses DP-Fusion to find
the best schedules for image processing programs executing on
multi-core CPUs [14]. In this paper, we present a cost model for
GPUs that integrates with DP-Fusion.

319

PACT '20, October 3-7, 2020, Virtual Event, USA

1 blur_otptb(img[31LRILCI, blury[3J[R-2J[C-21)

2 shared blurx[blockDim.yJ[tilexblockDim.x+2];
3 c = threadIdx.z

4 y = blockIdx.y*blockDim.y + threadIdx.y

5 for (tx = 0; tx < tile+1; tx++)

6 xx = tx * blockDim.x + threadIdx.x

7 x = (blockIdx.x*blockDim.x)*tx + xx

8 if (xx < tilexblockDim.x+2)

9 blurx[yl[lxx] = (imglcIly-11[xJ+imglcIlyllx]+
10 imglclly+110x1)/3

11 __syncthreads ();

12 for (tx = 0; tx < tile; tx++)

13 xXx = tx * blockDim.x + threadIdx.x

14 x = (blockIdx.x*blockDim.x)*tx + xx

15 blury[cllyl[x] = (blurx[yJ[xx-1J1+blurx[yJ[xx]1+
16 blurx[yl[xx+11)/3

Figure 3: Equivalent CUDA code generated by Halide for blur. Both
blurx and blury are fused in an overlapped tile of size tile in x and
1in y, which is computed by one thread block.

Functions

Shared Memory
Tile la Tile 1b

Register
Tile 1d

blury

blurx

| ty t2 by ta by b2 by o tg by by to tg Ty ty T b3ty

Computation' on pixels (x)

Figure 4: Hybrid Tiling for blur program with tile size of 2 in x-
dimension and warp size of 4. The overlapped tile is split into four
tiles. Tiles in red are stored in shared memory and tiles in green are
stored in registers. Each point of blurx is computed and stored in
the register of same thread represented by t;. The producer loads in
red are from the registers of current thread (Type (D), black are from
shared memory (Type), green are from the registers of another
thread in same parallelogram tile (Type ®), and brown are from
registers of another thread in previous parallelogram tile (Type).

3 OVERVIEW

Figure 3 shows CUDA code that is equivalent to the code that Halide
produces for blur. The code fuses both blurx and blury together and
uses overlapped tiles of length tile in the x-dimension and unit
length in y-dimension. During execution, all threads in a thread
block 1) compute blurx in parallel by looping over all points in the
tile (lines 5-10), 2) store the result of blurx in a scratchpad (which is
in shared memory), 3) use thread-block synchronization to ensure
that all blurx values are ready (line 11), and 4) calculates blury
in parallel, which depends on blurx (line 12— 16). On an NVIDIA
GTX 1080Ti, this code exhibits its best performance (1.40ms) on a
4096Xx4096x3 input with 8 tiles and block sizes of 64x4x1. However,
thread block synchronization can lower occupancy, so there is room
for improvement.

Overlap Tile per Warp (OTPW). We modify the program to assign
each overlapped tile to a warp, instead of a thread block. This change
allows us to use warp synchronization (__syncwarp), which allows
the SM to execute a one warp even if another warp is waiting for a
memory access. This code exhibits its best performance (1.35ms)
with 8 tiles and block sizes of 64x4x1. This is a 1.04X speedup
over the prior approach. This choice of tile size produces 0.8%

Session 5: Best Paper

1 blur_otpw_ht(img[3JL[RILCI, blury[3]1[R-2][C-2])

2 shared blurx[blockDim.yJ[blockDim.x/warpSz]

3 [tile/2xwarpSz+2];

4 y = blockIdx.y * blockDim.y+threadIdx.y;

5 c = threadIdx.z;

6 warpSz = warpSize;

7 warp = threadIdx.x/warpSz;

8

9 for(tx = 0; tx < 2; tx++)

10 for(txx = txxtile/4;txx<(tx+1)xtile/4+1; txx++)
11 xx = tilexwarpSz+threadIdx.x%warpSz;

12 x = (blockIdx.x+1)*blockDim.xxtx+threadIdx.x;
13 if(xx < tilexwarpSz+2)

14 blurx[yllwarpllxx] = (imglclly-11[x1+

15 imgLcIlylIxI+imglclly+110x1)/3;

16 X = warp_idx+8xwarpSz+lane_id_x;

17 blurx_8 = (imglclly-11[x1+imglcllyllx] +
18 img[cILy+110x1)/3;

19 X = warp_idx+9xwarpSz+lane_id_x;

20 blurx_9 = (imglclly-11[xJ+imglcllyllx]1+
21 imglcIly+11lx1)/3;

22 /*similarly, for all iterations till 15%/
23 syncwarp();

24 for(tx = 0; tx < 2; tx++)

25 for(txx = txxtile/4; txx <(tx+1)*xtile/4; txx++)
26 xx = tilexwarpSz+threadIdx.x%warpSz;

27 x = (blockIdx.x+1)xblockDim.x*xtx+threadIdx.x;
28 if(xx > @ and xx < tile/2*warpSz+2)

29 blury[cllyl[x] = (blurx[yllwarpl[xx-1]+

30 blurx[yJ[warpl[xxJ+blurx[y]l[lwarpl[xx+11)/3;
31 blurx_1_2_8 = shfl_up(FULL_MASK, blurx_8, 2);
32 blurx_1_1_8 = shfl_up(FULL_MASK, blurx_8, 1);
33 if(lane_id_x == 0)

34 blurx_1_2_8=blurx[yl[warp][7xwarpSz+warpSz-2];
35 blurx_1_1_8=blurx[yJl[warp]l[7*warpSz+warpSz-1];
36 if(lane_id_x == 1)

37 blurx_1_2_8=blurx[yl[lwarpl[7*warpSz+warpSz-171;

38 X = warp_idx+8xwarpSz+lane_id_x;

39 blury[cllyl[x] = (blurx_1_2_8+blurx_1_1_8+

40 blurx_8)/3;

41 blurx_1_2_9 = shfl_up(FULL_MASK, blurx_9, 2);

42 blurx_1_1_9 = shfl_up(FULL_MASK, blurx_9, 1);

43 _blurx_1_2_9=shfl(FULL_MASK, blurx_8, warpSz-2);
44 _blurx_1_1_9=shfl(FULL_MASK, blurx_8, warpSz-1);
45 if(lane_id_x == 0)

46 blurx_1_1_9 = _blurx_1_1_9;

47 blurx_1_2_9 = _blurx_1_2_9;

48 if(lane_id_x == 1) blurx_1_2_9 = _blurx_1_1_9;
49 X = warp_idx+9xwarpSz+lane_id_x;

50 blury[cllyl[x] = (blurx_1_2_9+blurx_1_1_9+

51 blurx_9)/3;

52 /xsimilarly, for all iterations till 15%/

Figure 5: CUDA code for blur, with blurx and blury fused in an
overlapped tile of size tile in the x-dimension, which is computed
by one warp. The first half of the tile is stored in shared memory

with latter half in registers. In this code shfl* refers to __shfl*_sync.

redundant computations per warp. We can achieve fewer redundant
computations (0.4%) with tile size 16, but that increases running
time (1.45ms) because it consumes far more shared memory (over
16KB). This limits the number of warps that the GPU can run
concurrently, i.e., occupancy is only 62.5%.

Hybrid Tiling. To further improve performance, we introduce
hybrid tiling, which is a technique that decreases the size of the

320

PACT '20, October 3-7, 2020, Virtual Event, USA

scratchpad buffer in shared memory, by storing some parts of the
overlapped tile in registers. In the earlier approaches, we employed
the scratchpad to share values between consumers (blury) and
producers (blurx) in a thread block. However, since we now assign
each tile to a warp, we can use warp shuffle instructions that allow
threads in a warp to read register values from other threads in
the same warp. This eliminates the need for per thread redundant
computation that arise in register blocking. Figure 4 sketches the
structure of the computation, assuming four tiles: the first two tiles
are stored in shared memory, whereas the latter two tiles are stored
in registers. When a blury value depends on a blurx-value in a
register, it can read it directly, using warp shuffles to read across
threads if needed.

On a GTX 1080Ti, the code so far only uses 24 registers. With a
tile size of 16, we can store half of the tile in registers, which halves
the shared memory usage, and leads to 100% occupancy. With
hybrid tiling, the code runs in 1.2ms which is 1.13X faster than the
OTPW approach, and 1.16x faster than the original program.

Figure 5 sketches the CUDA code for blur that uses overlap tile per
warp and hybrid tiling. In the figure, the data points of blurx for first
two tiles are stored in shared memory while the later tiles are stored
in the registers. Lines 9-15 processes blurx on the first two tiles
stored in shared memory using a warp by assigning consecutive
data points to consecutive threads in a warp and looping over all
points in both tiles. Lines 16-22 unroll the loop and store each data
point in registers for two register tiles. Lines 24-30 compute the
values of blury for first two tiles that are stored in shared memory.
Lines 31-32 retrieve the values of blurx from other threads using
warp shuffle. Since the first two values for the first thread in a warp
are the values produced and stored in shared memory by last two
threads of that warp, lines 33-37 retrieve the last two values of
shared memory for that warp. Line 40 computes each blury point
for the eighth iteration of the larger overlapped tile. Similarly, for
the ninth iteration, lines 41-48 retrieve the values of blurx_9 from
previous threads and for first two threads of warp values of blurx_8
are retrieved from last two threads of the warp. We generate code
for the remaining six iterations in the same manner.

Loop Fusion. The final problem involves choosing tile and block
sizes. We present an automatic fusion algorithm that considers key
factors affecting the performance of GPU kernels which are not
considered in previous work [6, 17, 18]: 1) number of global mem-
ory transactions, 2) achieved and theoretical occupancy, 3) GPU
resource usage, and 4) fraction of overlapping computations.

We implement OTPW, hybrid tiling, and our new new fusion
algorithm in PolyMage-GPU. Figure 6 shows the structure of the
compilation pipeline. In summary, our approach uses low cost syn-
chronization, distributes tile in shared memory and registers, de-
creases shared memory usage, and enables larger tiles to decrease
number of overlapping computations without any loss in occu-
pancy. We also address the problem of fusing pipeline stages and
choosing tile and thread block sizes automatically.

4 OVERLAP TILE PER WARP

In this section, we describe how we calculate 1) the tile size for each
stage, 2) the assignment of input data points to threads, 3) the size
of the output scratchpad, and 4) the fraction of overlap.

Session 5: Best Paper

Create DAG jm-—- = -
Polyhedral 1 Automatic
DSL Spec Ry : Fusion
e i for GPUs

sentation

PACT '20, October 3-7, 2020, Virtual Event, USA

CUDA Code

. Overlapped !
: Tile Per Warp
|

[) ")
|
|
|

1
Hybrid Tiling —— | .
I Generation

Figure 6: Compilation pipeline of image processing program written in PolyMage-GPU, which is based on PolyMage [19]. The
three phases in middle with dashed rectangles are the new phases of PolyMage-GPU (Sections 4-6).

Let (b, by, bz) be the coordinates of a thread block (Bx, By, Bz)
be the thread block size. Consider a group of fused stages with tile
sizes (T, Ty, T;) that consumes a three-dimensional input of size
(Nx, Ny, Nz), where each dimension is labelled i € {x,y,z}. We
convert the three-dimensional coordinates of a thread (tx, ty, tz)
to a linear thread ID: tx + Bx X ty + Bx X By X t;. The Warp ID of
a thread is the thread ID divided by WarpSize and the index of a
thread in a warp (known as its lane ID) of a thread is the remainder.
We define warp sizes, Wy, Wy, W, such that:

Wy = minimum(By,WarpSize)
Wy = minimum(By,WarpSize + Wy)
W, = minimum(B,,WarpSize + (Wx x Wy))

In these equations we assume that number of threads in a thread
block are a multiple of WarpSize. (We add extra threads as padding
if needed.) These warp sizes are the number of threads with distinct
IDs of that dimension in a warp. The number of warps in dimension
i in a thread block is equal to the ratio of block size to the warp size
of that dimension ([B; /W;). The warp ID of a thread in a dimension
is the floor of division of the thread’s ID in that dimension to the
warp size of that dimension, i.e.(|(b; X B; + t;)/W;]). Moreover,
the lane ID is the remainder ((b; X B; + t;) mod W;). Note that
product of all the warp sizes obtained using these equations is
equal to WarpSize. For given overlapped tile sizes, we create a warp
overlapped tile by extending the tile sizes of each dimension to cover
exactly one warp. The total number of points in a warp overlapped
tile excluding the redundant computations is the product of the
number of points in the given overlapped tile sizes and WarpSize.
For the given overlapped tile size, the size of the warp overlapped
tile is (Tyx X Wy, Ty X Wy, T X Wy). For example, if the tile size is
(8,4,1), block size is (16,8,1), then the warp size will be (16,2,1) and
the warp overlapped tile size will be (128,8,1).

Tiling a dimension produces two dimensions: an outer dimension
that is iterated from the number of tiles and an inner dimension
that is iterated tile size times. We initialize the outer dimension
to the warp ID of that dimension, and the inner dimension to the
sum of the lane ID and the product of current tile iteration and
WarpSize. To process each warp tile, we assign consecutive threads
in the i dimension to consecutive data points in an outer loop
that runs for T; times.

The size of each scratchpad for a stage is exactly the number of
data points computed by the thread block for that stage. For the nth
stage, each warp computes two types of data points in it dimension:
1) T; X W; computations for the tile, and 2) O} overlapping compu-
tations. We represent the number of data points computed (and the
size of the scratchpad) for nt? stage as [1;c(x,y,z) [Bi/Wil x (T; x
W + Oln)

321

Since tiling introduces extra conditional branches and arithmetic
instructions, we do not perform OTPW in a dimension when the
warp size in that dimension is 1. However, as long as the group of
stages processes more than one input point, at least one dimension
will have warp size greater than 1.

5 HYBRID TILING

In this section we present hybrid tiling, which divides a tile between
shared memory and registers. Hybrid tiling riles on the fact that
each overlapped tile fits in a single wrap. We use warp shuffle in-
structions to allow each thread to access data from other threads in
a warp, which eliminates the need for certain redundant computa-
tions per thread. Hybrid tiling solves the issues of shared memory
only tiling by 1) storing a part of a tile in registers to decrease allo-
cated shared memory, 2) providing extra storage for larger tile sizes,
which results in fewer redundant computations, and in turn, fewer
global memory loads and total computations; and 3) storing tiles
partially in registers, which leads to faster access to data points.

We split the warp overlapped tile over a split dimension, into
several parallelogram tiles with left tiles stored in shared memory
and right tiles stored in registers (Figure 4). These smaller parallel-
ogram tiles are of warp size in the split dimension, and the same
size as the warp overlapped tile in other dimensions. The slope of
the parallelogram tiles are parallel to the right hyperplane of the
warp overlapped tile in the split dimension, which ensures there
is no cyclic dependence between two adjacent tiles. The left paral-
lelogram tiles, including the overlap on the left side, are stored in
shared memory. Since the right tiles depend on left tiles, we must
process the left tiles first.

Since all producer loads by OTPW are in the shared memory,
we need to convert these loads to access data stored in registers
if necessary. Figure 4 shows that there are four types of producer
load: (D) is a load from a register of the current thread, if the load
index is same as the iteration in the split dimension;) is a load
from shared memory, if the load index is less than the lower bound
of the register tile in the split dimension; () is a load from another
thread’s register in same tile, if the load index in the split dimension
is less than the iteration in the split dimension; and (@ is a load from
another thread’s register from the previous tile, if the difference
between the lane ID of the current thread in the split dimension
and the difference between the iteration and load index in the split
dimension is less than zero.

We now present the code generation algorithm that uses de-
pendence vectors between producer and consumer stages. Before
executing the hybrid tiling algorithm, we use PolyMage’s align-
ment and scaling to make the dependence vectors between each
producer-consumer pair constant. Algorithm 1 is our hybrid tiling
algorithm. For simplicity, we present the algorithm making two
assumptions. First, we assume that the x-dimension is the split

Session 5: Best Paper

dimension. Second, we assume that the difference between any two
dependence vectors in the same dimension after alignment and
scaling is less than the warp size. Several of our benchmarks satisfy
these assumptions. However, it is straightforward to generalize the
algorithm [15, Appendix A].

The arguments to the 2-D-HYBRIDTILING function are the group
of stages (G), tile sizes (T X Ty), warp sizes (W X Wy), and register
tile size (fracReg) as a fraction of the tile size in the split dimension.
The result of the function is CUDA code that does hybrid tiling.
First, the algorithm finds a split dimension with tile size greater
than 1 (line 15). If no such dimension is found, then tiles must be
stored entirely in the shared memory. The rest of the algorithm
assumes that the x-dimension is the split dimension. Let ¢ and
$ry be the right hyperplanes of warp overlapped tiles of G in the x
and y dimensions respectively. We first generate the shared memory
tile using the PolyMage compiler, and then generate register tiles
using the GENREGTILE function that takes a stage of the group (H),
the hyperplanes (¢,x, ¢#ry), the register tile size (Rx X Ry), and the
warp sizes (Wy X W) as arguments (lines 23-24).

For all the iterations in the register tile, including the overlap-
ping computations, we store each computed value of stage H in
a distinct variable, instead of shared memory (line 5). We replace
each producer load in the loop is replaced with either a shared
memory read or a warp shuffle (lines 6-13). We get the dependence
vector between the producer and consumer (line 7) as ¢x and ¢y.
(Note that ¢x < ¢rx and ¢y < @,y due to overlapped tiling al-
gorithm.) Figure 7 shows the code generated for three cases that
arise when generating code for a load P[axx+b][c*y+d]. The fig-
ure shows two types of source lane IDs that contain the register,
which stores the value of the producer load: 1) currTileSrcLane
is the lane ID for a source thread in the current parallelogram tile
and 2) prevTileSrcLane is the lane ID for a source thread in the
previous parallelogram tile. Value of both ids in x-dimension de-
pends on ¢y — ¢rx and in y-dimension depends on ¢y — ¢yy. We
now explain each of the three cases in detail. 1) If ¢ = ¢, then
the value needed for this load is stored by the current thread’s
register and we generate the code for Type D (line 9). 2) When
¢x — ¢rx # 0 and the iteration in split dimension, i.e., x-dimension
is first iteration of the register tile, then first |y - ¢, | threads of
warp loads from shared memory (Type 2)) and remaining threads
loads from registers of threads in same parallelogram tile (Type (3).
Figure 7b shows the code generated for this case. The conditional
determines whether to load from shared memory or from another
thread’s register. The __shfl_sync function loads the value from
the source thread’s register. The function getMask retrieves the
mask of threads that can participate in the warp shuffle. 3) Other-
wise, if a thread needs to load from another thread’s register that
stores value of either the current parallelogram tile (Type (3)) or the
previous parallelogram tile (Type @), then we generate the code
in Figure 7c. Two warp shuffles are generated that are executed by
all threads and a conditional expression selects which loaded value
to use.

Instead of generating register array, PolyMage-GPU generates
a register access by computing the value of axx+b and c*y+d for
given register tile iteration {x,y} and converts these values to strings.
Hence, it produces explicit variable names for each element of the
register array.

322

PACT '20, October 3-7, 2020, Virtual Event, USA

val = Reg_P[x][c*xy + d]

(a) Code for a register access from same thread is generated when
the source lane ID is the current lane ID, i.e. ¢x = @,x (Type D).
currTileSrcLane = (lanelId.x + diffPhi.x) +

(laneld.y + diffPhi.y)*warpSize.x;
/xType 3:%/ val = __shfl_sync(getMask(),

Reg_P[xJ[c*y+d], currTileSrcLane);

if (laneld.x + diffPhi.x < @)

/xType 2:%/ val = ShMem_P[axx+b]J[cxy+d];

(b) Code generated when current iteration is the first iteration of
register tile and ¢ — @, # 0. When the sum of lane index and ¢, —
¢rx is less than zero, then value is accessed from shared memory
tile (Type @), otherwise value is accessed from register of thread in
the same parallelogram tile (Type).
prevTileSrcLane = (warpSize.x - 1 + diffPhi.x)+
(warpSize.y - 1 + diffPhi.y)xwarpSize.x;
currTileSrcLane = (laneld.x + diffPhi.x) +
(laneld.y + diffPhi.y)*warpSize.x;
/*Type 3:x/ val = __shfl_sync(getMask(),
Reg_P[xJ[c*y+d], currTileSrclLane);
if (laneld.x + diffPhi.x < @)
/*Type 4:%/ val = __shfl_sync(getMask(),
Reg_P[x-1]1[cxy+d], prevTileSrcLane);

(c) Code generated when current iteration is not the first iteration
of register tile and ¢, — ¢,x # 0. When the sum of lane index and
Px — Prx is less than zero, then value is accessed from register of last
|@x—Prx | threads of previous parallelogram tile (Type @) otherwise
value is accessed from register of thread in the same parallelogram
tile (Type Q).

Figure 7: Three code generation cases for a producer
pLa*x+b][c*y+d] at iteration {x, y} of register tile that gener-
ates all four load types of Figure 4. Each p[a*x+b][c*y+d] of
register tile is replaced with val and one of the above the code is
added. Reg_P is the register array storing register tile of p. laneId.x
and laneld.y are the lane indices in x and y dimensions of the
current thread. warpSize.x and warpSize.y are the warp sizes in x
and y dimensions. diffPhi.x is the value of ¢ — ¢,. diffPhi.y is
the value of ¢, — ¢,y

Finally, PolyMage-GPU prevents out of bounds accesses in hybrid
tiling in two ways. First, the image sizes in the generated CUDA
code are treated as parameters that are passed to each CUDA kernel.
Hence, the bounds of each stage and the number of tiles depends
on the image sizes. Second, before computation of every iteration
of each stage, PolyMage’s compiler adds conditionals to ensure that
for the given image sizes, the tile lies within the correct bounds
of current stage. These conditionals will prevent out of bounds
accesses if the generated code is used for different image sizes.

Register Blocking. Register blocking [31] is a well-known tech-
nique that stores tile in registers of parallel threads. However, it
generates one overlapped tile per thread, leading to redundant com-
putations between all threads. In contrast, Hybrid Tiling eliminates
these redundant computations by utilizing warp synchronous be-
havior of threads and warp shuffles to access shared memory and
the registers of another thread.

Session 5: Best Paper

PACT '20, October 3-7, 2020, Virtual Event, USA

Algorithm 1 Hybrid Tiling Model GTX 1080Ti | Tesla V100
1: function GENREGTILE(H, ¢y, dry, RxX Ry, WxxWy) Simultaneous Multiprocessors (NSMs) 28 80
2 for all {x, y} € [1,...Rx] x [1,...Ry] do CUDA Cores per SM (CoresPerSM) 128 64
3: Let iteration {x, y} be Global Memory Bandwidth
& HIxI[y]l = f(P[a*x+b][cxy+d], ...) (G1MemBH) Y 484 GBps | 898 GBps
5 Store H[x1[y] in a register array Reg_H[xJ[y] p
6 for all loads PLa*x+b][cty+d] € f do Maximum Shared Memory Per 48 KB 96 KB
Thread Block (MaxShMemPerTb)
7: ¢x, ¢y = dependence vectors between P[axx+b][c*y+d]
and H[x][y] Shared Memory per SM 96 KB
8 if ¢y == $yx then (ShMemPerSM)
9: Generate Type@ code in Figure 7a Maximum Warps per SM 64
10: else if x == 1 then (MaxWarpPerSM)
11: Generate Type @ and @ code from Figure 7b Maximum Thread Blocks per SM
12: else (MaxTbPersM) 16 32
13: Generate Type 3 and (@ code from Figure 7¢ Registers per SM (RegPerSM) 65536
14: function 2-D-HYBRIDTILING(G, fracReg, T X Ty, WxxWy) Maximum Registers Per Thread
15: splitDim = a dimension with tile size greater than 1 (MaxRegPerTh) 256
16: If no split dimension exists then return = -
17: Let ¢rx and ¢y be right hyperplanes of G in x and y Warp Size (WarpSize) _ . 32
18: Let splitDim is the x-dimension. Global Memory Transaction Size 32 B for L2 Cache
19: Create parallelogram tiles in x-dim of size Wy parallel to ¢, x (G1MemTxSz) 128 B for L1 Cache
20: Ry ¢ Txx fracReg, Sx < TxX (1 - fracReg) Table 1: Specifications of the GPUs we use in experiments.
21: Ry « Sy « Ty
22 forallH € Gdo stored in registers:
23: Gen. Shared Mem Tile with tile size S XSy ’
24: GENREGTILE(H, ¢rx, ¢ry, RxX Ry, Wi XWy) argmin CosT (G, tileSize, tbSize, fracRegTile)

6 AUTOMATIC FUSION FOR GPUS

In this section, we present an automatic fusion algorithm that selects
1) sets of stages to fuse, 2) their tile sizes, and 3) their thread block
sizes. Our approach leverages DP-Fusion [14], which is an algorithm
that efficiently enumerates all fusion possibilities, given a cost
function. We introduce a cost function that calculates the minimum
cost of a sequence of fused loops, along with optimal tile sizes and
thread block sizes.

The inputs to our algorithm include the register usage and run-
ning time of each stage, prior to fusion. We gather this information
by generating code for each individual stage, where global memory
loads are replaced with shared memory loads, loops perform a sin-
gle iteration, and the outermost loop is nested inside a loop with a
large number of iterations (e.g., one million), to ensure that time
measurements are correct. We obtain the time for each iteration by
measuring the time taken to execute the kernel by one thread block,
with one thread and divide this by the number of loop iterations.
We measure the register usage of each stage with nvcc.

Algorithm 2 is our cost function, and itt takes four arguments:
1) a group of stages to fuse, G, 2) tile sizes, 3) thread block sizes,
4) fraction of tile stored in registers, and returns the cost. The
function refers to the the hardware configuration of a GPU (Ta-
ble 1). The expression below calls the CosT function for all tile
sizes, thread block sizes, and fraction of tile stored in registers in-
cluding 0.0 (hybrid tiling disabled) and 1.0 (except the overlap in
split dimension the complete tile is stored in registers), and global
memory transaction size for both L1 and L2 global memory cache,
and returns the minimum cost with the appropriate global memory
cache enabled, tile sizes, thread block sizes, and the fraction of tile

323

tileSize €Tile Sizes,
tbSize eThread Block Sizes,
fracRegTile€{0.0,0.1,...,1.0},
GLMemTxSize€e{32,128}

The CosT function determines the cost (line 35) based on 1) the
number of global memory transactions per warp, 2) theoretical
maximum occupancy, 3) achieved occupancy, 4) shared memory
usage, 5) register usage, 6) the fraction of redundant computations,
and 7) the load imbalance. We calculate the weighted sum of these
factors to determine the cost. The function also ensures the de-
pendence vectors between all stages of a group are constants after
alignment and scaling of dependencies (line 2). The function de-
termines the dimension sizes of the group, total threads created,
threads per thread block, number of warps per thread block, and
warp overlapped tile sizes (lines 3-5). We distribute all thread blocks
equally across all SMs (line 6). We retrieve the volume of each tile,
the number of intermediate buffers, and multiply them with num-
ber of warps per thread block to determine shared memory usage
per thread block (lines 7-9).

If hybrid tiling is used, the function splits the shared memory tile
into two parts and updates the register tile (line 11). We check if the
shared memory used per thread block is more than the maximum
shared memory (line 12).

The rest of this section describes how we calculate the weight
of each component of the cost.

Number of Global Memory Transactions. The cost function esti-
mates the number of global memory transactions that either load
input images or inputs to the group (lines 14-17). The number
of global memory transactions depends on tile sizes, thread block
sizes, and the global memory transaction size. Higher global mem-
ory transaction size is beneficial when all values loaded from the
global memory are used by the group. If not all loaded values are
used in the group, then it is better to use a smaller transaction size.

Session 5: Best Paper

Algorithm 2 Cost Function

function Cost(G, tileSize, tbSize, isHybridTile, fracRegTile)
if not constantDependenceVectors(G) then return co

1:

2

3 totalThreads «— ToTALTHREADS(GETDIMSIZES(G), tileSize)
4: warpTileSizes «— WARPTILE(tileSizes, WARPSIZES(tbSize))
5: warpsPerTB « THREADSPERTB(tbSize) + WarpSize

6 tbPerSM « totalThreads + THREADSPERTB(tbSize) + NSMs
7 warpTileVol «— CompPUTETILEVOL(G, warpTileSizes)

8 totalBuff «— NUMBUFFERS(G)

9 shMemPerTB « warpTileVol X warpsPerTB X totalBuff
10: shMemPerTB « shMemPerTB X(1 - fracRegTile)
11: regTile«—shMemPerTBxfracRegTile+tbSize

12: if shMemPerTB > MaxShMemPerTb then return oo

13: totalGLMemTxs «— 0

14: for all glLoad € GETGLOBALMEMLOADS(G) do

15: warpLoad «— GLLoADSINWARP(glLoad, tileSize, tbSize)

16: glTxs « MINGLTxs(warpLoad, G1MemTxSz)

17: totalGLMemTxs « totalGLMemTxs + glTxs X tileVol

18: maxTBPerSM « min(mn%, MaxTbPerSM)

19: shMemOcc « min(maxTBPerSM X warpsPerTB, MaxWarpPerSM)

20: regPerTh « regTile + Y ;e REGUsAGE(H)

21: if regPerTh > MaxRegPerTh then return co

22 maxThPerSM — min(SeEpEat, MaxThPersM)

23: regOcc < maxThPerSM + WarpSize

24: occupancy «— min(shMemOcc, regOcc) + MaxWarpPerSM

25: warpBW « G1MemBW X WarpSize -+ NSMs x CoresPerSM

26: memTime < GIMemTxSzXtotalGLMemTxs + warpBW

27: tileVol «— CompUTETILEVOL(G, tileSizes)

28: computeTime «) ;g TIMEPERITER(H)xtileVol

29: shMemPerSM « shMemPerTB X maxTBPerSM

30: unallocatedShMem « 1 — shMemPerSM+ ShMemPerSM

31: regPerSM « regPerTh X MaxWarpPerSMx WarpSize

32: unusedReg < 1 — regPerSMX occupancy-+RegPerSM

33: fracOverlap «— OVERLAPCOMPUTATIONS(G)- tileVol

34: extraTBs « totalTB % maxTBPerSM

35: cost = wy XtotalGLMemTxs + wzX(1 — occupancy) + w3 X memTime
+ computeTime + wyXunallocatedShMem + wsxunusedReg + wgX
fracOverlap + w;x extraTBs

36: return cost

Using Wolf and Lam [30], we retrieve the loads for each global
memory load for all threads in a warp (line 15). We coalesce all
memory loads into the minimum number of transactions (line 16).
Finally, we calculate the total number of transactions (line 17).

Theoretical Occupancy. We estimate theoretical occupancy based
on shared memory and register utilization. We calculate the maxi-
mum number of thread blocks supported by an SM based on the
shared memory usage and take its minimum with MaxTbPersSM
(line 18). Multiplying this value with number of warps per thread
block gives the occupancy from shared memory usage (line 19). We
sum the register usage of all stages in the group from in preprocess-
ing step to get the register usage of the group (line 20). We obtain
the occupancy from register usage by determining the maximum
number of warps supported based on register usage and taking
the minimum with the MaxWarpPerSM (lines 22-23). The ratio of
minimum of both occupancies to MaxWarpPerSM is the theoretical
occupancy (line 24).

324

PACT '20, October 3-7, 2020, Virtual Event, USA

Achieved Occupancy. The cost function estimates the number
of warps ready to execute at runtime as the ratio of time spent in
global memory loads to the time spent in computations. This ratio
must be decreased, since, theoretical occupancy cannot be reached
at runtime if warps spent most of their time waiting for global
memory requests to be fulfilled and an SM’s compute resources
are idle. To determine the time spent in global memory loads, we
divide the theoretical global memory bandwidth equally among
all SMs, and then among all warps that can execute in parallel
(line 25). Hence, this produces the time spent in all global memory
transactions (line 26). We do not use a cost model to obtain the
computation time because GPU uses optimizations like pipelining
instead we obtain the execution time of each stage as mentioned in
preprocessing step and then determine the computation time for the
group by the summing the computation time for individual stages
and multiplying that by the tile size (line 28).

Shared Memory and Register Usage. The cost function maximizes
the shared memory and register usage in addition to occupancy
because while higher occupancy can imply lower shared memory
or register usage, high shared memory or register usage can lead
to lower occupancy. We calculate per thread block shared memory
usage and register usage (line 30-32) when all thread blocks are
executing concurrently based on the occupancy.

Fraction of Redundant Computations. The cost function deter-
mines the fraction of overlap (line 33).

Load imbalance. The cost function minimizes the load imbalance
due to when the number of thread blocks per SMs are not always
a multiple of number of thread blocks executing concurrently per
SM based on the occupancy. Line 34 determines the extra thread

blocks for each SM.

7 EVALUATION

In this section, we investigate the following questions: 1) How fast
is our automatic loop fusion algorithm? 2) How does the OTPW
execution model compare to the state-of-the-art? 3) How do OTPW
with Hybrid Tiling compare to the state-of-art? 4) Why do OTPW
and Hybrid Tiling perform well?

Experimental Setup. We use a 3.4 GHz, quad-core Intel i5-4670
CPU with 16GB RAM and two GPUs (each experiment uses a single
GPU): an NVIDIA GTX 1080Ti and an NVIDIA Tesla V100 (Ta-
ble 1 lists their key specifications). For our benchmarks, we use six
canonical image processing applications that have appeared in prior
work [6, 14, 18, 19, 22]. Table 2 reports the number of stages and the
size of the input image for each benchmark. We compare our work
to the manually-written schedules present in Halide repository [2],
Li et al’s autoscheduler for Halide [17], Rawat et al’s code gen-
erator [24], and PolyMage’s autotuner. We compiled Halide with
LLVM 10.0. The execution time that we report for each benchmark
is the sum of execution time of all generated CUDA kernels (ob-
tained using nvprof), and does not include host and device memory
transfer time. We execute each benchmark for three samples with
each sample containing 100 runs. We report the minimum of the
average running time for each sample.

Session 5: Best Paper

Benchmark Stages | Image size (WXHXc) | Fusion
Unsharp Mask (UM) 4 4256%2832%x3 | 0.05s
Harris Corner (HC) 11 4256%2832 | 0.15s
Bilateral Grid (BG) 7 2560%x1536 | 0.02s
Multiscale Interp. (MI) 49 2560x1536X3 10s
Camera Pipeline (CP) 32 2592x1968 17s
Pyramid Blend (PB) 44 3840x2160%3 28s

Table 2: For each benchmark, the number of stages, size of input,
and time taken for loop fusion.

w1 | w2 | w3 | wg | ws We wr
GTX 1080Ti | 50 | 0.5 | 45 20 2 100 1
Tesla V100 50 | 0.5 | 60 10 2 100 1

Table 3: Value of weights obtained for both GPUs.

Benchmark Halide PolyMage-GPU Speedup
1080Ti V100 1080Ti V100 1080Ti V100
Unsharp Mask 1.50 0.45 1.00 0.39 1.50 1.15
Harris Corner 1.80 0.45 0.80 0.29 2.25 1.55
Bilateral Grid 0.40 0.20 0.32 0.20 1.25 1.00
Multi. Interp. 1.65 0.60 1.26 0.54 1.31 1.11
Camera Pipe. 1.90 0.36 1.04 0.30 1.83 1.23
Pyramid Blend 5.80 2.90 2.90 1.30 2.00 2.23
Geomean 1.65 1.33

Table 4: Execution times (in ms) of benchmarks and speedup of
PolyMage-GPU over Halide’s manually written schedules on GTX
1080Ti and Tesla V100.

! !
= Em10s0Ti 0OVv100
ER
S8 40| 3 .
2 £ :
it - *
— O —] N
=} i —_ ° I o
(9] N - N ™~ od
I o - = a2
§ e =
58 I 2
st -
0 T 1 =1l 1 1
Benchmarks UM HC BG MI CP PB

Figure 8: Percentage of instruction issue stalls due to thread block
synchronization in OTPTB (Halide) for both GTX 1080Ti and Tesla
V100. OTPW execution model does not produce any synchroniza-
tion based issue stalls.

Cost Function Weights. The cost function that we use for auto-
matic fusion requires several weights that are GPU-dependent. We
determine the best weights empirically using leave-one-out cross
validation, since, there are small number of benchmarks. Table 3
shows the weights.

7.1 Automatic Fusion Time

We first measure the time it takes for automatic fusion to pro-
cess each benchmark program to find an optimal schedule. We use

325

PACT '20, October 3-7, 2020, Virtual Event, USA

Benchmark Decrease in Increase in Reasons

Global Loads (%) Occupancy (%)

1080Ti V100 1080Ti V100 1080Ti V100
Unsharp Mask 2.51 3.10 0.00 0.00 L L
Harris Corner 20.0 31.2 9.10 0.00 |[L+70 |[L
Bilateral Grid 4.50 3.60 0.00 0.00 L L
Multiscale Interp. 5.30 13.20 0.00 10.0 L [+70
Camera Pipeline 5.21 0.00 1.70 16.6 |[L+TO T0
Pyramid Blend 9.12 7.40 -5.40 13.8 L [L+TO

Table 5: Decrease in the number of global memory loads (in %)
and increase in achieved occupancy (in %) of code generated us-
ing OTPW and Hybrid Tiling over code generated using OTPW on
GTX 1080Ti and Tesla V100. Last columns lists the reasons for the
increase in performance on both GPUs. |L represents decrease in
number of global memory loads and TO represents increase in the
achieved occupancy.

Bounded DP Fusion [14]. to search for (i) thread block sizes (as a
multiple of WarpSize), and (ii) tile sizes from 1 to 32 in each dimen-
sion. The Fusion column in Table 2 shows the time taken, which
ranges from less than a second to up to 30 seconds for benchmarks
with a few dozen stages. In contrast, the PolyMage autotuner can
take up to 20 hours (Section 7.2.2). Thus, our approach to automatic
fusion is significantly faster.

7.2 Performance Evaluation

We now evaluate the performance of OTPW with hybrid tiling and
the loop fusion algorithm, which we implement in a tool that we call
PolyMage-GPU.!. We compare our work to the manually-written
schedules present in the Halide repository [2]. However, we wrote
the schedule for Pyramid Blend ourselves, since it was not available.

Table 4 shows the absolute execution times of PolyMage-GPU
and Halide and the speedup of PolyMage-GPU over Halide on
both GPUs. On every benchmark, PolyMage-GPU is at least as
fast as Halide, and in many cases, significantly faster. PolyMage-
GPU is faster than manually written schedules in Halide with a
geomean speedup of 1.65X and 1.33x on the GTX 1080Ti and Tesla
V100 respectively. In general, PolyMage-GPU outperforms Halide
because its fusion algorithm chooses better thread block and tile
sizes, and the runtime technique has lower synchronization cost,
decreased shared memory usage, and improved occupancy. The
only exception is the Bilateral Grid benchmark on V100, where
Halide’s manual schedules are competitive with PolyMage-GPU
because Halide can fuse the histogram stage, which performs a
reduction, with subsequent blurring stages [27], whereas PolyMage-
GPU cannot.

7.2.1 Performance Analysis. To study why the OTPW model out-
performs the OTPTB, we first investigate instruction stalls due to
thread block synchronization. Figure 8 shows that on most bench-
marks, a significant fraction of GPU instructions stall due to thread
block synchronization. These stalls lead to idle resources which
slows down the computation. In contrast, the OTPW model does
not employ thread block synchronization at all.

IThe generated CUDA 10.0 is compiled using nvcc -03 -arch=compute_61
-code=sm_61 on the GTX 1080Ti and nvcc -03 -arch=compute_70 -code=sm_70
on the Tesla V100.

Session 5: Best Paper

PACT '20, October 3-7, 2020, Virtual Event, USA

Speedup over

GPU 1080Ti V100 1080Ti V100 1080Ti V100

1080Ti

V100

1080Ti V100 1080Ti V100 1080Ti V100

Benchmarks UM HC BG

MI CPp PB Geomean

0 B OTPTB(Halide) [B OTPW+Shared(PolyMage-GPU) BB OTPW+RT(PolyMage-GPU) BB OTPW-+HT(PolyMage-GPU)

Figure 9: Times relative to OTPTB(Halide) on GTX 1080Ti and Tesla V100. OTPTB(Halide) are the manually written schedules in Halide
following OTPTB execution model. OTPW+Shared(PolyMage-GPU) is the implementation of OTPW execution model in PolyMage-GPU with
tiles stored only in shared memory. OTPW+RT(PolyMage-GPU) is the implementation of OTPW with tiles stored only in registers in PolyMage-
GPU. OTPW+HT(PolyMage-GPU) is the implementation of OTPW with Hybrid Tiling in PolyMage-GPU.

Next, we investigate the impact of hybrid tiling. To do so, we
modify PolyMage-GPU to disable hybrid tiling: it still uses the
OTPW model, but store tiles either entirely in shared memory
(OTPW+Shared) or entirely in registers (OTPW+RT). Figure 9
compares the performance of hybrid tiling (OTPW+HT), with the
two aforementioned approaches, using thread block tiling (OTPTB)
as the baseline. On the GTX 1080Ti, OTPW+Shared provides a ge-
omean speedup of 1.32X over OTPTB: it has no instruction issue
stalls, and better grouping with thread block sizes and tile sizes. On
the Tesla V100, all benchmarks perform at least as well as OTPTB
(geomean speedup of 1.04x), with the exception of Bilateral Grid.
On Bilateral Grid, Halide’s manual schedule fuses the reduction
stage with the next blurring stage, but the PolyMage compiler can-
not. On the V100, OTPW+Shared gives the same performance as
Halide for Camera Pipeline because the manually written schedule
performs significant inlining, which the PolyMage compiler cannot
do.

Overall, OTPW+HT improves the performance of OTPW+Shared,
with geomean speedups of 1.25x (GTX 1080Ti) and 1.28X (Tesla
V100). To investigate further, Table 5 reports how Hybrid Tiling de-
creases the number of global memory loads, and increases achieved
occupancy in contrast to OTPW+Shared.

On both GPUs, Hybrid Tiling improves the performance of Un-
sharp Mask and Harris Corner by decreasing the number of global
memory reads, since hybrid tiling allows larger tile sizes, thereby
decreasing the number of overlapping computations. Moreover,
Hybrid Tiling increases the occupancy in Harris Corner by de-
creasing shared memory usage. For example, on the GTX 1080Ti,
OTPW+Shared limits the tile size in Harris Corner to 4x1. How-
ever, Hybrid Tiling allows 10x1 tiles, with equally divided among
shared memory and registers. On both GPUs, the performance of
Bilateral Grid also improves due to increased tile sizes, and thus
fewer overlapping computations, and fewer global memory loads.
For the other three benchmarks, the performance improvement is
either due to increase in tile sizes, improved occupancy, or both. On
the Tesla V100 Multiscale Interp. performs better due to a decrease
in global memory loads, and an increase in achieved occupancy.
The best performing tile sizes of Multiscale Interp. decreases the
number of overlapping computations but requires more shared

326

memory than the per thread block shared memory limit of Tesla
V100, which is decreased to half with Hybrid Tiling. Similarly, on
the GTX 1080T1, opportunity for larger tile size in Multiscale Interp.
due to Hybrid Tiling decreased the number of overlapping computa-
tions. On GTX 1080T1i, Hybrid Tiling decreases the global memory
loads and slightly increases the occupancy in Camera Pipeline. On
Tesla V100, tile sizes of Pyramid Blend were increased in Hybrid
Tiling due to extra storage for registers available, hence, leading to
low overlapping computation, thereby, less global memory loads
and increased occupancy. In summary, Hybrid Tiling provides per-
formance improvements due to two major reasons: 1) the extra
storage afforded by registers allows larger tiles, which decreases
the number of overlapping computations, which in turn, decreases
the number of global memory loads, and 2) storing portions of tiles
registers decreases the allocated shared memory, hence increases
the theoretical and achieved occupancy.

Finally, we note that OTPW+HT and OTPW+Shared are both
faster OTPW+RT. Register-only tiles forces PolyMage-GPU to use
tiny tiles, which results in a lot of redundant computations.

7.2.2 Comparison with other techniques.

Rawat et al’s Code Generator. We compare PolyMage-GPU to the
code generator of Rawat et al. [24]. PolyMage-GPU provides a ge-
omean speedup of 1.6X and 1.7X on the GTX 1080Ti and Tesla V100
respectively. Rawat et al’s technique has three major drawbacks.
First, in their execution model each thread processes exactly one
point, whereas PolyMage-GPU does not have this limitation. Thus
PolyMage-GPU supports larger tile sizes, and is able to use Hy-
brid Tiling. Second, since their sliding window technique streams
overlapped tiles in one dimension, there is no parallelism in that
dimension, thereby leading to significant decrease in total paral-
lelism. Finally, unlike PolyMage-GPU, their cost function is geared
towards minimizing the data movement with optimizing shared
memory and register usage, hence, does not consider thr number
of global memory transactions and achieved occupancy. Hence,
our approach decreases the amount of overlapping computations
without decreasing in parallelism.

Session 5: Best Paper

Halide’s Gradient GPU autoscheduler. We compare PolyMage-
GPU wih Halide’s Gradient GPU autoscheduler [17]. To use Halide’s
latest code generation features, we used the schedules generated
by the autoscheduler in the latest Halide version. We found that
PolyMage-GPU provides a geomean speedup of 2.42x and 2.35%
on the GTX 1080Ti and Tesla V100 respectively. We believe this dif-
ference occurs because the thread block sizes picked by PolyMage-
GPU are better suited for both GPUs than the hard coded thread
block sizes used by Halide’s Gradient GPU autoscheduler.

PolyMage’s Autotuner. We also compare to PolyMage’s image
processing autotuner [19]. We added support for OTPW and Hybrid
Tiling in the autotuner. The model based autotuner takes tile sizes,
thread block sizes, and an overlap threshold. To reduce the search
space, PolyMage assigns same tile sizes to all groups and using a
greedy approach selects stages to fuse. The greedy approach groups
all stages till the fraction of overlap is within a given threshold.
Similar to [19], we use same overlap threshold values: 0.2, 0.4, and
0.5. We use tile sizes from 1 to 32 in each dimension, and thread
block size of 1 to 512 in each dimension. PolyMage-GPU is 4.5X
and 3.3X faster than PolyMage-A on GTX 1080Ti and Tesla V100.
PolyMage-A runs till 20 hours to generate these schedules, while
PolyMage-GPU runs in seconds. Since, PolyMage-A decreases the
search space by selecting the same tile size and thread block sizes
for all groups, all schedules are not explored. Hence, PolyMage-A
does not find the same schedules as PolyMage-GPU.

8 RELATED WORK

State-of-the-art DSLs for image processing programs all employ
loop fusion and overlapped tiling to increase locality between
stages [19, 22, 23]. Halide and Forma use GPUs and execute one
overlapped tile per thread block. Halide’s original CPU autosched-
uler [18] uses a greedy algorithm, whereas Dynamic Programming
Fusion [14] efficiently enumerates all possible fusion choices for a
CPU. Halide has a newer autoscheduler [6] that uses beam search
with a learned cost model for CPUs. Halide’s Gradient GPU au-
toscheduler [17] is a GPU autoscheduler for Halide that performs
greedy function inlining and loop fusion with hard-coded thread
block sizes for each tile. In Section 7.2.2, we compare our work to
some of these autoscheduler.

Versapipe [34] exploits both task and data parallelism on GPUs
by assigning tasks to persistent threads based on their SM ID. Hi-
WayLib [35] presents a way to efficiently run pipelined computa-
tions that require significant communication between CPUs and
GPUs. In contrast, our work focuses on improving the performance
of image processing pipelines, which are data parallel applications,
and we require all data to fit on the GPU. We employ a warp-centric
approach and use a cost function to select stages for fusion. The
aforementioned approaches would complement our work.

Several techniques support the parallel execution of stencil com-
putations on GPUs, using the Overlap tile per thread block (OTPTB)
model [12, 24-26, 33]. Rawat et al. [24] use a sliding window on
one spatial dimension and overlap tiling on the others to eliminate
some redundant computations in Overtile [12]. Hybrid hexagonal
classic tiling [11] also executes one tile per thread block. Flextended
Tiles [33] uses rectangle trapezoid tiling to obtain tighter over-
lapped tile bounds. Artemis [25] is a DSL that allows an expert

327

PACT '20, October 3-7, 2020, Virtual Event, USA

to guide challenging code optimizations using bottleneck analy-
sis and tunable code parameters. Artemis and Flextended tiles are
complementary to our work. These approach supports expression
inlining, which pass the value of producer to consumer through a
register within the same thread. However, none of these employ
the overlapped tile per warp (OTPW) model and hybrid tiling, which
stores portions of tiles in registers that is shared among threads of
a warp.

In 2009, Hong and Kim [13] presented a general analytical model
to predict the performance of GPU kernels. However, recent ad-
vances in GPU architectures, including changes to their memory
hierarchy, have made their model out of date. Prajapati et al. [21]
present an analytical model for predicting the runtime of stencil
computations on GPUs (tiled using [11]). That model considers
shared memory usage, theoretical occupancy, and warp switching.
However, it omits several key factors, including register usage, the
number of global memory transactions, achieved occupancy, and
thread block sizes, which our model considers.

Halide exposes warp shuffle instructions, which makes it possible
to store portions of a tile in registers [3]. However, Halide restricts
the size of the innermost dimension to be less than warp size,
and cannot store tiles in both registers and shared memory. Other
systems employ in-register storage and warp shuffles to improve the
performance of GPU kernels [7, 9, 10, 16, 20, 29]. Our work allows
multiple warps per thread block, allows the innermost dimension
to have an arbitrary size, and is a hybrid technique that stores tiles
in both registers and shared memory. To the best of our knowledge,
this combination has not been presented in prior work.

9 CONCLUSION

This paper presents 1) an execution model for image processing
pipelines on GPUs that executes one overlapped tile per warp, 2) hy-
brid tiling, which allows portions of overlapped tiles to be stored
in either registers or shared memory, and 3) an automatic loop
fusion technique for GPUs that considers several key factors that
affect the performance of GPU kernels. These techniques use low
cost synchronization, improves occupancy, and allows larger tiles
that require fewer overlapping computations. We implement these
techniques in PolyMage-GPU, which is a new GPU backend for the
PolyMage DSL. Using several benchmarks, we show that our work
achieves significant speedups over manually-written schedules.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Founda-
tion under grant CCF-1717636.

REFERENCES

[1] [n. d.]. CUDA C Programming Guide.
programming-guide/

[n. d.]. Halide. https://github.com/halide/Halide/

commit 52da814a2c3c4af78125757385a8a86efdde3234.

[n. d.]. Halide. https://github.com/halide/Halide/

commit 59bca3c8e535£7f99¢90efd1d932db934{9c01b6.

[n. d.]. Using CUDA Warp-Level Primitives. https://devblogs.nvidia.com/using-
cuda-warp-level-primitives/.

[n. d.]. Warp Shuffle Functions in AMD HIP. https://github.com/ROCm-
Developer-Tools/HIP/blob/master/docs/markdown/hipy erneljanguage.
md#warp-shuffle-functions

https://docs.nvidia.com/cuda/cuda-c-

Session 5: Best Paper

[10

[11

[12

[13

[14]

[15]

[16

[17]

[18

[19]

[20]

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michael Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Fredo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree
Search and Random Programs. ACM Trans. Graph. (2019).

Karan Aggarwal and Uday Bondhugula. 2019. Optimizing the Linear Fascicle Eval-
uation Algorithm for Many-core Systems. In Proceedings of the ACM International
Conference on Supercomputing (ICS ’19).

Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J.
Ramanujam, Atanas Rountev, and P. Sadayappan. 2008. A Compiler Framework
for Optimization of Affine Loop Nests for Gpgpus. In Proceedings of the 22nd
Annual International Conference on Supercomputing (ICS "08).

Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. 2016. Fast
Multiplication in Binary Fields on GPUs via Register Cache. In Proceedings of the
2016 International Conference on Supercomputing (ICS ’16).

Simon Garcia De Gonzalo, Sitao Huang, Juan Gomez-Luna, Simon Hammond,
Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Generation of Warp-level
Primitives and Atomic Instructions for Fast and Portable Parallel Reduction on
GPUs. In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019).

Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-
doolaege. 2014. Hybrid Hexagonal/Classical Tiling for GPUs. In Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO '14).

Justin Holewinski, Louis-Noél Pouchet, and P. Sadayappan. 2012. High-
performance Code Generation for Stencil Computations on GPU Architectures.
In Proceedings of the 26th ACM International Conference on Supercomputing (ICS
"12).

Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Architec-
ture with Memory-level and Thread-level Parallelism Awareness. In Proceedings
of the 36th Annual International Symposium on Computer Architecture (ISCA "09).
Abhinav Jangda and Uday Bondhugula. 2018. An Effective Fusion and Tile Size
Model for Optimizing Image Processing Pipelines. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
18).

Abhinav Jangda and Arjun Guha. 2020. Model-Based Warp Overlapped Level
Tiling for Image Processing Programs on GPUs. arXiv:cs.PL/1909.07190

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon Song. 2018.
Warp-Consolidation: A Novel Execution Model for GPUs. In Proceedings of the
2018 International Conference on Supercomputing (ICS ’18).

Tzu-Mao Li, Michaél Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018. Differentiable Programming for Image Processing and Deep Learn-
ing in Halide. ACM Trans. Graph. (2018).

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically Scheduling Halide Image Processing
Pipelines. ACM Trans. Graph. (2016).

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage:
Automatic Optimization for Image Processing Pipelines. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’15).

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement
Synthesis for GPU Kernels. In Proceedings of the Twenty-Fourth International

328

[21

[22

~
=

[24

[25]

[26

[27

&
&

[29

[30

(31]

[32

(33]

&
=)

[35

PACT '20, October 3-7, 2020, Virtual Event, USA

Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19).

Nirmal Prajapati, Waruna Ranasinghe, Sanjay Rajopadhye, Rumen Andonov,
Hristo Djidjev, and Tobias Grosser. 2017. Simple, Accurate, Analytical Time
Modeling and Optimal Tile Size Selection for GPGPU Stencils. In Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’17).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13).

Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. 2015. Forma: A
DSL for Image Processing Applications to Target GPUs and Multi-core CPUs.
In Proceedings of the 8th Workshop on General Purpose Processing Using GPUs
(GPGPU-8).

Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover,
Louis-Noel Pouchet, Atanas Rountev, and P. Sadayappan. 2016. Resource Con-
scious Reuse-Driven Tiling for GPUs. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation (PACT ’16).

P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, A. Rountev, L. Pouchet, and P.
Sadayappan. 2019. On Optimizing Complex Stencils on GPUs. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Atanas Roun-
tev, Louis-No"el Pouchet, and P Sadayappan. 2019. On Optimizing Complex
Stencils on GPUs. (2019).

Patricia Suriana, Andrew Adams, and Shoaib Kamil. 2017. Parallel Associative
Reductions in Halide. In Proceedings of the 2017 International Symposium on Code
Generation and Optimization (CGO ’17).

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral Parallel Code Generation for
CUDA. ACM Trans. Archit. Code Optim. 9, 4 (Jan. 2013).

J. Wang, X. Xie, and J. Cong. 2017. Communication Optimization on GPU: A Case
Study of Sequence Alignment Algorithms. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation (PLDI "91).

M. Wolfe. 1989. More Iteration Space Tiling. In Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing (Supercomputing '89).

Michael Wolfe. 1994. The Definition of Dependence Distance. ACM Trans.
Program. Lang. Syst. (1994).

Jie Zhao and Albert Cohen. 2019. Flextended Tiles: A Flexible Extension of
Overlapped Tiles for Polyhedral Compilation. ACM Trans. Archit. Code Optim.
(2019).

Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wen-
guang Chen. 2017. Versapipe: A Versatile Programming Framework for Pipelined
Computing on GPU. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-50 °17).

Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wen-
guang Chen. 2019. HiWayLib: A Software Framework for Enabling High Perfor-
mance Communications for Heterogeneous Pipeline Computations. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19).

	Abstract
	1 Introduction
	2 Background
	2.1 NVIDIA GPU Architecture
	2.2 PolyMage DSL
	2.3 Dependence Vectors
	2.4 Dynamic Programming Fusion

	3 Overview
	4 Overlap Tile per Warp
	5 Hybrid Tiling
	6 Automatic Fusion for GPUs
	7 Evaluation
	7.1 Automatic Fusion Time
	7.2 Performance Evaluation

	8 Related Work
	9 Conclusion
	References

