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ABSTRACT: Models that characterize life cycle greenhouse gases
from electricity generation are limited in their capability to estimate
emissions changes at scales that capture the grid-scale benefits of
technologies and policies that enhance renewable systems
integration. National assumptions about generation mixes are
often applied at annual time steps, neglecting spatiotemporal
resolutions that provide insights on impacts from time-variable
emissions. Our grid-scale model incorporates details of transmission
and generation planning that allows a geographically and temporally
textured and more realistic assessment of the life cycle greenhouse
gas emissions outcomes, using a case study of the Western
Interconnection of North America. Results from a co-optimized
model of generation, transmission, and operationsthe Johns
Hopkins Stochastic Multistage Integrated Network Expansion
Modelprovide a detailed characterization of twenty-one scenarios with different configurations of storage additions, new
renewable capacity, and carbon prices. Life cycle results suggest that optimization models that focus on generation alone may
underestimate emissions by 18−29% because only emissions from power generation are quantified (i.e., supply chain emissions are
omitted) but also that carbon pricing is the predominant driver of reducing emissions in the scenarios we examine. Life cycle
assessment of electricity generation should move beyond individual technologies toward capturing the influence of policies at the
system level to better understand technology-policy dynamics for the grid.

■ INTRODUCTION
Climate change is among the most pressing challenges for the
electric sector, due to the prominence of fossil fuels in the
present generation fleet. While the U.S. power sector has
experienced substantial emissions reductions in recent years,
fossil fuels were still the dominant source of electricity at 63.5%
of generation in 2018, with 35.1% of generation fueled by
natural gas and 27.4% fueled by coal.1 The grid has been
changing not only from coal to gas but also with a growing
portion of intermittent renewables: wind and solar PV have
grown from 55000 to 272000 Gigawatt-hours per year (GWh/
year) and 76 to 60000 GWh/year, respectively, from 2008 to
2018.2 Provided that the costs of renewable technologies
continue to fall, energy storage is broadly considered one of
the most attractive solutions with notable potential to balance
the intermittency of variable renewable power (namely, wind
and solar). The true environmental benefits of new storage
capacity are challenging to discern due to the overall dynamic
interactions between power plants and storage inherent to the
operations of an electric grid, particularly in comparison to
policy options such as carbon pricing. But generation is only
one part of the life cycle of power systems: the life cycle
includes additional processes, such as materials extraction to
construct power plants, upstream fuel extraction (where

applicable), operations, and transmission of the electricity to
consumers. Our analysis addresses these challenges with an
examination of grid-scale greenhouse gas emissions through an
integrated analysis of optimized technology-policy scenarios
that captures the full supply chain implications.
Life cycle assessment (LCA) provides a robust method for

examining these upstream and downstream emissions as a
cradle-to-grave approach to quantifying the environmental
burdens of products or processes from materials extraction to
waste disposal (cradle to grave).3,4 Present emissions models,
however, are limited in their capability to estimate life cycle
emissions changes at subnational scales and hourly time
steps.5,6 When quantifying the life cycle emissions of an
electricity grid, national assumptions about the generation
mixes are typically applied, neglecting to account for the
regionalized differences and temporal dynamics implicit to
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power systems that can result in variable emissions results.7

Similar challenges have been noted for other air pollutants8,9

and water consumption.10−13 Data that characterize dynamic
grid interactions can result in more realistic life cycle emissions
and nuanced understanding of their spatial and temporal
distributions, but that requires that LCAs leverage information
at more refined spatiotemporal resolutions.14−16

To the authors’ knowledge, there has yet to be a
comprehensive evaluation of the life cycle emissions associated
with different configurations of renewable capacity additions,
storage capacity additions, and carbon pricing options at the
scale of grids (i.e., rather than individual technologies). In
order to perform such an evaluation, robust methods must
model the life cycle environmental and economic impacts of
such changes at the grid-scale. A review of models that
estimate the emissions of grid operations uncovers two
approaches: (1) use of historical data or (2) use of power
systems and market models based on optimization methods.6

In this paper, the latter approach is taken because a focus will
be on the synergistic impact of low-carbon technologies (i.e.,
storage and renewables) and market mechanisms (in this case,
carbon prices) for which there is a lack of relevant historical
data.
While many LCAs focus on individual power generation

technologies,17−21 few (if any) LCAs have quantified the
effects of carbon pricing on grid-scale emissions. Similar to
power generation technologies, numerous LCAs have
previously been published that study the environmental
implications of energy storage technologies.22,23 Such studies
tend to focus on one or a combination of battery energy
storage systems (BESS) such as lithium-ion technologies,24−26

pumped hydro energy storage (PHES), and compressed air
energy storage (CAES).22,27 Elzein et al.25 argue that studies
have focused on life cycle effects of battery manufacturing,
while the grid-scale implications associated with the operation
of new storage capacity remain poorly characterized. They
contributed an integrated optimization-LCA model of energy
storage for the grid of France in 2017. Such advancements
enable a more robust examination of the use phase of grid-scale
energy storage because the dynamic interactions between
storage capacity and the mix of generation operations and
investment can be investigated at the scale of power plants.
Further, a combined LCA-optimization approach can enable

an investigation of how new renewable and storage
technologies interact on the grid under different carbon prices.
In this work, we seek to couple LCA and optimization to
explore the life cycle emissions implications of renewable
systems integration at the scale of a grid, focusing specifically
on the addition of storage, new renewable capacity, and carbon
pricing policies.
The coupling of optimization and LCA to study environ-

mental impacts of multicomponent systems has been proposed
and implemented many times in the past two decades.25,28−31

Despite the relative abundance of literature that focuses on
combining LCA and optimization, we find that (1) literature
that quantifies life cycle emissions at the scale of a regional grid
for different configurations of energy storage, renewable
capacity additions, and various carbon pricing options is
largely absent, (2) with rare exceptions (e.g., Elzein et al.25),
grid-scale interactions resulting from new capacity additions
are generally overlooked, and (3) there has been limited
examination of uncertainty within these coupled models. In
our analysis, we address these three limitations. The market

model that we couple with LCA is a co-optimized model of
investment in generation, transmission, and storage, as well as
grid operations, entitled the Johns Hopkins Stochastic
Multistage Integrated Network Expansion (JHSMINE)
model.32−38 Leveraging of the JHSMINE model enabled
detailed analyses of aggregate power plants in our study area
the Western Interconnection of North Americayielding
estimates of their life cycle greenhouse gas emissions for full
grid-scale characterization. The aggregated power plants that
are modeled in JHSMINE are merged representations of all
generation units that use the same technology. By aggregated
power plants (hereafter, power plants), we refer to the merged
generation units that use the same technology and are located
at the same node in our optimization model. Our contribution
is, in part, the perspective of the collective grid as the product
system (or the collection of processes within the LCA system
boundaries) rather than only an examination of individual
technologies. Our combined LCA-optimization approach
produces estimates that account for the interactions between
storage capacity and individual generators under different
future scenarios. Finally, we capture the uncertainty of the full
life cycle emission using Monte Carlo Simulation at the scale of
each power plant operating in the study area. While the
approach has been developed specifically for a case study of
electricity generation in the Western Interconnection, our
approach is broadly applicable to different product systems
operating at a regional scale.

■ MATERIALS AND METHODS
Study Area. The study area is the Western Interconnection

comprising the western geographic area of North America,
where the grid is synchronously operated (Figure 1).39 Of the
United States, all of Arizona, California, Colorado, Idaho,
Nevada, Oregon, Utah, and Washington are part of this
interconnection in addition to parts of Montana, Nebraska,
New Mexico, South Dakota, Texas, and Wyoming. Parts of
Northern Mexico are included in addition to the Canadian
provinces of British Columbia and Alberta. While coal and
natural gas remain strong contributors to the region’s power
supply, they combined represent only 40.5% of the 249 GW of
the region’s generating capacity.40 Of the total capacity,
hydroelectric power ranks first at 38.2%, followed by natural
gas (27.4%), coal (13.3%), nuclear (8.5%), wind (6.6%), solar
(3.1%), geothermal (1.9%), and other sources (1.2%). The
Western Interconnection was selected as the study region due
to its importance to Western North America: it serves 80
million people and spans more than 1.8 million square miles.41

Further, a series of recent efforts have resulted in vetted
optimization scenarios that examine the influence of different
renewable-storage-policy configurations with the JHSMINE
model, created in collaboration with the Western Electricity
Coordinating Council (WECC). The WECC plays an
important role for this interconnection as the nonprofit
corporation in charge of maintaining reliable power in the
interconnection, assuring open and nondiscriminatory access
to transmission, and providing a forum to resolve disputes.39

Data Sources and Methods. The method we develop for
the present analysis involves the integration of two modeling
approaches and its implementation for a specific region
(WECC): (a) the co-optimization of generation, transmission,
storage expansion, and operations, and (b) Life Cycle
Assessment for inclusion of supply chain emissions. The
former enables us to simulate market adjustments in response
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to hypothesized storage and renewable introductions as well as
the effects of changes in carbon pricing policies. In our model,
a perfectly competitive market is simulated by minimizing
annualized costs of operations, power system expansions, and
associated decisions arising from carbon pricing. While we
capture the impacts of fuel supply in LCA, upstream sectors are
not operating under carbon dioxide equivalent pricing; instead,
carbon is subject to pricing only when emitted at the power
plant. As a result, we do not price emissions associated with
fossil fuel combustion and leakage upstream (such as diesel
fuel used in rail transport of fuel or gas compressor
operations), which could result in distortions in economic
decisions concerning which fuels are produced as well as how
and where they are produced.42 However, LCA will quantify
those upstream emissions, in addition to those from power
plant operations.
In the present work, we deploy JHSMINE, a co-optimization

planning model that encompasses generation and transmission
(and storage, if any) decisions over a multidecade time
horizon, co-optimizing both grid operations but also power
system expansions that allow the system to adapt to economic,
policy, and technology development settings. The objective
function of JHSMINE is to minimize the societal cost that
includes (1) cost of power system expansions (e.g., building
new generation), (2) cost of grid operations (e.g., fuel cost),
and (3) carbon pricing (e.g., paying for emission allowance).

The constraints of JHSMINE generally include (1) restrictions
on siting of new generation, transmission, and storage facilities,
(2) operating limits of generation, transmission, and storage
facilities, (3) meeting electricity and ancillary service demands,
and (4) policies requirement such as renewable portfolio
standards.33 Key model inputs include policies, capital and
operating costs and performance characteristics of different
technologies, and electricity demand and ancillary services
demand. To speed up the model solving, we relax the binary
variables of the transmission construction and assume a “pipes-
and-bubbles” power flow (i.e., all lines are modeled as DC
connections). However, our previous work37 estimated that
such modeling simplification would not strongly affect the
transmission decisions in the WECC system.
With existing scenarios developed for the WECC region for

2034,32,34,35,43−45 we employ a hybrid LCA-JHSMINE
approach to evaluate the life cycle greenhouse gas implications
of a variety of scenarios and examine how its results compare
to LCA and optimization approaches singly. JHSMINE results
provide a temporal resolution that is not typically captured
within LCA, at 96 operating hours a year, enabling more
accurate representation of grid component interactions and the
temporal variation of emissions in LCA. This methodological
advance in LCA overcomes the limited ability of existing
models to compare the life cycle impacts of changes to the
grid. The scope of the LCA encompasses not only the full grid
as characterized by JHSMINE but includes the upstream and
downstream emissions associated with each power plant
(Figure 2).
At the time of this analysis, databases had yet to be

developed that track the date and location of every piece of
equipment for each power plant included in our study. Further,
our scenarios include candidate generators, which have yet to
be in operation, and a future fuel supply where the exact
sources and infrastructure locations are unknown. The LCA
component of this research is thus inherently uncertain,
necessitating the use of uncertainty analysis. To address these
uncertainties, our approach encompasses Monte Carlo
Simulation to characterize the probability distribution of
greenhouse gas emissions outcomes for each scenario,
reflecting uncertainties upstream emissions. As examples,
upstream uncertainties for coal might include the quality of
the fuel and technology vintage (full details for each
technology type available via NREL’s harmonization stud-
ies17,46−51). Monte Carlo Simulation is a widely accepted,
commonly utilized tool to characterize uncertainty in
LCA.52−55 We integrate both inputs and outputs from
JHSMINE combined with published distributions of existing
LCAs of electricity generation that have been published by the
National Renewable Energy Laboratory (NREL). The US
Department of Energy has funded the NREL to complete a
rigorous review of published LCAs of electricity generation
through the Life Cycle Assessment Harmonization proj-
ect.17,46−51 That project had three goals: (i) to gain insights
into the range of published results across electricity generation
technologies, (ii) to decrease the variability by correcting
inconsistencies in assumptions and methods across studies,
and (iii) to publish a more robust central tendency of LCA
results by technology. Similar to Surana and Jordaan,56 we rely
on NREL’s data for the consistency and comprehensiveness of
their methodological approach and transparency in reporting
individual studies despite the availability of other harmo-
nization studies.57

Figure 1. Map of JHSMINE reduced 300-bus network of Western
Electricity Coordinating Council of North America. Dots represent
nodes of the grid, and triangles represent the location where new
renewable generation can be sited. Red/Orange lines are existing AC/
DC lines, and blue lines are equivalent lines that are results of the
network reduction.
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We chose probability distributions to characterize the life
cycle emissions of each technology type based on a Chi-square
test of fit to the empirical data from the harmonization study.
Fourteen candidate distributions were tested (list of con-
tinuous distributions available in Oracle Crystal Ball58). For
each technology, we truncated distributions by the highest and
the lowest data points available in the empirical data.
Geothermal was the only instance of scarce data, with only 7
data points available. In that case, we assumed a normal
distribution.
In total, 21 different scenarios were examined representing

different configurations of new capacity of pumped hydro-
electric storage, compressed air energy storage, and wind
power, and battery energy storage systems under different
carbon pricing options in USD per metric ton of carbon
dioxide($/tCO2) (Table 1). The scenarios involved the
addition of 1200 MW of Pumped Hydro (PH) in Columbia
Gorge, Oregon; the addition of 1200 MW of Compressed Air
Energy Storage (CAES) in Utah; and 3000 MW wind and new
transmission capacity in Wyoming (“Pathfinder”). For Battery
Energy Storage Systems (BESS), we modeled an existing
capacity of 2456 MW as the base case where there are no new
additions. Besides the PH, CAES, and Pathfinder wind power
capacity, JHSMINE can add new transmission, generation, and
storage capacity (if allowed) through optimization to minimize
the societal cost. For example, BESS scenarios included 1519
MW and 3919 MW capacity additions of Lithium-Ion (LIB)

batteries that are deployed, respectively, for two of the $58 and
$100 USD carbon price scenarios.
We quantify the cost outcomes with the metric of “resource

cost,” which is calculated as the total cost in the electricity
sector (including the capital cost and the fixed operations and
maintenance of PH, CAES, and Pathfinder Wind project),
excluding payments for carbon emissions. Since the total
energy demands of all scenarios are nearly the same at 1095
TWh in the year 2034, we can further evaluate the resource
cost at the per MWh level.
For each scenario, we modified a previous approach for

estimating national scale life cycle emissions37 for application
at the scale of individual power plants (rather than countries).
Each power plant’s heat rate was used to scale the upstream
emissions from what the NREL study termed “generalized
harmonization results” (in contrast, a representative power
plant efficiency was assumed for the NREL study), with
upstream emissions being characterized by the distribution of
published harmonization results. Results for each of the
twenty-one JHSMINE scenarios were then estimated with an
aggregated grid-scale annual result (eq 1).

∑= *
=

EF
Gen
Gen

EFgrid
i

n
i

t
i

1 (1)

ε
ε

= *EF EFi h
i

h (2)

Figure 2. Simplified scope of the grid-scale LCA, with systems boundaries for each technology based on NREL’s harmonization studies.17,46−51 Life
cycle emissions are estimated using NREL harmonization data for each type of generation modeled in JHSMINE, adjusted for each power plant’s
operational efficiency using their heat rates. Results from the JHSMINE model determine the optimized interactions between energy types and
storage on the grid, under 21 scenarios of renewable energy, storage, and carbon pricing options. Our analysis and discussion focus primarily on
upstream emissions as NREL’s harmonization studies found that emissions impacts are weighted toward the upstream.
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where EGrid is the grid emissions, Geni is the optimized
generation from each individual power plant i (total of n), Gent
is the optimized generation from all power plants, and EFi is
emissions factor adjusted to represent the heat rate of each
representative powerplant (eq 2). The emissions factor for
each power plant (EFi) was calculated by adjusting the
emissions factor from the harmonization studies (EFh) to
reflect the operational efficiency of the power plants (εi)
(calculated with the heat rates) instead of the efficiency
employed in the harmonization study (εh). Using methods
from Surana and Jordaan60 replicated at the scale of power
plants, a Monte Carlo Simulation was run in Oracle Crystal
Ball with 10000 repetitions sampling from applied emissions
distributions (i.e., NREL harmonization results) for each
power plant.
Grid interactions for generation scenarios are modeled for

hourly timesteps in JHSMINE for four representative days (96
h) for the future year (in this case, 2034), enabling an
examination of hourly life cycle emissions. The transmission-
generation-storage co-optimization core of JHSMINE limits
the temporal resolution to 4 days. However, to reduce the bias
introduced by the limited temporal resolution and to capture
the interday variability (e.g., seasonal variability), we selected
each of the days from four time periods of days that were
clustered from the year 2034 (365 days) based on time-series
from the WECC common case of 2026 and 2034 load data.34

One day from each time period is modeled, selected so that the
total deviation of means and standard deviations between
sampled days and the original data are minimized. The 4 days
include: (1) November 20 corresponding to 108 days of the
late summer through the end of winter (October to the end of
January); (2) February 8 representing 73 days of spring
(February through early April); (3) June 13 representing 70
days of late spring and early summer (early April through the
end of June); (4) September 10 representing 114 days of
summer and autumn (the end of June through October). For
each of the 21 scenarios, hourly life cycle emissions were then
determined using the generation-weighted average emissions
of all power plants for each of the 96 h modeled in JHSMINE
(four representative days in the year 2034).
The life cycle emissions up to the use phase for each energy

storage option were characterized using estimates published in
the literature. Capacity for energy storage is reported either in
terms of rated power in megawatts (MW) (i.e., the maximum
charge and discharge power) or storage capacity in megawatt-
hours (MWh) (i.e., the amount of energy capable of being
stored). Distinguishing the two is a critical component of
estimating the relative magnitude of the upstream emissions
for new storage capacity. Cradle-to-gate emissions for Pumped
Hydro (PH) and for the Compressed Air Energy Storage
(CAES) were sourced from Denholm.61 The scenarios with
new Battery Energy Storage Systems (BESS), respectively,
represent 6.4 and 16.5 GWh of new storage capacity for the
$58/tCO2 and $100/tCO2 cases, respectively, located in
California for the former but also in New Mexico, British
Columbia, and Mexico for the latter. Lithium nickel manganese
cobalt oxide (NMC) is the most typical chemistry in grid-scale
BESS. This chemistry demonstrates the highest efficiencies and
the most balanced performance characteristics in terms of
energy, power, cost, and cycle life.62 As a result, the additional
emissions for the new capacity were estimated from a review of
studies published between 2000 and 2016 that characterize
NMC batteries; five results were obtained and characterized,
and the average was assumed to be representative (see SI).63

■ RESULTS AND DISCUSSION
Our results provide four sets of insights for grid-scale emissions
under different technology-policy scenarios for the Western
Interconnection. First, grid-scale life cycle emissions are
relatively low in comparison to individual fossil-fuel
technologies, with the average base case with no new
technologies and pricing being only 38% of coal-fired power
(375 gCO2e/kWh for the former and 975 gCO2e/kWh for the
latter, Figure 3a).
Second, the low emissions relative to electricity generated

from fossil fuels are because hydropower is the dominant
source of electricity in the region. Even in the present
generation mix, coal and natural gas represented only 49.3% of
total generation of 863000 GWh in 2017.40 Of the total 2017
generation of 863000 GWh, hydroelectric power ranks first at
30.0%, followed by natural gas (25.6%), coal (23.6%), nuclear
(6.7%), wind (6.4%), solar (4.4%), geothermal (1.8%), and
other sources (1.2%). In our scenarios (each resulting in just
over 1000000 GWh of annual generation), hydro continues to
generate a large share of electricity at approximately 20% of
generation across scenarios. For the base case (no carbon price
and without any of the selected additions of storage and wind),
coal and natural gas generate 18% and 34% of the total
electricity with wind and solar at 14% and 1%, respectively. For

Table 1. JHSMINE Scenarios Examined in the Analysisa

Scenario Name Ph Caes Wind Bess $/tCO2

Base Case No No No No 0
$20/tCO2 No No No No 20
Ph, Caes, Wind, $20/tCO2 Yes Yes Yes No 20
$58/tCO2 No No No No 58
Ph, Caes, Wind, $58/tCO2 Yes Yes Yes No 58
Caes, $58/tCO2 No Yes No No 58
Ph, Caes, $58/tCO2 Yes Yes No No 58
Wind, $58/tCO2 No No Yes No 58
Ph, $58/tCO2 Yes No No No 58
Ph, Wind, $58/tCO2 Yes No Yes No 58
Caes, Wind, $58/tCO2 No Yes Yes No 58
Bess, $58/tCO2 No No No Yes 58
$100/tCO2 No No No No 100
Ph, Caes, Wind, $100/tCO2 Yes Yes Yes No 100
Caes, $100/tCO2 No Yes No No 100
Ph, Caes, $100/tCO2 Yes Yes No No 100
Wind, $100/tCO2 No No Yes No 100
Ph, $100/tCO2 Yes No No No 100
Ph, Wind, $100/tCO2 Yes No Yes No 100
Caes, Wind, $100/tCO2 No Yes Yes No 100
Bess, $100/tCO2 No No No Yes 100

aThe 21 scenarios involved different configurations of new capacity of
pumped hydroelectric storage (PH), compressed air energy storage
(CAES), pathfinder wind power (wind), and battery energy storage
systems (BESS) under different carbon pricing options in USD per
metric ton of carbon dioxide($/tCO2). Carbon prices were selected
to be reflective of the absence of carbon pricing ($0/tCO2),
California’s present carbon price ($20/tCO2),

59 the anticipated
carbon price in California in 2034 ($58/tCO2),

44 and an ambitious
scenario where policy-makers select a high price ($100/tCO2).
Besides the PH, CAES, and pathfinder wind power capacity,
JHSMINE is allowed to add new transmission, generation, and
storage capacity (if allowed) through optimization to minimize the
societal cost.
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the more aggressive scenarios, such as under only a $100 price

per ton CO2, coal declines to near zero, and the share of

natural gas and wind generation increases (to 40% and 19%,

respectively). In the absence of coal, oil generation comprises a

marginal amount of the supply (less than 1%), which decreases
with scenarios that include new storage and wind.
Third, results suggest that grid-level estimates experience

subtle-to-no difference based on configurations of new storage
and wind capacity across the scenarios we examined (Figure

Figure 3. (a, b) Life cycle results for individual technologies compared to grid-scale scenarios. Individual technologies for comparison include coal,
petroleum, natural gas combustion turbine (GasCT), combined cycle natural gas (CCGT), concentrating solar power (SolarThermal), solar
photovoltaic (solarPV), wind and geothermal (Geo). Scenarios include different configurations of storage additions (Pumped Hydro (PH),
Compressed Air Energy Storage (CAES), and Battery Energy Storage Systems (BESS)), new wind capacity, and different prices on carbon dioxide
(none, $20/tCO2, $58/tCO2, $100/tCO2) (see Table 1). Part a compares the grid-scale LCA results to life cycle results for individual technologies.
Part b shows more clearly the results for the grid-scale scenarios. Note that these results are based on the aggregate power plants using annual
estimates.
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3b). The low levels of variation are rooted in the relatively
small magnitude of capacity additions in comparison to the
grid’s existing generation fleet: each scenario of new capacity of
PH/CAES/Pathfinder wind was below 4 GW relative to a 249
GW grid. Changes in emissions due to new technology
additions and their interactions with the grid were on the order
of 1−3% in comparison to carbon pricing alone. Emissions
associated with the manufacture of storage were also negligible
(less than 1%, see SI). The emissions reductions from adding
and/or increasing carbon pricing alone were substantial,
however, through lower operations of fuel-burning plants. In
comparison to the base case with no carbon price, carbon price
scenarios for $20/tCO2, $58/tCO2, $100/tCO2, and with no
PH, CAES, nor Pathfinder Wind result in emissions reductions
of 10%, 35%, and 42%, respectively (see SI for tabular data).
Finally, while we demonstrate the environmental benefits of
each technology-policy scenario, our results indicate that
optimization models alone tend to underestimate emissions by
about 18−29% relative to the total life cycle emissions for the
scenarios we examine.
We also examined results calculated for mean life cycle grid

emissions at hourly time steps for each of the four
representative days modeled in JHSMINE (Figure 4a−d).
While the general results are the same that carbon pricing
scenarios were the dominant influence on emissions in the
scenarios we modeled, we highlight two important ramifica-
tions of the hourly estimates. First, our results reinforce results
from Siler-Evans et al.:5 the impacts of specific interventions
may be misestimated without considering their effects at the
subannual level. With this approach, scenarios can be examined
with regard to their ability to create interventions at specific
time periods. Such scenarios can inform policy-makers about
how their decisions are likely to influence the environmental
outcomes of the grid. Second, while we observe only subtle
changes due to the level of technology change in our scenarios,
specific interventions should be explored in future research
that can capture greater environmental benefits.
We note how each scenario may influence the resource cost

of electricity: a higher carbon price will cut emissions while
raising resource cost. For example, in the cases without PH,
CAES, and Pathfinder wind power, the costs, from a carbon
price of 0 to $100/Metric ton are, respectively, $30.81/MWh,
$31.15/MWh, $34.22/MWh, and $35.76/MWh (see Support-

ing Information). Furthermore, while holding the carbon price
constant, the cost impact of PH or CAES is small, just as the
emissions impacts are. However, the installation of the
Pathfinder wind project will simultaneously lower the system
cost as well as the system emissions. For instance, in the cases
where the carbon price is $58/metric ton, the 3000 MW
Pathfinder wind installation will lower the system cost by
$0.42/MWh on average as well as lower emissions by 6.92
Mton/year. When the BESS is allowed to be installed, and the
carbon price is $100/metric ton, the installation of BESS
lowers emissions but at the expense of higher resource costs,
indicating that the BESS installation is primarily driven by
emissions goals, as reflected through savings in carbon
expenditures.

■ CONCLUSIONS AND POLICY IMPLICATIONS

Our combined LCA-optimization modeling yields an approach
to understanding the implications of power system dynamics
under different technology-policy configurations at higher
spatial and temporal resolutions than previously modeled,
leveraging data at the scale of each power plant and hourly
dispatch modeling. This analysis optimized grid operations
under a carbon price, examining the question from a grid
planning perspective. Results show that the environmental
benefits of carbon pricing and technology additions are
realized both for the grid alone (i.e., JHSMINE results) and
also when considering the life cycle of the grid. JHSMINE
alone, however, may undercount emissions by near 30% when
compared to life cycle emissions, suggesting optimization
models could benefit from including upstream emissions to
avoid unintended consequences. Using a systems approach
enabled two contributions: (1) we capture the emissions
changes at the scale of grids rather than individual
technologies, accounting for their nonlinear and sometimes
surprising interactions, and (2) our results capture the effects
of carbon pricing applied to the electric sector on life cycle
emissions outcomes while acknowledging overall resource
costs.
LCA and optimization can be coupled in numerous ways;

while we examine results from the perspective of the electric
systems planner, life cycle emissions could be integrated within
the optimization model to observe how results may change if

Figure 4. (a−d) Mean life cycle grid emissions for each scenario, estimated at hourly time steps for each of the four representative days modeled in
JHSMINE.
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the full economy is responding to carbon pricing. Our results
highlight the importance of carbon policy for grid operations.
Future research should consider the expansion of carbon
pricing from the power sector to an economy-wide system and
compare different pricing systems in terms of the overall
outcomes. The effects of carbon pricing were the greatest,
though we note that more ambitious decarbonization may
result in more influential results for the technology options.
For example, while the effects of batteries are relatively minor
under our scenarios, their contribution may become significant
with high penetration and more stringent policies. Related,
future research may shift focus from carbon pricing alone to
more rigorous considerations and comparisons with other
policies. While the presence of renewable portfolio standards
was treated as a boundary condition in this work and they are
not analyzed independently, the effectiveness of such standards
for emissions reductions is an important topic for investigation.
This is especially true in large interconnected power systems
without system-wide carbon pricing but with multiple local
renewable standards. We also highlight that future research
may consider factors other than greenhouse gases alone,
particularly, or hydropower. Environmental conservation,
ecosystem management, and competition for other uses, for
example, may be limiting factors for scenarios with large scale
pumped hydropower as energy storage options.
This analysis speaks to the importance of scenarios to

understand the effects of potential decisions at the grid-scale,
beyond individual technologies, but also to the importance of
improving the spatiotemporal resolution of LCA. The former
enables LCA to investigate the influence of policies on product
systems (in this case, emissions dispatch and investment
decisions) rather than the effects of fuel switching alone. Our
results also point to the need for LCA to improve systems-level
analysis by modeling with spatially- and temporally-resolved
data. Future adjustments of our modeling approach may
include the locations of not only the fuel supply chain but also
spatial details about manufacturing plants and transportation
distances. Recent research suggests that transportation of coal,
for example, can be substantial for specific cases and may range
up to 35% of power plant emissions.64 Detailed evaluations of
regional grid impacts of technology-policy can uncover more
realistic estimates of life cycle trade-offs resulting from
planning decisions.
We note that even our most robust temporal modeling can

be further improved, particularly for deep decarbonization
scenarios with higher intermittent renewable and storage
capacity than what we examined here. The accuracy of our
estimation is limited by the temporal resolution of the
operation simulation in JHSMINE (i.e., four daily cycles),
and it is noteworthy that the length of a day can underestimate
the impacts of long-duration storage options such as PH and
CAES. Such underestimation cannot be ignored if the system
penetration of nondispatchable wind and solar is much higher,
such as 80−90%. That said, we anticipate such under-
estimation (if any) will not compromise the results showed
in this paper, where the model estimated that solar and wind
penetration would be the highest at 27.6% when the carbon
price is $100/metric ton with all PH, CAES, and pathfinder
wind added into the system. The quantification of accuracy
improvement from higher temporal resolution and longer
operation period length is a valuable direction of future
research.

As a proof-of-concept, the present analysis captures power
plants at the site-level and develops reasonable upstream
impacts using uncertainty analysis (i.e., Monte Carlo
Simulation) with published literature estimates (NREL’s
harmonization studies). While we account for time in terms
of hourly dispatch of electricity, we note that the upstream
emissions across the life cycle are related to the generation of
electricity rather than the exact timing and location of the
resulting upstream emissions. In contrast to materials
extraction, manufacturing, and extraction of specific fuels
combusted (for example), the dispatch of electricity is tracked
with frequently published data, and these data informed the
development of our model. For example, the exact time and
place of materials extracted for the manufacture of battery or
power generation equipment are not tracked in a readily
accessible database. Thus, our estimates are of the aggregate
life cycle impact associated with the generation of electricity,
bounding the uncertainty of the emissions across life cycle
stages with NREL’s harmonization studies.
Although our work here focuses on the LCA emission

estimations of technologies and carbon price levels, it is fair to
pose the same question to storage and transmission facilities,
such as how much carbon emission is induced by transmission
and storage. Our LCA systems boundaries are in line with the
NREL harmonization studies and focus on the electricity
generated rather than delivered, excluding transmission and
distribution (T&D) losses as well as the emissions associated
with construction. The Energy Information Administration
reports that the average T&D losses in the United States
amount to approximately 5%. The associated emissions may
present an interesting area of future inquiry, particularly in
terms of regional variability and for studies that focus
specifically on the electricity delivered as the functional unit.
Our analysis provides a needed improvement in temporal

and spatial modeling in LCA while considering the power
sector as a system. However, in general, methodology for
characterizing temporal and spatial dimensions of LCA is
relatively under-developed, with few LCA studies having
addressed it. Future research may capture important dynamics
by integrating both spatially and temporally resolved data
across the life cycle, as sufficient data becomes available to do
so. Temporal and spatial accounting methodologies in LCA are
relatively immature, meaning that comprehensive analyses of
spatial and temporal interactions across the supply chain have
yet to be fully developed. Research addressing this challenge is
commencing to emerge65 with temporal accounting having
been found to lag spatial methodology in LCAs of electricity
generation.66 Additional model adjustments could yield
interesting conclusions, for example, by exploring the effects
of improving the modeling of heat rates through dynamic
ramping and the inclusion of impact categories other than
greenhouse gas emissions alone. The results are presented
using 100-year global warming potentials; while not the focus
of the present analysis, future work could explore the effects of
applying different time horizons.
Our analysis further demonstrates that the application of

combined LCA-optimization scenario modeling can provide
useful insights not just for different technology changes but
particularly for the implications of policies. While we examine
the electric grid that constitutes the Western Interconnection,
our approach is broadly applicable for evaluating the
environmental outcomes energy policies at the systems-level.
For example, the approach may be applied to improve life cycle
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comparisons of regional vehicle fleets under different policies,
such as electric vehicle incentives and limitation of the number
of vehicles on the road by their license plates.
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