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HESSENBERG VARIETIES, INTERSECTIONS OF QUADRICS,

AND THE SPRINGER CORRESPONDENCE

TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

Abstract. In this paper we introduce a certain class of families of Hessen-
berg varieties arising from Springer theory for symmetric spaces. We study the
geometry of those Hessenberg varieties and investigate their monodromy rep-
resentations in detail using the geometry of complete intersections of quadrics.
We obtain decompositions of these monodromy representations into irreduci-
bles and compute the Fourier transforms of the IC complexes associated to
these irreducible representations. The results of the paper refine (part of)
the Springer correspondece for the split symmetric pair (SL(N), SO(N)) in
[Compos. Math. 154 (2018), pp. 2403–2425].
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1. Introduction

In this paper we study the geometry of Hessenberg varieties of [GKM] arising
from Springer theory for symmetric spaces [CVX1,CVX2]. Let us recall the set-up.
Let G be a reductive group and let θ be an involution of G. We write K = (Gθ)0

for the connected component of the fixed point set. This gives rise to a symmetric
pair (G,K). We also have the corresponding decomposition of the Lie algebra
g = g0 ⊕ g1 where g0 is the fixed point set and g1 is the (−1)-eigenspace of θ,
respectively. We write N1 = N∩g1 where N is the nilpotent cone in g. Let us call an
irreducible K-equivaraint IC-sheaf1 supported on the nilpotent cone N1 a nilpotent
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orbital complex. We address the following question which can be regarded as an
analogue of the classical Springer correspondence: what are the Fourier transforms
of nilpotent orbital complexes?

We work in the context of the split symmetric pair (G,K) = (SL(N), SO(N))
where K = Gθ is given by an involution θ : G → G and N is odd. Recall that
the K-orbits in N1 are parametrized by partitions of N . In [CVX2], we show that
the Fourier transform gives a bijection between nilpotent orbital complexes and
certain representations of braid groups. We identify these representations of braid
groups and constructed them explicitly using representations of Hecke algebra of
symmetric groups at q = −1. This bijection can be viewed as Springer correspon-
dence for the symmetric pair (SL(N), SO(N)). In the course of the proof we give
a construction of nilpotent orbital complexes with full support Fourier transforms,
following Lusztig we call them thick nilpotent orbital complexes, using Grinberg’s
nearby cycle sheaves.

The goal of this paper is to use the geometry of Hessenberg varieties to reach
a better understanding of Fourier transforms of nilpotent orbital complexes and
Springer correspondence for the symmetric pair (SL(N), SO(N)). We concentrate
on the thick nilpotent orbital complexes because in [CVX2, Corollary 4.8] we show
that one can obtain all nilpotent orbital complexes by induction from thick nilpotent
orbital complexes of smaller groups.

To this end we proposed in [CVX1] a general method of analyzing Fourier trans-
forms of nilpotent orbital complexes. We replace the Springer resolution and the
Grothendieck simultaneous resolution of the classical Springer correspondence by
(several) pairs of families of Hessenberg varieties X and X̌ and obtain the following
picture:

(1.1)

X −−−−→ X̌

π

⏐⏐� ⏐⏐�π̌

N1 −−−−→ g1.

The image of π is a nilpotent orbit closure Ō but neither π nor π̌ are semi-small
in general. In fact, their generic fibers are not just points in general but they
form smooth families of varieties. The key to analyzing the Fourier transforms of
nilpotent orbital complexes in this manner is that the constant sheaf on X̌ is the
Fourier transform of the constant sheaf on X. Thus, at least as a first approximation,
we are reduced to decomposing the push-forwards π∗CX and π̌∗CX̌ into direct sums
of IC-sheaves; this is possible by the decomposition theorem. In [CVX1] we study
the case when the thick nilpotent orbital complexes are supported on nilpotent
orbits of order 2, i.e., orbits which correspond to partitions that only involve 2’s
and 1’s, and we show that the relevant families of Hessenberg varieties are closely
related to Jacobians of hyperelliptic curves (see [CVX1, §3]). In this paper we treat
the case of orbits of order 3. It turns out that the relevant Hessenberg varieties are
closely related to complete intersection of quadrics.

We now describe our results in more detail. Let us recall the definition of Hes-
senberg varieties in our setting following [GKM]. Let x ∈ g1, let P be a parabolic
subgroup of K, and let Σ ⊂ g1 be a P -invariant subspace. The Hessenberg variety
associated to the triple (x, P,Σ), denoted by Hessx(K/P, g1,Σ), is by definition the
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following variety:

Hessx(K/P, g1,Σ) := {g ∈ K/P | g−1x ∈ Σ}.
As x varies over g1, we get a family of Hessenberg varieties Hess(K/P, g1,Σ) → g1.

The particular pairs of families of Hessenberg varieties we study here have the
following properties. One of the families in the pair, when restricted to the regular
semi-simple locus, is isomorphic to a family of complete intersections of quadrics
(see Theorem 2.5); this is the family π̌ : X̌ → g1 in (1.1). The other family,
corresponding to π : X → N1 in (1.1), is supported on the locus of nilpotent
elements of order at most 3 and the fibers of this family admit affine pavings (see
§2.3).

The main results in this paper are in §§4 and 5. When restricted to the locus of
regular semi-simple elements grs1 our particular families of Hessenberg varieties can
be interpreted as families of intersections of quadrics in projective spaces. In §4,
we study the monodromy representations arising from the primitive cohomology of
these families (and their natural double covers). This is accomplished by establish-
ing a relative version of results of T. Terasoma [T] in §3. The resulting monodromy
representations of πK

1 (grs1 ) can be expressed in terms of monodromy representations
of certain families of hyperelliptic curves over grs1 . In particular, we see that the
cohomology of those Hessenberg varieties can be expressed in terms of cohomology
of hyperelliptic curves. In Theorems 4.1 and 4.2 we describe these monodromy rep-
resentations completely by decomposing them into irreducible pieces which we call

EN
ij and ẼN

ij , respectively. In §5, we study Fourier transforms of the IC complexes

arising from the local systems EN
ij and ẼN

ij . Recall that these were obtained from
the primitive cohomology of the particular families of Hessenberg varieties and their
double covers. We show that their Fourier transforms are supported on the closed
sub-variety N3

1 ⊂ N1 consisting of nilpotent elements of order less than or equal to
3. In particular, we obtain various examples of thick nilpotent orbital complexes.
Let {(O,E)}≤3 be the set of all pairs (O,E) where O is a K-orbit in N3

1 and E is an
irreducible K-equivariant local system on O (up to isomorphism). In this manner
we obtain an injective map

(1.2) {EN
ij } ∪ {ẼN

ij } ↪→ {(O,E)}≤3 .

This map refines (part of) the Springer correspondence in [CVX2, Theorem 4.1].
We would like to emphasize that such a refinement of Springer correspondence is
crucial for applications, for example, computing cohomologies of Fano varieties in
[CVX3].

As an interesting corollary (see Example 5.5), we show that the Fourier transform
of the IC complex for the unique non-trivial irreducible K-equivariant local system
on the minimal nilpotent orbit has full support and the corresponding local system
is given by the monodromy representation of the universal family of hyperelliptic
curves of genus n, where 2n+ 1 = N .

The paper is organized as follows. In §2, we introduce certain pairs of families of
Hessenberg varieties and prove basic facts about them. In §§3 and 4, we establish a
relative version of the results of Terasoma [T]. We utilize these results to obtain a
decomposition of the monodromy representations into irreducibles. In §5, using the
results in previous sections, we show that Fourier transforms of the IC complexes for
the local systems arising from our families of Hessenberg varieties and their double
covers are supported on the closed sub-variety N3

1 ⊂ N1 consisting of nilpotent
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2430 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

elements of order at most 3. In §6 we give a conjectural (explicit) description of the
map in (1.2) (see Conjectures 6.1 and 6.3) for EN

ij and we verify the conjectures in
various examples.

2. Hessenberg varieties

In this section we introduce certain families of Hessenberg varieties which nat-
urally arise when computing the Fourier transforms of IC complexes supported on
nilpotent orbits of order less than or equal to 3, i.e., orbits of the form O3i2j1k . Our
main theorem (see Theorem 2.5) says that, generically, these families of Hessenberg
varieties are isomorphic to families of complete intersections of quadrics.

2.1. Hessenberg varieties. Let G be a reductive group and let V be a represen-
tation of G. Let P ⊂ G be a parabolic subgroup and let Σ ⊂ V be a P -invariant
subspace. Consider the vector bundle G×P Σ and write

(2.1) G×P Σ = Hess(G/P, V,Σ) → G/P.

The natural projection to V gives us a projective morphism

(2.2) Hess(G/P, V,Σ) → V .

The fibers of this morphism are called Hessenberg varieties ; the fiber over v is given
by

(2.3) Hessv(G/P, V,Σ) = {gP | g−1v ∈ Σ}.
Consider now the situation when we have a connected reductive group G and

an involution θ : G → G. Let K = Gθ. The involution θ induces a grading
g = g0 ⊕ g1 on the Lie algebra g of G, where gi = {x ∈ g | dθ(x) = (−1)ix}. The
group K acts on g1 by adjoint action. An element x0 in g1 is said to be regular
if dimZK(x) ≥ dimZK(x0) for all x ∈ g1. We write grs1 for the set of regular
semi-simple elements in g1.

Let TK be a maximal torus of K and consider a co-character λ : Gm → TK .
We write P = P (λ) for the parabolic subgroup of K associated to λ, p for the Lie
algebra of P , and g1 =

⊕
g1,j for the grading induced by λ. For any i ∈ Z we

define g1,≥i =
⊕

j≥i g1,j . Let Σ ⊂ g1 be a P -invariant subspace. The Hessenberg

varieties that we are concerned with are of the form Hessv(K/P, g1,Σ). We have
the following.

Lemma 2.1 ([GKM]). Suppose Σ ⊃ g1,≥i for some i ≤ 0. Then the projective
morphism Hess(K/P, g1,Σ) → g1 is smooth over grs1 , the set of regular semi-simple
elements in g1.

Proof. This is proved in [GKM, §2.5]. For the reader’s convenience, we recall the
argument here. Observe that the Zariski tangent space to Hessv(K/P, g1,Σ) ⊂ K/P
at a point x = kP ∈ Hessv(K/P, g1,Σ) can be identified with the kernel of

[v,−] : T (K/P )|x ∼= K ×P (g0/p)|x → K ×P (g1/Σ)|x, (k, w) �→ (k, [k−1v, w]).

So it suffices to show that the map above is surjective on the fibers at each point
kP ∈ Hessv(K/P, g1,Σ) if v ∈ grs1 . For this we show that any v∗ ∈ g∗1 that
annihilates both [k−1v, g0] and Σ is zero. Since v∗ annihilates Σ and Σ ⊃ g1,≥i for
some i ≤ 0, there exists δ > 0 such that v∗ ∈ g∗1,≥δ, that is, v

∗ is K-unstable. Since

k−1v ∈ grs1 , there is no non-zero K-unstable vector v∗ ∈ g∗1 that annihilates the
subspace [k−1v, g0] ⊂ g1, we have v∗ = 0. The lemma is proved. �
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HESSENBERG VARIETIES AND THE SPRINGER CORRESPONDENCE 2431

2.2. Families of Hessenberg varieties. From now on we concentrate on the
following symmetric pair. Let G = SL(N,C) and let θ : G → G be the involution
such that K := Gθ = SO(N,C). The pair (G,K) is called a split symmetric pair.
As in [CVX1], we will assume, starting with §3.2, that N = 2n+ 1 is odd, mainly
for simplicity.

Let us write (G,K) = (SL(V ), SO(V,Q)), whereQ is a non-degenerate quadratic
form on V . Denote by 〈, 〉Q the non-degenerate bilinear form associated to Q. For
a subspace U ⊂ V , we write U⊥ = {v ∈ V | 〈v, U〉Q = 0}.

Let N be the nilpotent cone of g and let N1 = g1 ∩ N. It is known that the
number of K-orbits in N1 is finite (see [KR]). Moreover, the K-orbits in N1 are
parametrized as follows (see [S]). For N odd (resp., even), each partition of N
corresponds to one K-orbit in N1 (resp., except that each partition with only even
parts corresponds to two K-orbits). In this paper we do not distinguish the two
orbits corresponding to the same partition when N is even; thus we write Oλ for
an orbit corresponding to λ.

Let {ei, i = 1, . . . , N} be a basis of V such that 〈ei, ej〉Q = δi+j,N+1. For any

l ≤ N
2 , let Pl be the parabolic subgroup of K that stabilizes the partial flag

0 ⊂ V 0
l−1 ⊂ V 0

l ⊂ V 0,⊥
l ⊂ V 0,⊥

l−1 ⊂ V = C
N ,

where V 0
i = span{e1, . . . , ei}. Consider the following two subspaces of g1:

El = {x ∈ g1 |xV 0
l = 0, xV 0⊥

l ⊂ V 0
l−1} and Ol = {x ∈ g1 |xV 0

l = 0, xV 0⊥
l−1 ⊂ V 0

l−1}.
Note that both El and Ol are Pl-invariant. We form the corresponding families of
Hessenberg varieties

(2.4) τNl : HessEl := Hess(K/Pl, g1, El) → g1 ,

(2.5) σN
l : HessOl := Hess(K/Pl, g1, Ol) → g1 .

A direct calculation shows that

(2.6a) Im τNl = Ō3l−1211N+1−3l if 3l ≤ N +1, Im τNl = Ō3N−2l23l−N if 3l > N +1,

and

(2.6b) Im σN
l = Ō3l−11N+3−3l if 3l ≤ N + 1, Im σN

l = Ō3N−2l23l−N if 3l > N + 1.

Remark 2.2. When 3l≤N+1, τNl coincides with Reeder’s resolution of Ō3l−1211N+1−3l

[R].

Let E⊥
l and O⊥

l be the orthogonal complements of El and Ol in g1 with respect
to the non-degenerate trace form, respectively. Let us now consider the following
families of Hessenberg varieties:

(2.7) τ̌Nl : HessE,⊥
l := Hess(K/Pl, g1, E

⊥
l ) → g1 ,

(2.8) σ̌N
l : HessO,⊥

l := Hess(K/Pl, g1, O
⊥
l ) → g1 .

Concretely, we have

E⊥
l = {x ∈ g1 |xV 0

l−1 ⊂ V 0
l , xV

0
l ⊂ V 0⊥

l }, O⊥
l = {x ∈ g1 |xV 0

l−1 ⊂ V 0
l };

and then

HessO,⊥
l � {(x, 0 ⊂ Vl−1 ⊂ Vl ⊂ V ⊥

l ⊂ V ⊥
l−1 ⊂ C

N ) |x ∈ g1, xVl−1 ⊂ Vl},

HessE,⊥
l � {(x, 0 ⊂ Vl−1 ⊂ Vl ⊂ V ⊥

l ⊂ V ⊥
l−1⊂C

N ) |x∈g1, xVl−1 ⊂ Vl, xVl ⊂ V ⊥
l }.
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2432 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

Finally, note that, as the notation indicates, the bundle HessE,⊥
l → K/Pl is the

orthogonal complement of the bundle HessEl → K/Pn in the trivial bundle g1 ×
K/Pl and similarly for HessO,⊥

l and HessOl . Hence, by functoriality of the Fourier
transform, we have:

(2.9) F((σN
l )∗C[−]) ∼= (σ̌N

l )∗C[−] and F((τNl )∗C[−]) ∼= (τ̌Nl )∗C[−].

2.3. Affine pavings. In this subsection we show that

(2.10)
the fibers of τNm : HessEm → N1 and σN

m : HessOm → N1 have

a paving by affine spaces.

Lemma 2.3. Let x ∈ O3i2j1N−3i−2j ⊂ Im τNm (resp., ImσN
m) and x0 ∈ O2j1N−3i−2j .

We have

(τNm )−1(x) ∼= (τN−3i
m−i )−1(x0) (resp., (σ

N
m)−1(x) ∼= (σN−3i

m−i )−1(x0)).

Proof. We prove the lemma for τNm . The argument for σN
m is entirely similar and

omitted. We have

(τNm )−1(x) ∼= {0 ⊂ Vm−1 ⊂ Vm ⊂ V ⊥
m ⊂ V ⊥

m−1 ⊂ C
N |xVm = 0, xV ⊥

m ⊂ Vm−1}.
Let (Vm−1 ⊂ Vm) ∈ (τNm )−1(x). We have that Im x ⊂ (kerx)⊥ ⊂ V ⊥

m . Thus
Im x2 ⊂ Vm−1.

Choose a basis {xkul, k∈ [0, 2], l∈ [1, i], vk, xvk, k∈ [1, j], wl, l∈ [1, N−3i−2j]}
of V as in [CVX1, Lemma 5.6]. Let

U0 = span{xluk, l ∈ [0, 2], k ∈ [1, i]},
V 0 = span{vk, xvk, k ∈ [1, j], wl, l ∈ [1, N − 3i− 2j]}.

Then Q|U0 , Q|V 0 are non-degenerate and V 0 = (U0)⊥. We have

Vm = Im x2 ⊕Wm−i and Vm−1 = Im x2 ⊕Wm−i−1,

where Wm−i = Vm ∩ V 0 ⊃ Wm−i−1 = Vm−1 ∩ V 0. We have dimWm−i = m − i
and dimWm−i−1 = m − i − 1. Let x0 = x|V 0 . Then x0 ∈ O2j1N−3i−2j . Note that
xVm = 0 if and only if x0Wm−i = 0. Now

V ⊥
m = span{xluk, l = 1, 2, k ∈ [1, i]} ⊕W⊥0

m−i,

where W⊥0
m−i denotes the orthogonal complement of Wm−i in V 0 with respect to

Q|V 0 . Thus xV ⊥
m ⊂ Vm−1 if and only if x0W

⊥0
m−i ⊂ Wm−i−1. This gives us the

desired isomorphism

(τNm )−1(x) ∼= (τN−3i
m−i )−1(x0), (Vm−1, Vm) �→ (prV0(Vm−1), prV0(Vm)),

where prV0 is the projection from V to V 0 with respect to V = U0 ⊕ V 0. �

Let OGr(k,N) denote the orthogonal Grassmannian variety of k-dimensional
isotropic subspaces in CN with respect to a non-degenerate bilinear form on CN

and let Gr(k,N) denote the Grassmannian variety of k-dimensional subspaces in
C

N .
By Lemma 2.3, to describe the fibers (τNm )−1(x) and (σN

m)−1(x), it suffices to
consider the case when x ∈ O2j1N−2j . We first introduce some notation. Let
x ∈ O2j1N−2j . We write

Σ := kerx/ Imx and Ū = U/(U ∩ Imx) for U ⊂ kerx.
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Define a bilinear from (, ) on Imx by

(2.11) (xv, xw) := 〈v, xw〉Q.
Using (Imx)⊥ = kerx, we see that (, ) is non-degenerate. For U ⊂ Imx, we define

U⊥(,) = {u ∈ Imx | (u, U) = 0}.
Let us denote

ΥN
m,j := (τNm )−1(x), ΓN

m,j := (σN
m)−1(x), x ∈ O2j1N−2j .

We partition ΥN
m,j into pieces indexed by the dimension of Vm ∩ Imx by letting

ΥN,k
m,j = {(0 ⊂ Vm−1 ⊂ Vm ⊂ V ⊥

m ⊂ V ⊥
m−1 ⊂ C

N ) ∈ ΥN
m,j | dim(Vm ∩ Imx) = k}.

We now describe the pieces ΥN,k
m,j . To this end, let

ΘN,k
m,j = {0 ⊂ Vm ⊂ V ⊥

m ⊂ C
N | dim(Vm ∩ Imx) = k,

xVm = 0, xV ⊥
m ⊂ Vm, dim(xV ⊥

m ) ≤ m− 1}.
Consider the following map:

η : ΘN,k
m,j → Gr(j − k, Im x)×Gr(m− k,Σ), (Vm) �→ ((Vm ∩ Im x)⊥(,) , V̄m).

We claim that

Im η ∼= OGr(j − k, Im x)×OGr(m− k,Σ),

where Im x is equipped with the non-degenerate bilinear form (, ) (see (2.11)),
and Σ is equipped with the non-degenerate bilinear form induced by 〈, 〉Q. It is
clear that V̄m ⊂ OGr(m− k,Σ) as 〈, 〉Q|Vm

= 0. It is easy to check that x(V ⊥
m ) ⊂

(Vm∩Im x)⊥(,) and dim x(V ⊥
m ) = dim (Vm∩Im x)⊥(,) = j−k. Thus x(V ⊥

m ) = (Vm∩
Im x)⊥(,) . Therefore the condition xV ⊥

m ⊂ Vm is equivalent to (Vm ∩ Im x)⊥(,) ⊂
Vm ∩ Im x, i.e., (Vm ∩ Im x)⊥(,) ∈ OGr(j − k, Im x). This proves the claim.

Thus we obtain a surjective map

(2.12) η : ΘN,k
m,j → OGr(j − k, Im x)×OGr(m− k,Σ)

and it is easy to see that the fibers of η are affine spaces A(j−k)(m−k). Note that
the fiber of the natural projection map

(2.13) ΥN,k
m,j → ΘN,k

m,j : (Vm−1, Vm) �→ Vm

at Vm is the projective space P(Vm/(xV ⊥
m )) ∼= Pm−j+k−1. It is easy to check using

the above maps that each piece ΥN,k
m,j has an affine paving. Therefore ΥN

m,j also has
an affine paving.

We can similarly partition ΓN
m,j into pieces indexed by the dimension of Vm−1 ∩

Im x. Let

ΓN,k
m,j = {(0 ⊂ Vm−1 ⊂ Vm ⊂ V ⊥

m ⊂ V ⊥
m−1 ⊂ C

N ) ∈ ΓN
m,j | dim(Vm−1 ∩ Im x) = k}

ΛN,k
m,j ={(0 ⊂ Vm−1 ⊂ V ⊥

m−1 ⊂ C
N ) | dim(Vm−1 ∩ Im x)

= k, xVm−1 = 0, xV ⊥
m−1 ⊂ Vm−1}.

We have a surjective map

η′ : ΛN,k
m,j → OGr(j − k, Im x)×OGr(m− k − 1,Σ),

(Vm−1) �→ ((Vm−1 ∩ Im x)⊥(,) , V̄m−1).
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2434 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

The fibers of η′ are affine spaces A(j−k)(m−k−1). The fiber of the natural projection
map

ΓN,k
m,j → ΛN,k

m,j : (Vm−1, Vm) �→ Vm−1

at a given Vm−1 is the variety of isotropic lines in (V ⊥
m−1∩ker x)/Vm−1 with respect

to the quadratic form induced by Q. The same argument as before shows that ΓN
m,j

is paved by affines.
In particular, we see from the above discussion that

(2.14)
ΥN,k

m,j �= ∅ ⇔ max{m+ j −N/2, j/2, j + 1−m} ≤ k ≤ min{j,m};
ΓN,k
m,j �= ∅ ⇔ max{m+ j −N/2− 1, j/2, j + 1−m} ≤ k ≤ min{j,m− 1}.

Finally, in [CVX1, Proof of Proposition 4.3] we have used the following fact.

Lemma 2.4. For xi ∈ O3i22m−1−2i12n−4m+3+i we have

(τ2n+1
m )−1(xi) ∼= OGr(m− 1− i, 2m− 1− 2i) .

This can be deduced from the results in this subsection as follows. Using Lemma
2.3 and (2.14) we see that τ2n+1

m (xi) ∼= Υ2n+1−3i,m−i
m−i, 2m−1−2i. The conclusion follows by

considering the maps in (2.12) and (2.13).

2.4. Families of complete intersections of quadrics and their identification
with Hessenberg varieties. Let m ∈ [1, N − 1] be an integer. For any s ∈ grs1 ,
let

Xm,s ⊂ P(V ) � P
N−1

be the complete intersection of m quadrics

〈si−,−〉Q = 0, i = 0, . . . ,m− 1

in P(V ). As s varies over grs1 , we get a family

πm : Xm → g
rs
1

of complete intersections of m quadrics in P(V ).

The families of Hessenberg varieties HessO,⊥
l and HessE,⊥

l over grs1 are identified
with Xm’s as follows.

Theorem 2.5. Assume that k ≤ N−1
2 . Then we have

(1) There is a K-equivariant isomorphism HessO,⊥
k |grs

1
� X2k−1 of varieties

over grs1 .

(2) There is a K-equivariant isomorphism HessE,⊥
k |grs

1
� X2k of varieties over

grs1 .

We begin with the following simple observation.
(2.15)

Let s ∈ g
rs
1 . For any isotropic subspace 0 �= U ⊂ V , dim(sU ∩ U) < dim(sU).

This follows from the fact that s has no isotropic eigenspaces.

Proof of Theorem 2.5. We first define a map from X2k−1 to HessO,⊥
n . Let (s, l) ∈

X2k−1, where s ∈ grs1 and l is in the complete intersection of 2k − 1 quadrics
〈si−,−〉Q = 0, i = 0, . . . , 2k − 2, in P(V ). Let 0 �= v ∈ l. For 1 ≤ i ≤ k, consider
the subspaces

Vi = span{v, sv, . . . , si−1v}.
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Note that Vi is isotropic. We show that dimVi = i. We have Vi = Vi−1 + sVi−1.
Thus dimVi = dimVi−1 + dim sVi−1 − dim(sVi−1 ∩ Vi−1) > dimVi−1, where in
the last inequality we use (2.15). By induction we see that dimVi = i. Hence the
assignment (s, l) �→ (s, Vk−1 ⊂ Vk) defines a map

ι : X2k−1 → HessO,⊥
k |grs

1
.

One checks readily that ι is K-equivariant. We prove that ι is an isomorphism by

constructing an explicit inverse map. Let (s, V ′
k−1 ⊂ V ′

k) ∈ HessO,⊥
k with s ∈ grs1 .

We define a sequence of subspaces 0 ⊂ V ′
1 ⊂ V ′

2 ⊂ · · · ⊂ V ′
k−2 recursively. Let us

first define V ′
k−2. Consider the map s̄ : V ′

k−1
s−→ V ′

k → V ′
k/V

′
k−1. Note that by (2.15),

the map s̄ is non-zero, hence surjective as dimV ′
k/V

′
k−1 = 1. Let V ′

k−2 = ker s̄. We
have dimV ′

k−2 = k−2 and V ′
k−1 = V ′

k−2∪ sV ′
k−2. By induction we can assume that

we have defined V ′
i such that dimV ′

i = i and V ′
i+1 = V ′

i ∪ sV ′
i . Let

V ′
i−1 = ker(s̄ : V ′

i
s−→ V ′

i+1 → V ′
i+1/V

′
i ).

The same argument as before shows that dimV ′
i−1 = i− 1 and V ′

i = V ′
i−1 ∪ sV ′

i−1.
Thus in particular we obtain that dimV ′

1 = 1, and it is easy to see that the map

HessO,⊥
k |grs

1
→ X2k−1, (s, V

′
k−1 ⊂ V ′

k) �→ (s, V ′
1)

defines an inverse of ι. This finishes the proof of (1).

For (2), we observe that, under the isomorphism ι : X2k−1 � HessO,⊥
k , the

equation 〈s2k−1v, v〉Q = 0 for the divisor X2k ⊂ X2k−1 becomes 〈sV ′
k, V

′
k〉Q = 0,

which is the equation for the divisor HessE,⊥
k ⊂ HessO,⊥

k . Thus (2) follows. �

3. Complete intersections of quadrics and their double covers

In §2.4 we have introduced the families Xm → grs1 of complete intersections of

quadrics, which we have identified with families of Hessenberg varieties HessE,⊥
n |grs

1
,

HessO,⊥
n |grs

1
. In order to study the monodromy representations of the equivariant

fundamental group πK
1 (grs1 ) associated with the above families of Hessenberg vari-

eties, we introduce families Ym of branched covers of PN−m−1 and relate them with
Xm. We also introduce a family of branched double covers of Xm, denoted by X̃m,
and relate them to families Ỹm of branched covers of PN−m−1 which we introduce
in §3.5. Our construction can be regarded as a relative version of the construction
in [T].

3.1. Some notation. In this section we choose a Cartan subspace a ⊂ g1 that
consists of diagonal matrices. Let ars = a ∩ grs. We write an element a ∈ a with
diagonal entries a1, . . . , aN as a = (a1, . . . , aN ) (note that we have diagonalized the
elements in a with respect to a standard basis fi of V , where 〈fi, fj〉Q = δi,j , rather
than the basis chosen in §2.2). Thus a = (a1, . . . , aN ) ∈ ars if and only if ai �= aj
for i �= j.

Define

IN := (Z/2Z)N/(Z/2Z)

where we regard Z/2Z as a subgroup of (Z/2Z)N via the diagonal embedding. For
any χ ∈ I∨N = Hom(IN ,Gm), we define

supp(χ) = {i ∈ [1, N ] |χ(ξi) = −1} and |χ| = #supp(χ),

where ξi is the image of (0, . . . , 1, . . . , 0) ∈ (Z/2Z)N in IN . Note that |χ| is even.
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If we identify the centralizer ZK(a) of a ∈ ars with the kernel of the map
(Z/2Z)N → Z/2Z, (b1, . . . , bN ) �→

∑
bi, we obtain a natural map

(3.1) ZK(a) → (Z/2Z)N
pr−→ IN .

Note when N is odd which we will assume from this point on, the map (3.1) is an
isomorphism. Therefore, in what follows, we often make the canonical identification
ZK(a) ∼= IN .

To emphasize we have the following.

Assumption. From now on we assume that N is odd.

3.2. Family of curves. In this subsection we introduce certain families of curves
which will be used to construct the families Ym and Ỹm of branched covers of
projective spaces.

For any a = (a1, . . . , aN ) ∈ ars, there are natural isomorphisms

πab
1 (P1 − {a1, . . . , aN})⊗ Z/2Z � IN ,

πab
1 (P1 − {a1, . . . , aN , aN+1 = ∞})⊗ Z/2Z � IN+1.

The isomorphisms are given by assigning to a small loop around each ai the element
in IN (resp., IN+1) with only a non-trivial coordinate in position i. Let

Ca → P
1 (resp., C̃a → P

1)

be the abelian covering of P1 ramified at {a1, . . . , aN} (resp., {a1, . . . , aN+1 = ∞})
with Galois groups given by IN (resp., IN+1). Concretely, Ca (resp., C̃a) is the
smooth projective curve corresponding to the function field

C(t)((
t− ai
t− a1

)
1/2
i=2,...,N ) (resp., C(t)((t− ai)

1/2
i=1,...,N )).

The group IN (resp., IN+1) acts on Ca (resp., C̃a). For any χ ∈ I∨N (resp., χ ∈ I∨N+1)
we define

Ca,χ = Ca/ kerχ (resp., C̃a,χ = C̃a/ kerχ),

which is a branched double cover of P1 with branch locus {ai | i ∈ supp(χ)}. Con-

cretely, Ca,χ (resp., C̃a,χ) is isomorphic to the smooth projective hyperelliptic curve
with affine equation

y2 =
∏

i∈suppχ

(x− ai) (resp., y
2 =

∏
i∈suppχ, i 	=N+1

(x− ai)).

We have dimH1(Cχ,C) = |χ| − 2 (resp., dimH1(C̃χ,C) = |χ| − 2).
As a varies over ars, we obtain a family of curves

C → ars (resp., C̃ → ars)

and we similarly obtain families of hyperelliptic curves

Cχ → ars (resp., C̃χ → ars) for any χ.

We also note that the Weyl group W = SN acts naturally on C (resp., C̃) making

the projection C → ars (resp., C̃ → ars) a W -equivariant map.
We will now associate monodromy representations to these families. Let us fix

a ∈ ars and a character χ ∈ I∨N (resp., χ ∈ I∨N+1) and we recall that π1(a
rs, a) is the
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pure braid group PN . The monodromy representation of the family Cχ → ars fac-
tors through the symplectic group and we denote it by ρCχ

: PN → Sp(H1(Ca,χ,C))

� Sp(2m−2) where the m = |χ|
2 . Similarly we obtain a monodromy representation

ρC̃χ
: PN → Sp(H1(C̃a,χ,C)) � Sp(2m− 2).

We claim:

(3.2)

The images of the representations ρCχ
and ρC̃χ

are Zariski dense

in Sp(H1(Ca,χ,C)) and Sp(H1(C̃a,χ,C)), respectively .

In particular, the representations ρCχ
and ρC̃χ

are irreducible .

We see this as follows. Consider the following subvariety ars(a, χ) ⊂ ars

(3.3) a
rs(a, χ) = {a′ ∈ a

rs | a′i = ai if i /∈ supp(χ)}.

It suffices to show that the monodromy representation of the restriction of Cχ → ars

to ars(a, χ) has Zariski dense image. Now, ars(a, χ) is an open subset of the space
M2m of 2m distinct marked points in C and the family Cχ ×ars ars(a, χ) is the
restriction of the universal family of hyperelliptic curves parametrized by M2m.
Note further, that M2m itself is an open subset of the space M̃2m of 2m distinct
marked points in P1 carrying its own family of hyperelliptic curves. Now, by [A] (see

also [KS, Theorem 10.1.18.3]), the monodromy representation on M̃2m is irreducible
and has Zariski dense image. Therefore ρCχ

, as a restriction to an open subset, has

the same property. The argument in the case C̃χ → ars is completely analogous
except one has to take into account that aN+1 = ∞.

Finally, there is a unique character χ0 ∈ I∨N+1 with |χ0| = N + 1 (here we use
the assumption that N is odd). The character χ0 is invariant under the Weyl group

action. Thus we can pass to a quotient of C̃χ0
→ ars under the W action and in

this way obtain a family Cχ0
→ crs = ars/W . The family Cχ0

→ crs = ars/W is

the universal family of hyperelliptic curves y2 =
∏N

i=1(x− ai) and C̃χ0
→ ars is a

similar universal family with marked ramification points.

3.3. Branched cover Ym of projective spaces and Xm. Define

ĪN−m−1
N = ker(sum : IN−m−1

N → IN ),

where sum is the summation map. Fix a = (a1, . . . , aN ) ∈ ars. Let Ca → P1

be the curve introduced in §3.2. The semi-direct product ĪN−m−1
N � SN−m−1 acts

naturally on CN−m−1
a and we define

Ym,a = CN−m−1
a /ĪN−m−1

N � SN−m−1.

We have a natural map

ιa : Ym,a → CN−m−1
a /IN−m−1

N � SN−m−1 � P
N−m−1.

According to [T, Proposition 2.4.4], for a suitable choice of homogeneous coordi-
nates [x1, . . . , xN−m] of PN−m−1, each ramification point ai defines a hyperplane

(3.4) Ha,i = x1 + aix2 + · · ·+ aN−m−1
i xN−m = 0

in PN−m−1 and the map ιa is an IN -branched cover of PN−m−1 with branch locus
{Ha,i = 0}i=1,...,N . As a varies over ars, we get an ars-family of IN -branched covers
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of PN−m−1

Ym

���
��

��
��

�
ι �� P

N−m−1
ars

����
��
��
��
�

ars

where

Ym = CN−m−1/ĪN−m−1
N � SN−m−1

and the base change of ι to a is equal to ιa. Observe that the W -action on C
induces a W -action on Ym making the projection Ym → ars a W -equivariant map.

Let Xm → grs1 be the family of complete intersections of quadrics introduced in
§2.4. For a = (a1, . . . , aN ) ∈ ars the equation of Xm,a is given by

ai1v
2
1 + · · ·+ aiNv2N = 0, i = 0, . . . ,m− 1.

Consider the map

s : P(V ) → P(V ), [v1, . . . , vN ] �→ [v21 , . . . , v
2
N ].

The image s(Xm,a) is equal to P(Vm,a), where

(3.5) Vm,a = {v ∈ V | ai1v1 + · · ·+ aiNvN = 0, i = 0, . . . ,m− 1} ⊂ V.

The resulting map

sa : Xm,a → P(Vm,a)

is an IN -branched cover with branch locus {vi = 0}i=1,...,N . As a varies over ars,
we obtain

Xm|ars

���
��

��
��

�
s �� P(Vm)

����
��
��
��

ars

Here Vm → ars is the vector bundle over ars whose fiber over a is Vm,a and P(Vm)
is the associated projective bundle.

The two families Xm|ars and Ym are related as follows. Let

(ãrs)′={(a, c) | a=(a1, . . . , aN )∈a
rs, c=(c1, . . . , cN )∈C

N , c2i = di :=
∏
j 	=i

(aj−ai)}.

The projection (ãrs)′ → ars, (a1, . . . , aN , c1, . . . , cN ) �→ (a1, . . . , aN ) realizes (ãrs)′

as a (Z/2Z)N -torsor over ars. Consider the following IN -torsor over ars:

(3.6) ã
rs := (ãrs)′/(Z/2Z) → a

rs;

here we view Z/2Z as a subgroup of (Z/2Z)N via the diagonal embedding. The
Weyl group W acts naturally on ãrs making the projection to ars a W -equivariant
map. We observe that the IN -torsor ãrs of (3.6) gives rise to the following canonical
map:

(3.7) ρ : π1(a
rs, a) ∼= PN → IN .

Proposition 3.1. We have an IN �W -equivariant isomorphism

(3.8) Xm|ars � (Ym ×ars ãrs)/IN := Yt
m,

where W (resp., IN ) acts on Yt
m by the diagonal action (resp., on the first factor).
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Proof. Following [T, §5], we consider the family

X ′
m|ars → a

rs

whose fiber over a = (a1, . . . , aN ) ∈ ars is the complete intersection of m quadrics
in P(V ) given by

ai1
d1

v21 + · · ·+ aiN
dN

v2N = 0, i = 0, . . . ,m− 1,

where di :=
∏

j 	=i(aj − ai). One can think of Xm|ars as a twist of X ′
m|ars . More

precisely, we have a natural map

ãrs ×ars X ′
m|ars → Xm|ars , (a, c, [v1, . . . , vN ]) �→ (a, [v1/c1, . . . , vN/cN ])

and it is not hard to see that it descends to a canonical IN -equivariant isomorphism

(3.9) Xm|ars � (ãrs ×ars X ′
m|ars)/IN .

Here IN acts on the product via the diagonal action. The Weyl group W = SN acts
naturally on Xm|ars , X ′

m|ars , ãrs, and (ãrs×arsX ′
m|ars)/IN , making the projections

to ars equivariant maps under the W -actions. Moreover, the isomorphism in (3.9)
is also W -equivariant. In §3.6 (see Proposition 3.3), we show that there is an
IN �W -equivariant isomorphism

(3.10) X ′
m|ars � Ym.

Combining (3.9) with (3.10) we obtain (3.8). �

3.4. Branched double covers X̃m of complete intersections of quadrics.

We introduce a branched double cover of Xm as follows. Let Ṽ = V ⊕ C. For any

s ∈ grs1 , consider the following quadrics in P(Ṽ ):

Q̃i(v, ε) = 〈siv, v〉Q = 0, i = 0, . . . ,m− 1,

Q̃m(v, ε) = 〈smv, v〉Q − ε2 = 0.

We define X̃m,s to be the complete intersection of m + 1 quadrics Q̃i = 0, i =
0, . . . ,m. As s varies over grs1 , we get a family

π̃m : X̃m → g
rs
1

of complete intersections ofm+1 quadrics in P(Ṽ ). The projection Ṽ = V ⊕C → V ,

(v, ε) �→ v, induces a map pm : X̃m → Xm which is a branched double cover with
branch locus Xm+1 ⊂ Xm.

The map Ṽ = V ⊕C → Ṽ given by (v, ε) �→ (v,−ε) defines an involution on X̃m.
We denote this involution by σ.

The group K = SO(V,Q) acts naturally on both Xm and X̃m. The maps πm :

Xm → grs1 and π̃m : X̃m → grs1 are K-equivariant. In particular, the centralizer

ZK(s) acts on the fibers Xm,s and X̃m,s.
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3.5. Branched cover Ỹm of projective spaces and X̃m. In this subsection we

generalize Proposition 3.1 to the branched double cover X̃m introduced in §3.4.
For a = (a1, . . . , aN ) ∈ ars the equations of X̃m,a ⊂ PN−m−1(Ṽ ) (recall that

Ṽ = V ⊕ C) are given by

ai1v
2
1 + · · ·+ aiNv2N = 0, i = 0, . . . ,m− 1, am1 v21 + · · ·+ amNv2N − ε2 = 0.

Consider the map

(3.11) s̃ : P(Ṽ ) → P(Ṽ ), [v1, . . . , vN , ε = vN+1] �→ [v21 , . . . , v
2
N , v2N+1].

We have s̃(X̃m,a) � P(Ṽm,a), where Ṽm,a ⊂ Ṽ is the subspace defined by the
equations

ai1v1 + · · ·+ aiNvN = 0, i = 0, . . . ,m− 1, am1 v1 + · · ·+ amNvN − vN+1 = 0.

The map

s̃a : X̃m,a → P(Ṽm,a)

is an IN+1-branched cover with branch locus {vi = 0}i=1,...,N+1. As a varies over
ars, we obtain

X̃m|ars

���
��

��
��

��
s̃ �� P(Ṽm)

����
��
��
��

ars

Here Ṽm is the vector subbundle of the trivial bundle Ṽ × ars whose fiber over a is
the subspace Ṽm,a, and P(Ṽm) is the associated projective bundle.

We now introduce another family Ỹm of branched covers of PN−m−1. Let sum :
IN−m−1
N+1 → IN+1 be the summation map and define ĪN−m−1

N+1 = ker(sum). For any

a ∈ ars let C̃a → P1 be the IN+1-branched cover of P1 introduced in §3.2. The

semi-direct product ĪN−m−1
N+1 � SN−m−1 acts naturally on (C̃a)

N−m−1. We define

Ỹm,a = (C̃a)
N−m−1/ĪN−m−1

N+1 � SN−m−1.

Similar to the case of Ym,a, the natural map

ι̃a : Ỹm,a → (C̃a)
N−m−1/IN−m−1

N+1 � SN−m−1 � P
N−m−1

is an IN+1-branched cover of PN−m−1 with branch locus {Ha,i = 0}i=1,...,N+1.
Here Ha,i = 0 for i = 1, . . . , N are the hyperplanes as before (see (3.4)) and
Ha,N+1 := xN−m = 0 is the hyperplane corresponding to the ramification point
aN+1 = ∞.

As a varies over ars, we get an ars-family of an IN+1-branched cover of PN−m−1

Ỹm

���
��

��
��

�
ι̃ �� P

N−m−1
ars

����
��
��
��
�

ars

We will again make use of ãrs of (3.6) to relate the two families X̃m|ars and Ỹm.

The Weyl group W acts naturally on X̃m|ars and Ỹm, making the projections to

ars equivariant with respect to these W -actions. We let IN act on Ỹm via the map

(3.12) κ : IN ∼= ZK(a) ↪→ (Z/2Z)N+1 pr−→ IN+1,
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where the first arrow is given by (ζ1, . . . , ζN ) �→ (ζ1, . . . , ζN , 0). We also let W act
on IN+1 by permuting the first N coordinates and we use this convention to form
the semi-direct product IN+1 �W .

Proposition 3.2. There is an IN+1 �W -equivaraint isomorphism

(3.13) X̃m|ars � Ỹt
m := (Ỹm ×ars ãrs)/IN ,

where W (resp., IN+1) acts on Ỹt
m by the diagonal action (resp., on the first factor).

Proof. Let us consider the following twist of X̃m|ars :

X̃ ′
m|ars → a

rs

whose fiber over a = (a1, . . . , aN ) is the complete intersection of quadrics given by

ai1
d1

v21 + · · ·+ aiN
dN

v2N = 0, i = 0, . . . ,m− 1,
am1
d1

v21 + · · ·+ amN
dN

v2N − ε2 = 0,

where di is defined as before, i.e., di =
∏

j 	=i(aj − ai). Similar to the case of Xm,
we have a canonical isomorphism

(3.14) X̃m|ars � (ãrs ×ars X̃ ′
m|ars)/IN .

Here the IN -action on X̃ ′
m|ars is defined as the composition of IN → IN+1 in (3.12)

with the natural action of IN+1 on X̃m. The Weyl group W acts naturally on X̃m,

X̃ ′
m, and Ỹm, making the projections to ars equivariant maps under the W -actions.

Thus we obtain IN+1 � W -actions on X̃m, X̃ ′
m, and Ỹm and the projections to

ars are IN+1 �W -equivariant. Moreover, the isomorphism in (3.14) is IN+1 �W -
equivariant. In §3.6 (see Proposition 3.3), we show that there is an IN+1 � W -

equivariant isomorphism X̃ ′
m|ars � Ỹm. Combining this with (3.14) we obtain

(3.13). �

3.6. The families X̃ ′
m and Ỹm. In this subsection we state and prove the following

proposition which was used in the previous subsections.

Proposition 3.3. We have an IN+1 �W -equivariant isomorphism X̃ ′
m|ars � Ỹm.

In particular, it induces an IN �W -equivariant isomorphism on the quotient

X ′
m|ars � X̃ ′

m|ars/(Z/2Z) � Ỹm/(Z/2Z) � Ym.

Here Z/2Z acts on X̃ ′
m and Ỹm via the map Z/2Z → IN+1 given by 1 �→ (0, . . . , 0, 1).

We follow closely the argument in [T, §2]. We begin by introducing some auxil-

iary spaces and maps. Let Ṽ ′
m ⊂ Ṽ × ars be the vector subbundle whose fiber over

a ∈ ars is the subspace Ṽ ′
m,a ⊂ Ṽ defined by the equations

(3.15)
ai1
d1

v1+ · · ·+ aiN
dN

vN = 0, i = 0, . . . ,m−1,
am1
d1

v1+ · · ·+ amN
dN

vN −vN+1 = 0.

The map s̃ : P(Ṽ )× ars → P(Ṽ )× ars (see (3.11)) maps X̃ ′
m|ars to P(Ṽ ′

m) and the
resulting map

s̃′ : X̃ ′
m|ars → P(Ṽ ′

m)

is an IN+1-branched cover with branch locus {vi = 0, i = 1, . . . , N + 1}.
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Let C(P(Ṽ ′
m)) be the function field of P(Ṽ ′

m). Then the function field of X̃ ′
m|ars

is given by the following field extension:

F := C(P(Ṽ ′
m))((

vi
vN+1

)
1/2
i=1,...,N ) ⊃ C(P(Ṽ ′

m)).

Since X̃ ′
m|ars is smooth and s̃′ is finite, it follows that

X̃ ′
m|ars is the normalization of P(Ṽ ′

m) in F .2

The group IN+1 acts on F by ζ : v
1/2
i �→ (−1)ζi v

1/2
i , ζ = (ζ1, ..., ζN+1) ∈ IN+1 and

W acts on F by w : (
vi

vN+1
)1/2 �→ (

vw(i)

vN+1
)1/2.

Similarly, let kη be the function field of ars and let η = (a1, . . . , aN ) ∈ ars(kη)

be the corresponding generic point. Then the function field of Ỹm is given by the
following field extension:

F ′ = C(PN−m−1
ars )((

Hη,i

Hη,N+1
)
1/2
i=1,...,N ) ⊃ C(PN−m−1

ars ).

Here, Hη,i, i = 1, . . . , N are the hyperplanes associated to η ∈ ars in (3.4), Hη,N+1

= xN−m, and
Hη,i

Hη,N+1
are rational functions on PN−m−1

η , regraded as elements in

C(PN−m−1
η ) = C(PN−m−1

ars ). Since Ỹm is smooth and ι̃ : Ỹm → P
N−m−1
ars is finite, it

follows that

Ỹm is the normalization of PN−m−1
ars in F ′.

The group IN+1 acts on F ′ by ζ : H
1/2
η,i �→ (−1)ζi H

1/2
η,i , ζ = (ζ1, . . . , ζN+1) ∈ IN+1

and W acts on F by w : (
Hη,i

Hη,N+1
)1/2 �→ (

Hη,w(i)

Hη,N+1
)1/2.

By the discussion above, to prove Proposition 3.3, it is enough to prove the
following statement:

(3.16)
The two ars-families of configurations

(P(Ṽ ′
m,a), {vi}i=1,...N+1) and (PN−m−1

ars , {Ha,i}i=1,...,N+1) are equivalent.

That is, there is an isomorphism (or trivialization) of vector bundles φ : CN−m ×
ars � Ṽ ′

m over ars such that for any k-point a ∈ ars(k), k a field, the induced map

on the dual fibers φ∗
a : (Ṽ ′

m,a)
∗ � kN−m satisfies φ∗

a(vi) = Ha,i for i = 1, . . . , N +1.
To prove (3.16), we need to construct, for each S-point a ∈ ars(S), a functorial

isomorphism φa : CN−m×S � Ṽ ′
m,a satisfying the desired property. For notational

simplicity we construct such isomorphisms on the level of k-points. The argument
for general S-points is the same.

Consider the following map:

ψa : Ṽ ⊗ k
pr→ V ⊗ k

×d� V ⊗ k,

where pr : Ṽ ⊗ k = (V ⊗ k) ⊕ k → V ⊗ k is the projection map and the second
isomorphism is given by multiplying the diagonal matrix d = diag(d−1

1 , . . . , d−1
N ) ∈

GL(V ⊗ k) (recall for a = (a1, . . . , aN ) ∈ ars, di =
∏

j 	=i(aj − ai)). One can check

that ψa maps Ṽ ′
m,a isomorphically onto Vm,a (see (3.15) and (3.5) for the definitions

2Recall for any irreducible variety X and K a finite extension of the function field C(X), there
exists a unique normal variety Y and a finite morphism f : Y → X such that the induced map
C(X) → C(Y ) = K is the given field extension. We call Y the normalization of X in K.
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of Ṽ ′
m,a and Vm,a, respectively) and the resulting isomorphism ψa : Ṽ ′

m,a � Vm,a

satisfies

ψ∗
a(di · vi) = vi for i = 1, . . . , N and ψ∗

a(H∞) = vN+1,

where H∞ := am1 v1 + · · ·+ amNvN . Thus we are reduced to show that

(P(Vm,a), {di · vi}i=1,...,N ∪H∞) and (P(kN−m), {Ha,i}i=1,...N+1) are equivalent,

that is, there is an isomorphism

γa : kN−m � Vm,a

such that γ∗
a(di · vi) = Ha,i, i = 1, . . . , N and γ∗

a(H∞) = Ha,N+1.
Consider the basis ui = (ai1, . . . , a

i
N ), i = 0, . . . , N − 1 of V ⊗ k. Then the

isomorphism V ⊗ k � (V ⊗ k)∗, given by the pairing 〈(vi), (wi)〉 =
∑

viwi, induces
the following isomorphism:

f1 : V ∗
m,a � V ⊗ k/k〈u0, . . . , um−1〉 � k〈um, . . . , uN−1〉.

Let si be the elementary symmetric polynomial in a1, . . . , aN of degree i and let
A = (aij) ∈ GLN−m(k) be the matrix with entries aij = (−1)i−1sj−i if j ≥ i and
aij = 0 otherwise. Consider the following isomorphism:

f : V ∗
m,a

f1� k〈um, . . . , uN−1〉
f2� kN−m f3� kN−m.

Here f2 : k〈um, . . . , uN−1〉 � kN−m is the isomorphism given by uN−i �→ (−1)i−1xi
3

and f3 is the isomorphism given by right multiplication by A−1. We claim that the
dual

γa := f∗ : kN−m � Vm,a

is the desired isomorphism, i.e., we have f(di · vi) = Ha,i for i = 1, . . . , N , and
f(H∞) = Ha,N+1. Note that the configuration (P(Vm,a), {di · vi}i=1,...,N ) (resp.,
(P(kN−m), {Ha,i}i=1,...,N )) is equal to the configuration (P,H1, . . . , HN ) (resp.,
(P ′, H ′

1, . . . , H
′
N )) in [T, §2.1]. Moreover, the map f is the one used in [T, Proof of

Theorem 2.1.1] to show that the above configurations are equivalent. Thus accord-
ing to [T, Proof of Theorem 2.1.1] we have

f(di · vi) = Ha,i for i = 1, . . . , N.

So it remains to show that f(H∞) = Ha,N+1. For this we observe that f1(H∞) =
um. Hence

f(H∞) = f3 ◦ f2 ◦ f1(H∞) = f3 ◦ f2(um) = (−1)N−m−1 · f3(xN−m)

= (−1)N−m−1 · xN−m ·A = xN−m = Ha,N+1.

This proves (3.16).
The proof of Proposition 3.3 is complete.

3Here we regard xi as the ith coordinate vector of kN−m.
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4. Monodromy of families of Hessenberg varieties

In this section we study the monodromy representation of πK
1 (grs1 , a) = ZK(a)�

BN on the primitive cohomology of complete intersections of quadrics Xm (and on

the primitive cohomology of their branched double covers X̃m). By Theorem 2.5
this gives us a complete description of the monodromy representations of πK

1 (grs1 )

associated to the families of Hessenberg varieties HessO,⊥
n and HessE,⊥

n .
To state the result, let us recall, from §3.2, the monodromy representations

ρCχ
: PN → Sp(H1(Ca,χ,C)) � Sp(2i − 2) and ρC̃χ

: PN → Sp(H1(C̃a,χ,C)) �
Sp(2i − 2) where i = |χ|

2 . Recall further that, by (3.2), these representations are
irreducible with Zariski dense image. Let us consider the irreducible representation
of Sp(2i − 2) associated to the fundamental weight ωj . Composing ρCχ

and ρC̃χ

with this fundamental representation we obtain irreducible representations Pj
χ and

P̃
j

χ of the pure braid group PN .
For a character χ of an abelian group we write Vχ for the corresponding one

dimensional representation. Recall that the group ZK(a) can be naturally identified
with IN as explained in (3.1). We also relate the characters of IN and IN+1 using
the map κ defined in (3.12). From these considerations we conclude that

(4.1) ZK(a)∨ = I∨N and we have a map κ̌ : I∨N+1 → I∨N .

In particular, characters of IN and IN+1 can be regarded as characters of ZK(a). To
state the main theorems of this section we define two ZK(a)� PN -representations
as follows:

EN
ij �

⊕
χ∈I∨

N , |χ|=2i

Pj
χ⊗Vχ and ẼN

ij =
⊕

χ∈I∨
N+1, |χ|=2i,

N+1∈suppχ

P̃
j

χ ⊗ Vχ,

where the IN acts on ẼN
ij via the map κ̌ : I∨N+1 → I∨N of (4.1), and PN acts on Vχ

via the map ρ : PN → IN of (3.7). Lemmas 4.4 and 4.6 show that the ZK(a)�PN

actions on EN
ij and ẼN

ij extend naturally to ZK(a)�BN -actions.
The main results of this section are the following.

Theorem 4.1. For 1 ≤ m ≤ N − 1, the monodromy representation of πK
1 (grs1 , a)

on P (Xm) := HN−m−1
prim (Xm,a,C) decomposes into irreducible representations in the

following manner:

P (Xm) �
⊕
i

⊕
j≡N−m−1mod 2

j∈[0,l]

EN
ij ,

with N −m+ 1 ≤ 2i ≤ N , l = min{N −m− 1,−N +m+ 2i− 1}.

To state the second main result, we set

P (X̃m) := HN−m−1
prim (X̃m,a,C).

Recall that there is an involution action σ on X̃m and the projection map pm :
X̃m → Xm is a branched double cover with Galois group 〈σ〉 � Z/2Z (see §3.4).
Then P (X̃m) = P (X̃m)σ=id ⊕ P (X̃m)σ=− id and we have P (X̃m)σ=id = P (Xm).

The next theorem describes P (X̃m)σ=− id.
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HESSENBERG VARIETIES AND THE SPRINGER CORRESPONDENCE 2445

Theorem 4.2. For 1 ≤ m ≤ N−1, the monodromy representation of πK
1 (grs1 , a) on

P (X̃m)σ=− id decomposes into irreducible representations in the following manner:

P (X̃m)σ=− id �
⊕
i

⊕
j≡N−m−1mod 2

j∈[0,l]

ẼN
ij ,

with N −m+ 1 ≤ 2i ≤ N + 1, l = min{N −m− 1,−N +m+ 2i− 1}.

4.1. Proof of Theorem 4.1. Let us start with the following proposition which is
a consequence of Proposition 3.1.

Proposition 4.3. There is an isomorphism of representations of πK
1 (grs1 , a) �

IN �BN

Hi(Xm,a,C) �
⊕
χ∈I∨

N

Hi(Ym,a,C)χ ⊗ Vχ.

The group IN acts on the summand Hi(Ym,a,C)χ ⊗ Vχ via the character χ ∈ I∨N .

Proof. Observe that the families Xm|ars → ars, Ym → ars, and ãrs → ars are all
W -equivariant. Hence their cohomology groups Hi(Xm,a,C), Hi(Ym,a,C),
H0((ãrs)a,C) carry an action of the braid group BN � πW

1 (ars, a). Let

Hi(Xm,a,C) =
⊕
χ∈I∨

N

Hi(Xm,a,C)χ, Hi(Ym,a,C) =
⊕
χ∈I∨

N

Hi(Ym,a,C)χ,

H0((ãrs)a,C) =
⊕
χ∈I∨

N

Vχ,

be the decompositions with respect to the action of IN ; for the last identity we
recall that ãrs → ars is an IN -torsor. For χ ∈ I∨N and b ∈ BN , we write b · χ for
the action of b on χ. Then the braid group action on Hi(Ym,a,C) is described as
follows:

b ∈ BN : Hi(Ym,a,C)χ �→ Hi(Ym,a,C)b·χ.

The BN -actions on Hi(Xm,a,C) and H0((ãrs)a,C) are described in the same man-
ner.

By the Künneth formula, the cohomology of the fiber of Yt
m = (Ym ×ars ãrs)/IN

over a ∈ ars is canonically isomorphic to

Hi(Yt
m,a,C) �

⊕
χ∈I∨

N

Hi(Ym,a,C)χ ⊗ Vχ.

Thus by (3.8) we obtain the desired πK
1 (grs1 , a) � IN�BN -equivariant isomorphism.

�

The isomorphism in Proposition 4.3 implies the following isomorphism of mon-
odromy representations:

(4.2) P (Xm) �
⊕
χ∈I∨

N

P (Ym)χ ⊗ Vχ,

where

P (Ym) := HN−m−1
prim (Ym,a,C), P (Ym)χ := HN−m−1(Ym,C)χ ∩ P (Ym).

Our goal is to decompose the representation above into irreducible representations.
Observe that each summand P (Ym)χ is invariant under the action of the pure
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braid group PN . According to [T, Theorem 2.5.1], there is an isomorphism of
representations of PN

P (Ym)χ �
N−m−1∧

H1(Ca,C)χ �
N−m−1∧

H1(Ca,χ,C),

where PN acts on H1(Ca,χ,C) via the map ρCχ
: PN → Sp(2i− 2), i = |χ|/2.

As an Sp(2i− 2)-representation
∧N−m−1

H1(Ca,χ,C) decomposes into a direct
sum of fundamental representations in a well-known manner. This implies the
following decomposition of P (Ym)χ into irreducible representations of PN :

(4.3) P (Ym)χ �
N−m−1∧

H1(Ca,χ,C) =
⊕

j≡N−m−1mod 2, j∈[0,l]

Pj
χ,

where l = min{N −m− 1,−N +m+ |χ| − 1}.
Combining (4.2) with (4.3), we obtain the following decomposition:

(4.4) P (Xm) �
⊕
χ∈I∨

N

P (Ym)χ ⊗ Vχ �
⊕
χ∈I∨

N

⊕
j

Pj
χ ⊗Vχ.

Using the notation from the beginning of this section the decomposition (4.4)
can be rewritten as

(4.5) P (Xm) �
⊕
i

⊕
j≡N−m−1mod 2, j∈[0,l]

EN
ij ,

where N −m+ 1 ≤ 2i ≤ N and l = min{N −m− 1,−N +m+ 2i− 1}.
We have the following.

Lemma 4.4. (1) Each EN
ij is an irreducible representation of πK

1 (grs1 , a). We

denote by ρNij : πK
1 (grs1 , a) → GL(EN

ij ) the corresponding map.

(2) Suppose j > 0. Let H := ρNij (PN ) ⊂ GL(EN
ij ) be the Zariski closure of

ρNij (PN ) in GL(EN
ij ) (recall PN ⊂ πK

1 (grs1 , a) is the pure braid group). Then

we have LieH � sp(2i − 2). In particular, the image ρNij (π
K
1 (grs1 , a)) is

infinite.

Proof. We begin with the proof of (1). We first show that EN
ij is a πK

1 (grs1 , a)-
invariant subspace of P (Xm). For this, we observe that the decomposition in (4.4)
is compatible with the action of BN , that is, for b ∈ BN ,

b : Pj
χ ⊗Vχ �→ Pj

b·χ ⊗Vb·χ.

Since the braid group BN acts transitively on the set {χ ∈ I∨N | |χ| = 2i}, it follows
that the subspace

EN
ij =

⊕
χ∈I∨

N ,|χ|=2i

Pj
χ ⊗Vχ

is stable under the action of πK
1 (grs1 , a). Now since each summand Pj

χ ⊗Vχ is irre-

ducible as a representation of PN , it follows that each EN
ij is an irreducible repre-

sentation of πK
1 (grs1 , a).

We prove (2). For each χ ∈ I∨N , we define ρχ : PN
ρ−→ IN

χ−→ μ2. Here ρ is the
map in (3.7). Define

ψ1 := (ρCχ
,

⊕
χ,|χ|=2i

ρχ) : PN → Sp(2i− 2)× μ
(N2i)
2 .
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Let Vij denote the irreducible representation of Sp(2i− 2) associated to the funda-
mental weight ωj . Then the restriction of ρNij : πK

1 (grs1 , a) → GL(EN
ij ) to PN can

be identified with

ψ : PN
ψ1−−→ Sp(2i− 2)× μ

(N2i)
2

ψ2−−→ GL(Vij)
×(N2i),

where ψ2 maps Sp(2i − 2) diagonally into GL(Vij)
×(N2i) and ψ2 maps μ2 = {±1}

to ± id ∈ GL(Vij). Since ρCχ
(PN ) = Sp(2i − 2), it implies that the connected

component ψ1(PN )
0

= Sp(2i − 2). So to prove (2), it suffices to show that
Lie(Im(ψ2)) � sp(2i − 2) for j > 0. This follows from the fact that the induced
map dψ2 : sp(2i− 2) →

⊕
gl(Vij) on the Lie algebras is injective. �

It follows from the lemma above that (4.5) is the decomposition of the mon-
odromy representation P (Xm) into irreducible subrepresentations. This completes
the proof of Theorem 4.1.

4.2. Proof of Theorem 4.2. The proof is similar to the case of Xm. First using
the isomorphism (3.13) and the same argument as in the case of Xm, we obtain the
following proppsition.

Proposition 4.5. There is an isomorphism of IN+1 �BN -representations

Hi(X̃m,a,C) �
⊕

χ∈I∨
N+1

Hi(Ỹm,a,C)χ ⊗ Vχ,

where for Vχ, we regard χ as an element in I∨N via the map κ̌ : I∨N+1 → I∨N in (4.1),

and the group IN+1 acts on the summand Hi(Ỹm,a,C)χ ⊗ Vχ via the character
χ ∈ I∨N+1.

Set

P (Ỹm) := HN−m−1
prim (Ỹm,a,C).

By Proposition 4.5, there is an isomorphism of IN+1 �BN -representations

(4.6) P (X̃m) �
⊕

χ∈I∨
N+1

P (Ỹm)χ ⊗ Vχ.

For any χ ∈ I∨N+1 with |χ| = 2i, let C̃a,χ be the hyperelliptic curve defined in

§3.2 and let ρ
˜Cχ

: PN → Sp(H1(C̃a,χ,C)) � Sp(2i − 2) denote the monodromy

representation for the family C̃χ → ars. Again by [T], we have an isomorphism of
PN -representations

(4.7) P (Ỹm)χ � ∧N−m−1H1(C̃a,C)χ � ∧N−m−1H1(C̃a,χ,C)).

Combining (4.6) with (4.7) we obtain the following decomposition:

(4.8) P (X̃m) �
⊕

χ∈I∨
N+1

∧N−m−1H1(C̃a,χ,C)⊗ Vχ.

We describe the monodromy representation P (X̃m)σ=− id (recall that σ is the invo-

lution on X̃m). For this, we first observe that the involution action of 〈σ〉 � Z/2Z

on X̃m is equal to the composition of

i∞ : Z/2Z → IN+1, 1 �→ (0, . . . , 0, 1),
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with the action of IN+1 on X̃m. Hence by (4.8) we have

(4.9) P (X̃m)σ=−id =
⊕

χ∈I∨
N+1

N+1∈suppχ

P (X̃m)χ �
⊕

χ∈I∨
N+1

N+1∈suppχ

∧N−m−1H1(C̃a,χ,C)⊗Vχ.

Again, since ρ
˜Cχ
(PN ) is Zariski dense in Sp(H1(C̃χ,C)), we have the following

decomposition:

∧N−m−1H1(C̃a,χ,C) =
⊕

j≡N−m−1mod 2, j∈[0,l]

P̃
j

χ,

where l = min{N −m− 1,−N +m+ |χ| − 1}.
Using the notation from the beginning of this section the decomposition (4.9)

can be rewritten as

P (X̃m)σ=− id �
⊕
i

⊕
j≡N−m−1mod 2

j∈[0,l]

ẼN
ij ,

where N −m+ 1 ≤ 2i ≤ N + 1, l = min{N −m− 1,−N +m+ 2i− 1}.
The same argument as in the proof of Lemma 4.4 shows the following.

Lemma 4.6. (1) ẼN
ij is an irreducible representation of πK

1 (grs1 , a). We denote

by ρ̃Nij : πK
1 (grs1 , a) → GL(EN

ij ) the corresponding map.

(2) Suppose j > 0. Let H := ρ̃Nij (PN ) ⊂ GL(ẼN
ij ) be the Zariski closure of

ρ̃Nij (PN ) in GL(ẼN
ij ). Then we have LieH � sp(2i− 2). In particular, the

image ρ̃Nij (π
K
1 (grs1 , a)) is infinite.

This completes the proof of Theorem 4.2.

4.3. The local systems EN
ij and ẼN

ij . In this subsection, we show that from the
constructions in previous sections, we have obtained the following set consisting of
pairwise non-isomorphic irreducible K-equivariant local systems on grs1
(4.10){
E2n+1

ij , i ∈ [1, n], j ∈ [0, i− 1]; Ẽ2n+1
ij , i ∈ [1, n+ 1], j ∈ [1, i− 1], Ẽ2n+1

n+1,0
∼= C

}
.

For this, we first observe that

EN
ij � EN

i′j′ and ẼN
ij � ẼN

i′j′ if and only if i = i′, j = j′.

In fact, assume that EN
ij � EN

i′j′ . Then we must have i = i′, otherwise, the

centralizer ZK(a) ∼= IN would act differently on EN
ij and EN

i′j′ . Now regarding EN
ij

and EN
ij′ as PN -representations we see that j = j′. Similar argument applies to

ẼN
ij .
It remains to prove the following.

Lemma 4.7. We have EN
i,j

∼= ẼN
i′,j′ if and only if i+ i′ = (N+1)/2 and j = j′ = 0.

Proof. Recall

EN
ij =

⊕
χ∈I∨

N ,|χ|=2i

Pj
χ ⊗Vχ, ẼN

i′j′ =
⊕

χ′∈I∨
N+1, |χ|=2i′,

N+1∈suppχ

P̃
j′

χ′ ⊗ Vχ′ .
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For Vχ′ we regard χ′ as an element in I∨N via the map κ̌ : I∨N+1 → I∨N in (4.1).
Observe that for χ′ ∈ I∨N+1 and N + 1 ∈ suppχ′, we have

(4.11) κ̌(χ′) = χ if and only if suppχ = {1, . . . , N + 1}\ suppχ′.

Thus the map κ̌maps the subset {χ′ ∈ I∨N+1, |χ′| = 2i′, N+1 ∈ suppχ′} bijectively
to the subset {χ ∈ I∨N , |χ| = 2i} where 2i+ 2i′ = N + 1. Hence we have

(4.12)
⊕

χ∈I∨
N ,|χ|=2i

Vχ
∼=

⊕
χ∈I∨

N+1, |χ′|=2i′,
N+1∈suppχ

Vχ′ if and only if i+ i′ = (N + 1)/2.

This implies EN
i,0

∼= ẼN
i′,0 for i+ i′ = (N + 1)/2.

Conversely, we observe that EN
i,j

∼= ẼN
i′,j′ implies Pj

χ⊗Vχ
∼= P̃

j′

χ′ ⊗ Vχ′ (as rep-

resentations of IN � PN ) for some χ ∈ I∨N and χ′ ∈ I∨N+1 with N + 1 ∈ suppχ′.
This implies that κ̌(χ′) = χ and it follows from (4.11) that suppχ ∩ suppχ′ = φ.
Therefore the monodromy representation of the restriction of Cχ → ars (resp.,

C̃χ′ → ars) to the subvariety ars(a, χ′) (resp., ars(a, χ)) in (3.3) is trivial. On the

other hand, the monodromy representation of the restriction of C̃χ′ → ars (resp.,
Cχ → ars) to ars(a, χ′) (resp., ars(a, χ)) has Zariski dense image (see (3.2)). This
forces j = j′ = 0 and the desired claim follows again from (4.12). �

4.4. The local systems E2n+1
i0 , Ẽ2n+1

n+1,j and the Li’s, Fi’s in [CVX1]. Recall

that in [CVX1, §2.3], we have defined the local systems Li and Fi on grs1 . We have
the following.

Lemma 4.8. We have

(4.13) E2n+1
i,0

∼= L2i if 1 ≤ 2i ≤ n, E2n+1
i,0

∼= L2n−2i+1 if n+ 1 ≤ 2i ≤ 2n,

(4.14) Ẽ2n+1
n+1,j

∼= Fj for 1 ≤ j ≤ n.

Proof. We begin with the proof of (4.13). Recall from [CVX1] that we have

(4.15) (π̌2n1)∗C|grs
1

∼=
n⊕

i=0

Li and dimLi =

(
2n+ 1

i

)
,

where

π̌2n1 : K ×PK [nP , nP ]
⊥
1 := {(x, 0 ⊂ Vn ⊂ V ⊥

n ⊂ C
2n+1) |x ∈ g1, xVn ⊂ V ⊥

n } → g1.

On the other hand, recall the IN -torsor over ars in §3.3:
π̃ : ãrs = {(a, c) | a = (a1, . . . , aN ) ∈ a

rs, c = (c1, . . . , cN ), c2i

=
∏
j 	=i

(aj − ai)}/(Z/2Z) → a
rs.

We have

(4.16) π̃∗C|grs
1

∼= C⊕
n⊕

i=1

E2n+1
i,0 and dimE2n+1

i,0 =

(
2n+ 1

2i

)
.

We show that there is an IN �W -equivariant isomorphism

(4.17) ã
rs ∼= K ×PK [nP , nP ]

⊥
1 |ars .

Then (4.13) follows from (4.15), (4.16), and dimension considerations of the repre-
sentations.
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Using the identities
∑2n+1

i=1 aki c
−2
i = 0, k = 0, . . . , 2n−1, it is easy to check that

the map

ãrs → X2n|ars , (a, c) ∈ ãrs �→ [c−1
1 , . . . , c−1

2n+1]

defines an IN �W -equivaraint isomorphism

ã
rs ∼= X2n|ars .

On the other hand, by the description of the Hessenberg varieties HessE,⊥
n in §2.2,

we have a natural map

HessE,⊥
n → K ×PK [nP , nP ]

⊥
1 , (x, Vn−1 ⊂ Vn) �→ (x, Vn).

It is easy to check that the map above is a K-equivariant isomorphism over grs1 .
The desired isomorphism (4.17) follows from the following compositions of isomor-
phisms:

ã
rs ∼= X2n|ars

Thm 2.5∼= HessE,⊥
n |ars ∼= K ×PK [nP , nP ]

⊥|ars .

This completes the proof of (4.13).
To prove (4.14), we observe that

Ẽ2n+1
n+1,j

∼= P̃ j
χ0

⊗ Vχ0
∼= (

j∧
H1(C̃a,χ0

,C))prim ⊗ Vχ0
,

where χ0 ∈ I∨N+1 is the unique character such that |χ0| = 2n+ 2, and C̃a,χ0
is the

hyperelliptic curve of genus n with affine equation y2 =
∏2n+1

i=1 (x− ai). By (4.11),
χ0, when regarded as an element in I∨N (see (4.1)), is trivial. Hence IN acts trivially

on Ẽ2n+1
n+1,j and Vχ0

, i.e.,

(4.18) Ẽ2n+1
n+1,j

∼= (

j∧
H1(C̃a,χ0

,C))prim ∼= Fj ,

where the last isomorphism follows from the discussion above and the definition of
Fj ’s in [CVX1]. �

Remark 4.9. In [CVX1, Proof of Proposition 4.3] we used the fact that among the
IC(g1,Li)’s (i ≥ 1), only IC(g1,L2j−1), 1 ≤ j ≤ m, appear in the decomposition
of (τ̌m)∗C[−], where τ̌m = τ̌2n+1

m and 2m ≤ n + 1. To prove this fact, it suffices
to show that in the decomposition of the monodromy representation P (X2m), only
the above-mentioned local systems appear. Applying Theorem 4.1 to P (X2m) with
N = 2n+1 we see that among the Ei0’s only those with n−m+1 ≤ i ≤ n appear.
The desired conclusion follows from (4.13) and the fact that 2m ≤ n+ 1.

5. Computation of the Fourier transforms

Let F : DK(g1) → DK(g1) denote the Fourier transform, where we identify g1

and g∗1 via a K-invariant non-degenerate bilinear form on g1. The Fourier transform
F induces an equivalence of categories F : PervK(g1) → PervK(g1).

In this section we study the Fourier transforms of IC(g1, E
N
ij ) and IC(g1, Ẽ

N
ij ).

We show that they are supported on N1, more precisely, on N3
1 ⊂ N1, the closed

subvariety consisting of nilpotent elements of order less than or equal to 3. Thus
we obtain many more examples of IC complexes supported on nilpotent orbits
whose Fourier transforms have both full support and infinite monodromy (see also
[CVX1]). As an interesting corollary (see Example 5.5), we show that the Fourier
transform of the IC extension of the unique non-trivial irreducible K-equivariant
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local system on the minimal nilpotent orbit has full support and its monodromy is
given by a universal family of hyperelliptic curves.

The main result of this section is the following theorem.

Theorem 5.1. Let N3
1 ⊂ N1 be the closed subvariety consisting of nilpotent ele-

ments of order less than or equal to 3. Then F(IC(g1, E
N
ij )) and F(IC(g1, Ẽ

N
ij )) are

supported on N3
1.

We first argue the case F(IC(g1, E
N
ij )). For m ≤ N−1

2 , consider the families of
Hessenberg varieties

σN
m : HessOm → g1, τNm : HessEm → g1

and
σ̌N
m : HessO,⊥

m → g1, τ̌Nm : HessE,⊥
m → g1

defined in §2.2. We have (see (2.9))

F((σ̌N
m)∗C[−]) = (σN

m)∗C[−], F((τ̌Nm )∗C[−]) = (τNm )∗C[−].

By Theorem 2.5, over grs1 , we have HessO,⊥
m � X2m−1, HessEm � X2m. Hence the

decomposition theorem implies that

IC(g1, P (X2m−1)) is a direct summand of (σ̌N
m)∗C[−].

IC(g1, P (X2m))) is a direct summand of (τ̌Nm )∗C[−] .

Therefore the Fourier transforms F(IC(g1, P (X2m−1))) and F(IC(g1, P (X2m))) ap-
pear as direct summands of (σN

m)∗C[−] and (τNm )∗C[−]. Now in view of (2.6a) and
(2.6b), we see that F(IC(g1, P (X2m−1))) and F(IC(g1, P (X2m))) are supported on
N3

1. Since each local system EN
ij appears in P (Xm) for some m (see Theorem 4.1),

we conclude that F(IC(g1, E
N
ij )) is supported on N3

1.

It remains to consider the case F(IC(g1, Ẽ
N
ij )). Since each local system ẼN

ij ap-

pears in P (X̃m)σ=−id for some m, we are reduced to proving the following propo-
sition.

Proposition 5.2. F(IC(g1, P (X̃m)σ=−id)) is supported on N3
1.

The proof of this proposition occupies the remainder of this section.

5.1. Proof of Proposition 5.2 when m is odd. Recall that in §2.2 we have
introduced the families of Hessenberg varieties

HessO,⊥
k := {(x, 0 ⊂ Vk−1 ⊂ Vk ⊂ V ⊥

k ⊂ V ⊥
k−1 ⊂ V = C

N ) |x ∈ g1, xVk−1 ⊂ Vk}

HessE,⊥
k = {(x, 0 ⊂ Vk−1 ⊂ Vk ⊂ V ⊥

k ⊂ V ⊥
k−1 ⊂ V = C

N ) |x ∈ g1, xVk−1

⊂ Vk, xVk ⊂ V ⊥
k }

and the natural projection maps σ̌N
k : HessO,⊥

k → g1, τ̌
N
k : HessE,⊥

k → g1.

Our first goal is to show that IC(g1, P (X̃2k−1)) appears as a direct summand

in the push forward of a certain intersection cohomology complex on HessO,⊥
k

along σ̌N
k .

Let [Ga/G
[2]
m ] be the stack quotient, where G

[2]
m

∼= Gm acts on Ga via the square
map, i.e., for t ∈ Gm and x ∈ Ga, t : x �→ t2x. We first introduce a map

α : HessO,⊥
k → [Ga/G

[2]
m ].
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Recall that such a map is equivalent to a pair (H̃ess
O,⊥
k , φ), where H̃ess

O,⊥
k is a

Gm-torsor over HessO,⊥
n and φ : H̃ess

O,⊥
k → Ga is a map such that

(5.1) φ(t · v) = t2φ(v) for v ∈ H̃ess
O,⊥
k and t ∈ Gm.

To construct such a pair, we set

H̃ess
O,⊥
k := {(x, Vk−1 ⊂ Vk, l) | (x, Vk−1 ⊂ Vk) ∈ HessO,⊥

k , 0 �= l ∈ Vk/Vk−1 � C},

where the action of Gm on H̃ess
O,⊥
k is given by t · (x, Vk−1 ⊂ Vk, l) = (x, Vk−1 ⊂

Vk, tl) for t ∈ Gm. Define

φ : H̃ess
O,⊥
k → Ga, (x, Vk−1 ⊂ Vk, l) �→ 〈xl, l〉Q.

Note that the above pairing is well-defined since xVk−1 ⊂ Vk and xVk ⊂ V ⊥
k−1. One

checks easily that φ satisfies (5.1). This finishes the construction of (H̃ess
O,⊥
k , φ),

hence that of the map α : HessO,⊥
k → [Ga/G

[2]
m ]. By construction, the map α is

K-equivaraint (where K acts trivially on [Ga/G
[2]
m ]), moreover it factors through

HessE,⊥
k , i.e.,

(5.2) α : HessO,⊥
k −→ HessO,⊥

k /HessE,⊥
k

ᾱ−→ [Ga/G
[2]
m ].

There is a unique non-trivial irreducible local system L on [Gm/G
[2]
m ] ⊂ [Ga/G

[2]
m ].

We denote by IC([Ga/G
[2]
m ],L) the corresponding intersection cohomology complex

on [Ga/G
[2]
m ]. Let

K := (σ̌N
k )∗α

∗IC([Gm/G[2]
m ],L) ∈ DK(g1).

The factorization in (5.2) and the functorial properties of Fourier transform (see
[KaS, Proposition 3.7.14]) imply the following:

(5.3) F(K) is supported on Im (τNk ) ⊂ N3
1.

Thus to show that F(IC(g1, P (X̃2k−1))) is supported on N3
1, it suffices to show that

(5.4) the complex K contains IC(g1, P (X̃2k−1)
σ=− id) as a direct summand.

Let

π̃2k−1 : X̃2k−1
p2k−1−−−−→ X2k−1

π2k−1−−−−→ g
rs
1

be the branched double cover of X2k−1 and let σ be the involution on X̃2k−1 de-

fined in §3.4. We have that ((π̃2k−1)∗C)
σ=− id contains P (X̃2k−1)

σ=− id as a direct
summand. The statement (5.4) follows from the following claim:

K|grs
1

� ((π̃2k−1)∗C)
σ=− id.

To prove the claim, let s : [Ga/Gm] → [Ga/G
[2]
m ] be the descent of the map Ga →

Ga, t �→ t2. Then from the definitions of X̃2k−1 and the map α, one can check that,

under the isomorphism X2k−1 � HessO,⊥
k |grs

1
in Theorem 2.5, the branched double
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cover X̃2k−1 can be identified with the following fiber product:

X̃2k−1

p2k−1

��

�� [Ga/Gm]

s

��

X2k−1 � HessO,⊥
k |grs

1

α|grs
1 �� [Ga/G

[2]
m ].

Since
s∗C = (s∗C)

σ=id ⊕ (s∗C)
σ=− id = C⊕ IC([Ga/G

[2]
m ],L),

by proper base change we have

(α|grs
1
)∗IC([Ga/G

[2]
m ],L) � ((p2k−1)∗C)

σ=− id.

This implies that

K|grs
1

� (π2k−1)∗(α|grs
1
)∗IC([Ga/G

[2]
m ],L) � ((π̃2k−1)∗C)

σ=− id.

This proves (5.4).

Remark 5.3. The construction of the map α was inspired by discussions with Zhiwei

Yun. In particular, the idea of making use of the local system L on [Ga/G
[2]
m ] was

explained to one of us by him.

5.2. Proof of Proposition 5.2 when m is even. Let us consider the following
family of Hessenberg varieties:

H = {(x, 0 ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 ⊂ V ⊥
k+1 ⊂ V ⊥

k ⊂ V ⊥
k−1 ⊂ V = C

N )

|x ∈ g1, xVk−1 ⊂ Vk, xVk ⊂ V ⊥
k }.

Note that the natural map

p : H → HessE,⊥
k , (x, Vk−1 ⊂ Vk ⊂ Vk+1) �→ (x, Vk−1 ⊂ Vk)

realizes H as a quadric bundle over HessE,⊥
k .

We first construct a map β : H → [Ga/G
[2]
m ]. The construction is very similar to

that of the map α in §5.1 and we use the notation there. Set

H̃ := {(x, Vk−1 ⊂ Vk⊂Vk+1, l) | (x, Vk−1⊂Vk ⊂ Vk+1) ∈ H, 0 �= l ∈ Vk/Vk−1 � C},
where the action of Gm on H̃ is given by t · (x, Vk−1 ⊂ Vk ⊂ Vk+1, l) = (x, Vk−1 ⊂
Vk ⊂ Vk+1, tl). Define

φ : H̃ → Ga, (x, Vk−1 ⊂ Vk ⊂ Vk+1, l) �→ 〈xl, xl〉Q.
Note that the above pairing is well-defined since xVk−1 ⊂ Vk and xVk ⊂ V ⊥

k . One

checks that φ satisfies (5.1). This finishes the construction of (H̃, φ). Hence we

obtain a map β : H → [Ga/G
[2]
m ].

Let f : H → g1 be the natural projection map. Define

F := f∗β
∗IC([Ga/G

[2]
m ],L) ∈ DK(g1).

We show that

(5.5) F(F) is supported on N3
1, and

(5.6) the complex F contains IC(g1, P (X̃2k)
σ=− id) as a direct summand.

The proposition then follows from (5.5) and (5.6).
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To prove (5.5), let

H ′ = {(x, 0 ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 ⊂ V ⊥
k+1 ⊂ V ⊥

k ⊂ V ⊥
k−1 ⊂ V = C

N )

|x ∈ g1, xVk−1 ⊂ Vk, xVk ⊂ Vk+1}.
Note that H ′ ⊂ H is a subbundle. By construction, the map β factors through H ′,
i.e.,

β : H → H/H ′ β′

→ [Ga/G
[2]
m ].

Let f̌ ′ be the natural projection map

f̌ ′ : (H ′)⊥ := {(x, 0 ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 ⊂ V ⊥
k+1 ⊂ V ⊥

k ⊂ V ⊥
k−1 ⊂ C

N )

|x ∈ g1, xVk = 0, xVk+1 ⊂ Vk−1, xV
⊥
k ⊂ Vk} → N1.

A direct calculation shows that

(5.7) Im f̌ ′ = Ō3k1N−3k if 3k ≤ N and Im f̌ ′ = Ō3N−2k23k−N if 3k ≥ N + 1.

The standard properties of Fourier transform imply that

F(F) is supported on Im(f̌ ′) ⊂ N3
1.

This proves (5.5).

It remains to prove (5.6). Notice that the map β factors as β : H
p→ HessE,⊥

k

β̄−→
[Ga/G

[2]
m ]. Consider the following diagram:

β : H

f
		�

��
��

��
��

�
p

�� HessE,⊥
k

τ̌N
k

��

β̄
�� [Ga/G

[2]
m ]

g1

.

We have

F := f∗β
∗IC([Ga/G

[2]
m ]) � (τ̌Nk )∗p∗p

∗β̄∗(IC([Ga/G
[2]
m ],L))

which is isomorphic to (τ̌Nk )∗(β̄
∗(IC([Ga/G

[2]
m ],L))⊗ p∗C). Since C is a direct sum-

mand of p∗C, it implies that (τ̌Nk )∗(β̄
∗(IC([Ga/G

[2]
m ],L)) is a direct summand of F.

So it is enough to show that

IC(g1, P (X̃2k)
σ=− id) is a direct summand of (τ̌Nk )∗(β̄

∗(IC([Ga/G
[2]
m ],L)).

This follows from the same argument as in the proof of (5.4), replacingX2k−1 (resp.,

X̃2k−1) there by X2k (resp., X̃2k). Thus the proof of the proposition is complete.

5.3. Matching for IC(Ō2i12n+1−2i ,Ei), i odd. Here we complete the proof of
[CVX1, Theorem 2.3] by treating the case of odd i. In [CVX1] we treated the
even case of the proposition below and showed that there exists a permutation s
of the set {2j + 1 | 1 ≤ 2j + 1 ≤ n}, such that F(IC(Ō2i12n+1−2i ,Ei)) = IC(g1,Fs(i))
(see Proposition 3.2 and Theorem 2.3 in [CVX1]).

Proposition 5.4. We have that

F(IC(Ō2i12n+1−2i ,Ei)) = IC(g1,Fi),

where Ei denotes the unique non-trivial irreducible K-equivariant local system on
O2i12n+1−2i .
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Proof. It remains to prove the proposition for odd i. Assume that 2m ≤ n + 1.
By (5.3) and (5.4), we see that the Fourier transform of IC(g1, P (X̃2m−1)

σ=− id) is
supported on Im τNm = Ō3m−12112n+2−3m (see (2.6a)). Using Theorem 4.2 and (4.14)
we obtain that

IC(g1,Fi) is a direct summand of IC(g1, P (X̃2m−1)
σ=− id) if and only if

i is odd and 1 ≤ i ≤ 2m− 1.

This implies that the Fourier transform of IC(g1,F2j−1), 1 ≤ j ≤ m, is supported
on Ō3m−12112n+2−3m . Now it is easy to check that O2i12n+1−2i ⊂ Ō3m−12112n+2−3m if
and only if i ≤ 2m − 1. In view of [CVX1, Proposition 3.2 and Theorem 2.3], the
proposition follows by induction on m. �

Example 5.5. Let Omin = O2112n−1 . By the above proposition, we have

F(IC(g1,F1)) � IC(Ōmin,E1),

where
F1 � Ẽ2n+1

n+1,1 � H1(C̃a,χ0
,C) (see (4.18))

is isomorphic to the monodromy representation associated with C̄χ0
→ crs, the

universal family of hyperelliptic curves in §3.2.

6. Conjectures and examples

Let N = 2n+1 and let E2n+1
ij (resp., Ẽ2n+1

ij ) be the monodromy representations

of πK
1 (grs1 ) constructed from the families of complete intersections of quadrics in

P
2n (resp., their double covers); see §4. Let {(O,E)}≤3 denote the set of pairs (O,E)

where O is a K-orbit in N3
1 and E is an irreducible K-equivariant local system on

O (up to isomorphism). Using Theorem 5.1, we establish an injective map

(6.1) S :

⎧⎨
⎩ E2n+1

ij , i ∈ [1, n], j ∈ [0, i− 1];

Ẽ2n+1
ij , i ∈ [1, n+ 1], j ∈ [1, i− 1], Ẽ2n+1

n+1,0
∼= C

⎫⎬
⎭ ↪→ {(O,E)}≤3,

where S(E2n+1
ij ) = (O,E) if and only if F(g1, E

2n+1
ij ) = IC(Ō,E), similarly for

Ẽ2n+1
ij . Here the K-equivariant local systems on grs1 in the left hand side of (6.1)

are pairwise non-isomorphic; see (4.10).
In this section we state two conjectures (Conjectures 6.1 and 6.3) that describe

the map S in (6.1) in the case of {E2n+1
ij } explicitly. We verify our conjectures in

several examples by studying various families of Hessenberg varieties.
In what follows we make use of the following observation.

(6.2) an orbit O3k2l12n+1−3k−2l ⊂ N3
1 is odd dimensional ⇔ k is odd and l is even.

This follows from the fact that dimO3k2l12n+1−3k−2l = 2(k + 2kn+ ln)− l(l − 1)−
3k(k + l), which one readily deduces from the formula dimZK(x) =

∑
(i − 1)λi

([S]), for x in a nilpotent orbit corresponding to the partition λ1 ≥ λ2 ≥ · · · .

6.1. Complete intersections of even number of quadrics and conjectural
matching. Recall that the local systems E2n+1

i,2j , where i ∈ [1, n] and 2j ∈ [0, i−1],
are constructed from families of complete intersections X2m of an even number of
quadrics in P2n for m ∈ [1, n].

We first show that

(6.3) F(IC(g1, E
2n+1
i,2j )) is supported on an even dimensional K-orbit in N3

1 .
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To this end we first note that each F(IC(g1, E
2n+1
i,2j )) is a direct summand of

F(IC(g1, P (X2m))) for some m, which in turn is a direct summand of (τNm )∗C[−].
One readily checks that

dimHessEm = m(4n− 3m+ 5)− 2n− 2, which is even.

Note also that dimX2m,a is even. Now (6.3) follows from the decomposition theo-
rem and the fact that the fibers of τNm have non-vanishing cohomology only in even
degrees (see §2.3).

Thus we have that (6.2) puts a restriction on nilpotent orbits which can support
F(IC(g1, E

2n+1
i,2j )). Our first conjecture is the following.

Conjecture 6.1. We have that

F(IC(g1, E
2n+1
i,2j )) ∼= IC(Ō32(n−i)+122(i+j−n)−112i−4j ,C) if i+ j ≥ n+ 1,

F(IC(g1, E
2n+1
i,2j ))∼=IC(Ō32j22(n−i−j)+114i−2n−2j−1 ,C) if i+j≤n and 2i− j≥n+1,

F(IC(g1, E
2n+1
i,2j )) ∼= IC(Ō32j22i−4j12n−4i+2j+1 ,C) if i+ j ≤ n and 2i− j ≤ n.

Remark 6.2. The nilpotent orbits appearing in the conjecture above exhaust all the
non-zero even dimensional orbits of the form O3i2j1k , where the partition 3i2j1k

has no gaps.

Note that the conjecture above holds for E2n+1
i,0 . This follows from (4.13) and

[CVX1, Theorem 2.2], i.e., we have

(6.4)
F(IC(g1, E

2n+1
i,0 )) = IC(Ō22i12n−4i+1 ,C) if 2i ≤ n,

F(IC(g1, E
2n+1
i,0 )) = IC(Ō22n−2i+114i−2n−1 ,C) if 2i ≥ n+ 1.

Below we verify the conjecture in a simple case that involves nilpotent orbits of
order 3.

6.2. Complete intersection of 4 quadrics, n ≥ 3. In this subsection we show
that

(6.5) F(IC(g1, E
2n+1
n,2 )) = IC(Ō312112n−4 ,C).

Let us write

τ = τ2n+1
2 : HessE2 → Ō3 2 12n−4 , τ̌ = τ̌2n+1

2 : HessE,⊥
2 → g1.

We have F(τ∗C[−]) ∼= τ̌∗C[−] and

τ̌∗C[−] = IC(g1, E
2n+1
n,2 ⊕ E2n+1

n,0 ⊕ E2n+1
n−1,0)⊕

2n−4⊕
a=0

IC(g1,C)[2n− 4− 2a]⊕ · · · ,

where · · · is a direct sum of IC complexes with smaller support. We have

Ō3 2 12n−4 = O3 2 12n−4 ∪ O3112n−2

⋃
0≤i≤3

O2i12n−2i+1 .

In view of Proposition 5.4, Lemma 4.7, (4.14), and (6.4), we conclude that
F(IC(g1, E

2n+1
n,2 )) is not supported on Ō2i12n+1−2i ’s. Now it follows from (6.2) and

(6.3) that

F(IC(g1, E
2n+1
n,2 )) is supported on Ō3 2 12n−4 .

Thus (6.5) follows the fact that the only IC complex supported on O3 2 12n−4 ap-
pearing in τ∗C[−] is IC(Ō3 2 12n−4 ,C) as τ is a resolution of Ō3 2 12n−4 .
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6.3. Complete intersections of odd number of quadrics and a conjectural
matching. Recall that the local systems E2n+1

i,2j−1, where i ∈ [1, n] and 2j ∈ [2, i],
are constructed from complete intersections X2m−1 of odd number of quadrics in
P
2n, m ∈ [1, n].

Using that dimHessOm = m(2n− 3m+ 5)− 2n− 3, which is odd, and arguing as
in (6.3), we obtain that

(6.6) F(IC(g1, E
2n+1
i,2j−1)) is supported on an odd dimensional K-orbit in N3

1.

Let O ⊂ N3
1 be an odd dimensional K-orbit. To describe our second conjecture,

let us first label the non-trivial irreducible K-equivariant local systems on O as
follows. By (6.2), we can assume that O = O32k−122l12n+4−6k−4l .

Let x ∈ O32k−122l12n+4−6k−4l , k ≥ 1. We first define representatives for the
component group AK(x) = ZK(x)/ZK(x)0. Take a basis

xiuj , i ∈ [0, 2], j ∈ [1, 2k − 1], xivj , i ∈ [0, 1],

j ∈ [1, 2l] and wi, i ∈ [1, 2n+ 4− 6k − 4l]

of V as in [CVX1, Lemma 5.6]. Define γi ∈ ZK(x), i = 1, 2 as follows:

γ1(w1) = w2, γ1(w2) = w1, γ1(x
iuj) = −xiuj , i ∈ [0, 2], j ∈ [1, 2k − 1],

γ2(x
jv1) = xjv2, γ2(x

jv2) = xjv1, j ∈ [0, 1],

and γ1(resp., γ2) acts as identity on all other basis vectors.

Assume that l ≥ 1 and 2n+ 4− 6k − 4l �= 0. Then AK(x) ∼= {1, γ1, γ2, γ1γ2} ∼=
(Z/2Z)2. Let

E1
k,l (resp., E

2
k,l, E

3
k,l)

denote the irreducible K-equivariant local system on O32k−122l12n+4−6k−4l corre-
sponding to the irreducible character of AK(x)

χ1 (resp., χ2, χ3) with χ(γ1) = −1 (resp., −1, 1) and χ(γ2) = 1 (resp., −1,−1).

Assume that l = 0 and 2n+4−6k �= 0. Then AK(x) ∼= {1, γ1} ∼= Z/2Z. We denote
by E1

k,0 the irreducible K-equivariant local system on O32k−112n+4−6k corresponding

to the irreducible character χ of AK(x) with χ(γ1) = −1.
Assume that l ≥ 1 and 2n + 4 − 6k − 4l �= 0. Then AK(x) ∼= {1, γ2} ∼= Z/2Z.

We denote by E3
k,l the irreducible K-equivariant local system on O32k−12n+2−3k cor-

responding to the irreducible character χ of AK(x) with χ(γ2) = −1.
We will simply write Ei, i = 1, 2, 3, when the supports of these local systems are

clear.
Our second conjecture is the following.

Conjecture 6.3. We have that

F(IC(g1, E
2n+1
i,2j−1))

∼= IC(Ō32(n−i)+122(i+j−n−1)12i−4j+2 ,E1) if i+ j ≥ n+ 1,

F(IC(g1, E
2n+1
i,2j−1))

∼=IC(Ō32j−122(n−i−j+1)14i−2j−2n ,E2) if i+j ≤ n and 2i−j≥n+1,

F(IC(g1, E
2n+1
i,2j−1))

∼= IC(Ō32j−122(i−2j+1)12n−4i+2j ,E3) if i+j≤n and 2i− j≤n.

Remark 6.4. In particular, the conjecture above implies that the set of all Fourier
transforms F(IC(g1, E

2n+1
i,2j−1)) coincides with the set of all IC complexes supported

on odd dimensional orbits in N3
1, with non-trivial local systems.
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In the following subsections we verify the conjecture above in two simple exam-
ples; see (6.7) and (6.8). We also prove a lemma (Lemma 6.7) that is compatible
with our conjecture.

6.4. Complete intersection of 3 quadrics, n ≥ 2. In this subsection we show
that

(6.7) F(IC(g1, E
2n+1
n,1 )) = IC(Ō3112n−2 ,E1).

Let us write

σ = σ2n+1
2 : HessO2 → Ō3112n−2 , σ̌ = σ̌2n+1

2 : HessO,⊥
2 → g1.

The fiber σ−1(x) at x ∈ O3112n−2 is a non-singular quadric in P2n−3. Thus in the
decomposition of σ∗C[−], we have the following direct summands:

2n−4⊕
a=0

IC(Ō3112n−2 ,C)[2n− 4− 2a]⊕ IC(Ō3112n−2 ,E1).

We have F(σ∗C[−]) ∼= σ̌∗C[−] and

σ̌∗C[−] ∼= IC(g1, E
2n+1
n,1 )⊕ · · · ·

Note that O3112n−2 is the only odd dimensional orbit contained in Ō3112n−2 and
there is a unique non-trivial irreducible K-equivariant local system on O3112n−2 ,
denoted by E1. In view of (6.6), the equation (6.7) follows from the fact that the
support of F(IC(Ō3112n−2 ,C)) is a proper subset of g1 (see [CVX2, Proposition 4.4]).

Remark 6.5. Here we see that Fourier trxansform of IC complexes supported on
nilpotent orbits Oλ, where λ has gaps, with non-trivial local systems can have full
support (compare with [CVX2, Corollary 4.9]).

6.5. Complete intersection of 5 quadrics, n ≥ 4. In this subsection, we show
that
(6.8)
F(IC(Ō312212n−6 ,E1)) = IC(g1, E

2n+1
n,3 ), F(IC(Ō312212n−6 ,E2)) = IC(g1, E

2n+1
n−1,1),

F(IC(Ō312212n−6 ,E3)) = IC(g1, E
2n+1
?,1 ).

Let us write

σ = σ2n+1
3 : HessO3 → Ō3212n−5 , σ̌ = σ̌2n+1

3 : HessO,⊥
3 → g1.

We have F(σ∗C[−]) ∼= σ̌∗C[−] and

σ̌∗C[−] ∼= IC(g1, E
2n+1
n,1 ⊕ E2n+1

n,3 ⊕ E2n+1
n−1,1)⊕ · · · ·

The odd dimensional orbits contained in Imσ = Ō3212n−5 are O312212n−6 and
O3112n−2 . In view of (6.7), the equation (6.8) follows from Lemma 6.7 (see §6.6)
and the following statement:
(6.9)
The IC complexes supported on O312212n−6 , that appear in the decomposition

of σ∗C[−], are IC(Ō312212n−6 ,E1 ⊕ E2).

It remains to prove (6.9). Note that there is no orbit O such that O312212n−6 < O <
O3212n−5 . The fiber σ−1(x2) at x2 ∈ O3212n−5 is a non-singular quadric in P2n−6.
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Thus in the decomposition of σ∗C[−],

the IC complexes supported on O3212n−5 are
2n−7⊕
a=0

IC(Ō3212n−5 ,C)[2n− 7− 2a].

The fiber at x1 ∈ O312212n−6 is a quadric bundle over π−1
0 (x1) with fibers being a

quadric Q of rank 2n− 8 in P2n−6. Here π0 is Reeder’s resolution of Ō3212n−5 , i.e.,

π0 : {(x, 0 ⊂ V2 ⊂ V ⊥
2 ⊂ V ) |x ∈ g1, xV2 = 0, xV ⊥

2 ⊂ V2} → Ō3212n−5 .

It is easy to check that the map π0 is small. Thus we have

Hk−8(n−1)
x1

IC(Ō3212n−5 ,C) = Hk(π−1
0 (x1),C).

Note that Hodd(π−1
0 (x1),C) = 0, Hodd(σ−1(x1),C) = 0, and

H2k(σ−1(x1),C) =
⊕2n−7

a=0 H2a(Q,C)⊗H2k−2a(π−1
0 (x1),C)

∼=
⊕2n−7

a=0 H2k−2a(π−1
0 (x1),C)⊕ (H2n−6

prim (Q,C)⊗H2k−2n+6(π−1
0 (x1),C)).

We have codimHessO3
O312212n−6 = 2n− 6 and π−1

0 (x1) consists of two points. More-

over, AK(x1) acts on H2n−6
prim (Q,C)⊗H2k−2n+6(π−1

0 (x1),C) as χ1(1⊕χ3) = χ1⊕χ2.

The equation (6.9) follows. This finishes the proof of (6.8).

Remark 6.6. Note that (6.8) shows that all three IC complexes supported on
O312212n−6 with non-trivial local systems correspond to the monodromy represen-
tations constructed from complete intersections of odd number of quadrics.

6.6. The case of a curve. In this subsection we prove the following lemma by
considering the family X2n−1 of complete intersections of quadrics in P2n.

Lemma 6.7. For each i ∈ [1, n − 1], there exists some 1 ≤ j ≤ [n−1
2 ] and a

non-trivial local system Es
j (s = 2 or 3) on O3122j12n−2j−2 such that

F(IC(g1, E
2n+1
i,1 )) ∼= IC(Ō3122j12n−4j−2 ,Es

j).

Let us write

σ = σ2n+1
n : HessOn → Ō312n−1 and σ̌ = σ̌2n+1

n : HessO,⊥
n → g1.

Assume that n ≥ 3. We have dimHessOn = n2 + 3n− 3. We show that

σ∗C[−] ∼=
n−3⊕
a=0

IC(Ō312n−1 ,C)[n− 3− 2a]
⊕

2j=n−1

IC(Ō3122j ,E
3)

⊕
⊕

2≤2j≤n−2

IC(Ō3122j12n−4j−2 ,E2 ⊕ E3)⊕ IC(Ō3112n−2 ,C⊕ E1)(6.10)

⊕IC(Ō12n+1 ,C)[1]⊕ IC(Ō12n+1 ,C)[−1].

The lemma follows from the decomposition above, the equations F(σ̌∗C[−]) ∼=
σ∗C[−], σ̌∗C[−] ∼=

⊕
i IC(g1, E

2n+1
i,1 )⊕ · · · , and (6.7).

In the remainder of this subsection we prove (6.10). Consider first Reeder’s
resolution of Ō312n−1 given by

ρ : {(x, 0 ⊂ V1 ⊂ Vn ⊂ V ⊥
n ⊂ V ⊥

1 ⊂ C
2n+1) |x ∈ g1, xVn=0, xV ⊥

n ⊂V1} → Ō312n−1 .

It is easy to check that ρ is a small map. Thus for xj ∈ O312j12n−2j−2 , we have

(6.11) Hk−n2−2n
xj

IC(Ō312n−1 ,C) ∼= Hk(ρ−1(xj),C).
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Now we study the map σ and the decomposition of σ∗C[−]. The fiber σ−1(xn−1)
at xn−1 ∈ O312n−1 is a non-singular quadric in Pn−2 and codimHessOn

O312n−1 = n−3.

Thus in the decomposition of σ∗C[−], the following IC complexes supported on
O312n−1 appear,

(6.12)

n−3⊕
a=0

IC(Ō312n−1 ,C)[n− 3− 2a] for all n and IC(Ō312n−1 ,E)[−] if n is odd,

where E is the unique non-trivial irreducible K-equivariant local system on O312n−1 .
We have that σ−1(xj) (xj ∈ O312j12n−2j−2) is a Qj-bundle over ρ

−1(xj) for j ≥ 1,

where Qj is a quadric
∑j

k=1 a
2
k = 0 in Pn−2 := {[a1, · · · , an−1]}.

For j odd, or j ≥ 2 even and 2k > codimHessOn
Oxj

, we have

H2k(σ−1(xj),C)∼=
n−3⊕
a=0

H2k−2a(ρ−1(xj),C)∼=H2k
xj

n−3⊕
a=0

IC(Ō312n−1 ,C)[−n2−2n−2a]

where in the second isomorphism we use (6.11). Thus in view of (6.12) IC complexes
supported on O312j12n−2j−2 , for odd j < n− 1, do not appear in the decomposition
of σ∗C.

For j ≥ 2 even, and 2k = codimHessOn
Oxj

, we have

H2k(σ−1(xj),C) ∼= H2k−n2−2n
xj

n−3⊕
a=0

IC(Ō312n−1 ,C)[−2a]

⊕(H2n+j−4
prim (Qj ,C)⊗H2 dim ρ−1(xj)(ρ−1(xj),C)).

Note that ρ−1(xj) has two irreducible components. Moreover AK(xj) acts on

H2n+j−4
prim (Qj ,C) via the character χ3, and acts on H2 dim ρ−1(xj)(ρ−1(xj),C) via

1⊕χ1. In view of (6.12), we conclude that IC complexes IC(Ō312j12n−2j−2 ,E2) and
IC(Ō312j12n−2j−2 ,E3), for j even, appear in the decomposition of σ∗C[−].

For j = 0 and 2k = codimHessOn
Ox0

= n2 − n− 2, since 2k − 2a > 2 dim ρ−1(x0)
for all 0 ≤ a ≤ n− 3, we have

n−3⊕
a=0

H2k−2a−n2−2n
x0

IC(Ō312n−1 ,C) = 0.

We have 2 dimσ−1(x0) = codimHessOn
Ox0

and σ−1(x0) ∼= {0 ⊂ Wn−2 ⊂ Wn−1 ⊂
W⊥

n−1 ⊂ W⊥
n−2 ⊂ C

2n−2}. Note that σ−1(x0) has two connected components and
Ak(x0) permutes them. We conclude that the IC complexes supported on Ox0

appearing in σ∗C[−] are IC(Ō3112n−2 ,C)⊕ IC(Ō3112n−2 ,E1).
The decomposition (6.10) follows from the above discussion and the fact that

none of the IC complexes supported on O2i12n+1−2i , i ≥ 1 can appear in the decom-
position of σ∗C[−]. The proof of Lemma 6.7 is complete.

Acknowledgments

We thank Cheng-Chiang Tsai and Zhiwei Yun for helpful discussions. The second
and third authors also thank Manfred Lehn, Anatoly S. Libgober, and Yoshinori
Namikawa for helpful discussions. We thank the Max Planck Institute for Mathe-
matics in Bonn and the Mathematical Sciences Research Institute in Berkeley for
support, hospitality, and a nice research environment. Furthermore the second and
third authors thank the Research Institute for Mathematical Sciences in Kyoto for

Licensed to Univ of Minnesota. Prepared on Mon Oct 12 02:13:30 EDT 2020 for download from IP 134.84.192.102.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HESSENBERG VARIETIES AND THE SPRINGER CORRESPONDENCE 2461

support, hospitality, and a nice research environment. We also thank the referee
for carefully reading our paper.

References

[A] Norbert A’Campo, Tresses, monodromie et le groupe symplectique (French), Comment.
Math. Helv. 54 (1979), no. 2, 318–327, DOI 10.1007/BF02566275. MR535062

[CVX1] T.H. Chen, K. Vilonen, T. Xue, Springer correspondence, hyperelliptic curves, and co-
homology of Fano varieties, Arxiv.1510.05986. To appear in Math. Res. Lett.

[CVX2] Tsao-Hsien Chen, Kari Vilonen, and Ting Xue, Springer correspondence for the split
symmetric pair in type A, Compos. Math. 154 (2018), no. 11, 2403–2425, DOI
10.1112/s0010437x18007443. MR3867304

[CVX3] Tsao-Hsien Chen, Kari Vilonen, and Ting Xue, On the cohomology of Fano va-
rieties and the Springer correspondence, Adv. Math. 318 (2017), 515–533, DOI
10.1016/j.aim.2017.08.008. With an appendix by Dennis Stanton. MR3689749

[GKM] Mark Goresky, Robert Kottwitz, and Robert MacPherson, Purity of equivalued affine
Springer fibers, Represent. Theory 10 (2006), 130–146, DOI 10.1090/S1088-4165-06-
00200-7. MR2209851

[KaS] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292,

Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR1074006
[KS] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and mon-

odromy, American Mathematical Society Colloquium Publications, vol. 45, American
Mathematical Society, Providence, RI, 1999. MR1659828

[KR] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces,
Amer. J. Math. 93 (1971), 753–809, DOI 10.2307/2373470. MR311837

[R] Mark Reeder, Desingularizations of some unstable orbit closures, Pacific J. Math. 167
(1995), no. 2, 327–343. MR1328333
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