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HESSENBERG VARIETIES, INTERSECTIONS OF QUADRICS,
AND THE SPRINGER CORRESPONDENCE

TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

ABSTRACT. In this paper we introduce a certain class of families of Hessen-
berg varieties arising from Springer theory for symmetric spaces. We study the
geometry of those Hessenberg varieties and investigate their monodromy rep-
resentations in detail using the geometry of complete intersections of quadrics.
We obtain decompositions of these monodromy representations into irreduci-
bles and compute the Fourier transforms of the IC complexes associated to
these irreducible representations. The results of the paper refine (part of)
the Springer correspondece for the split symmetric pair (SL(N), SO(N)) in
[Compos. Math. 154 (2018), pp. 2403-2425].
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1. INTRODUCTION

In this paper we study the geometry of Hessenberg varieties of [GKM] arising
from Springer theory for symmetric spaces [CVX1,CVX2]. Let us recall the set-up.
Let G be a reductive group and let § be an involution of G. We write K = (G%)°
for the connected component of the fixed point set. This gives rise to a symmetric
pair (G,K). We also have the corresponding decomposition of the Lie algebra
g = go D g1 where go is the fixed point set and g; is the (—1)-eigenspace of 8,
respectively. We write N7 = NNg; where N is the nilpotent cone in g. Let us call an
irreducible K-equivaraint IC-sheaf' supported on the nilpotent cone N a nilpotent
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orbital complex. We address the following question which can be regarded as an
analogue of the classical Springer correspondence: what are the Fourier transforms
of nilpotent orbital complexes?

We work in the context of the split symmetric pair (G, K) = (SL(N), SO(N))
where K = G? is given by an involution 6 : G — G and N is odd. Recall that
the K-orbits in N7 are parametrized by partitions of N. In [CVX2], we show that
the Fourier transform gives a bijection between nilpotent orbital complexes and
certain representations of braid groups. We identify these representations of braid
groups and constructed them explicitly using representations of Hecke algebra of
symmetric groups at ¢ = —1. This bijection can be viewed as Springer correspon-
dence for the symmetric pair (SL(N), SO(N)). In the course of the proof we give
a construction of nilpotent orbital complexes with full support Fourier transforms,
following Lusztig we call them thick nilpotent orbital complexes, using Grinberg’s
nearby cycle sheaves.

The goal of this paper is to use the geometry of Hessenberg varieties to reach
a better understanding of Fourier transforms of nilpotent orbital complexes and
Springer correspondence for the symmetric pair (SL(N), SO(N)). We concentrate
on the thick nilpotent orbital complexes because in [CVX2, Corollary 4.8] we show
that one can obtain all nilpotent orbital complexes by induction from thick nilpotent
orbital complexes of smaller groups.

To this end we proposed in [CVX1] a general method of analyzing Fourier trans-
forms of nilpotent orbital complexes. We replace the Springer resolution and the
Grothendieck simultaneous resolution of the classical Springer correspondence by
(several) pairs of families of Hessenberg varieties X and X and obtain the following
picture:

X —— X

(1.1) wl lw

Ny —— g1

The image of 7 is a nilpotent orbit closure O but neither 7 nor # are semi-small
in general. In fact, their generic fibers are not just points in general but they
form smooth families of varieties. The key to analyzing the Fourier transforms of
nilpotent orbital complexes in this manner is that the constant sheaf on X is the
Fourier transform of the constant sheaf on X. Thus, at least as a first approximation,
we are reduced to decomposing the push-forwards 7.Cx and 7, Cy into direct sums
of IC-sheaves; this is possible by the decomposition theorem. In [CVX1] we study
the case when the thick nilpotent orbital complexes are supported on nilpotent
orbits of order 2, i.e., orbits which correspond to partitions that only involve 2’s
and 1’s, and we show that the relevant families of Hessenberg varieties are closely
related to Jacobians of hyperelliptic curves (see [CVX1, §3]). In this paper we treat
the case of orbits of order 3. It turns out that the relevant Hessenberg varieties are
closely related to complete intersection of quadrics.

We now describe our results in more detail. Let us recall the definition of Hes-
senberg varieties in our setting following [GKM]. Let = € gy, let P be a parabolic
subgroup of K, and let ¥ C g; be a P-invariant subspace. The Hessenberg variety
associated to the triple (z, P, X), denoted by Hess, (K/P, g1, %), is by definition the
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following variety:
Hess,(K/P,g1,%) :={g € K/P|g 'z € X}.

As x varies over g1, we get a family of Hessenberg varieties Hess(K/P, g1, %) — g1.

The particular pairs of families of Hessenberg varieties we study here have the
following properties. One of the families in the pair, when restricted to the regular
semi-simple locus, is isomorphic to a family of complete intersections of quadrics
(see Theorem 2.5); this is the family # : X — gy in (1.1). The other family,
corresponding to m : X — Nj in (1.1), is supported on the locus of nilpotent
elements of order at most 3 and the fibers of this family admit affine pavings (see
§2.3).

The main results in this paper are in §§4 and 5. When restricted to the locus of
regular semi-simple elements g7® our particular families of Hessenberg varieties can
be interpreted as families of intersections of quadrics in projective spaces. In §4,
we study the monodromy representations arising from the primitive cohomology of
these families (and their natural double covers). This is accomplished by establish-
ing a relative version of results of T. Terasoma [T] in §3. The resulting monodromy
representations of 74 (g}*) can be expressed in terms of monodromy representations
of certain families of hyperelliptic curves over gi®. In particular, we see that the
cohomology of those Hessenberg varieties can be expressed in terms of cohomology
of hyperelliptic curves. In Theorems 4.1 and 4.2 we describe these monodromy rep-
resentations completely by decomposing them into irreducible pieces which we call
EZ];[ and Eg , respectively. In §5, we study Fourier transforms of the IC complexes
arising from the local systems EZ];[ and E{}/ . Recall that these were obtained from
the primitive cohomology of the particular families of Hessenberg varieties and their
double covers. We show that their Fourier transforms are supported on the closed
sub-variety N3 C N consisting of nilpotent elements of order less than or equal to
3. In particular, we obtain various examples of thick nilpotent orbital complexes.
Let {(0, &)} <3 be the set of all pairs (O, &) where O is a K-orbit in N} and & is an
irreducible K-equivariant local system on O (up to isomorphism). In this manner
we obtain an injective map

(1.2) {ENYU{E]} = {(0,8)}<s.

This map refines (part of) the Springer correspondence in [CVX2, Theorem 4.1].
We would like to emphasize that such a refinement of Springer correspondence is
crucial for applications, for example, computing cohomologies of Fano varieties in
[CVX3].

As an interesting corollary (see Example 5.5), we show that the Fourier transform
of the IC complex for the unique non-trivial irreducible K-equivariant local system
on the minimal nilpotent orbit has full support and the corresponding local system
is given by the monodromy representation of the universal family of hyperelliptic
curves of genus n, where 2n +1 = N.

The paper is organized as follows. In §2, we introduce certain pairs of families of
Hessenberg varieties and prove basic facts about them. In §§3 and 4, we establish a
relative version of the results of Terasoma [T]. We utilize these results to obtain a
decomposition of the monodromy representations into irreducibles. In §5, using the
results in previous sections, we show that Fourier transforms of the IC complexes for
the local systems arising from our families of Hessenberg varieties and their double
covers are supported on the closed sub-variety N3 C N; consisting of nilpotent
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elements of order at most 3. In §6 we give a conjectural (explicit) description of the
map in (1.2) (see Conjectures 6.1 and 6.3) for E;Y and we verify the conjectures in
various examples.

2. HESSENBERG VARIETIES

In this section we introduce certain families of Hessenberg varieties which nat-
urally arise when computing the Fourier transforms of IC complexes supported on
nilpotent orbits of order less than or equal to 3, i.e., orbits of the form Ogig;1x. Our
main theorem (see Theorem 2.5) says that, generically, these families of Hessenberg
varieties are isomorphic to families of complete intersections of quadrics.

2.1. Hessenberg varieties. Let G be a reductive group and let V' be a represen-
tation of G. Let P C G be a parabolic subgroup and let ¥ C V be a P-invariant
subspace. Consider the vector bundle G x* ¥ and write

(2.1) G xP'¥ = Hess(G/P,V,%) — G/P.

The natural projection to V' gives us a projective morphism

(2.2) Hess(G/P,V,X) = V.

The fibers of this morphism are called Hessenberg varieties; the fiber over v is given
by

(2.3) Hess, (G/P,V,%) = {gP|g ‘v € ©}.

Consider now the situation when we have a connected reductive group G and
an involution § : G — G. Let K = GY. The involution # induces a grading
g = go @ g1 on the Lie algebra g of G, where g; = {z € g|df(x) = (—1)'z}. The
group K acts on g; by adjoint action. An element xg in gy is said to be regular
if dim Zg(xz) > dim Zg(x) for all z € g;. We write gi® for the set of regular
semi-simple elements in g;.

Let Tk be a maximal torus of K and consider a co-character \ : G,, — Tk.
We write P = P(\) for the parabolic subgroup of K associated to A, p for the Lie
algebra of P, and g1 = @ g1,; for the grading induced by A. For any i € Z we
define g1 >; = ®j>igl~,j' Let ¥ C g1 be a P-invariant subspace. The Hessenberg
varieties that we are concerned with are of the form Hess,(K/P,g;,%). We have
the following.

Lemma 2.1 ([GKM]). Suppose & D g1,>; for some i < 0. Then the projective
morphism Hess(K /P, g1,%) — g1 is smooth over g*, the set of reqular semi-simple
elements in g1 .

Proof. This is proved in [GKM, §2.5]. For the reader’s convenience, we recall the
argument here. Observe that the Zariski tangent space to Hess, (K/P,g1,%) C K/P
at a point x = kP € Hess, (K /P, g1,%) can be identified with the kernel of

[v,=]: T(K/P)|, = K x" (g0/p)le = K X7 (91/%)]a; (kyw) = (k, [k~ v, w]).
So it suffices to show that the map above is surjective on the fibers at each point
kP € Hess,(K/P,g1,%) if v € gi®. For this we show that any v* € gi that
annihilates both [k‘lv, go] and X is zero. Since v* annihilates ¥ and ¥ D g; >; for
some i < 0, there exists § > 0 such that v* € g’{725, that is, v* is K-unstable. Since

k~'v € gi*, there is no non-zero K-unstable vector v* € gi that annihilates the
subspace [k~1v, go] C g1, we have v* = 0. The lemma is proved. O
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2.2. Families of Hessenberg varieties. From now on we concentrate on the
following symmetric pair. Let G = SL(N,C) and let 6 : G — G be the involution
such that K := G% = SO(N, C). The pair (G, K) is called a split symmetric pair.
As in [CVX1], we will assume, starting with §3.2, that N = 2n + 1 is odd, mainly
for simplicity.

Let us write (G, K) = (SL(V), SO(V, Q)), where @ is a non-degenerate quadratic
form on V. Denote by (,)q the non-degenerate bilinear form associated to Q). For
a subspace U C V, we write U+ = {v € V | (v,U)q = 0}.

Let N be the nilpotent cone of g and let N7 = gy N N. It is known that the
number of K-orbits in N; is finite (see [KR]). Moreover, the K-orbits in N; are
parametrized as follows (see [S]). For N odd (resp., even), each partition of N
corresponds to one K-orbit in Ny (resp., except that each partition with only even
parts corresponds to two K-orbits). In this paper we do not distinguish the two
orbits corresponding to the same partition when N is even; thus we write Oy for
an orbit corresponding to A.

Let {e;, i =1,...,N} be a basis of V such that (e;,e;)o = di4;n+1. For any
I < %, let P, be the parabolic subgroup of K that stabilizes the partial flag

ocvl,cvlcvr cviicv=ch,
where V? = span{es, ..., e;}. Consider the following two subspaces of g;:
E={rxecg |2V =02V c V2 }and O, = {x € g, |2V =0, 2V, c V2, }.
Note that both E; and O; are P-invariant. We form the corresponding families of
Hessenberg varieties

(2.4) 7V . Hessy’ := Hess(K/P;, g1, E)) — g1,

(2.5) ol : Hess{ := Hess(K /Py, 91,0;) — g1 .

A direct calculation shows that

(2.6a) Tm 7Y = Og1-191 5+1-3 if 31 < N4+1, Im 7Y = Ogn—zigm-n if 31 > N +1,
and

(2.6b) Im 07" = Og-1yn4s-s if 3l < N+ 1, Im 07’ = Ogn-219s1-n~ if 31 > N + 1.

Remark 2.2. When 3] < N+, TlN coincides with Reeder’s resolution of Ogi—1511 5413
[R].

Let Ej- and Ojt be the orthogonal complements of E; and Oy in g1 with respect
to the non-degenerate trace form, respectively. Let us now consider the following
families of Hessenberg varieties:

(2.7) 7 - Hess] " := Hess(K /Py, g1, i) — g1,

(2.8) iy Hesslo’L := Hess(K /Py, g1,0i") — g1 -
Concretely, we have

Ef ={zeg|aVl c V0, 2V c V), Of ={zea |2V, C V')
and then

Hess”'" =~ {(z,0C Vi cV,Cc Vit c Vit cCV) |z e gy, 2V, C Vi),

Hesle’J‘ ~{(z,0cViacVic Vit cVt cCV)|zeg, 2V, C Vi, 2V C Vit )
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Finally, note that, as the notation indicates, the bundle Hesle’J‘ — K/P; is the
orthogonal complement of the bundle Hesle — K/P, in the trivial bundle g; x
K/P; and similarly for Hessf)’L and Hessf). Hence, by functoriality of the Fourier

transform, we have:
(2.9) F((0)«Cl=]) = (61)C[-] and  F(7").C[-]) = (FV).C[-].
2.3. Affine pavings. In this subsection we show that

(2.10) the fibers of 7 : Hess” — N; and oY : Hess? — N have
' a paving by affine spaces.

Lemma 2.3. Let € Ogigiqn-si—2; C Im7Y (resp., Imo®) and g € Ogjqn—si—2;.
We have

(7)) = (70 27 " (o) (resp., (o)™ (@) = (o) " (w0)).

N

. is entirely similar and

Proof. We prove the lemma for 7¥. The argument for o
omitted. We have

(M Yy ={0C V1 CVypcVicVE cCV |2V, =02Vt C Vi)
Let (Vine1 C Vi) € (7Y)"Y(z). We have that Im 2 C (kerz)* C V;-. Thus
Im .132 C Vm—l-

Choose a basis {x*u;, k€0,2], [€][1,1], vk, v, k€1, 7], w;, [€[1, N —3i—25]}
of V as in [CVX1, Lemma 5.6]. Let

U° = span{z'uy,1 € [0,2],k € [1,4]},

VO = span{vg, zog, k € [1,5],w;, 1 € [1,N — 3i — 2j]}.
Then Q|yo, Q|yo are non-degenerate and VO = (U°). We have

Vie=Imz?@W,,_; and Vo1 =Im 2> ® W,,_;i_1,

where W,_; = Vi, N VO O Woio1 = Vo1 N VO We have dimW,,,_; = m — i
and dimW,,,_,_1 = m — i — 1. Let 9 = z|yo. Then xg € Oy n-3:-2;. Note that
2V, = 0 if and only if 2oW,,_; = 0. Now

Vi = span{zluy,l = 1,2,k € [1,i]} @& Wo

m m—1i’
where W20 . denotes the orthogonal complement of W,,_; in VO with respect to
m—1 g

Qlyo. Thus zV ¢ Vin—1 if and only if xoW J‘(L C Wi—i—1. This gives us the
m m—1 g
desired isomorphism

()~ H@) 2 (127 " H(@o)s (Vi1 Vin) += (pryo (Vin—1), prvo (Vin)),
where pryo is the projection from V to V° with respect to V = U° @ V0, O

Let OGr(k, N) denote the orthogonal Grassmannian variety of k-dimensional
isotropic subspaces in CV with respect to a non-degenerate bilinear form on CV
and let Gr(k, N) denote the Grassmannian variety of k-dimensional subspaces in
CcN.

By Lemma 2.3, to describe the fibers (V)7 !(z) and (o)~ 1(x), it suffices to

consider the case when x € Ogjin-2;. We first introduce some notation. Let
x € Oyj1n—2;. We write

Yi=kerz/Imz and U =U/(UNImz) for U C kerz.
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Define a bilinear from (,) on Imz by
(2.11) (xv, zw) = (v, zW)q.
Using (Imx)+ = ker x, we see that (,) is non-degenerate. For U C Imz, we define
Ute ={uecImz|(u,U) = 0}.
Let us denote
Yo = (tm) M @), Thy=(on) (@), @€ Ogyna.

We partition TV . into pieces indexed by the dimension of V,, N Imz by letting

m,j
Tk ={(0C Vot C Vi C Vi CViry € CY) € YL S| dim(V;, N Ima) = K}
We now describe the pieces folj To this end, let
Nk .
0,,; ={0CVnC Vit cCN| dim(V,, NTmz) = k,

2V, =0, 2V.h € V,,, dim(2Vh) <m — 1},

Consider the following map:
n: O = Gr(j — k,Im z) x Gr(m — k,%), (Vin) = (Ve NIm 2)10, V).

We claim that

Imn = OGr(j — k,Im ) x OGr(m — k, %),
where Im z is equipped with the non-degenerate bilinear form (,) (see (2.11)),
and ¥ is equipped with the non-degenerate bilinear form induced by (,)qo. It is
clear that V,, C OGr(m — k, %) as (,)glv, = 0. It is easy to check that z(V,L) C
(VuNIm )10 and dim z(V,}) = dim (V;,,NIm 2)*© = j—k. Thus 2(V,}) = (V,,N
Im x)+). Therefore the condition zV,- C V,, is equivalent to (V,,, N Im x)+0) C

Vi NIm 2, ice., (Vi NIm 2)+0 € OGr(j — k,Im z). This proves the claim.
Thus we obtain a surjective map

(2.12) 7 @%I; — OGr(j — k,Im z) x OGr(m — k, %)

and it is easy to see that the fibers of 7 are affine spaces AU=%)(m=F)  Note that
the fiber of the natural projection map

(2.13) Yok = Ot (Vine1, Vi) = Vi

at Vj, is the projective space P(V,,/(xV,1)) = Pm—J+k=1 Tt is easy to check using
the above maps that each piece fo]; has an affine paving. Therefore T%yj also has
an affine paving.

We can similarly partition F%, ; into pieces indexed by the dimension of V;,—1 N
Im z. Let

I ={(0C Vit C Vi C Vi C Vi y € CY) e TN | dim(Vioy N Im ) = k}
AR ={(0 C Vit C Viry € CY) | dim(V;pq N Im )
=k, 2V 1 =0, Vs | C Vi 1}
We have a surjective map
7't At — 0Gr(j — k,Im @) x OGr(m — k —1,%),
(Vin—1) = (Vip—1 N Im )10,V _1).
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2434 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

The fibers of i/ are affine spaces AU—F)(m=k=1) The fiber of the natural projection
map

Tk — AR (Vinet, Vin) = Vi
at a given Vj,,_; is the variety of isotropic lines in (V- , Nker x)/V,,_; with respect
to the quadratic form induced by (). The same argument as before shows that ng j
is paved by affines.

In particular, we see from the above discussion that

(2.14) Tﬁlj #0 e max{m+j—N/2,5/2,7+1—m} <k <min{j,m};
’ N,k ) e Yy
L5 #0e max{m+j—N/2-1,5/2,j+1—-m} <k <min{j,m — 1}.

Finally, in [CVX1, Proof of Proposition 4.3] we have used the following fact.
Lemma 2.4. For z; € Ozigem-1-2i12n—am+3+i we have
(2 (2) =2 OGr(m — 1 —4,2m — 1 — 24) .

This can be deduced from the results in this subsection as follows. Using Lemma

2.3 and (2.14) we see that 72" (z;) Tfnnjzlgs’f_'f:éz The conclusion follows by

considering the maps in (2.12) and (2.13).

2.4. Families of complete intersections of quadrics and their identification
with Hessenberg varieties. Let m € [1, N — 1] be an integer. For any s € gi?,
let

X CP(V) ~PV!

be the complete intersection of m quadrics
(s'—,—)g=0,i=0,....,m—1
in P(V). As s varies over g7®, we get a family
Tm @ Xm — 81°

of complete intersections of m quadrics in P(V).
The families of Hessenberg varieties Hesle’J‘ and Hesle’J‘ over gi° are identified
with X,,,’s as follows.

Theorem 2.5. Assume that k < % Then we have

(1) There is a K-equivariant isomorphism Hessg’J‘

grs =~ Xog—1 of varieties

over gi°.
(2) There is a K-equivariant isomorphism HesskE’l lgrs = Xop of varieties over
91"
We begin with the following simple observation.

(2.15)
Let s € g7°. For any isotropic subspace 0 # U C V, dim(sU NU) < dim(sU).

This follows from the fact that s has no isotropic eigenspaces.

Proof of Theorem 2.5. We first define a map from Xa,_1 to HessO'®. Let (s,1) €
Xok—1, where s € gi® and [ is in the complete intersection of 2k — 1 quadrics
(s—, =) =0,i=0,...,2k— 2, in P(V). Let 0 # v € [. For 1 <i < k, consider
the subspaces

V; = span{v, sv,...,s" 1w},
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Note that V; is isotropic. We show that dimV; = i. We have V; = V;_1 + sV;_;.
Thus dimV; = dimV;_1 + dim sV;_; — dim(sV;_1 N V;_1) > dim V;_;, where in
the last inequality we use (2.15). By induction we see that dim V; = ¢. Hence the
assignment (s,1) — (s, Vy—1 C Vj) defines a map

0,1
v Xop—1 — Hessp '™ [g7s.

One checks readily that ¢ is K-equivariant. We prove that ¢ is an isomorphism by
constructing an explicit inverse map. Let (s,V/_; C V{) € Hessg’J‘ with s € g7°.
We define a sequence of subspaces 0 C V/ C Vy C --- C V]/_, recursively. Let us
first define V}/_,. Consider the map 5: V/_; =N Vi — V//V/_,. Note that by (2.15),
the map § is non-zero, hence surjective as dim V;//V/_; = 1. Let V/_, = ker5. We
have dimV/_, = k—2and V/_; = V/_,UsV/_,. By induction we can assume that
we have defined V; such that dimV; =i and V/,; = V/ UsV}. Let

Vi =ker(s: V] SV =V /V).

The same argument as before shows that dimV, ; =i —1and V/ =V, UsV/ .
Thus in particular we obtain that dim V] = 1, and it is easy to see that the map

Hess '™ lgrs = Xor—1,(s,Vi_y C Vi) = (s, V)

defines an inverse of ¢. This finishes the proof of (1).

For (2), we observe that, under the isomorphism ¢ : Xop_1 =~ Hessg’J‘, the
equation (s?*~1v, v)g = 0 for the divisor Xo;r C Xor_1 becomes (sVi,Vi)g = 0,
which is the equation for the divisor Hessg’J‘ - Hessg’J‘. Thus (2) follows. g

3. COMPLETE INTERSECTIONS OF QUADRICS AND THEIR DOUBLE COVERS

In §2.4 we have introduced the families X,,, — g7® of complete intersections of
quadrics, which we have identified with families of Hessenberg varieties Hessf -+ lgrs,
Hessg’J‘ lgr=. In order to study the monodromy representations of the equivariant
fundamental group 7 (g}*) associated with the above families of Hessenberg vari-
eties, we introduce families Y,, of branched covers of PY~~1 and relate them with
X,,. We also introduce a family of branched double covers of X,,, denoted by X,
and relate them to families Qm of branched covers of PN~="=! which we introduce

in §3.5. Our construction can be regarded as a relative version of the construction
in [T].

3.1. Some notation. In this section we choose a Cartan subspace a C g; that
consists of diagonal matrices. Let a™ = ang"®. We write an element a € a with
diagonal entries aq,...,an as a = (a1,...,an) (note that we have diagonalized the
elements in a with respect to a standard basis f; of V', where (f;, f;)o = d; ;, rather
than the basis chosen in §2.2). Thus a = (a1,...,an) € a”° if and only if a; # q;
for i # j.

Define

Iy = (2/22)N /(Z)27)

where we regard Z/2Z as a subgroup of (Z/2Z)" via the diagonal embedding. For
any x € Iy = Hom(Iy, G,,), we define

supp(x) = {i € [L, N][x(&) = =1} and  |x| = # supp(x),
where &; is the image of (0,...,1,...,0) € (Z/2Z)" in Ix. Note that || is even.
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If we identify the centralizer Zx(a) of a € a™ with the kernel of the map
(Z)22)N — 7.)2Z, (b, ...,bx) + . b;, we obtain a natural map
(3.1) Zx(a) = (2)22)N 25 Iy,

Note when N is odd which we will assume from this point on, the map (3.1) is an
isomorphism. Therefore, in what follows, we often make the canonical identification
ZK (a) =~ Iy.

To emphasize we have the following.

Assumption. From now on we assume that N is odd.

3.2. Family of curves. In this subsection we introduce certain families of curves
which will be used to construct the families Y,, and Y,, of branched covers of
projective spaces.
For any a = (ay,...,ayn) € a", there are natural isomorphisms
TPt — {ay,...,an}) @ Z)27 ~ Iy,
TP (P = {a1,. .., an,ant1 = 00}) @ Z/2Z ~ In 1.

The isomorphisms are given by assigning to a small loop around each a; the element
in In (resp., Iny+1) with only a non-trivial coordinate in position i. Let

Cy, — P! (resp., C, — P')
be the abelian covering of P! ramified at {ai,...,ax} (vesp., {a1,...,ant1 = oo})
with Galois groups given by Iy (resp., In41). Concretely, C, (resp., C,) is the
smooth projective curve corresponding to the function field

C(t)(( )5 ) (resp, CO((E— a3 ).

t—CL,L'

t—a1

The group Iy (resp., Iny1) acts on Cy (vesp., C,). For any x € Iy, (resp., x € I, 1)
we define

Co = Co/ ker x (resp., CN',LX =C,/kery),
which is a branched double cover of P! with branch locus {a; |i € supp(x)}. Con-

cretely, Cy  (resp., éa,x) is isomorphic to the smooth projective hyperelliptic curve
with affine equation

Y= H (x — a;) (resp., y* = H (x — ay)).
1Esupp X i€supp X, 1ZN+1

We have dim H*(C,,C) = |x| — 2 (vesp., dim H'(C,,C) = |x| — 2).
As a varies over a"®, we obtain a family of curves

C — a" (resp., C — a™)
and we similarly obtain families of hyperelliptic curves
Cy — a" (resp., C’X — a”) for any x.

We also note that the Weyl group W = Sy acts naturally on C (resp., 5) making
the projection C' — a”® (resp., C— a”®) a W-equivariant map.

We will now associate monodromy representations to these families. Let us fix
a € a™ and a character x € Iy (resp., x € I, ) and we recall that 71 (a", a) is the
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pure braid group Py. The monodromy representation of the family C,, — a"* fac-
tors through the symplectic group and we denote it by pc, : Py — Sp(H(Cy , C))
~ Sp(2m — 2) where the m = % Similarly we obtain a monodromy representation
pe, Py — Sp(HY(Cy y, C)) ~ Sp(2m — 2).

We claim:

The images of the representations pc, and pe, are Zariski dense

(3.2) in Sp(H'(C,4.y,C)) and Sp(H'(C,.,C)), respectively .

In particular, the representations pc, and pé, are irreducible .

We see this as follows. Consider the following subvariety a™*(a, x) C a"*
(3-3) a"(a,x) ={a’ € a"[aj = a; if i ¢ supp(x)}.

It suffices to show that the monodromy representation of the restriction of C;, — a”"*
to a"(a, x) has Zariski dense image. Now, a"*(a, ) is an open subset of the space
May, of 2m distinct marked points in C and the family C, xgrs a"%(a, x) is the
restriction of the universal family of hyperelliptic curves parametrized by Ma,.
Note further, that My, itself is an open subset of the space Moy, of 2m distinct
marked points in P! carrying its own family of hyperelliptic curves. Now, by [A] (see
also [KS, Theorem 10.1.18.3]), the monodromy representation on Moy, is irreducible
and has Zariski dense image. Therefore pc, , as a restriction to an open subset, has
the same property. The argument in the case C’X — a”? is completely analogous
except one has to take into account that ayi1 = oco.

Finally, there is a unique character xo € I\ 41 with [xo| = N 41 (here we use
the assumption that N is odd). The character x( is invariant under the Weyl group
action. Thus we can pass to a quotient of éx() — a”® under the W action and in
this way obtain a family C,, — ¢"* = a”*/W. The family C,, — ¢"* = a™/W is
the universal family of hyperelliptic curves y* = vazl(as —a;) and Cy, — a”* is a
similar universal family with marked ramification points.

3.3. Branched cover Y,, of projective spaces and X,,. Define
INT™ = ker(sum : IN ™' = Iy),

where sum is the summation map. Fix a = (a1,...,ax) € a™. Let C, — P!
be the curve introduced in §3.2. The semi-direct product IIJ\\,[_m_1 X SN_m_1 acts
naturally on CN~™~1 and we define

N-—m—-1,;7N—m—1
1dm,a:C'a m /IN m ><ISN,m,1.
We have a natural map
ta P Ym,a — Cév_m_l/lf\\,[*m’l XN SNy ~ PN—m—L

According to [T, Proposition 2.4.4], for a suitable choice of homogeneous coordi-
nates [x1,...,TN_m] of PN=m~1 each ramification point a; defines a hyperplane

(3.4) Hy; =21 +axo+ -+ aﬁv_m_lq}N_m =0
in PN=™~1 and the map ¢, is an I-branched cover of PY~™~1 with branch locus
{Hui=0}i=1.. n. As a varies over a"®, we get an a"*-family of Ix-branched covers
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of ]}»mefl
\ Pﬁs o
where

ym — Cmefl/I’]J\\[f—m—l % SN—m—l

and the base change of ¢ to a is equal to ¢,. Observe that the W-action on C'
induces a W-action on Y,, making the projection Y,, — a"° a W-equivariant map.
Let X,, — ¢7° be the family of complete intersections of quadrics introduced in

§2.4. For a = (a1, ...,an) € a”® the equation of X,, , is given by
aiv 4+ tayoi =0, i=0,...,m— 1.

Consider the map
s:P(V) = P(V), [v1,...,o5] — [v3,...,0%].
The image $(X,q) is equal to P(V,, o), where
(3.5) Vina={veV|aivi+-+dyvn=0,i=0,....m—1} C V.

The resulting map
Sat Xma = P(Vina)
is an Iy-branched cover with branch locus {v; = 0};—1,... n. As a varies over a"*
we obtain
m|a“ —> ]P)

\/

Here V,,, — a”° is the vector bundle over a™® whose fiber over a is V, , and P(V},,)
is the associated projective bundle.
The two families X,,|qrs and Y, are related as follows. Let

(@) ={(a,c)|a=(ay,...,an)€a" c=(c1,...,cn)ECY, & =d; = H(aj—ai)}.

J#i
The projection (a"%)" — a™, (a1,...,an,c1,...,¢n) = (a1,...,ay) realizes (a"5)’
as a (Z/2Z)N-torsor over a”*. Consider the following Ixy-torsor over a"*

(3.6) i = (@) /(Z/22) — o7

here we view Z/27 as a subgroup of (Z/2Z)N via the diagonal embedding. The
Weyl group W acts naturally on a”® making the projection to a™® a W-equivariant
map. We observe that the Iy-torsor a” of (3.6) gives rise to the following canonical
map:

(3.7) p:m(a™ a) = Py — In.

Proposition 3.1. We have an In x W -equivariant isomorphism

(3.8) Xonlars o (Ym Xgrs a7%) /I =Yt |

where W (resp., In) acts on Yt by the diagonal action (resp., on the first factor).
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Proof. Following [T, §5], we consider the family
X;L|aTS % ars

whose fiber over a = (a1,...,an) € a™ is the complete intersection of m quadrics
in P(V) given by

at a
1v%+-~~+—N012v:0, 1=0,....,m—1,
d1 dN

where d; := [];;(a; — a;). One can think of X,,[ars as a twist of X [qrs. More
precisely, we have a natural map

=~ /!
a" Xgre X, |ars = Xmlars, (a,¢,[v1,...,0n]) = (a,[v1/c1,...,on/cN])
and it is not hard to see that it descends to a canonical Iy-equivariant isomorphism

(3.9) X ) /I

~ (FTS /
ars = (a7 Xgre X,

Here I acts on the product via the diagonal action. The Weyl group W = Sy acts
naturally on X, |qre, X/, |ars, "%, and (a"® X qrs X/, |ar<)/In, making the projections
to a”® equivariant maps under the W-actions. Moreover, the isomorphism in (3.9)
is also W-equivariant. In §3.6 (see Proposition 3.3), we show that there is an

In x W-equivariant isomorphism

(3.10) x!,

ars >~ Ym.

Combining (3.9) with (3.10) we obtain (3.8). O

3.4. Branched double covers X,, of complete intersections of quadrics.
We introduce a branched double cover of X,,, as follows. Let V =V @ C. For any

s € g7*, consider the following quadrics in P(V):

éi(’v,e) = <siU,U>Q =0,i=0,...,m—1,
@m(v,f) = <Sm’U,’U>Q = 0.

We define )~(m7s to be the complete intersection of m + 1 quadrics @l =0,1=
0,...,m. As s varies over g7°, we get a family

Tom t X — 97°

of complete intersections of m+1 quadrics in ]P)(‘N/) The projection V=VaC— vV,
(v, €) — v, induces a map py, : X,, — X,, which is a branched double cover with
branch locus X,,+1 C X,.

The map V =V @&C — V given by (v, €) — (v, —¢) defines an involution on X,,.
We denote this involution by o.

The group K = SO(V, Q) acts naturally on both X,,, and X,n. The maps T, :

Xm — 97° and 7, @ X, — 9¢7° are K-equivariant. In particular, the centralizer
Zk (s) acts on the fibers X,, s and X, s.
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3.5. Branched cover Y,, of projective spaces and va. In this subsection we
generalize Proposition 3.1 to the branched double cover X, introduced in 83.4.
For a = (ay,...,ay) € a"® the equations of X,, , C PN=™"1(V) (recall that
V =V @ C) are given by
aiv? 4+ Fao =0, i=0,...,m—1, al"vi+ - +alvi — e =0.
Consider the map
(3.11) §:P(V) = P(V), [v1,...,un,€ =vnp1] — 02, ..., 0%, VA 41)-

We have §()Z'm7a) ~ ]P’(Vm ), where mea C V is the subspace defined by the
equations

aivy +---+ayoy =0, i=0,....m—1, av; +---+ayoy —vns1 = 0.
The map
5¢ 1 Xma = P(Vina)
is an In41-branched cover with branch locus {v; = 0}i=1, . n+1. As a varies over
a", we obtain

m|a’“5 )]P) m

\/

Here Y~/m is the vector subbundle of the trivial bundle V x a"* whose fiber over a is
the subspace V,,, 4, and P(V},,) is the associated projective bundle.
We now introduce another family Y,,, of branched covers of PN ="~ Let sum :

IﬁJr{” ! Ini1 be the summation map and define IZI\\,[A” ! = ker(sum). For any
a € as let C, — P! be the Ini1-branched cover of P! introduced in §3.2. The

semi-direct product IJ]\,VJFI” 1 % SN_m_1 acts naturally on (C’a)N*mfl. We define

9m,a = (éa)N_m_l/I]]\\[{Jrim ! Dol Smefl'
Similar to the case of Y,, 4, the natural map
lg : gm,a — (C’a)Nimil/I]J\\[]J,_lm ! X SN _m—1 PN7m71

is an Iy i-branched cover of PY~™~1 with branch locus {H,; = 0};=1,. N+1-
Here H,; = 0 for ¢ = 1,...,N are the hyperplanes as before (see (3.4)) and
Hy Ny1 := TN—m = 0 is the hyperplane corresponding to the ramification point
aN+1 = OO

As a varies over a"®, we get an a"*-family of an I, -branched cover of PN -1

N 1
Ypp ——— L PN

N

We will again make use of a" of (3.6) to relate the two families Xonlars and Y.
The Weyl group W acts naturally on X ars and ‘ém, making the projections to
a"s equivariant with respect to these W-actions. We let Iy act on Y,, via the map

(3.12) kiIn = Zg(a) — (Z/22)N T 25 Ty,
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where the first arrow is given by ((1,...,¢n) — ((1,...,C¢n,0). We also let W act
on In41 by permuting the first N coordinates and we use this convention to form
the semi-direct product Iy x W.

Proposition 3.2. There is an Iny1 X W-equivaraint isomorphism

(3.13) Xonlars 2 Yy 1= (o xare @) /Iy,

where W (resp., Iny1) acts on'YL, by the diagonal action (resp., on the first factor).
Proof. Let us consider the following twist of )?m\ars:

X! |ars — a”®

whose fiber over a = (ay,...,an) is the complete intersection of quadrics given by
ai ai a™ am™
—1vf+---+—Nv]2V:O, 1=0,...,m—1, —1Uf+-~-+—Nv]2V—62:O,
dy dn dy dn

where d; is defined as before, i.e., d; = Hj#(aj — a;). Similar to the case of X,,,
we have a canonical isomorphism

(3.14) Xonlars = (87 X grs X! |ars)/In-

Here the Iy-action on X/, |qr is defined as the composition of Iy — Iy in (3.12)
with the natural action of Iy11 on )Z'm. The Weyl group W acts naturally on )~(m,
)Z’;n, and 9m, making the projections to a”® equivariant maps under the W-actions.
Thus we obtain Iy % W-actions on )Z’m, )Z’;n, and Y,, and the projections to
a"® are Iyy1 X W-equivariant. Moreover, the isomorphism in (3.14) is Iy1 x W-
equivariant. In §3.6 (see Proposition 3.3), we show that there is an Iyiq x W-
equivariant isomorphism )~(7’n|ars ~ Y,,. Combining this with (3.14) we obtain
(3.13). |

3.6. The families )?{n and Y,,. In this subsection we state and prove the following
proposition which was used in the previous subsections.

Proposition 3.3. We have an Iny1 X W-equivariant isomorphism )Z';n|um ~Y,.
In particular, it induces an Iy X W -equivariant isomorphism on the quotient

X! Jare o X! are (Z)22) =~ Yyn /(Z)22) =~ Yy,
Here Z/27 acts on )N(in and Yy, via the map Z)27 — In 1 given by 1+ (0,...,0,1).

We follow closely the argument in [T, §2]. We begin by introducing some auxil-
iary spaces and maps. Let V!, C V' x a"® be the vector subbundle whose fiber over
a € a™ is the subspace V;, , C V defined by the equations

(3.15) Loyt b Wy =0, i=0,...,m—1, Loyt t DNpy oy =0
dq dn dy dn

The map 5 : P(V) x a™ — P(V) x a™ (see (3.11)) maps X/,|ar+ to P(V/,) and the
resulting map
&1 Xpylare = P(V,7)

is an I 1-branched cover with branch locus {v; =0, i =1,...,N 4+ 1}.
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Let C(P(V,)) be the function field of P(V/,). Then the function field of X!,
is given by the following field extension:
Ui

F o= CRI) (o

ars

)3 N) D CR(VL)).

Since )N(in|urs is smooth and §' is finite, it follows that
X! |ars is the normalization of P(V,) in F.2

The group In41 acts on F by ( : vl-l/2 = (=1)% vil/Q, ¢=(¢1,.,CNny1) € Iny1 and

W acts on F by w: (—)1/2 o (Z0@ y1/2,
UN+1 UN+1
Similarly, let k,, be the function field of a”* and let n = (a1,...,an) € a”"*(ky;)
be the corresponding generic point. Then the function field of Y,, is given by the

following field extension:

Hn,i

F' =cC(PpN;mt
( a )((HthJ,-l

)% ) D CENTY,

ars

Here, H, ;, i =1,..., N are the hyperplanes associated to n € a” in (3.4), H,, n4+1

H, . . e .
= IN-m, and TJI\I+1 are rational functions on IP’f]V m—1 regraded as elements in
uB

C(PY=m=1) = C(PY=™"). Since Yy, is smooth and 7 : Yy, — PNZ™ ! is finite, it
follows that

Y,, is the normalization of Pﬁ:’”_l in F.

The group Iy11 acts on F’ by ( : H,ll/f — (—1)% H;’/iz, ¢C=(C,- -, CNt1) € INg1

H. . H. .
and W acts on F by w: (=—2—)Y/2 (M)I/Q.
Hy Nt Hy Nt
By the discussion above, to prove Proposition 3.3, it is enough to prove the

following statement:

(3.16)

The two a"*-families of configurations
(IP’(‘N/,;W), {vi}ti=1,.N+1) and (]P’fg;m_l, {Ha,i}i=1,... N+1) are equivalent.

That is, there is an isomorphism (or trivialization) of vector bundles ¢ : CN =™ x
a™ o~ 1777’1 over a”® such that for any k-point a € a"*(k), k a field, the induced map
on the dual fibers ¢7 : (1777’“1)* ~ EN=m satisfies ¢f (v;) = H,,; fori=1,..., N +1.

To prove (3.16), we need to construct, for each S-point a € a”%(S), a functorial
isomorphism ¢, : CN7™™ x § ~ ‘77;“1 satisfying the desired property. For notational
simplicity we construct such isomorphisms on the level of k-points. The argument
for general S-points is the same.

Consider the following map:

b VOkBVok X Vek,

where pr : Vek= (Vek)®k — V®Ek is the projection map and the second
isomorphism is given by multiplying the diagonal matrix d = diaug(dl_l7 R d;,l) €
GL(V ® k) (recall for a = (a1,...,an) € a™, d; = [, 4;(a; — a;)). One can check
that 1, maps 177’,“1 isomorphically onto V;, o (see (3.15) and (3.5) for the definitions

2Recall for any irreducible variety X and K a finite extension of the function field C(X), there

exists a unique normal variety Y and a finite morphism f : Y — X such that the induced map
C(X) — C(Y) = K is the given field extension. We call Y the normalization of X in K.
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of V! and Vim,a, respectively) and the resulting isomorphism ), : ‘Z{la ~ Vina

m,a

satisfies
Yi(di-v;))=wv;fori=1,....N and 9} (Hx)=vN4+1,
where Hy, = al*v; + - - - + ayvy. Thus we are reduced to show that
(P(Vin,a)s {di - vi}i=1,...n U Hy) and (IP’(kN_m), {Ha,i}i=1..N+1) are equivalent,
that is, there is an isomorphism
Vo EN—™ ~ Vina

such that v}(d; - v;) = He4, 0 =1,...,N and v} (Hs) = Ho N41-

Consider the basis u; = (ai,...,a%), i = 0,...,N —1 of V. ® k. Then the
isomorphism V ® k ~ (V ® k)*, given by the pairing {(v;), (w;)) = >_ v;w;, induces
the following isomorphism:

fi: V;L’a ~V® k:/k(uo, . ,um,1> ~ k(um, .. ,UN,1>.

Let s; be the elementary symmetric polynomial in aq,...,axn of degree i and let
A = (a;;) € GLy_m(k) be the matrix with entries a;; = (—=1)""ts;_; if j > i and
ai; = 0 otherwise. Consider the following isomorphism:

PV o B b, uy ) BN R N

Here fa : k{tm, ..., uny—_1) =~ k™ ~™ is the isomorphism given by uy_; — (—=1)i"1z;3

and f3 is the isomorphism given by right multiplication by A~!. We claim that the
dual
Ya = f* : kN_m =~ Vm,a

is the desired isomorphism, i.e., we have f(d; - v;) = H,; for i = 1,...,N, and
f(Hs) = Hq,n+1.- Note that the configuration (P(Vy,q),{di - vi}i=1,...n) (resp.,
(P(kN=m),{Hy,,i}i=1...n)) is equal to the configuration (P, Hj,...,Hy) (resp.,
(P',H{,...,Hy)) in [T, §2.1]. Moreover, the map f is the one used in [T, Proof of
Theorem 2.1.1] to show that the above configurations are equivalent. Thus accord-
ing to [T, Proof of Theorem 2.1.1] we have

f(d;-v;))=H,,; for i=1,...,N.

So it remains to show that f(Hs) = Hg n+1. For this we observe that f1(He) =
Uy,. Hence

f(Hoo) = fso fao fi(Hoo) = f30 folum) = (=D)N ™71 fa(@n—m)

= ()N ey A=y, = a,N+1-

This proves (3.16).
The proof of Proposition 3.3 is complete.

3Here we regard x; as the ith coordinate vector of kN =",
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4. MONODROMY OF FAMILIES OF HESSENBERG VARIETIES

In this section we study the monodromy representation of 7 (g%, a) = Zx (a) x
By on the primitive cohomology of complete intersections of quadrics X, (and on
the primitive cohomology of their branched double covers )?m) By Theorem 2.5
this gives us a complete description of the monodromy representations of 7% (g7*)
associated to the families of Hessenberg varieties Hess and Hess2*.

To state the result, let us recall, from §3.2, the monodromy representations
pc, : Py — Sp(H'(Ca y,C)) ~ Sp(2i — 2) and pe, Py — Sp(H'(C,y,C)) =~

Sp(2i — 2) where i = % Recall further that, by (3.2), these representations are
irreducible with Zariski dense image. Let us consider the irreducible representation
of Sp(2i — 2) associated to the fundamental weight w;. Composing pc, and Pé,

with this fundamental representation we obtain irreducible representations Pi and

f’; of the pure braid group Py .

For a character x of an abelian group we write V,, for the corresponding one
dimensional representation. Recall that the group Zk (a) can be naturally identified
with In as explained in (3.1). We also relate the characters of Iy and Iy41 using
the map & defined in (3.12). From these considerations we conclude that

(4.1) Z(a) =1} and we have a map BN, — Iy,

In particular, characters of Iy and Iy can be regarded as characters of Zx (a). To
state the main theorems of this section we define two Zx (a) X Py-representations

as follows:
N j =N 57
EN~ @ PleV, ad EY= @ PoV,
XEIY, [x|=2i XEIN 415 [x|=21,
N+1€esupp x

where the Iy acts on Eg via the map & : Iy, — I of (4.1), and Py acts on Vy
via the map p: Py — Iy of (3.7). Lemmas 4.4 and 4.6 show that the Zx (a) X Py
actions on EZ];] and Eﬁ extend naturally to Zx(a) x By-actions.

The main results of this section are the following.

Theorem 4.1. For 1 < m < N — 1, the monodromy representation of i (g'*, a)
on P(X,,) := HY M"Y (X,, 4, C) decomposes into irreducible representations in the

prim
P(Xm) = @ @ Eij}f’

following manner:
i jJ=N—m—1mod 2

jel0,]
with N—m+1<2i <N, l=min{N—-—m—1,—N+m+2i—1}.

To state the second main result, we set

P(X,,) = HY-m"1(X,, 4, C).

prim

Recall that there is an involution action o on X,, and the projection map py, :
Xm — X, is a branched double cover with Galois group (o) ~ Z/2Z (see §3.4).

Then P(X,,) = P(X,,)° 4 @ P(X,,)°="i4 and we have P(X,,)°"4 = P(X,,).
The next theorem describes P(X,,)7=~ 9.
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Theorem 4.2. For 1 < m < N—1, the monodromy representation of 7 (g7%, a) on
P(X,,)°=7 14 decomposes into irreducible representations in the following manner:

P(X,) ="~ P b EY,

i j=N-—m—1mod2
jel0,]

with N—m+1<2i<N+1,l=min{N-m-—-1,-N+m+2i—1}.

4.1. Proof of Theorem 4.1. Let us start with the following proposition which is
a consequence of Proposition 3.1.

Proposition 4.3. There is an isomorphism of representations of ©¥ (g7 a) ~
IN X BN
H'(Xm,0,C) ~ €D H'(Ym.a, C
x€IY
The group In acts on the summand Hi(‘ém,a,(C)X ® Vy via the character x € I).
Proof. Observe that the families X,|qrs — a™%, Y, — a”%, and a™ — a”* are all

W-equivariant. ~ Hence their cohomology groups H'(Xm.a,C), H (Ym.a,C),
HO((a™*), (C) carry an action of the braid group By ~ W{/V(ars a). Let

H'(Xp.0,C) = €D H' (Xina, C)y, H'(Ym.a,C) = @ H'(Yum.a> C)y
XEIY X€EIY;
H°((d%)a,C) = €P Vi
Xx€EIy

be the decompositions with respect to the action of Iy; for the last identity we
recall that a" — a” is an Iy-torsor. For x € Iy, and b € By, we write b - x for
the action of b on x. Then the braid group action on H!(Y,, 4, C) is described as
follows:
be By : Hl(ym@, (C)X — Hl(lém’a,(C)b.X.

The By-actions on H* (X, 4,C) and H°((a"*),, C) are described in the same man-
ner.

By the Kiinneth formula, the cohomology of the fiber of Y!, = (Y, xqrs a™)/In
over a € a”° is canonically isomorphic to

H' (Y}, 0,C) ~ €D H'(Ym.a,C
X€EIy
Thus by (3.8) we obtain the desired 75 (g7*, a) ~ Iy x By-equivariant isomorphism.
]

The isomorphism in Proposition 4.3 implies the following isomorphism of mon-
odromy representations:

(4.2) P(Xp) ~ P P(Ym)y @ Vi,
XEIY
where
P(Ym) =H " (Yma:C)y P(Ym)y = HY " (Y, C)y N P(Y).

Our goal is to decompose the representation above into irreducible representations.
Observe that each summand P(Y,,), is invariant under the action of the pure
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braid group Py. According to [T, Theorem 2.5.1], there is an isomorphism of
representations of Py
N—m-—1 N—m-—1

P(Ym)y~ N H'Y(Ca,C)y~ J\ H'(Cuy.C),

where Py acts on H'(C,,,,C) via the map pc, : Py — Sp(2i —2), i = |x|/2.
As an Sp(2i — 2)-representation AN " H? (Ca,x, C) decomposes into a direct
sum of fundamental representations in a well-known manner. This implies the

following decomposition of P(Y,,), into irreducible representations of Py :
N—m-—1 )
(43)  Plmi= [\ H'(Cax,C)= Q%) 28
j=N—-m—1mod?2, j€[0,]]
where | = min{N —m —1,—-N +m+ |x| — 1}.
Combining (4.2) with (4.3), we obtain the following decomposition:

(4.4) P(Xp)~ @ PUm)x @V~ P P av,.
x€Iy; x€ely,
Using the notation from the beginning of this section the decomposition (4.4)
can be rewritten as

(4.5) P(Xn) ~ P b EY
i j=N—m—1mod?2, j€[0,l]
where N—m+1<2i<Nand!=min{N-—m—1,—-N +m+2i —1}.
We have the following.
Lemma 4.4. (1) Each Ei}[ is an irreducible representation of 7&K (gi*,a). We
denote by p}y : mi* (97°,a) = GL(E])) the corresponding map.

(2) Suppose j > 0. Let H := pﬁ(PN) C GL(E)) be the Zariski closure of
pg (Pn) in GL(EZ.];]) (recall Py C 75 (g7®, a) is the pure braid group). Then
we have Lie H ~ sp(2i — 2). In particular, the image p}; (7 (g1%, a)) is
infinite.

Proof. We begin with the proof of (1). We first show that E}Y is a 7{(g7*, a)-
invariant subspace of P(X,,). For this, we observe that the decomposition in (4.4)
is compatible with the action of By, that is, for b € By,

b: P @Vy — P V.

Since the braid group By acts transitively on the set {x € I\ | |x| = 2i}, it follows
that the subspace

EY= € Piav
XEL|x|=2i
is stable under the action of 75 (g7, a). Now since each summand Pf( @V, is irre-
ducible as a representation of Py, it follows that each Eg is an irreducible repre-
sentation of & (g7*, a).
We prove (2). For each x € Iy, we define p, : Py 2 In 5 pg. Here p is the
map in (3.7). Define

¥ = (pey, @ px) : Py — Sp(2i — 2) x u§2'i).
X|x|=2i
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Let V;; denote the irreducible representation of Sp(2i — 2) associated to the funda-
mental weight w;. Then the restriction of pJ} : n{* (g7°,a) — GL(E]}) to Py can
be identified with

N
b Py 2 Sp(2i - 2) x u$) 25 GL(v) <6,
where 19 maps Sp(2i — 2) diagonally into GL(V;J-)X(Z) and 1, maps s = {+1}
to £id € GL(V;j). Since pco, (Pn) = Sp(2i — 2), it implies that the connected

component wl(PN)O = Sp(2i — 2). So to prove (2), it suffices to show that
Lie(Im(t)2)) ~ sp(2i — 2) for j > 0. This follows from the fact that the induced
map dips : 5p(2i — 2) = @ gl(V;;) on the Lie algebras is injective. O

It follows from the lemma above that (4.5) is the decomposition of the mon-
odromy representation P(X,,) into irreducible subrepresentations. This completes
the proof of Theorem 4.1.

4.2. Proof of Theorem 4.2. The proof is similar to the case of X,,. First using
the isomorphism (3.13) and the same argument as in the case of X,,,, we obtain the
following proppsition.

Proposition 4.5. There is an isomorphism of Iny1 X By-representations
H'(Xpa,C) > P H'(Jm.arC)y @ Vi,
XEIJ\\/J+1

where for V., we regard x as an element in Iy via the map & : I, — Iy in (4.1),
and the group Ini1 acts on the summand Hi(gmﬂ,C)X ® Vi via the character

X €N,
Set
P(gm) = Hgfﬁ_l(gmm@-
By Proposition 4.5, there is an isomorphism of I; x By-representations
(4.6) P(Xp)~ P PUm)y@ V.
XEIN 14

For any x € Iy, with x| = 2i, let éa’x be the hyperelliptic curve defined in
§3.2 and let pg : Py — Sp(H1(6a7X,C)) ~ Sp(2i — 2) denote the monodromy

representation for the family 6’X — a". Again by [T], we have an isomorphism of
Pyn-representations

(4.7) P(Ym)y = AN THY(C,, C)y = AN HY (Cu g, €©)).

Combining (4.6) with (4.7) we obtain the following decomposition:

(4.8) P(Xp)~ @ AVTHY(Coy,C) @ Vi
XEIXIJA

We describe the monodromy representation P(X,,) recall that o is the invo-
lution on X,,,). For this, we first observe that the involution action of () ~ Z/27Z
on X,, is equal to the composition of

boo 1 )27 — Inyq, 1 (0,...,0,1),

o=—1id (
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with the action of Iy1; on )Z’m. Hence by (4.8) we have

(49) P(X,)" = P PXu> P AVIHY(Con,C)@ V.
XEIN 14 XE€IN 1
N+1esupp x N+1esupp x

Again, since pz (Py) is Zariski dense in ‘S‘p(Hl(é’X,(C))7 we have the following
X
decomposition:

—m— ~ =
AN 1H1(Ca,xa C) = @ PX’
j=N—-m—1mod?2, j€[0,]]

where [ = min{N —m —1,-N +m+ |x| — 1}.
Using the notation from the beginning of this section the decomposition (4.9)

can be rewritten as
PRSP @ B

i j=N-—-m—1mod2
Jjelo,l]

where N—m+1<2i< N+ 1,l=min{N —m—1,—-N +m + 2i — 1}.
The same argument as in the proof of Lemma 4.4 shows the following.

Lemma 4.6. (1) Eﬁ is an irreducible representation of wi (gi%, a). We denote
by ply : w1 (g5°,a) = GL(EY) the corresponding map.
(2) Suppose j > 0. Let H := p)(Py) C GL(EZJ;’) be the Zariski closure of
Py (Py) in GL(E{}/) Then we have Lie H ~ sp(2i — 2). In particular, the
image ﬁg(ﬁf((gqs,a)) is infinite.
This completes the proof of Theorem 4.2.

4.3. The local systems Eg and E{}’ In this subsection, we show that from the
constructions in previous sections, we have obtained the following set consisting of
pairwise non-isomorphic irreducible K-equivariant local systems on g7°

(4.10)

{Efj”“, ie(Ln],jel0yi—1); B2 ielnt1],jeli-1], Bl }
For this, we first observe that
N . N =N . SN oy
Ej; ~E);, and E;; ~FE;;, ifandonlyifi=74,j=j.

In fact, assume that Eg o~ %, Then we must have ¢ = 4/, otherwise, the

centralizer Zx (a) = Iy would act differently on Eg and Ef,vj, Now regarding Eg

and Eij}'/ as Py-representations we see that j = j’. Similar argument applies to
BY.
It remains to prove the following.

Lemma 4.7. We have Ezj\; = Ei]}i]—, if and only if i+i' = (N+1)/2 and j =5/ = 0.

Proof. Recall

./
N _ j =N _ 57
Ej= @ PewBi= D Peak
XEIY,Ix|=2i X' €I% 1, Ix|I=24",
N+1€supp x
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For V,» we regard x’ as an element in I via the map & : Iy, — Iy in (4.1).
Observe that for x' € I, and N +1 € supp x’, we have
(4.11) #(x") = x if and only if suppx = {1,..., N + 1}\ supp x’.

Thus the map & maps the subset {x" € I, [x'| = 2i', N+1 € supp x'} bijectively
to the subset {x € I¥,|x| = 2i} where 2i + 2i’ = N + 1. Hence we have

(4.12) b w= T Ve if and only if i +4' = (N +1)/2.
XEIY,Ix|=2i XEIY 1, IX =24,
N+1esupp x

This implies £}, = N»j,vo fori+i =(N+1)/2.

Conversely, we observe that EAQ = EJY L 1mphes PJ @V, = P » @ Vy (as rep—
resentations of Iy x Py) for some x € Iy and X' € IN+1 with N +1¢€e suppx
This implies that #(x’) = x and it follows from (4.11) that supp x Nsupp x’ = ¢.
Therefore the monodromy representation of the restriction of C\, — a" (resp.,
5x’ — a”") to the subvariety a"*(a, x) (resp., a"(a,x)) in (3.3) is trivial. On the
other hand, the monodromy representation of the restriction of 5,(/ — a" (resp.,
Cy — a"%) to a™(a, x’) (resp., a"*(a, x)) has Zariski dense image (see (3.2)). This
forces j = 7/ = 0 and the desired claim follows again from (4.12). a

4.4. The local systems E5'"! Eiiﬁlj and the £;’s, F;’s in [CVX1]. Recall

that in [CVX1, §2.3], we have defined the local systems £; and F; on g}*. We have
the following.

Lemma 4.8. We have
(4.13) EXNT =Ly if 1<2i<n, E}{T Loy i if n41<2i<2n,

(4.14) EELZ‘E =F; for1 <j<n.
Proof. We begin with the proof of (4.13). Recall from [CVX1] that we have
. . 2n+1

(4.15) (71271)+Clgps = EBL and dim£; = ( . >
where
fgn1 1 K x5 [np nplt = {(z,0C V,, c V. cC™" )|z egy, 2V, CV}i}— g
On the other hand, recall the I-torsor over a”® in §3.3:

7:a" ={(a,c)|a=(ay,...,an) €a", c=(c1,...,cNn), 3

= [1(a; — an)}/(z/22) — a*
J#i
We have
n . n 2n+1

(4.16) TxClgrs = C@GBIEQ 1 and dlmEiOle = < o >
We show that there is an Iy x W-equivariant isomorphism
(4.17) am %" K XPK [np,np}%h‘rs.
Then (4.13) follows from (4.15), (4.16), and dimension considerations of the repre-
sentations.
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Using the identities Zleﬂ af 0;2 =0, k=0,...,2n—1, it is easy to check that
the map
ﬁTS — X2n|ar5, (a, C) S a’rs — [C;l, ey 0573+1]
defines an Iy x W-equivaraint isomorphism
a2 Xop|grs.

On the other hand, by the description of the Hessenberg varieties Hessf L in §2.2,
we have a natural map

Hess?t — K xP% np,nplt, (z, Vo1 C Vi) = (2, Vy).

It is easy to check that the map above is a K-equivariant isomorphism over gj°.
The desired isomorphism (4.17) follows from the following compositions of isomor-

phisms:
Thm 2.5

~

a2 Xoplars = HessE’J‘

This completes the proof of (4.13).
To prove (4.14), we observe that

ars ~ K XPK [np,np]J‘ ars.

J
E?Lr—rlr,lj = P)]m ® VXO = (/\ Hl(Ca’Xoa(C));DTim & VXO?

where xo € Iy, is the unique character such that |xo| = 2n + 2, and éa,XO is the

o . . 2n+1
hyperelliptic curve of genus n with affine equation y? = [/ (z — a;). By (4.11),
Xo, when regarded as an element in Iy, (see (4.1)), is trivial. Hence Iy acts trivially

2n+1 .
on ENNT and V., i.e.,

J
(4.18) E’?l”j:"l_}] = (/\ H' (Ca,xm (C))prim =3,

where the last isomorphism follows from the discussion above and the definition of
F,’s in [CVX1]. O

Remark 4.9. In [CVX1, Proof of Proposition 4.3] we used the fact that among the
IC(g1,4£4)’s (¢ > 1), only IC(g1,L2;-1), 1 < j < m, appear in the decomposition
of (#n)+C[~], where 7, = 72"*1 and 2m < n + 1. To prove this fact, it suffices
to show that in the decomposition of the monodromy representation P(Xa,,), only
the above-mentioned local systems appear. Applying Theorem 4.1 to P(Xs,,) with
N = 2n+1 we see that among the F;y’s only those with n —m +1 < ¢ < n appear.
The desired conclusion follows from (4.13) and the fact that 2m <n + 1.

5. COMPUTATION OF THE FOURIER TRANSFORMS

Let § : Dk (g1) = Dx(g1) denote the Fourier transform, where we identify g;
and g7 via a K-invariant non-degenerate bilinear form on g;. The Fourier transform
F induces an equivalence of categories § : Pervg (g1) — Pervg (g1).

In this section we study the Fourier transforms of 1C(gy, Eg) and IC(gy, EZ}')
We show that they are supported on Ny, more precisely, on N C N, the closed
subvariety consisting of nilpotent elements of order less than or equal to 3. Thus
we obtain many more examples of IC complexes supported on nilpotent orbits
whose Fourier transforms have both full support and infinite monodromy (see also
[CVX1]). As an interesting corollary (see Example 5.5), we show that the Fourier
transform of the IC extension of the unique non-trivial irreducible K-equivariant
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local system on the minimal nilpotent orbit has full support and its monodromy is
given by a universal family of hyperelliptic curves.
The main result of this section is the following theorem.

Theorem 5.1. Let N3 C Ny be the closed subvariety consisting of nilpotent ele-
ments of order less than or equal to 3. Then F(IC(g1, Eg)) and F(IC(g1, Eg)) are
supported on N3.

We first argue the case F(IC(gy, EfY)). For m < N=1 ) consider the families of
Hessenberg varieties

ol Hess?n — g1, TN :Hess? — gy
and
o Hessgf‘ — g1, 7N HessZ2t — gy
defined in §2.2. We have (see (2.9))
F((Gm)CI=]) = (o3)Cl=], F(F)-Cl=]) = ()-Cl-]-

By Theorem 2.5, over gi°, we have Hess%J‘ ~ Xom_1, Hessﬁ ~ Xo,,. Hence the
decomposition theorem implies that

IC(gy, P(X2,_1)) is a direct summand of (5),.C[—].

IC(g1, P(X2,,))) is a direct summand of (7 ),C[—].
Therefore the Fourier transforms §(IC(g1, P(X2m—1))) and F(IC(g1, P(Xam))) ap-
pear as direct summands of (¢),.C[~] and (7Y).C[~]. Now in view of (2.6a) and
(2.6b), we see that F(IC(g1, P(X2m-1))) and F(IC(g1, P(Xam))) are supported on
N3. Since each local system EZ];] appears in P(X,,) for some m (see Theorem 4.1),
we conclude that F(IC(gy, E]Y)) is supported on NF.

It remains to consider the case F(IC(g1, EZJ;’ )). Since each local system E{j ap-
pears in P()me)":_id for some m, we are reduced to proving the following propo-
sition.

Proposition 5.2. F(IC(g1, P(X,,)°="4)) is supported on N3.
The proof of this proposition occupies the remainder of this section.

5.1. Proof of Proposition 5.2 when m is odd. Recall that in §2.2 we have
introduced the families of Hessenberg varieties

Hessg’L ={(z,0C Vp—1 CV} C Vkl - Vkl_l cv=ch) |z € g1, £Vi_1 C Vi}

HesskE’J‘ ={(z,0c Vi icVicVitcVit, cv=CcN)|zecqg, 2Viy
C Vi, 2Vi C Vit}

S ~N . 0,1 ZN . E,L
and the natural projection maps ;' : Hess; '~ — g1, 73, : Hess,'™ — g1.

Our first goal is to show that IC(g1, P(Xar_1)) appears as a direct summand
in the push forward of a certain intersection cohomology complex on Hessko’l
along 2.

Let [G, /GE}] be the stack quotient, where GiZ = G, acts on G, via the square
map, i.e., for t € G,, and € G,, t : x — t?x. We first introduce a map

a: Hessko’l — [G,/GH].
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— 0,1 — 0,1 .
Recall that such a map is equivalent to a pair (Hess, ,¢), where Hess, is a

— O,L .
G,,,-torsor over Hess,OL’J‘ and ¢ : Hess, — G, is a map such that

(5.1) B(t-v) =t?¢(v) for v € ﬁggskoyl and t € Gy,

To construct such a pair, we set

— 0,1
Hess, :={(x,Vi—1 CVi,))| (2, V1 CV}) € Hessg’l, 0#1€Vy/Vi_1 ~C},

— 0,1
where the action of G,, on Hess,, is given by ¢ - (x, Vi1 C Vi,1) = (z,Vi—1 C
Vi, tl) for t € Gy, Define
—~ 0,1
Qs : Hessk — Ga7 (:I;u Vk*l C Vk:7l) — <fL'l,l>Q

Note that the above pairing is well-defined since xVj;_1 C Vj, and 2V}, C Vkl_ 1- One

checks easily that ¢ satisfies (5.1). This finishes the construction of (ﬁégsgL, ?),
hence that of the map « : Hessko’L — [GQ/GLZ]}. By construction, the map « is
K-equivaraint (where K acts trivially on [G, /GL%]]), moreover it factors through
HesskE’L, ie.,

(5.2) a: HeSSS’J‘ — HeSSS’J‘ / Hess; - 2, [G./G2.

There is a unique non-trivial irreducible local system £ on [G,;,/ GL,%]] C [Ga/ Gg].
We denote by IC([G,/ Gg], L) the corresponding intersection cohomology complex
on [Gq/GZ). Let

K = (67).a"IC([Gn /G, £) € Dic(gn)-

The factorization in (5.2) and the functorial properties of Fourier transform (see
[KaS, Proposition 3.7.14]) imply the following:

(5.3) F(X) is supported on Im (77¥) € N3,
Thus to show that F(IC(g1, P(X2x_1))) is supported on N3, it suffices to show that
(5.4)  the complex K contains IC(gy, P(Xak—_1)"='9) as a direct summand.

Let
Fok_1: Xok 1 —22y Xop g 2y 91’
be the branched double cover of X5;,_1 and let o be the involution on )A(:Qk,l de-

fined in §3.4. We have that ((Far_1).C)°=" 14 contains P(Xox_1)°=" ' as a direct
summand. The statement (5.4) follows from the following claim:

Klgps = ((For—1)-C)7= 1.

To prove the claim, let s : [G,/G,,] — [Ga/Gg}] be the descent of the map G, —
G, t — t2. Then from the definitions of X»;_; and the map «, one can check that,
under the isomorphism Xop 1 ~ Hessg’J‘ gpe In Theorem 2.5, the branched double
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cover )A(:Qk,l can be identified with the following fiber product:

P YRR p—— ] e

[ |

a\gi-s

Xop—1 = HessO b |gre —— [Go/GHI).

Since . .
5.C = (5.C)"7 @ (5.C)7=" " = CaIC([G,/G})], £),
by proper base change we have
(algp) IC((Ga /G, £) = ((p2-1)+C)=
This implies that
Klgps = (Tap—1)s(cx
This proves (5.4).

91'5)*10([Ga/G[31]]7 L) =~ ((Rap—_1).C)7= 7.

Remark 5.3. The construction of the map « was inspired by discussions with Zhiwei

Yun. In particular, the idea of making use of the local system £ on [G,/ G,[%]] was
explained to one of us by him.

5.2. Proof of Proposition 5.2 when m is even. Let us consider the following
family of Hessenberg varieties:

H={z0C Vi1 CViCVinnCVi, CVict, cv=Ch)
|z € g1, Vi1 C Vi, aVi, C Vit 1}
Note that the natural map
p:H — HessP™, (2, Vi1 C Vi C Viy1) = (2, Vi1 C Vi)

. . B, L
realizes H as a quadric bundle over Hess, .

We first construct a map 8: H — [G,/ G,[%}]. The construction is very similar to
that of the map « in §5.1 and we use the notation there. Set

H = {(, Vi1 C Ve CVig1, D) | (2, Vee1 CVie C Vi) € H, 01 € Vi/Vi_q ~ C},

where the action of G,, on His given by t - (x, Viz—1 C Vi C Viy1,1) = (2, Vi—1 C
Vie C Vieg1,tl). Define

¢:H = Gq, (,Vio1 C Vi CViyr, 1) = (al, zl)o.
Note that the above pairing is well-defined since zVj_1 C Vi and zV} C Vkl. One
checks that ¢ satisfies (5.1). This finishes the construction of (H,¢). Hence we
obtain a map 3 : H — [GQ/GLEL]}.
Let f: H — g1 be the natural projection map. Define

F := .5 10(1Ga/G}1), £) € Di(g1)-
We show that
(5.5) 3(F) is supported on N3, and

(5.6) the complex F contains IC(gy, P(X2,)?= ') as a direct summand.
The proposition then follows from (5.5) and (5.6).
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2454 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

To prove (5.5), let
H={x,0CVi1 CVi CVi1 CVE, CViFC Vit cv=CY)
|z € g1, Vi1 C Vi, 2V, C Vg1 }.
Note that H' C H is a subbundle. By construction, the map /8 factors through H’,
ie.,
8:H = H/H % G, /G2
Let f be the natural projection map

froH ) ={(2,0Cc Viei CVi C Vi C VS C Vi c b )
|z € g1, 2Vi =0, 2Viy1 C Vior, 2V € Vi = Ny
A direct calculation shows that
(5.7)  Imf = Ogeqnv-se if 3k < N and Im f' = Ogn-2rgse—n if 3k > N + 1.
The standard properties of Fourier transform imply that
F(9F) is supported on Im(f") c N3.
This proves (5.5).

It remains to prove (5.6). Notice that the map S factors as 8 : H LS HesskE’L LN

G/ G[Ti]]. Consider the following diagram:

B:H —p>HesskE’J‘ 7, [GG/G,[%]] .

S

g1
‘We have

F = [ 1C([Ga/GR]]) = (RY)upp™B* (IC([G4 /G, £))

which is isomorphic to (%év)*(g*(IC([Ga/GEL}], L)) @ p.C). Since C is a direct sum-
mand of p,C, it implies that (%év)*(B*(IC([Ga/GE], L)) is a direct summand of &.
So it is enough to show that

1C(g1, P(X2)7= 1) is a direct summand of (7). (3*(IC([G,/G2)], £)).

This follows from the same argument as in the proof of (5.4), replacing Xop_1 (resp.,
Xop—1) there by Xoi (resp., Xog). Thus the proof of the proposition is complete.

5.3. Matching for IC(Ogij2nt1-2:,€&;), i odd. Here we complete the proof of
[CVX1, Theorem 2.3] by treating the case of odd i. In [CVX1] we treated the
even case of the proposition below and showed that there exists a permutation s
of the set {25+ 1|1 <25+ 1 < n}, such that g(IC(©2i12n+l—2i7 &;)) = 1C(gu, ?S(Z))
(see Proposition 3.2 and Theorem 2.3 in [CVX1]).

Proposition 5.4. We have that
S(IC(©2i127l+172i7 8z)) = IC(gl, 3:1),

where &; denotes the unique non-trivial irreducible K -equivariant local system on
027;1277,4»1721: .
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Proof. Tt remains to prove the proposition for odd i. Assume that 2m < n + 1.
By (5.3) and (5.4), we see that the Fourier transform of 1C (g1, P(Xam—1)7= ') is
supported on Im 7Y = Ogm-—19112n42-5m (see (2.6a)). Using Theorem 4.2 and (4.14)

we obtain that
IC(g1,%;) is a direct summand of IC(gy, P(Xgm_l)”:*id) if and only if
7isodd and 1 <7 <2m — 1.

This implies that the Fourier transform of IC(g1, F2;-1), 1 < j < m, is supported
on @3‘m712112n+2737n. Now it is easy to check that Ogij2nt1-20 C 637,L7121127L+273rm if
and only if ¢ < 2m — 1. In view of [CVX1, Proposition 3.2 and Theorem 2.3], the
proposition follows by induction on m. (I

Example 5.5. Let O, = Og112.-1. By the above proposition, we have
F(1C(g1,91)) = IC(Omin, €1),
where B N
F| o~ Ei'jf{ll ~ Hl(Ca’XO,(C) (see (4.18))
is isomorphic to the monodromy representation associated with C,, — ¢"*, the
universal family of hyperelliptic curves in §3.2.

6. CONJECTURES AND EXAMPLES

Let N =2n+1 and let E?j-”"’l (resp., Ez?j”"’l) be the monodromy representations
of & (g}*) constructed from the families of complete intersections of quadrics in
P27 (resp., their double covers); see §4. Let {(0, &)}<3 denote the set of pairs (O, &)
where O is a K-orbit in N} and € is an irreducible K-equivariant local system on
O (up to isomorphism). Using Theorem 5.1, we establish an injective map

EZ* ieln], je0,i—1];

(6.1) 8:< _ ~
EXTieln+1],jeli—1], B2, =C

= {(0,€)}<s,

where S(Efj"H) = (0,€) if and only if {S’(gl,EiQfH) = 1C(0, &), similarly for
Efj”“. Here the K-equivariant local systems on g7® in the left hand side of (6.1)
are pairwise non-isomorphic; see (4.10).

In this section we state two conjectures (Conjectures 6.1 and 6.3) that describe
the map 8 in (6.1) in the case of {Ein”'H} explicitly. We verify our conjectures in
several examples by studying various families of Hessenberg varieties.

In what follows we make use of the following observation.

(6.2) an orbit Oskgiq2nt1-sk—2 C N3 is odd dimensional < k is odd and [ is even.

This follows from the fact that dim Ogrgiqznti-se-2 = 2(k + 2kn +In) — (I — 1) —
3k(k + 1), which one readily deduces from the formula dim Zx(x) = > (i — 1)\
([S]), for z in a nilpotent orbit corresponding to the partition Ay > Ag > ---.

6.1. Complete intersections of even number of quadrics and conjectural
matching. Recall that the local systems Efgjl, where i € [1,n] and 25 € [0,i—1],
are constructed from families of complete intersections Xo,, of an even number of
quadrics in P?" for m € [1,n].

We first show that

(6.3) F(IC(g1, Efgj‘l)) is supported on an even dimensional K-orbit in N3 .
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2456 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

To this end we first note that each S(IC(gl,Eig;rl)) is a direct summand of
F(IC(g1, P(Xay,))) for some m, which in turn is a direct summand of (7 ),.C[—].

One readily checks that
dim Hess” = m(4n — 3m + 5) — 2n — 2, which is even.

Note also that dim Xs,, , is even. Now (6.3) follows from the decomposition theo-
rem and the fact that the fibers of 7 have non-vanishing cohomology only in even
degrees (see §2.3).

Thus we have that (6.2) puts a restriction on nilpotent orbits which can support

F(IC(g1, E%’;‘l)) Our first conjecture is the following.
Conjecture 6.1. We have that

S(IC(gl, E2n+1)) = IC(@g2(nfi)+l22(i+j7n)7112i—4j 5 (C) lf@ +j >n+ 1,

1,29
%(Ic(gl,Ezg’jl))%IC(©32]‘22(n—z‘—j)+114i—2n—2j—1,(C) ifi+j<n and 2i — j>n+1,
S(IC(gl,EZgjl)) = 10(632]221'74]'12n—4i+2j+17(C) ’Lf’L +j <n and 2i —j <n.

Remark 6.2. The nilpotent orbits appearing in the conjecture above exhaust all the
non-zero even dimensional orbits of the form Ogigiir, where the partition 3'271%
has no gaps.

Note that the conjecture above holds for Eﬁg“. This follows from (4.13) and
[CVX1, Theorem 2.2], i.e., we have

F(IC(g1, E7G ™)) = 1C(Og2iy20-1001,C) if 2i <,
S(IC(gl, Eig+1)) = 10(622n72i+114172n71,(C) Zf 2t >n+1.

Below we verify the conjecture in a simple case that involves nilpotent orbits of
order 3.

(6.4)

6.2. Complete intersection of 4 quadrics, n > 3. In this subsection we show
that

(6.5) F(IC(g1, E2%)) = 1C(O5191120-4, C).

Let us write

= L. E,L
7 =72 Hessy — Oggq2n-a, 7=72""" : Hess, = — g1.

We have §(7.C[—]) & 7.C[—] and

2n—4
#.C[-] =1C(g1, B2 @ EXG @ B2 1) @ @D 1C(1,C)[2n — 4 — 2a] @ -+ -
a=0

where - - - is a direct sum of IC complexes with smaller support. We have
0321271—4 = 0321271—4 U 0311271,—2 U 02i12n,—2i+1.
0<i<3

In view of Proposition 5.4, Lemma 4.7, (4.14), and (6.4), we conclude that
F(IC(g1, EfL";l)) is not supported on Ogij2nt1-2:’s. Now it follows from (6.2) and
(6.3) that

SIC(g1, EZ%H)) is supported on O34 q2n—4.

Thus (6.5) follows the fact that the only IC complex supported on Oggq2n-4 ap-
pearing in 7,C[—] is IC(O3912-1,C) as 7 is a resolution of O34 2n-1.
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HESSENBERG VARIETIES AND THE SPRINGER CORRESPONDENCE 2457

6.3. Complete intersections of odd number of quadrics and a conjectural
matching. Recall that the local systems Efg;r_ll, where i € [1,n] and 2j € [2,1],
are constructed from complete intersections Xs,, 1 of odd number of quadrics in
P2" m € [1,n).

Using that dim Hessg = m(2n —3m+5) — 2n — 3, which is odd, and arguing as
in (6.3), we obtain that

(6.6) F(1C(g1, Efgjtll)) is supported on an odd dimensional K-orbit in N?.

Let O C N? be an odd dimensional K-orbit. To describe our second conjecture,
let us first label the non-trivial irreducible K-equivariant local systems on O as
follows. By (6.2), we can assume that O = Os2k-192172n+4—6k—ai.

Let * € Os2x—192192nta-6x-a1, k > 1. We first define representatives for the
component group A (z) = Zx(v)/Zx (x)°. Take a basis

xiuj’i €10,2],j € 1,2k - 1]3xivjv i€10,1],
j€e1,2l]] and w;, i€[l,2n+4 — 6k — 4]

of V as in [CVX1, Lemma 5.6]. Define v; € Zx(z), i = 1,2 as follows:

m(wi) = w2, M(w2) = wi, n(z'uy) = —a'uy, i €10,2], j€[1,2k 1],
Y2(alv1) = alvg, ya(alvg) = alvr, j € [0,1],
and v (resp., y2) acts as identity on all other basis vectors.

Assume that [ > 1 and 2n + 4 — 6k — 41 # 0. Then Ag(x) = {1,71,72, 7172} =

(Z)27)%. Let
811c,l (resp., Ei,u 82,;)

denote the irreducible K-equivariant local system on Osex—1921q2n+4—6r-41 corTe-
sponding to the irreducible character of Ag(x)

X1 (resp., x2, x3) with x(71) = —1 (resp., —1,1) and x(72) =1 (resp., —1, -1).
Assume that | = 0 and 2n+4—6k # 0. Then Ak (z) = {1,y } = Z/2Z. We denote
by 8,1€70 the irreducible K-equivariant local system on O32x—172n+4—6r corresponding
to the irreducible character x of Ax(x) with x(y1) = —1.

Assume that | > 1 and 2n +4 — 6k — 4] # 0. Then Ag(z) = {1,v} = Z/2Z.
We denote by 8%’1 the irreducible K-equivariant local system on Ozz2x—19n+2-3k cor-
responding to the irreducible character x of Ak (z) with x(y2) = —1.

We will simply write ¢, i = 1,2, 3, when the supports of these local systems are
clear.

Our second conjecture is the following.

Conjecture 6.3. We have that
s(IC(gl, Ezg;;ll)) = 10(632(77,71')#»122('i+j7n71)12i74j+2, 81) Zf’t -|-j >n—+ 1,
3(10(91, E?g;r_ll)) gIC(@B2j—122(n—i—j+l)14i—2j—2n, 82) Zf Z+] S n and 22—] Z?’L+1,
S(IC(gl, Eig;__ll)) = 10(632J‘—122(i—2j+1)12n,—411+2j 5 83) Zfl—l—j Sn and 21 — j Sn

Remark 6.4. In particular, the conjecture above implies that the set of all Fourier
transforms §F(IC(g1, Efgjtll)) coincides with the set of all IC complexes supported
on odd dimensional orbits in N3, with non-trivial local systems.
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2458 TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE

In the following subsections we verify the conjecture above in two simple exam-
ples; see (6.7) and (6.8). We also prove a lemma (Lemma 6.7) that is compatible
with our conjecture.

6.4. Complete intersection of 3 quadrics, n > 2. In this subsection we show
that

(6.7) §IC(g1, EXTY)) = 1C(Og1 1202, EY).

Let us write

2n+1
2

= L 0,1
c=o : Hessgo — Og192n-2, & =03""": Hessy ™ — g1.

The fiber 071(z) at € Og112.—2 is a non-singular quadric in P?*~3. Thus in the

decomposition of 0,.C[—], we have the following direct summands:
2n—4 B B
@ IC(03112n72, (C)[QTL —4 — 2a] (&) IC(03112n72, 61)
a=0

We have §(0.C[—]) = 5.C[—] and
5.Cl-] =1C(g1, BT ) @

Note that Og172.—2 is the only odd dimensional orbit contained in Osij2.—2 and
there is a unique non-trivial irreducible K-equivariant local system on Ozij2n-2,
denoted by &'. In view of (6.6), the equation (6.7) follows from the fact that the
support of F(IC(O3112n-2, C)) is a proper subset of g; (see [CVX2, Proposition 4.4]).

Remark 6.5. Here we see that Fourier trxansform of IC complexes supported on
nilpotent orbits Oy, where A has gaps, with non-trivial local systems can have full
support (compare with [CVX2, Corollary 4.9]).

6.5. Complete intersection of 5 quadrics, n > 4. In this subsection, we show
that
(6.8) )
F(IC(03192120-6, &) = IC(gLEi%‘*‘l)? F(IC(Og192120 5, €2)) = IC(g, Ei@{}l),
3(10(6312212"’65 83)) = Ic(glv E'?,TJL.+1)
Let us write
o= [7?2)"+1 : Hessgo — @321271,_5, J = 6.§n+1

We have §(0.C[—]) = 5.C[—] and
5.C-] 2 (g1, Y & B2 6 F20tl) &

n,1

0,1
: Hessg '™ — g1.

The odd dimensional orbits contained in Imo = Og2120—5 are Og192720—6 and
Og1120-2. In view of (6.7), the equation (6.8) follows from Lemma 6.7 (see §6.6)
and the following statement:
(6.9)
The IC complexes supported on Osi212.-6, that appear in the decomposition
of 0,C[—], are IC(O319212n-6, &> @ E2).

It remains to prove (6.9). Note that there is no orbit O such that Ozi92120-6 < O <
O3212n-5. The fiber 0! (z2) at 29 € 0321205 is a non-singular quadric in P?"~6.
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Thus in the decomposition of ¢,.C[—],

2n—"T7 B
the IC complexes supported on O3212n-5 are @ IC(O032120-5,C)[2n — 7 — 2a].

a=0

The fiber at x1 € O319212n-6 is a quadric bundle over wal(xl) with fibers being a

quadric @ of rank 2n — 8 in P2"=6. Here m; is Reeder’s resolution of Og2q2n-s, i.e.,

o - {((E,O c Ve C VQJ' C V) |1’ € g1, Vo = 0,$V2J' C VQ} — 6321271—5.
It is easy to check that the map mg is small. Thus we have
J‘Ckis(nil)IC(@gzpnfs C)= Hk(ﬂ'o_l(l‘l), (C)
Note that H° (75 (x1),C) =0, H°(0~ (2;),C) = 0, and
H (071 (1), €) = @25 H(Q,C) ® H (x5 (21),C)
= @77 HH 2 (ny (21), ) @ (H255(Q,C) @ H*-2150(n5 (2), C)).

prim
We have codimyeg0 O3192120-6 = 2n— 6 and 7y (1) consists of two points. More-

over, Ax (1) acts on ngmﬁ(Q, C)®@ H? =246 (17 (21),C) as x1(1®x3) = x1 D X2
The equation (6.9) follows. This finishes the proof of (6.8).

Remark 6.6. Note that (6.8) shows that all three IC complexes supported on
Oz19212n—6 With non-trivial local systems correspond to the monodromy represen-
tations constructed from complete intersections of odd number of quadrics.

6.6. The case of a curve. In this subsection we prove the following lemma by
considering the family Xo,,_; of complete intersections of quadrics in P2,

Lemma 6.7. For each i € [1,n — 1], there exists some 1 < j < [271] and a
non-trivial local system €% (s =2 or 3) on Ogig2i12n-2i-2 such that

F(IC(g1, BYFY)) 2 1C(Og192i12n-11-2, €5).

Let us write

o= 0_2n+1 ~2n+1 | HeSSS,L = g1

Assume that n > 3. We have dim Hessn =n? 4+ 3n — 3. We show that

Hess — Og1gn-1 and & = G2

n—3

0.C @IC Og19n-1,C)[n — 3 — 2d] @ IC(Og1927, €°)
2j=n—1
(6.10) ©® @ IC((_93122] 12n—4j—2, 2@ 83) ©® IC(@gl 12n—2,C @ 81)
2<2j<n—-2

@10(612'7L+1 O] @ IC(@lZ'rL+1 ,O)-1].

The lemma follows from the decomposition above, the equations F(5.C[—]) =
0.C[-], 5.C[-] = @, 1C(g1, E;1™) @ -+, and (6.7).

In the remainder of this subsection we prove (6.10). Consider first Reeder’s
resolution of O319n—1 given by

p:{(z,0cViCV,cV}icVitcC™ M |zegy, 2V,=0,2V;,-CVi} — Og19n1.
It is easy to check that p is a small map. Thus for z; € O319j12n-2j-2, we have

(6.11) HE 2O (051001, C) 2 H (p7 (1), C).
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Now we study the map o and the decomposition of ¢.C[—]. The fiber 0= (z,,_1)
at £,_1 € Og19n—1 is a non-singular quadric in P*~2 and codimHCSSg O3z19n-1 = n—3.
Thus in the decomposition of 0,C[—], the following IC complexes supported on
O319n-1 appear,
n—3
(6.12) @Ic(églzn—l,(c)[n — 3 —2q] for all n and IC(O319n-1, &)[—] if n is odd,
a=0
where € is the unique non-trivial irreducible K-equivariant local system on Oz19n-1.
We have that 71 (z;) (zj € O319i12n-2,-2) is a Q;-bundle over p~1(z;) for j > 1,
where Q; is a quadric Y 5 _,ai =0in P""2:={[a1, -+ ,a,_1]}.
For j odd, or j > 2 even and 2k > codimyeg0 Oy, we have

n—3 n—3
H?* (07 (z;),C) = @ H?*=20(p= (), C) §f}(if @ IC(O519n-1,C)[—n? —2n —24]
a=0 a=0

where in the second isomorphism we use (6.11). Thus in view of (6.12) IC complexes
supported on Osz19;12n-2i-2, for odd j < n — 1, do not appear in the decomposition
of ¢,C.

For j > 2 even, and 2k = codimyg0 O, we have

n—3
H? (07} (2),C) = #2720 (B IC(Og190-1, C)[20]
a=0

@(H2n+j_4(Q]‘,C) ® H2dimp*1(xj)(p—1(xj)7(C))'

prim
Note that p~'(z;) has two irreducible components. Moreover Ag(x;) acts on
H;f;nj%(Qj,C) via the character ys, and acts on H2d4me ' (=5)(p=1(z,),C) via
1@ x1. In view of (6.12), we conclude that IC complexes IC(Og15512n—2;-2, €2) and
IC(Og19i12n—2j-2, E3), for j even, appear in the decomposition of o, C[—].
For j =0 and 2k = codimyg0 0z, = n? —n — 2, since 2k — 2a > 2dim p~!(x0)
for all 0 < a < n — 3, we have
n—3
2 _
P 32k 21 (031901, C) = 0.
a=0
We have 2dimo~1(zg) = codimyeg0 Oz, and oY xo) 2{0C W, o C W, C
WL, c Wik, c C*2}. Note that 0~ *(z() has two connected components and
Ap(zo) permutes them. We conclude that the IC complexes supported on O,
appearing in ¢,C[—] are IC(O31720—2,C) & IC(Og112n2, EL).
The decomposition (6.10) follows from the above discussion and the fact that
none of the IC complexes supported on Ogiq2n+1-2:, ¢ > 1 can appear in the decom-
position of 0.C[—]. The proof of Lemma 6.7 is complete.
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