COMPOSITIO MATHEMATICA

Springer correspondence for the split symmetric pair
in type A

Tsao-Hsien Chen, Kari Vilonen and Ting Xue

Compositio Math. 154 (2018), 2403-2425.

doi:10.1112/S0010437X18007443

A |LONDON
FOUNDATION V}\\R MATHEMATICAL
COMPOSITIO A__K|sociery
MATHEMATICA Bt EST. 1865

Downloaded from https://www.cambridge.org/core. University of Minnesota Libraries, on 12 Oct 2020 at 06:14:35, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X18007443



<</{\ Compositio Math. 154 (2018) 2403-2425

/ doi:10.1112/S0010437X18007443
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in type A

Tsao-Hsien Chen, Kari Vilonen and Ting Xue

ABSTRACT

In this paper we establish Springer correspondence for the symmetric pair (SL(NV),
SO(N)) using Fourier transform, parabolic induction functor, and a nearby cycle sheaf
construction. As an application of our results we see that the cohomology of Hessenberg
varieties can be expressed in terms of irreducible representations of Hecke algebras of
symmetric groups at ¢ = —1. Conversely, we see that the irreducible representations
of Hecke algebras of symmetric groups at ¢ = —1 arise in geometry.

1. Introduction

In this paper we consider the Springer correspondence in the case of symmetric spaces. We will
concentrate on the split case of type A, i.e., the case of SL(n,R). The case of SL(n,H) was
considered by Henderson in [Hen01], Grinberg in [Gri98] and Lusztig in [Lusllal, and the case of
U(p, q) was considered by Lusztig in [Lus11b] where he treats the general case of semisimple inner
automorphisms. In both of these cases Springer theory closely resembles the classical situation.
This turns out not to be so in the split case we consider here. In [CVX15a, CVX15b] we have
computed Fourier transforms of IC sheaves supported on certain nilpotent orbits using resolutions
of singularities of nilpotent orbit closures. In this paper we study the problem in general in the
split case of type A replacing the resolutions with a nearby cycle sheaf construction in [GVX18]
based on earlier ideas of Grinberg [Gri01, Gri98].

Let us call an irreducible IC sheaf supported on a nilpotent orbit a nilpotent orbital complex.
We show that the Fourier transform gives a bijection between nilpotent orbital complexes
and certain representations of (extended) braid groups. We identify these representations of
(extended) braid groups and construct them explicitly in terms of irreducible representations

of Hecke algebras of symmetric groups at ¢ = —1. This bijection can be viewed as Springer
correspondence for the symmetric pair (SL(N),SO(N)). Let us note that the fact that
representations of (affine) Hecke algebras at ¢ = —1 arise in this situation was already observed

by Grojnowski in his thesis [Gro92].

The proof of our main result, Theorem 4.1, makes use of a nearby cycle sheaf construction
in [GVX18] and smallness property of maps associated to certain #-stable parabolic subgroups.
The nearby cycle sheaves produce nilpotent orbital complexes whose Fourier transforms have
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full support. Those IC sheaves behave like ‘cuspidal sheaves’ in the sense that they do not
appear as direct summands of parabolic inductions. On the other hand, the smallness property
mentioned above implies a simple description of the images of parabolic induction functors
(Propositions 3.1, 3.2). Those results together with a counting lemma (Lemma 4.2) imply
Theorem 4.1. As corollaries, we obtain criteria for nilpotent orbital complexes to have full support
Fourier transforms (Corollaries 4.8, 4.9) and results on cohomology of Hessenberg varieties
(Theorem 5.2).

Our method appears to be applicable to general symmetric pairs and, more generally, polar
representations studied in [Gri98] and we hope to return to this in future work.

Let us mention that in [LY17], the authors show that one can obtain all nilpotent orbital
complexes using spiral induction functors introduced in [LY17] (in fact, they consider more
general setting of cyclically graded Lie algebras). Using their results and Theorem 4.1, we show
that all irreducible representations of Hecke algebras of symmetric groups at ¢ = —1 appear in
the intersection cohomology of Hessenberg varieties, with coefficient in certain local systems (see
Theorem 6.3). This gives geometric constructions of irreducible representations of Hecke algebras
of symmetric groups at ¢ = —1 and provides them with a Hodge structure.

The paper is organized as follows. In §2 we recall some facts about symmetric pairs and
introduce a class of representations of equivariant fundamental groups. Moreover, we recall the
definition of the parabolic induction functor. In §3 we study parabolic induction functors for
certain #-stable parabolic subgroups. In § 4, we prove Theorem 4.1: the Fourier transform defines
a bijection between the set of nilpotent orbital complexes and the class of representations of
equivariant fundamental groups introduced in §2. In §§5 and 6, we discuss applications of our
results to cohomology of Hessenberg varieties and representations of Hecke algebras of symmetric
groups at ¢ = —1. Finally, in §7, we propose a conjecture that gives a more precise description
of the bijection in Theorem 4.1.

2. Preliminaries

For convenience we work over C. We adopt the usual convention of cohomological degrees for
perverse sheaves by having them be symmetric around 0. We also use the convention that all
functors are derived, so we write, for example, 7, instead of Rm,. If X is smooth we write Cx|[—]
for the constant sheaf placed in degree — dim X so that Cx[—] is perverse. If U C X is a smooth
open dense subset of a variety X and L is a local system on U, we write IC(X, L) for the
IC-extension of £][—] to X; in particular, it is perverse. For simplicity of notation, when we have
a pair (O, &), where O is an orbit and £ is a local system on O, we also write IC(O, ) instead
of IC(O, €).

2.1 Notation
For e > 2, a partition A of a positive integer k is called e-regular if the multiplicity of any part of
A is less than e. In particular, a partition is 2-regular if and only if it has distinct parts. Let us
denote by P (k) the set of all partitions of k£ and by Pa(k) the set of all 2-regular partitions of k.
We denote by Hy, 1 the Hecke algebra of the symmetric group Sj with parameter —1. More
precisely, Hy _1 is the C-algebra generated by T3, i = 1,...,k — 1, with the following relations
LTy =1T;T; ifli—jl>22,4,j€[l,k-1], TTnTi=TnTTin, i€[lk—2] (2.1)
T? =g+ (¢—1)T;, where q=—1,i¢e[1,k—1]. '
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SPRINGER CORRESPONDENCE FOR THE SPLIT SYMMETRIC PAIR IN TYPE A

It is shown in [DJ86] that the set of isomorphism classes of irreducible representations of Hj, 1
is parametrized by Pa(k). For p € Po(k), we write D,, for the irreducible representation of Hj, 1
corresponding to u.

For a real number a, we write [a] for its integer part.

2.2 The split symmetric pair (SL(N),SO(N))

Let G = SL(N) and 6 : G — G an involution such that K = G = SO(N) and write g = Lie G.
We have g = go @ g1, where 0|y, = (—1)°. The pair (G, K) is a split symmetric pair, i.e., there
exists a maximal torus A of G that is #-split, where §-split means that for all z € A, §(z) =z~ 1.
We also think of the pair (G, K) concretely as (SL(V),SO(V)), where V is a vector space of
dimension N equipped with a non-degenerate quadratic form @ such that SO(V) = SO(V, Q).
We write the non-degenerate bilinear form associated to @ as ( , ).

Let g™ denote the set of regular semisimple elements in g and let gi° = g1 N g"™. Similarly, let
g"°® denote the set of regular elements in g and let g;"® = g1 N g"&.

Let NV be the nilpotent cone of g and let N7 = N Ng. When N is odd, the set of K-orbits
in NV is parametrized by P(N). When N is even, the set of O(NN)-orbits in N is parametrized
by P(N), moreover, each O(NN)-orbit remains one K-orbit if A has at least one odd part, and
splits into two K-orbits otherwise. For A € P(N), we write O, for the corresponding nilpotent
K-orbit in N7 when ) has at least one odd part, and write (’)}\ and OI\I for the corresponding two
nilpotent K-orbits in A7 when A has only even parts. Suppose that A= (A1 = Xy > -+ > A\; > 0).
For x € Oy (or 0%, w = L,1I), we have

S

dim Zg () = > (i — D). (2.2)

=1

Let a be a maximal abelian subspace of g1, which is also a Cartan subspace of g. We have
the ‘little’ Weyl group
W = NK(CI)/ZK(CI) = SN.

2.3 Equivariant fundamental group and its representations
As was discussed in [CVX15al, the equivariant fundamental group

T (6F) = Zk(a) x By = (Z/2Z)N " x By,

where By is the braid group of IV strands and it acts on

N

> i = o} >~ (7./2Z)N !

Zx(a) = {(il, . in) € (Z)22)N
k=1

via the natural map By — Sy. For simplicity we write
By = (2/2Z)N"' x By and Iy = (Z/2Z)N 1.

It is easy to see that the action of By on Iy has [N/2] 4+ 1 orbits. We choose a set of
representatives
Xm €I, 0<m<[N/2,

of the By-orbits as follows. Let 7/ € (Z/2Z)"™ be the element with all entries 0 except the ith

position. Then {r; =7/ +7/,,, i=1,...,N—1}, is a set of generators for Iy. For 0 < m < [N/2],
we define a character x,, as follows:
Xm(Tm) =—1 and xp(r) =1 fori#m. (2.3)
2405
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For x € Iy, we set
B, = Stabp, x.
Let s;, i =1,..., N — 1, be the simple reflections in W = Sy. It is easy to check that
Stabsy (xm) = (si,1 #m) = Sy, X SNy, if m# N/2, and
Stabg, (xm) contains Sy, X Sy, as an index-2 normal subgroup if m = N/2.

Let us define

(2.4)

By, N—m = the inverse image of Sy, X Sy_m, = (si,© # m) under the map By — Sn.
Then it follows from (2.4) that

By, = Bm . N—m, when m # N/2,

2.
and B,,, contains By, y_, as an index-2 normal subgroup when m = N/2. (2.5)

Let 05, =1,..., N —1, be the standard generators of By which are lifts of the s; under the
map By — Sy. Then B, n—_, is generated by o;, ¢ # m, and 0,%1. We have a natural quotient
map

ClBinN-m] = Hm,~1 @ Hn-m,—1 = ClBm,n-ml/{(0: = 1)%,i # m, o7, — 1). (2.6)
Note that in the above formula the o; corresponds to —T; of the Hecke algebra in (2.1). For
us the o; are more natural generators since they arise from geometry as unipotent monodromy
operators.
Let us write

Himn,-1 @ HN-m,—1 = Hy, -1

We consider a family of representations of By as follows. For 0 < m < [N/2], we define

C ~
LX'm = Indc%gi?]\, m} HXTVL7_1 = (C[BN] ®(C[Bm,N—m] HX7YL7_17 (27)

where in the tensor product C[B,, n—,] acts on H,,, —1 via the quotient map (2.6) and on C[By]
by right multiplication. The module L,, has a natural Bn-action defined as follows. We let By
act on L, by left multiplication and we let I act on L,,, via a.(b®v) = ((b.xm)(a))(b®wv) for
a€ly,be ByandveH,,, 1. Weview L, = asarepresentation of the equivariant fundamental
group EN in this manner.
We will next identify the composition factors of the modules L,, . Let pu! € P2(m) and
p? € Po(N —m), m € [0,[N/2]]. Proceeding just as in the definition of L,,,, one obtains the
following representation of B N:
Viaye = Tndgg™ (D, @ D,2) = C[By] @cip,, y_,) (D @ Dy2). (2.8)
Using (2.5), one readily checks that V)1 , is an irreducible representation of By when m # N/2,
or when m = N/2 and p! # p?. When m = N/2 and pu! = p?, V1 2 breaks into the direct sum
of two non-isomorphic irreducible representations of B ~, which we denote by V51’“2 and Vﬁyug,
i.e., we have
Vip =V, eV (2.9)
Moreover,
when m # N/2, Vi1 2 =2V, 2 if and only if (ut, 1) = (4, v2);
when m = N/2, V1 2 =2V, ,» if and only if
either (u', p?) = (v',v?) or (u*,p?) = (2% vh).

As the D1 ® D2 are the composition factors of H,,, —1 we conclude the following.
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LEMMA 2.1. The composition factors of Ly, consist of the V1 .2, pt # p?, p' € Pa(m),
p? € Po(N — m), and when N = 2m we have two additional composition factors VJ# and
Vi, for p € Py(m).

2.4 Parabolic induction functor and Fourier transform

Let L be a 6-stable Levi subgroup contained in a 6-stable parabolic subgroup P C G. We write

[=LielL, p=LieP, Lx=LNK, Pr=PNK, L=INg, pir=pnNg.
We will make use of the parabolic induction functor

Ind[g1le1 : DLK([I) — DK(91>

defined in [HenO1, Lusl1b]. In the following we recall its definition. Let
pr:pr=h@mp)h—h

be the natural projection map, where np is the nilpotent radical of p and (np); = np N g;.
Consider the diagram

[1 <Lp1~péK X P1 LK XPK P1i>91, (210)

where p; and py are natural projection maps and 7 : (k,z) — Ad(k)(z).

The maps in (2.10) are K x Pg-equivariant, where K acts trivially on [; and py, by left
multiplication on the K-factor on K x p; and on K xP¥ p;, and by adjoint action on gi, and Px
acts on Iy by a.l = pr(Ada(l)), by adjoint action on py, by a.(k,p) = (ka=!,Ada(p)) on K x py,
trivially on K xP% p; and g;.

Let A be a complex in Dr, (I1). Then (prop;)*A = p5A’ for a well-defined complex A’ in
Dy (K xP% py). Define

g1
Indh Cp1

A = A'ldim P — dim L.

Let § : Dx(g1) = Dx(g1) be the Fourier transform functor (we also use the same notation
§ for the functor defined for (Lg,l;)). Here we have identified g; with gj via a K-invariant
non-degenerate bilinear form on g;. It is shown in [Hen01, Lusl1b] that the induction functor
commutes with Fourier transform, i.e.,

F(Ind?

[1Cp1

A) = Id?', (F(A)). (2.11)

3. Maximal #-stable parabolic subgroups and parabolic induction

In this section, we study the parabolic induction functor with respect to a chosen family of
L™ c P™, 1 <m < N/2, and two more pairs L™ C P™*, w = 11, if N = 2n, where P™
(respectively P™*) is a maximal -stable parabolic subgroup and L™ (respectively L™“) is a
f-stable Levi subgroup of P™ (respectively P™*) defined as follows.

Fix a basis {e;,1 < i < N} of V such that (e;, e;) = dj1jn+1. For 1 <m < N/2, we define
P™ to be the parabolic subgroup of G that stabilizes the flag

0cVecvitcch,
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where V) = span{e;, 1 < i < m}. We define L™ to be the #-stable Levi subgroup of P™ which
consists of diagonal block matrices of sizes m, N — 2m, m. When N = 2n, for w = I, 11, we define
P™* to be the parabolic subgroup of G that stabilizes the flag

0CV¥cvetcc?,

where V! = span{e;,1 <i < n} and V' = span{e;,1 <i<n—1,e,41}. Let L™ be a f-stable
Levi subgroup of P™“. According to [BHO00], every maximal #-stable parabolic subgroup of G is
K-conjugate to one of the above form.

Let p" = Lie P™, p* = p™ N gy, and (npm); = npm N g1, where npm is the nilpotent radical
of p'", etc.

PRrROPOSITION 3.1. We have the following.

(i) The map
N K xR (npm); — N, (k,z) — Adk(z)

is a small map onto its image, generically one-to-one.
(ii) The map
AN K PR e gy, (ky2) = AdE(z).

is a small map onto its image, generically one-to-one.

The same holds for the two maps T2 and %2 defined using P™%, w = 1,11

We define
g =Im7Y, 1<m<N/2, ¢ =Im#a2", w=11IL (3.1)
For m < N/2, g]" consists of elements in g; with eigenvalues a1, a1, ..., am, am, a;j,j € 2m+1, N,

where Y, 2ay + Zj-V:QmH a; = 0. Let

Yy, = {x € g1 | = has eigenvalues a1, a1, ..., am, am,a;,j € [2m + 1, N],
where a; # a; for 1 ;éj}.

One checks readily that Y, = g7
Consider the case m = N/2 = n. For w = [,1I, let

V¢ = {x € g1 | z has eigenvalues ay,ay, ..., an, an, where a; # a; for i # j,
and the nilpotent part of x lies in the orbit (9‘2"n},

where O3, is the nilpotent orbit given by the partition 2™ and defined by the equation
Im 72" = 0%.. Then Y, is an open dense subset in g}

Let (pf") = p* NY;, and (i)™ = (70 (07)".

PROPOSITION 3.2. (1) Suppose that 1 < m < N/2. There is a natural surjective map

r L% (/imyrsy ~ o
7T{((Ym) - 7TlK(([l ) ) = Bm X BNme (32)

such that for an LY}-equivariant local system T on (IT*)™ associated to a Wf%(([ﬁ")rs)—
representation F, we have

Indp cpm IC(", T) 2 IC(g7", T7),

mcpm
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where T is the K-equivariant local system on Y, associated to the representation of 7w (Y,")
which is obtained from E by pull-back under the map (3.2).
(2) We have a natural surjective map

n,w

(V) - m K (9% = B,, w=LTI, (3.3)

o . L
such that for an L7-equivariant local system T on (I")™ associated to a m X ((L1™)"™)-

representation E, we have

Indfle e IC(G, T) = 10(g7, T7),

cp

where T is the K-equivariant local system on Y, associated to the representation of mf (Y,")
which is obtained from E by pull-back under the map (3.3).

3.1 Proof of Proposition 3.1
We begin with the proof of (1). Consider the following projection

N {(@,0C Vi C Vi cV=C)|z€gi, 2V, =0, 2V C Vi) — N

When m # N/2, the map 7Y can be identified with the map 7. When N = 2m, the image of
the map 72™ has two irreducible components, i.e., closures of the two orbits O},. and O;Im The

two maps T and m' can be identified with the map 72™ restricted to (72m)~1(OL,.) and
(12m)=1(OLL,) respectively. Thus it suffices to show that
the map 72 is small over its image and generically one-to-one. (3.4)

When m # N/2, one can check that the image of 7Y is as follows

Im7Y = Ogmin-sm if N>3m, Im7d =

@3N—2m23m—N lf N < 3m.

Assume that N > 3m and & € Ogmiv—-sm. Then (1Y)~ () consists of the flag 0 C V;, C V- C V,
where V,, = Im 2. Assume that N < 3m and @ € Ogn-2mg3m-~. Then (72)~1(z) consists of the
flag 0 C V;, C V.- € V, where Vj,, = ker 2. This proves that 72 is generically one-to-one.

Let © € Ogigjin-si—2; C Im 7. We assume that 3:271V 3172/ £ 3mN=3m if N > 3m_ and
3171 N=31=2) o gN=2m3m=N if N < 3m. It suffices to show that

dim(Tﬁ)fl(aj) < COdimImr},\[ OgigjiN-3i-2; /2.

Let 29 € Ogiqn-si-2; C Im 7Y% (Note that 77y % is defined since m — i < (N — 3i)/2.) One

m—i

checks readily that (using (2.2) for the second equality)

(T,],\[)fl(x) = (Tﬁ__?i)fl(:lro) and COdimImT}r\[ O3i2j1N—3i—2j = COdimImTN—gsz‘ Ogle—:si—zj.
m—1

Thus it suffices to show that

dim (7N =%

: )—1(:U0) < COdimImTT]r\{:iSi Oqj1N-3i-2; /2.

Let us write

Q%,j = (Télv)_l((:j) for G € Oyjin-25 C Ian]\{
and
al) = codimyy, v Ogiyn—2; = m(2N — 3m) — j(N — j).

m?]
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To prove that the map Tn]\{ is small, we are reduced to proving that

N

N _ %my
dim €2, ; < 5 (3.5)

To prove this we recall the partitioning of Q% ; into Q%’j given in [CVX15b, §2] as follows:
O ={(0 C Vi CVir €V =CY) | dim(V; N¢V) =k}

We have

Qﬁ’j # ¥ & max{m +j— N/2,j/2} <k < min{j,m}.

Recall that we have a surjective map Q%:lj — OGr(j — k,j) x OGr(m — k, N — 27) with fibers
being affine spaces A(m~%U—k) We have

F2+3m2+ji+m

dim Q% = —2k? + (=N + 35 + 2m + 1) k + mN —mj — 5

One checks that

“NE N
if j> N —2m, dim Qﬁ’; is maximal when k =m + j — {2},

[ - 1
if j < N—2m, dim QZI; is maximal when k = {‘7—;}
Thus a direct calculation shows that
N .
al - N
";’j+]+n; if j > N —2m and N even, or j < N —2m and j odd,
dim(7)~1(¢) = N
%—% if j > N—2mand N odd, or j < N —2m and j even.

This proves (3.5) (note that m + j < N). The proof of (3.4) is complete. This finishes the proof
of the claim (1) in the proposition.
It then follows that we have

m

(m)«C[—] = 1C(05,C)  (respectively ((my/5)“).C[-] = IC(O¥,C), w =L1I), (3.6)

where
A=3"1N3m f N > 3m, A =3V"2m23mN if N < 3m.

Note that K x % p7* is the orthogonal complement of K x Pk (npm); in the trivial bundle K x g;
over K/P}?. By the functoriality of Fourier transform, we have that

F((mm)<Cl=]) = (7)< Cl-]- (3.7)

Since Fourier transform sends simple perverse sheaves to simple perverse sheaves, we can conclude
from (3.6) and (3.7) that
(#N),Cl-] 2 IC(Im 7Y, C).

This proves the claim (2) of the proposition. The argument for (7#2")¥, w = I,II, is the same.

The proof of the proposition is complete.
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3.2 Proof of Proposition 3.2
Note that we have that

L% = GL(m) x SO(N —2m) and (I"™); = gl(m) @ sl(N —2m);. (3.8)

To ease notation, let us now write that L = L™, P = P™ and % = 7} etc.
We first show the following.

The map 7 (respectively 7%), when restricted to 7~ *(Y™") (respectively 71 (Y,"%)),
is one-to-one. (3.9)

Each element in Y is K-conjugate to an element zy € p; (see [KR71, Theorem 7]), where

To€; = @€, TOEN+1—i = €; + G;eN41—; Tfori € [1,m],
Toej = bjej + CjeN+1—j, XoeN+1-j = Cj€5 + bj€N+1_j for j € [m +1, [N/QH (3.10)

Toe(N+1)/2 = bvy1)2€(v+1)2 i N is odd

and the numbers a;,i = 1,...,m,b; + ¢j,b; —¢j,j =m+1,...,[N/2],b(n41)/2 are distinct.

Thus it suffices to show that 7 !(x) consists of one point. Note that 7 !(xg) consists
of zg-stable m-dimensional isotropic subspaces of V. Assume that U,, € #~!(z¢). Then U,, is a
direct sum of generalized eigenspaces of xy. The generalized eigenspace of xy with eigenvalue a; is
span{e;,en+1-i}, ¢ = 1,...,m, and the eigenspace of zo with eigenvalue b; +¢;, b; — ¢;, bni1)/2
is span{ejent1-;}, span{e; + ent1-;}, span{e(yy1)/2}, respectively. Since Uy, is isotropic, Uy,
has to equal span{e;,i = 1,...,m}. This proves (3.9) for @, m < N/2. The proof for 7% is
entirely similar and omitted.

Now we show the following.

The image of p] under the map pr: p; — [ is [{°. (3.11)

Let z € p}. By the above proof of (3.9) we can assume that Ad(k)x = zo for some k € K, where
T is as in (3.10). Thus (k,z) € 7~ (z0). It follows from (3.9) that (k,z) = (1,z0) € K x7% py.
Hence k € Pg. Assume that k = lu where | € Lg and u € Uy = U N K (U is the unipotent
radical of P). Then we have pr(z) = pr(Ad(u='1"1)ag) = pr(Ad(I=1)zg) = Ad(I7!) pr(xo). It is
clear that pr(zg) € I". Thus (3.11) follows.

By (3.9) and (3.11), we have the following diagram, when restricting (2.10) to Y,
pr

[§S<—p’i<inp{£>KxPKp7{L>Y’".

Using (3.9), we see that
mt (Y7) &y (YT) e P (KT ph) & (K ) 2= ().

Finally, the canonical map WfK(pD — Ter([‘{S) = WfK([‘{S) is surjective. We see this as
follows. First, the canonical map above can be identified with the canonical map wf K(py) —
Ter(pr_l([ﬁs)). Now, because p] is an open subset in pr—!(I!), which is smooth, the map
71 (p}) — mi(pr~1(B%)) is a surjection. To conclude that this property persists when we pass
to the equivariant fundamental group it suffices to remark that the equivariant fundamental
group is always a quotient of the ordinary fundamental group as long as the group is connected.
We now conclude the argument making use of Proposition 3.1.
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4. Fourier transform of nilpotent orbital complexes for (SL(IN),SO(N))

Consider the symmetric pair (G, K) = (SL(N),SO(N)). Let us write Ay for the set of all simple
K-equivariant perverse sheaves on N7 (up to isomorphism), that is, the set of IC complexes
IC(0, &), where O is a K-orbit in N and £ is an irreducible K-equivariant local system on O
(up to isomorphism). An IC complex in Ay is called a nilpotent orbital complex.

Let n = [N/2]. We set

v =A{(win', 1) |
n—m, u' € Pok), u? € Po(N —2m — k) }.

In the case when N is even, we identify the triple (v; u!, u?) with (v; p?, ut) if |u!| = |u?| and
p' # p?, and the triples (v; u, i) attain two labels I and II.

Given a triple (v; u', u?) € Sy (respectively (v; p, p)* € Xy, w = I, II), where |v| = m < N/2,
we define an irreducible K-equivariant local system T (v; u', u?) (vespectively T (v; u, u)*) on Y,
(here we write Y = g°) as follows. We obtain a map

T (YT) — Bm X EN—Qm —> Sm X EN_gm

by composing the map in (3.2) with the natural map B,, x EN,gm — S, X EN,gm. Note
that the map 7 is surjective. Then T (v;ul, u?) (respectively T (v;pu,u)?) is the irreducible
local system associated to the irreducible representation of 77{< (Yr) given by pulling back
the irreducible representation p, X V,1 . (respectively p, X V/‘;fﬂ) via the map 7; here p, € Sy,
is the irreducible representation of Sy, corresponding to v € P(m) and V,;1 2 (vespectively V)
is the irreducible representation of By_g,, defined in (2.7) (respectively (2.9)).

Assume now that N = 2n. Given a triple (v;0,0) € Xy, w = LI, we define the
irreducible K-equivariant local system 7 (v; %, %)“ on (Y,))“ as the local system associated to the
representation of 7f ((Y,7)*) obtained by pulling back the representation p, € S’ corresponding

n

to v € P(n) under that map
w1 ((Yy)*) = Bu = Sa.

Now we are ready to formulate our main result.
THEOREM 4.1. The Fourier transform § : Pervg(g1) — Pervi(g1) induces a bijection
§: Ay = {IC(e7, T(vs ', 12)) | (vs s %) € Siv, it # 4, [v| = m < N/2}
U{IC(g7, T (v; py )°) | (v 1, ) € Sn,w = L1L, [v| =m < N/2} (if N is even),
U{IC(g", T (v39,9)%) | (v;0,0)% € Sy,w=LII, [v|=n=N/2} (if N is even),
where g = g1, g7* and g} are defined in (3.1).

4.1 Proof of Theorem 4.1
Let p(k) denote the number of partitions of k and let ¢(k) denote the number of 2-regular
partitions of k. We write p(0) = ¢(0) = 1. Let us define

k
=> q(s)q(2k+1—s), (4.1)

s=0

k—

,_.

| (k) + 3q(k)

q(2k —
q(s s) 9

=0

(4.2)

V)
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LEMMA 4.2. We have

[Aoni1] =Y p(n —k)d(k) = [San41], (4.3)
k=0
| Az | = Z p(n — ) (4.4)

Proof. Note that

S p(k)e Hl_lxs and " gyt = [[(1+29) (4.5)

k>0 k>0 s>1

Let p(l, k) denote the number of partitions of [ into (not necessarily distinct) parts of exactly k
different sizes. We have (see for example [Wil83])

yx®
Z p(l, k)zty* = H (1 + . x5>' (4.6)
1,k>0 s>1

Assume first that N = 2n+1. Note that if A is a partition of NV with parts of k different sizes,
then the component group Ax () of the centralizer Zx () for x € Oy is (Z/2Z)*~'. Thus there

are 281 irreducible K-equivariant local systems on Oy (up to isomorphism). Hence using (4.6),
we see that
1 1 s
[Azni1| = ZP(QH +1,k)2"! = Coefficient of 22" in 3 H <1 + xs).
—x
k>0 o1

Using (4.5), we see that

(75) - (S0 (S awt) )

s>1 k>0 k>0

It then follows that |Az,1] is the desired number. The fact that |¥2,41| equals the same number
is clear from the definition. Thus (4.3) holds.

Assume now that N = 2n. Suppose that A is a partition of N with parts of exactly k different
sizes. If X has at least one odd part, then there are 271 irreducible K-equivariant local systems
on Oy (up to isomorphism). If A has only even parts, then there are 2% irreducible K-equivariant
local systems on each Of (up to isomorphism), w = I,II.

Thus we have that

[Azn| =" p(2n, k) 2571+ p(n, k) 3- 2K

k>0 k>0
1 1+ 2° 3 1+ 2°
o . on .+ . ni._ 9
= Coefficient of z°" in 5 H (1 — x5> + Coeflicient of 2™ in 5 H <1 — $S>
s>1 s>1
1 n k—1 n
=3 (Xvtn -0 (2 atorat2r - 9+ a?)) + an— = 3" pln — kyelk).
k=0 5=0 k=0
Here we have used (4.7) and the following equation
1+z
11 () = (o) (o)
s>1 k>0 k>0
Again the fact that |¥g,| equals the desired number is clear from the definition. O
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Note that the IC sheaves appearing on the right-hand side of the Fourier transform map §
in Theorem 4.1 are pairwise non-isomorphic. Thus, in view of Lemma 4.2, Theorem 4.1 follows
from the following.

PROPOSITION 4.3. Let (v;u',u?) € Yy (respectively (v;u,p)* € Y, w = LII) and write
m = |v|. The Fourier transform of IC(g, T (v; u*, u?)) (respectively IC(g*, T (v; u, 1)), IC (g7,
T (v;8,%)“)) is supported on a K-orbit in Nj.

Proof. Let n = [N/2]. We begin the proof by showing the following for (@;u!, u?) € Sn
(respectively (0; u, p)* € Xy, w = L1I).

The Fourier transform of IC(gy, 7 (%; ut, 1?))(respectively 1C(gy, T(%; 1, 1)*))

4.8
is supported on a K-orbit in Nj. (48)

Recall that T (4; ', u?) (respectively T (9; i, u)*) is the irreducible K-equivariant local system
on gf° corresponding to V,;1 2 (respectively V).

We will now appeal to the nearby cycle construction in [GVX18]. Let us recall the characters
Xm € I, 0 <m < nof (2.3). In [GVX18] we apply a nearby cycle construction to local systems
associated to the x,, and obtain a K-equivariant perverse sheaf P, on the nilpotent cone Nf.
More precisely, for each character x.,, let us write W, = Staby (x,,). Consider the following
base-change diagram of the adjoint quotient map.

mel J{f (4.9)
a/Wy,, —a/W

Let us write gi°, = for the base change of the regular semisimple locus g7°. Denote by F,, the K-

equivariant local system on g7°, = corresponding to the representation of i (g‘fxm) = Iy X By,,,

where Iy acts via the character x,, and By,, acts trivially (recall that By,, = Stabp, (xm)). We

form the nearby cycle sheaf Py, =y F,, , appropriately shifted, so that P,,, € Pervg (N).
Applying [GVX18, Theorem 3.2], we obtain that

g(,]DXm) = Ic(gh MXm)’

where M, is the K-equivariant local system on gi® corresponding to the B n-representation
My, = CIBN] ®¢ipo 1 (Cx @ Hug, )-

Let us explain the notation in the above formula in our setting. Let ng be the Coxeter subgroup
of W generated by s, with x;n(d(—1)) =1, a € ®(g,a), where ®(g,a) is the root system of g
with respect to a. Note that &(—1) € In. Then %WQ is the Hecke algebra associated to the

Coxeter group ng with parameter —1. Let Bgm C By be the inverse image of ng C W under
the natural map By — W = Sy. Then Egm = Iy X Bgm. In our setting, one readily checks that
ng = (84,1 # m), ’ngm = Hy,.—1 and Bgm = By, N—m (here we use the notation in §2.3).
The action of Bgm on (Cy,, ®HWQm) is given by Iy acting via the character x,, and Bgm acting
via the quotient map (C[Bgm] — ?—[ng. Thus we conclude

§(Py.) =1C(g1, Ly,.), (4.10)
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where L, is the K-equivariant local system on g}° corresponding to the representations L, of
7K (g%*) = By defined in (2.8).

By Lemma 2.1 the IC sheaves IC(g1, 7 (4; u*, u?)) and 1C(gq, T (9; p, 1)) are composition
factors of the IC(g1, L,,). Hence (4.8) follows from (4.10).

Now let (v;put, u?) € Xy with |v| = m > 0. Let

K(py ®V,1 2)

denote the irreducible Lg-equivariant local system on [}* associated to the irreducible

representation of 7r1L K(If°) obtained as a pullback of p, ¥ V1 2 via the map 7T1L Kpe) =

B X BN—2m — S X BN_2m.
By Proposition 3.2, we have that

IC(a7", T(v; ', %)) = T o IC(1, K(py B V1 2)). (4.11)

Since Fourier transform commutes with induction (see (2.11)), it suffices to show that the
Fourier transform of IC(Iy,C(p, X V)1 ,2)) is supported on an Lg-nilpotent orbit in ;. This
follows from the classical Springer correspondence for gl(m) and (4.8) applied to the symmetric
pair (SL(N — 2m),SO(N — 2m)) (see (3.8)).

The proof for IC(g7*, T (v; i, pn)*), IC(g7", T (v; ¥, 8)~) proceeds in the same manner; in the
latter case one uses the corresponding f#-stable Levi and parabolic subgroups. We omit the
details. ]

4.2 More on induction
Let (v;ut, p?) € n. Assume that |v| = m > 0. Let L™ C P™ be as in §3. Recall that L7 =
GL(m) x SO(N —2m) and I* = gl(m) & sl(N — 2m);.

A nilpotent L2-orbit in " is given by a nilpotent orbit in gl(m) and a nilpotent SO(N —2m)-
orbit in sI(IN —2m);. Thus the nilpotent L'}-orbits in [{* are parametrized by P(m) x P(N —2m),
with extra labels I and IT for partitions in P(N — 2m) with all parts even. For o € P(m) and
B € P(N —2m), we denote by Oq g (or Of 5) the nilpotent L7-orbit in [{* given by the nilpotent
orbit O, in gl(m) and the nilpotent SO(N — 2m)-orbit Og (or OF) in sl(N — 2m);.

In the following we will omit the labels I and II with the understanding that everything
should have corresponding labels, for example, OY = Ind[%l% cpr (927 5 ete.

PROPOSITION 4.4. Let o« € P(m) and 8 € P(N — 2m). Let Oy = Ind?’l}lcp{” Oup, Le.,
Xi = Bi + 20;. Assume that u € O, 3 and v € Oy N (u + (npm)1). We have a natural surjective
map

Y Ag(v) - Apm(u).
Moreover, let CX £ be an Lj}-equivariant irreducible local system on O, g and let E be the
K -equivariant local system on Oy obtained from CX & via the map 1) above. Then IC(O), &) is
a direct summand of Ind?;}chyln 1C(0,,,CXE).

COROLLARY 4.5. If moreover (O,,€) € Ay_opm is a pair such that §(1C(Oy, £)) has full support,
then we have

Ind%_ . IC(O,,, CRE) 2 1C(0y, E).

[ Cpy®

As before let us now write L = L™ and P = P™ etc. We begin the proof of the above
proposition with the following lemma.
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LEMMA 4.6. The map

v: K x Pr (@a,ﬁ + (np)l) — O,

is generically one-to-one.

Proof. Let zg € Oy. We can and will assume that 29 € O, s + (np)1. We show that v~ !(z) is a
point. Assume that y(k, ) = xo, i.e., Adk(z) = zo. Then z € O, g+ (np);i. Let O, (respectively
5,1,5) be the (unique) G-orbit (respectively L-orbit) in g (respectively [) that contains O)
(respectively O, 3). We have that

6)\ = Ind? (5(175

in the notation of Lusztig and Spaltenstein [LS79]. By [LS79, Theorem 1.3], we have Zg(zo) C P.
In fact, we have that Zg(zo) C P. This can be seen by enlarging the group G to GL(N) and
using the fact that Zgp,z) (7o) is connected. Thus Zk (7o) C Pg. Furthermore, O\ N (Oq 5 +np)
is a single orbit under P. Thus there exists p € P such that Adp(xz) = z¢. It follows that
k~'p € Zg(zo) C P. Thus k € PNK = Pg. Now we have that (k,z) = (1, Adk(z)) = (1,2¢). O

Proof of Proposition 4.4. Note that the proof of the above lemma shows that Zg(v) = Zp(v).
We have Zp(v) C Z(u)Up. Thus Zk(v) = Zp, (v) C Zp,. (u)(Up N K). It follows that we have
a natural projection map

Zx(v)/ 25 (v) = Zp (v)/ 2y (v) = Zpic(w)/ 21, (u).

We show that this gives us the desired map 1. Following [LS79], we have that Zp, (u)(Up N K)
has a dense orbit, i.e., the orbit of v, in the irreducible variety u + (np);. Thus Zp, (v) = Zg(v)
meets all the irreducible components of Zr,, (u)(Up N K), which implies that 1 is surjective.

It is easy to see that

supp(IndﬂlCpl IC(O43,CKE)) = O,. (4.12)

The proposition follows from the definition of parabolic induction functor and Lemma 4.6. O

Remark 4.7. The proof of Lemma 4.6 and the existence and surjectivity of the map ¥ in
Proposition 4.4 works for any 6-stable Levi contained in a #-stable parabolic subgroup.

Proof of Corollary 4.5. Note that the assumption implies that F(IC(Oq5,C X &)) has full
support, i.e., IC(Oq3,CX E) = IC(l1,G) for some irreducible Lg-equivariant local system G
on [1°. We have that

F(Ind®_ 1C(04 5, CRE)) = Ind™

L Cps L Cp FIC(0438,CHE)) = Indﬂlcm IC(14, G).

It suffices to show that I]ﬂd?llCpl IC(l1,G) is irreducible. This follows from the definition of the

induction functor and Proposition 3.1. a

COROLLARY 4.8. The Fourier transform of a nilpotent orbital complex 1C(O, &) € Ay has full
support, i.e., supp F(IC(O, E)) = g1, if and only if it is not of the form Ind[gllCpl IC(O', &) where
supp §(IC(O',&")) =1y, and L C P is a pair chosen as in § 3.

Proof. The only if part follows from the facts that Fourier transform commutes with parabolic
induction and that supp Indf‘llCpl A C g1. The if part follows from (4.11), Corollary 4.5 and
Theorem 4.1. a
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COROLLARY 4.9. Let A= (A1 = X2 = --+) € P(N).

(1) If A\; — A\it1 = 3 for some i, then supp F(IC(O,, E)) # g1 for any K-equivariant local system
& on Oy. The same holds for OF if A has only even parts.

(2) Suppose that \; — \j+1 < 2 for all i. Let f\ be the number of different sizes of parts of X,
and gy the number of i such that \; — X\j11 = 2.

(a) If at least one part of A is odd, then there are 2/>~179 irreducible K -equivariant local
systems € on Oy such that supp F(IC(O,,€&)) = g1.

(b) If all parts of A are even, then there is exactly one irreducible K-equivariant local
system £ on each orbit O%, w = 1,11, such that supp F(IC(O¥,&%)) = g1.

In particular, if \j — \j+1 < 1 for all i, then supp §(IC(O,,E)) = g1 for any K-equivariant local
system € on O).

Proof. (1) Assume that \j; — Ajg+1 = 3. Let m =g, a =19, 8= (A1 —2,..., Xig — 2, Nig 11, - - -)-
Then Oy = Ind%}lcp? Oap-Letu € Oy pand v € OxN(u+ (npm)1). Note that Ag (v) = Apm (u).
It then follows from Proposition 4.4 that for each irreducible K-equivariant local system & on
Oy, IC(0,, €) is a direct summand of Ind?;},, cpre IC(Oq 3, &) for some irreducible Lg-equivariant
local system & on O, 3. As before, this shows that F(IC(O,,£)) has smaller support.

In the case when A has only even parts, we let Of = Ind[,hcpm Og. g if m < N/2, and we let
0 = Indlf’“cp’f’“ Oa, 8, if m = N/2 = n, where w = I, II. The proof for Of then proceeds in the
same way.

(2) We argue by induction on gy. If gy = 0, then (2) follows from (4.12) and Corollary 4.8.
Assume by induction hypothesis that (2) holds for all  with g, < gx.
Assume first that A has at least one odd part. Suppose that ii,...,4; are such that
— Aij+1 = 2, where k = g,.
Let a = (a1 > ag > -+ > ap > 0) be a partition such that a # @, ar < 1, and a; < a;41 — 1.
Note that the number of such partitions is 2¥ —1. Consider a partition u(a) such that p; = \; — 2a;
for I € [ij—1 +1,;]. Then u(a) satisfies that p(a); — p(a)iy1 < 2 and g,,q) < gx. Moreover, p has

A,

J

at least one odd part, and fx — gx = fu(a) — Gu(a)- Let m = Z?zl ij. We have that

Ind?nlm

mepm Oap(a) = On

By induction hypothesis, there are 22~ =1 jrreducible K-equivariant local systems £ on Oa,p(a)
such that § (IC(O, u(a), €) has full support. By Corollary 4.5, we have that

Ind?%

i 1C(Ou p(a): €) = IC(O4, €).

This gives rise to (2% — 1) - 2A792=1 = 2/A=1 _ 2/=9 =1 jrreducible K-equivariant local systems
£ on O such that § (IC(Oy, €) has smaller support (with a varying).

The case when all parts of A even can be argued in the same way. Note that in this case
gx = [

Let us write my (respectively m¥, w = I,II) for the number of irreducible K-equivariant local
systems € on Oy (respectively 0¥) such that § (IC(Oj, &) (respectively § (IC(0Y, £)) has full
support when at least one part of A is odd (respectively when all parts of A\ are even).

We conclude from the discussion above that

my < 227971 if X has at least one odd part,

(4.13)
respectively my < 1 if all parts of A are even.
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Theorem 4.1 implies that the number of pairs IC(O, ) € Ay such that supp F(IC(O,E)) = g1
is d(n) (see (4.1)), when N = 2n + 1, and e(n) (see (4.2)), when N = 2n. In view of (4.13) and
claim (1) of the corollary, it suffices to show that

Yo 2hrel=d(n), > 270371 4 92¢(n) = e(n). (4.14)
)\673(2n+1) )\EP(ZH),)\i—Ai_’,ng,
Ai—Ai+1<2 not all parts of A even
This can be seen as follows. Note that when N is even, the number of orbits of the form OY,
where all parts of A are even and A\; — A\jy1 < 2, is 2¢(n). We know that

1
d(n) = Coefficient of 2" in 3 H(l +2%)2,

s>1

e(n) = gq(n) + Coefficient of 2" in % H(l + %)%
s>1
A partition A satisfies that \; — A\;11 < 2 if and only if each part of the transpose partition
X has multiplicity at most 2. We have f\ = fy and g\ equals the number of parts in A\’ with
multiplicity 2. It is easy to see that each \' whose parts have multiplicity at most 2 appears in
[T (1 + 2°)? exactly 2279 times. Hence (4.14) follows. O

Remark 4.10. In [CVX15a, Conjecture 1.2], we conjectured that one can obtain all nilpotent
orbital complexes by induction from those of smaller groups whose Fourier transforms have full
support. This conjecture follows from Corollary 4.8.

5. Cohomology of Hessenberg varieties

Hessenberg varieties, defined generally in [GKMO06], arise naturally in our setting (for details,
see [CVX15b]). In particular, they arise as fibers of maps 7 and 7 in the following diagram

K/Pg x g1
K xPx g K xPx gt
I |
M g1

where P = P N K for a #-stable parabolic subgroup P of G, E is a Pg-stable subspace of
g1 consisting of nilpotent elements, and E' is the orthogonal complement of E in g; via a
K-invariant non-degenerate form on g;. The generic fibers of maps 7 are Hessenberg varieties.

In this section we discuss an application of our result to cohomology of Hessenberg varieties.
Let us fix s € gi° and consider the corresponding Hessenberg variety

Hess := 7 !(s) = {gPx € K/Px | g 'sg € E*+}.

The centralizer Zi (s) acts naturally on Hess and it induces an action of the component group
m0(ZKk(s)) = In on the cohomology groups H*(Hess, C). Let

H*(Hess,C) = @ H*(Hess, C),
XEDX

be the eigenspace decomposition with respect to the action of Iy.
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DEFINITION 5.1. The stable part H*(Hess,C)s of H*(Hess,C) is the direct summand

H*(Hess, C)y,,;, where xuiv € Iy is the trivial character.

For simplicity we now assume 7 is onto. In this case 7 is smooth over gi° (e.g. see [CVX15Db,
Lemma 2.1]) and the equivariant fundamental group 7¥ (gi%, s) = Iy x By acts on H*(Hess, C)
by the monodromy action. Recall that for x € Iy, B, stands for the stabilizer of x in By. Clearly,
each summand H*(Hess, C), is stable under the action of By. Let xm € I\, By,,, and By, n—m
be as in §2.3. Assume that x is in the By-orbit of x,,. Then for any b € By with b.x = xm
we have an isomorphism ¢, : B, = By, ,u — bub~!. Note that yuiv = Yo and By,, = BnN-m
except when N is even and m = N/2. In that case, By, N—m is an index-2 subgroup of B,,, .

Recall the algebra H,,, -1 = Hm—-1 ® Hn—m,—1 and their representations D,y @ D,
introduced in §2.3. Each H,,, —1 is a quotient of the group algebra C[B, y—pn] and Hy, -1 =
Hyiriv,—1 = Hn,—1 is the Hecke algebra of Sy at ¢ = —1.

THEOREM 5.2. (i) Let x,, € Iy, be the representatives of By-orbits in §2.3. To every x € I
in the orbit of x,, and an element b € By satisfying b(x) = Xm, the monodromy action of b on
H*(Hess, C) induces an isomorphism H*(Hess, C), = H*(Hess, C),,, compatible with the actions

of By = B,,, on both sides.

(ii) The action of C[By, N—m] on H*(Hess, C),,, factors through the algebra H.,,, —1 and the
resulting representation is a direct sum of D;1 ® D2, pt € Po(m), p? € Po(N —m). In particular,
the stable part H*(Hess, C)g is generated by irreducible representations of the Hecke algebra of
Sy at g = —1.

Proof. Part (1) is clear. To prove part (2) we proceed as follows. By the decomposition theorem
7+«C is a direct sum of shifts of nilpotent orbital complexes. Since F(7,C) = 7.C (up to shift),
Theorem 4.1 implies that a generic stalk of 7,C, which is isomorphic to H*(Hess, C), is a direct

sum of the local systems V)1 2 = IndggN]AP ] D,, ® D,, introduced in (2.8). Since Iy acts on

Va1 2 by the formula a.(b® v) = ((b.xm)(a))(b®@v) for a € In, b€ By and v € Dy, ® Dy, we
have (V1 ,2)y = Dyy ® Dy, The theorem follows. O
Ezxample 5.3. Let C be the hyper-elliptic curve with affine equation 3> = vazl(x — aj) (here
a; # aj for i # j). Assume N = 2n + 2 is even. Then according to [CVX17, §2.3] the Jacobian
Jac(C) is an example of Hessenberg variety and the monodromy action of (g}’ s) factors
through By, that is, H*(Jac(C),C) = H*(Jac(C),C)s. Let pup = (N — k, k) € Po(N) and D,,,
be the corresponding representation of Hy, 1. Using [A’Ca79], one can check that the induced
action of the group algebra C[By] on H(Jac(C),C) factors through Hy 1 and for i < n the
resulting representation of Hy _1 is isomorphic to

[i/2]
H'(Jac(C),C) = P Dy,
j=0

with the primitive part H'(Jac(C'), C)prim = Dy,

Remark 5.4. It would be nice to have an explicit decomposition of H*(Hess, C),,, into irreducible
representations of H,, 1. For this one needs finer information for the bijection in Theorem 4.1
(see §7). In [CVX1ba, CVX17|, we establish an explicit bijection for certain nilpotent orbital
complexes and we work out an explicit decomposition for the cohomology of the Hessenberg
varieties that are isomorphic to Fano varieties of k-planes in smooth complete intersections of
two quadrics in projective space.
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6. Representations of Hn,_1

In this section we show that all irreducible representations of the Hecke algebra Hy _; come
from geometry. Indeed they all appear in intersection cohomology of a Hessenberg variety with
coefficient in a local system. In particular, this shows that all irreducible representations of Hxy, 1
carry a Hodge structure. In particular, the irreducible representations of Hy 1 can be viewed
as variations of Hodge structure.

Let O be a nilpotent K-orbit on g; and £ an irreducible K-equivariant local system on O.
We call (O, £) a nilpotent pair. Following [LY17], we associate to each nilpotent pair (O, £) two
families of Hessenberg varieties Hessz +1 — g1 together with local systems ﬁil on open subsets

o]
Hess; +1 C Hessgz +1.
Let = € g1 be a nilpotent element in O. Choose a normal sla-triple {z, h,y} and let

g(i) ={vegl[hv] =iv}, go(i) =g(i)Ngo, and gi(i) = g() N g1

For any N € Z we write N € {0, 1} for its image in Z/27Z. Define

ph= @ on(k), K =ox(2N), and =PI,
k=>2N Nez

One can check that [* C g is a graded Lie subalgebra of g and z € I[§ = g;(2). Let L§ C K be
the reductive subgroup with Lie algebra [§ = go(0). By [LY17, 2.9(c)], the restriction

1:=Lle

o
is an irreducible L{j-equivariant local system on the unique open L{-orbit [{ on [.
According to [Lus95], there exists a graded parabolic subalgebra q = @ ycz qn of [, a Levi

subalgebra m = @ nezmn of q, and a cuspidal local system £1 on the open Mg-orbit 1%1 of my
(here My is the reductive subgroup of L§ with Lie algebra mg) such that

some shift of the IC-complex IC(I], £}) is a direct summand of Ind}l IC(my, Ly).

m1Cq1

In addition, we have
S(IC(ml, El)) = IC(m,l, ﬁfl),

where £_1 is a cuspidal local system on the unique open orbit 15131,1 cm_j.
Define qn to be the pre-image of gy under the projection map p%, — I5,. Let Qg C K be the

parabolic subgroup with Lie algebra qo. Denote by g, the preimage of t%il under the projection

o

map (+; — q+1 — myq. The group Qx acts naturally on q+; and g4, and we define

(o] [¢]
Hessg +1 := K x QK q+1, Hessgi1:=K x QK qoiq-

Let

me 41 : Hessg 41 — g1, (z,0) — zvz !

o . . . ° °©
and let 2 11 be its restriction to Hess. +1. For any s € g1, we denote by Hess; 11, and Hessz 41 5

o .
the fiber of mz +1 and 7z 41 over s, respectively.
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There are natural maps

o o] o
he 41 : Hessg 41 — [mau1 /M), he+1 - Hessg 41 — [maq /Mo

sending (k,v) € Hessp 41 = K x@K 411 to U, the image of v € G+; under the map g+; — mi; —
[my1/Mp]. We define the following local system

~ [e]
Li1:= (he+1)" Lt
° o
on Hess, +1. Here we view the My-local systems L4 as sheaves on [m4;/Mjy].

Ezample 6.1. Consider the nilpotent pair (O, L = Lyiy) where Ly is the trivial local system
on O. Using [Lus95, Proposition 7.3] one can check that in this case q = @z qn is a Borel
subalgebra of [* and m = @y, my is a Cartan subalgebra. Moreover the grading on m is
concentrated in degree zero, i.e., m = mgp, and the cuspidal local system L1 is the skyscraper

o A~
sheaf supported on my; = {0}. It follows that in this case Hessg,,, +1 = Hessg,,, +1 and L4 is
the constant local system.

In [LY17, §7], the authors prove the following:

(mc.—1)« IC(Hessz, 1, £_1)is the Fourier transform of (mz 1), IC(Hessz 1, £1). (6.1)

Some shift of IC(O, L) (respectively the Fourier transform of IC(O, £)) appears in
(mg1)« IC(Hessg 1, ﬁl) (respectively (mz, 1)« IC(Hessg,—1, ﬁ_l)) as a direct summand.

(6.2)

Assume from now on that m;_i:Hessg; 1 — g1 is surjective. Then the sheaf

(mg,—1)« IC(Hessg,—1, £_1) is smooth over g}®. One sees this as follows. According to the first
statement of (6.1) the characteristic variety of (72, _1). IC(Hessz, 1, £_1) coincides with that of
(72.1)+ IC(Hessg 1, £1) as they are Fourier transforms of each other. But (7z,1). IC(Hess 1, £1)
is K-equivariant and supported on the nilpotent cone. A straightforward calculation then shows
the smoothness of (ng_l)*IC(HessL_l,/j_l) on gi*. Thus, by the decomposition theorem, we
conclude that

(mg,—1)« IC(Hessz 1, ﬁ_l)]grls is a direct sum of shifts of irreducible local systems. (6.3)
In addition, the IC(Hess; 1, ﬁ_l) and hence (mg 1) IC(Hessg 1, ﬁ_l) has a canonical
structure as a Hodge module and thus the direct summands are IC-extensions of irreducible
variations of pure Hodge structure, see, [Sai88].

We fix a generic s € g}° and then

H*((mz, 1)« IC(Hessg,_1,£_1))s = TH (Hessz, 1.6, L_1). (6.4)

Thus we obtain an action of the fundamental group 7 (g}®, s) on TH" (Hess, 1 s, L) and by
the discussion above this action breaks into a direct sum of irreducible representations which are
also variations of Hodge structure.

The component group mo(Zg(s)) = Iy acts on IH (Hessz, 1.4, £_1) and we write

IH*(HGSS£7,17S,E_1) = @ IH*(HessQ,L&ﬁ_l)X
x€IY

for the corresponding eigenspace decomposition.
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DEFINITION 6.2. The stable part IH*(HessL_LS,EA,l)st of IH*(HeSSL_Ls,EA,l) is the direct

Yo, Where xuiv € I is the trivial character.

summand TH" (Hessgz,—1,, L4 )

Observe that IH*(Hess[; s L 1)st is stable under the monodromy action of 7i(g®*, s).
Moreover, the action factors through the braid group By via the quotient map 7} (g1 ,8) — Bn.

For every irreducible representation D, of Hy, 1, let V), be the local system on g7® associated
to D,. By Theorem 4.1, there exists a unique nilpotent pair (Oy, L,,) such that F(IC(O,, L)) =
Ic(gl) VM) :

THEOREM 6.3. Let D, be an irreducible representation of Hy 1 and let (O, L,) be the
associated nilpotent pair as above. We have the following.

(i) The map mg, 1 is onto, the action of the braid group By on H" (Hesst_ls,Eu,,l)

factors through the Hecke algebra Hy i and H" (HessaH _1 S,L’#,,l) «t IS a direct sum of
irreducible representations of Hy, 1.

(ii) D, appears in IH*(Hess£#7_1,s, ﬁu,fl)st with non-zero multiplicity.

Proof. Since for every irreducible subrepresentation W of IH*(HeSSEH,_LS,EAMv_l)St the
corresponding Fourier transform §(IC(gq,W)) is supported on the nilpotent cone (here W
is the local system on gj°® associated to W), the same argument as in the proof of Theorem 5.2
implies part (1). Part (2) follows from (6.1), (6.2), and (6.4). O

7. Conjecture on more precise matching

In Theorem 4.1 we show that the Fourier transform establishes a bijection between two sets
of intersection cohomology sheaves. In this section we formulate a conjecture which refines the
bijection in Theorem 4.1. We also relate the conjecture to our earlier conjectures in [CVX15b].
Our conjecture is not strong enough to produce an exact matching. The exact description of the
bijection is crucial for applications, for example, computing cohomologies of Hessenberg varieties
as explained in § 5.

We begin with associating to each nilpotent orbit Oy (respectively Of, w = I,1I) a subset
Y\ C Xy (respectively X¥ C Xy), if A € P(IV) has at least one odd part (respectively has only
even parts). Let A be a partition of N and let )\ be the transpose partition of A. Suppose that

N = (NPT (AP (N )P T ()2 (7.1)

where m; > 1,i=1,..., k. Here and in what follows we write the parts in a partition in the order
which is most convenient for us. In particular, in (7.1) we place the parts with even multiplicity
before the parts with odd multiplicity.

Let 0; € {0,1} for ¢ € [1,1] and let

p(O1,. e 1) = (A0 ()™ ()T ()

(81, 0) = (AP (AP (M) -+ (W)
Note that 2|v(d1,...,0)| + |u(d1,...,d)| = N. Let

JCJo:={l+1,...,k} such that » X, < Z ;.
jedJ j€Jo—
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We define
pr O, 6 T) = (XD (DN (YD), T = s

P20 8 T) = D) DN -~ (N )y o= T = (i ki)

L—1—

Note that /\;+1 = 0 if and only if all parts of A\ are even. In this case, Jy = § = J and
(01, ..., 055 J) = p2(d1,...,01;J) and we write u(61,...,6) = pi(1,...,0;J), i =1,2.
If X has at least one odd part, then let

2)\ ::{(V(517"-aél);/'él((sla"'75l;‘])7/"2(517"'75l;‘])) ’61 S {071}7Z: 17“‘7l7

JC{l+1,...,k}, such that Y Ny < Y Ag}.

jEJ jedo—J
If all parts of A are even (in which case A}, ; = 0), then let
3\) = {(V((Sl, cee ,51);#((51, ce ,5[),,[1,(51, . ,(5[))w | 0; € {O, 1},i =1,... ,l}, w=11IIL

We have |S,| = 2871 (respectively |£%| = 2'), which equals the number of non-isomorphic
irreducible K-equvariant local systems on Oy (respectively OY).

CONJECTURE 7.1. Let A be a partition of V.
(1) If X has at least one odd part, then the Fourier transform § induces the following bijection:

§ : {IC(O,, &) | € irreducible K-equivariant local system on O)(up to isomorphism)}
5 1@l Tt 1) | (it 12) € Sa}

Moreover,
FIC(Ox, ©)) = 1C(g)"!, T (vos i, 15))

where (v; g, u3) € T is the unique triple such that 1| = max{|v|, (v, u!, u?) € £,} and the
parts of u(l) and the parts of ,u(z) have the opposite parity (in particular, all parts of ,uf) have the
same parity).

(2) If all parts of A are even, then the Fourier transform induces the following bijection

§F:{IC(0%,€) |w = I, 11, &€ irreducible K-equivariant local system on Of(up to isom)}

{IC(gl ST (W, )?) | w=L1II, (v;p,p)® € E“’, # 0}
U{IC(g7™, T (1;94,9)) |w =L1IL, (1;4,0) € 39 }.

Moreover,

F(IC(0R,C)) =1C(gy™, T (v0: 9, 9)),

where |19] = n and (v;0,0) € X,.

Note that F(IC(O,,E)) has full support if and only if v(d1,...,d;) = @. Thus we see that the
conjecture is compatible with Corollary 4.9. We also remark that special cases of the conjecture
are verified by [CVX15a, Theorems 4.1 and 4.3].

Let us relate the conjecture above to our previous conjectures in [CVX15b]. In [CVX15b] we
constructed local systems Ef?“ and Ei?“ on g}°. In terms of the parametrization introduced
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in this paper, we have
B2 = T(9; (20 — . §), (20 +1— 23)

EZT =T (@ (2 — 1 -4, ), (2n +2 — 2i)).

Thus we see that Conjecture 7.1 applied to EZ-Z?H agrees with [CVX15b, Conjectures 6.1 and 6.3].
Applied to Eﬁ?“, Conjecture 7.1 implies that the supports of F(IC(g1, Ef;‘“)) are as follows:
Osjg2i—2j—112n+3-ai+; if 45— j < 2n + 3,

Ogjgent2—2i—jjai—j—2n—3 if 204+ 7 <2n+2and 4i —j = 2n+ 3,
Os2n—2it292itj-2n-212i-2j—1 if 20 +j = 2n + 2.

Note that the above orbits are all of even dimension and each of the even-dimensional orbits
appears twice there.
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