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Abstract

In this paper we establish Springer correspondence for the symmetric pair (SL(N),
SO(N)) using Fourier transform, parabolic induction functor, and a nearby cycle sheaf
construction. As an application of our results we see that the cohomology of Hessenberg
varieties can be expressed in terms of irreducible representations of Hecke algebras of
symmetric groups at q = �1. Conversely, we see that the irreducible representations
of Hecke algebras of symmetric groups at q = �1 arise in geometry.

1. Introduction

In this paper we consider the Springer correspondence in the case of symmetric spaces. We will
concentrate on the split case of type A, i.e., the case of SL(n,R). The case of SL(n,H) was
considered by Henderson in [Hen01], Grinberg in [Gri98] and Lusztig in [Lus11a], and the case of
U(p, q) was considered by Lusztig in [Lus11b] where he treats the general case of semisimple inner
automorphisms. In both of these cases Springer theory closely resembles the classical situation.
This turns out not to be so in the split case we consider here. In [CVX15a, CVX15b] we have
computed Fourier transforms of IC sheaves supported on certain nilpotent orbits using resolutions
of singularities of nilpotent orbit closures. In this paper we study the problem in general in the
split case of type A replacing the resolutions with a nearby cycle sheaf construction in [GVX18]
based on earlier ideas of Grinberg [Gri01, Gri98].

Let us call an irreducible IC sheaf supported on a nilpotent orbit a nilpotent orbital complex.
We show that the Fourier transform gives a bijection between nilpotent orbital complexes
and certain representations of (extended) braid groups. We identify these representations of
(extended) braid groups and construct them explicitly in terms of irreducible representations
of Hecke algebras of symmetric groups at q = �1. This bijection can be viewed as Springer
correspondence for the symmetric pair (SL(N), SO(N)). Let us note that the fact that
representations of (a�ne) Hecke algebras at q = �1 arise in this situation was already observed
by Grojnowski in his thesis [Gro92].

The proof of our main result, Theorem 4.1, makes use of a nearby cycle sheaf construction
in [GVX18] and smallness property of maps associated to certain ✓-stable parabolic subgroups.
The nearby cycle sheaves produce nilpotent orbital complexes whose Fourier transforms have
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full support. Those IC sheaves behave like ‘cuspidal sheaves’ in the sense that they do not
appear as direct summands of parabolic inductions. On the other hand, the smallness property
mentioned above implies a simple description of the images of parabolic induction functors
(Propositions 3.1, 3.2). Those results together with a counting lemma (Lemma 4.2) imply
Theorem 4.1. As corollaries, we obtain criteria for nilpotent orbital complexes to have full support
Fourier transforms (Corollaries 4.8, 4.9) and results on cohomology of Hessenberg varieties
(Theorem 5.2).

Our method appears to be applicable to general symmetric pairs and, more generally, polar
representations studied in [Gri98] and we hope to return to this in future work.

Let us mention that in [LY17], the authors show that one can obtain all nilpotent orbital
complexes using spiral induction functors introduced in [LY17] (in fact, they consider more
general setting of cyclically graded Lie algebras). Using their results and Theorem 4.1, we show
that all irreducible representations of Hecke algebras of symmetric groups at q = �1 appear in
the intersection cohomology of Hessenberg varieties, with coe�cient in certain local systems (see
Theorem 6.3). This gives geometric constructions of irreducible representations of Hecke algebras
of symmetric groups at q = �1 and provides them with a Hodge structure.

The paper is organized as follows. In § 2 we recall some facts about symmetric pairs and
introduce a class of representations of equivariant fundamental groups. Moreover, we recall the
definition of the parabolic induction functor. In § 3 we study parabolic induction functors for
certain ✓-stable parabolic subgroups. In § 4, we prove Theorem 4.1: the Fourier transform defines
a bijection between the set of nilpotent orbital complexes and the class of representations of
equivariant fundamental groups introduced in § 2. In §§ 5 and 6, we discuss applications of our
results to cohomology of Hessenberg varieties and representations of Hecke algebras of symmetric
groups at q = �1. Finally, in § 7, we propose a conjecture that gives a more precise description
of the bijection in Theorem 4.1.

2. Preliminaries

For convenience we work over C. We adopt the usual convention of cohomological degrees for
perverse sheaves by having them be symmetric around 0. We also use the convention that all
functors are derived, so we write, for example, ⇡⇤ instead of R⇡⇤. If X is smooth we write CX [�]
for the constant sheaf placed in degree � dimX so that CX [�] is perverse. If U ⇢ X is a smooth
open dense subset of a variety X and L is a local system on U , we write IC(X,L) for the
IC-extension of L[�] to X; in particular, it is perverse. For simplicity of notation, when we have
a pair (O, E), where O is an orbit and E is a local system on O, we also write IC(O, E) instead
of IC(Ō, E).

2.1 Notation
For e > 2, a partition � of a positive integer k is called e-regular if the multiplicity of any part of
� is less than e. In particular, a partition is 2-regular if and only if it has distinct parts. Let us
denote by P(k) the set of all partitions of k and by P2(k) the set of all 2-regular partitions of k.

We denote by Hk,�1 the Hecke algebra of the symmetric group Sk with parameter �1. More
precisely, Hk,�1 is the C-algebra generated by Ti, i = 1, . . . , k� 1, with the following relations

TiTj = TjTi if |i� j| > 2, i, j 2 [1, k � 1], TiTi+1Ti = Ti+1TiTi+1, i 2 [1, k � 2],

T
2
i = q + (q � 1)Ti, where q = �1, i 2 [1, k � 1].

(2.1)

2404

�((%D���+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((%D���7$� $C:��� �����1����	��3�
���		�
�$+#!$4787��C$"��((%D���+++ 64"5C�7:8 $C:�6$C8 �2#�*8CD�(,�$��/�##8D$(4�.�5C4C�8D��$#����06(������4(�����	��
��D)5 86(�($�(�8�,4"5C�7:8�,$C8�(8C"D�$��)D8��4*4�!45!8�4(



Springer correspondence for the split symmetric pair in type A

It is shown in [DJ86] that the set of isomorphism classes of irreducible representations of Hk,�1

is parametrized by P2(k). For µ 2 P2(k), we write Dµ for the irreducible representation of Hk,�1

corresponding to µ.
For a real number a, we write [a] for its integer part.

2.2 The split symmetric pair (SL(N), SO(N))
Let G = SL(N) and ✓ : G ! G an involution such that K = G

✓ = SO(N) and write g = LieG.
We have g = g0 � g1, where ✓|gi = (�1)i. The pair (G,K) is a split symmetric pair, i.e., there
exists a maximal torus A of G that is ✓-split, where ✓-split means that for all x 2 A, ✓(x) = x

�1.
We also think of the pair (G,K) concretely as (SL(V ), SO(V )), where V is a vector space of
dimension N equipped with a non-degenerate quadratic form Q such that SO(V ) = SO(V,Q).
We write the non-degenerate bilinear form associated to Q as h , i.

Let grs denote the set of regular semisimple elements in g and let grs1 = g1 \ grs. Similarly, let
greg denote the set of regular elements in g and let greg1 = g1 \ greg.

Let N be the nilpotent cone of g and let N1 = N \ g. When N is odd, the set of K-orbits
in N1 is parametrized by P(N). When N is even, the set of O(N)-orbits in N1 is parametrized
by P(N), moreover, each O(N)-orbit remains one K-orbit if � has at least one odd part, and
splits into two K-orbits otherwise. For � 2 P(N), we write O� for the corresponding nilpotent
K-orbit in N1 when � has at least one odd part, and write OI

� and OII
� for the corresponding two

nilpotent K-orbits in N1 when � has only even parts. Suppose that � = (�1 > �2 > · · · > �s > 0).
For x 2 O� (or O!

� , ! = I, II), we have

dimZK(x) =
sX

i=1

(i� 1)�i. (2.2)

Let a be a maximal abelian subspace of g1, which is also a Cartan subspace of g. We have
the ‘little’ Weyl group

W = NK(a)/ZK(a) = SN .

2.3 Equivariant fundamental group and its representations
As was discussed in [CVX15a], the equivariant fundamental group

⇡
K
1 (grs1 ) ⇠= ZK(a)oBN

⇠= (Z/2Z)N�1
oBN ,

where BN is the braid group of N strands and it acts on

ZK(a) ⇠=
⇢
(i1, . . . , iN ) 2 (Z/2Z)N

����
NX

k=1

ik = 0

�
⇠= (Z/2Z)N�1

via the natural map BN ! SN . For simplicity we write

eBN = (Z/2Z)N�1
oBN and IN = (Z/2Z)N�1

.

It is easy to see that the action of BN on I
_
N has [N/2] + 1 orbits. We choose a set of

representatives
�m 2 I

_
N , 0 6 m 6 [N/2],

of the BN -orbits as follows. Let ⌧ 0i 2 (Z/2Z)N be the element with all entries 0 except the ith
position. Then {⌧i = ⌧

0
i+⌧

0
i+1, i = 1, . . . , N�1}, is a set of generators for IN . For 0 6m 6 [N/2],

we define a character �m as follows:

�m(⌧m) = �1 and �m(⌧i) = 1 for i 6= m. (2.3)

2405

�((%D���+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((%D���7$� $C:��� �����1����	��3�
���		�
�$+#!$4787��C$"��((%D���+++ 64"5C�7:8 $C:�6$C8 �2#�*8CD�(,�$��/�##8D$(4�.�5C4C�8D��$#����06(������4(�����	��
��D)5 86(�($�(�8�,4"5C�7:8�,$C8�(8C"D�$��)D8��4*4�!45!8�4(



T.-H. Chen, K. Vilonen and T. Xue

For � 2 I
_
N , we set

B� = StabBN �.

Let si, i = 1, . . . , N � 1, be the simple reflections in W = SN . It is easy to check that

StabSN (�m) = hsi, i 6= mi ⇠= Sm ⇥ SN�m if m 6= N/2, and
StabSN (�m) contains Sm ⇥ Sm as an index-2 normal subgroup if m = N/2.

(2.4)

Let us define

Bm,N�m = the inverse image of Sm ⇥ SN�m
⇠= hsi, i 6= mi under the map BN ! SN .

Then it follows from (2.4) that

B�m = Bm,N�m, when m 6= N/2,
and B�m contains Bm,N�m as an index-2 normal subgroup when m = N/2.

(2.5)

Let �i, i = 1, . . . , N � 1, be the standard generators of BN which are lifts of the si under the
map BN ! SN . Then Bm,N�m is generated by �i, i 6= m, and �2m. We have a natural quotient
map

C[Bm,N�m] ⇣ Hm,�1 ⌦HN�m,�1
⇠= C[Bm,N�m]/h(�i � 1)2, i 6= m,�

2
m � 1i. (2.6)

Note that in the above formula the �i corresponds to �Ti of the Hecke algebra in (2.1). For
us the �i are more natural generators since they arise from geometry as unipotent monodromy
operators.

Let us write
Hm,�1 ⌦HN�m,�1 = H�m,�1.

We consider a family of representations of eBN as follows. For 0 6 m 6 [N/2], we define

L�m := IndC[BN ]
C[Bm,N�m]H�m,�1

⇠= C[BN ]⌦C[Bm,N�m] H�m,�1, (2.7)

where in the tensor product C[Bm,N�m] acts on H�m,�1 via the quotient map (2.6) and on C[BN ]

by right multiplication. The module L�m has a natural eBN -action defined as follows. We let BN

act on L�m by left multiplication and we let IN act on L�m via a.(b⌦ v) = ((b.�m)(a))(b⌦ v) for
a 2 IN , b 2 BN and v 2 H�m,�1. We view L�m as a representation of the equivariant fundamental

group eBN in this manner.
We will next identify the composition factors of the modules L�m . Let µ

1 2 P2(m) and
µ
2 2 P2(N � m), m 2 [0, [N/2]]. Proceeding just as in the definition of L�m , one obtains the

following representation of eBN :

Vµ1,µ2 := IndC[BN ]
C[Bm,N�m](Dµ1 ⌦Dµ2) ⇠= C[BN ]⌦C[Bm,N�m] (Dµ1 ⌦Dµ2). (2.8)

Using (2.5), one readily checks that Vµ1,µ2 is an irreducible representation of eBN when m 6= N/2,
or when m = N/2 and µ

1 6= µ
2. When m = N/2 and µ

1 = µ
2, Vµ1,µ2 breaks into the direct sum

of two non-isomorphic irreducible representations of eBN , which we denote by V
I
µ1,µ2 and V

II
µ1,µ2 ,

i.e., we have
Vµ,µ

⇠= V
I
µ,µ � V

II
µ,µ. (2.9)

Moreover,
when m 6= N/2, Vµ1,µ2 ⇠= V⌫1,⌫2 if and only if (µ1

, µ
2) = (⌫1, ⌫2);

when m = N/2, Vµ1,µ2 ⇠= V⌫1,⌫2 if and only if
either (µ1

, µ
2) = (⌫1, ⌫2) or (µ1

, µ
2) = (⌫2, ⌫1).

As the Dµ1 ⌦Dµ2 are the composition factors of H�m,�1 we conclude the following.
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Lemma 2.1. The composition factors of L�m consist of the Vµ1,µ2 , µ
1 6= µ

2
, µ

1 2 P2(m),
µ
2 2 P2(N � m), and when N = 2m we have two additional composition factors V

I
µ,µ and

V
II
µ,µ for µ 2 P2(m).

2.4 Parabolic induction functor and Fourier transform
Let L be a ✓-stable Levi subgroup contained in a ✓-stable parabolic subgroup P ⇢ G. We write

l = LieL, p = LieP, LK = L \K, PK = P \K, l1 = l \ g1, p1 = p \ g1.

We will make use of the parabolic induction functor

Indg1l1⇢p1
: DLK (l1) ! DK(g1)

defined in [Hen01, Lus11b]. In the following we recall its definition. Let

pr : p1 = l1 � (nP )1 ! l1

be the natural projection map, where nP is the nilpotent radical of p and (nP )1 = nP \ g1.
Consider the diagram

l1 p1
proo K ⇥ p1

p1oo p2 // K ⇥PK p1
⇡̌ // g1, (2.10)

where p1 and p2 are natural projection maps and ⇡̌ : (k, x) 7! Ad(k)(x).
The maps in (2.10) are K ⇥ PK-equivariant, where K acts trivially on l1 and p1, by left

multiplication on the K-factor on K⇥p1 and on K⇥PK p1, and by adjoint action on g1, and PK

acts on l1 by a.l = pr(Ad a(l)), by adjoint action on p1, by a.(k, p) = (ka�1
,Ad a(p)) on K ⇥ p1,

trivially on K ⇥PK p1 and g1.
Let A be a complex in DLK (l1). Then (pr � p1)⇤A ⇠= p

⇤
2A

0 for a well-defined complex A
0 in

DK(K ⇥PK p1). Define

Indg1l1⇢p1
A = ⇡̌!A

0[dimP � dimL].

Let F : DK(g1) ! DK(g1) be the Fourier transform functor (we also use the same notation
F for the functor defined for (LK , l1)). Here we have identified g1 with g⇤1 via a K-invariant
non-degenerate bilinear form on g1. It is shown in [Hen01, Lus11b] that the induction functor
commutes with Fourier transform, i.e.,

F(Indg1l1⇢p1
A) ⇠= Indg1l1⇢p1

(F(A)). (2.11)

3. Maximal ✓-stable parabolic subgroups and parabolic induction

In this section, we study the parabolic induction functor with respect to a chosen family of
L
m ⇢ P

m, 1 6 m < N/2, and two more pairs L
n,! ⇢ P

n,!, ! = I, II, if N = 2n, where P
m

(respectively P
n,!) is a maximal ✓-stable parabolic subgroup and L

m (respectively L
n,!) is a

✓-stable Levi subgroup of Pm (respectively P
n,!) defined as follows.

Fix a basis {ei, 1 6 i 6 N} of V such that hei, eji = �i+j,N+1. For 1 6 m < N/2, we define
P

m to be the parabolic subgroup of G that stabilizes the flag

0 ⇢ V
0
m ⇢ V

0?
m ⇢ C

N
,
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where V
0
m = span{ei, 1 6 i 6 m}. We define L

m to be the ✓-stable Levi subgroup of Pm which
consists of diagonal block matrices of sizes m,N � 2m,m. When N = 2n, for ! = I, II, we define
P

n,! to be the parabolic subgroup of G that stabilizes the flag

0 ⇢ V
!
n ⇢ V

!?
n ⇢ C

2n
,

where V
I
n = span{ei, 1 6 i 6 n} and V

II
n = span{ei, 1 6 i 6 n� 1, en+1}. Let Ln,! be a ✓-stable

Levi subgroup of Pn,!. According to [BH00], every maximal ✓-stable parabolic subgroup of G is
K-conjugate to one of the above form.

Let pm = Lie P
m, pm1 = pm \ g1, and (nPm)1 = nPm \ g1, where nPm is the nilpotent radical

of pm, etc.

Proposition 3.1. We have the following.

(i) The map

⇡
N
m : K ⇥Pm

K (nPm)1 ! N1, (k, x) 7! Ad k(x)

is a small map onto its image, generically one-to-one.

(ii) The map

⇡̌
N
m : K ⇥Pm

K pm1 ! g1, (k, x) 7! Ad k(x).

is a small map onto its image, generically one-to-one.

The same holds for the two maps ⇡
2n,!
n and ⇡̌

2n,!
n defined using P

n,!
, ! = I, II.

We define

gm1 = Im ⇡̌
N
m , 1 6 m < N/2, gn,!1 = Im ⇡̌

2n,!
n , ! = I, II. (3.1)

Form<N/2, gm1 consists of elements in g1 with eigenvalues a1, a1, . . . , am, am, aj , j 2 [2m+1, N ],

where
Pm

k=1 2ak +
PN

j=2m+1 aj = 0. Let

Y
r
m =

�
x 2 greg1 | x has eigenvalues a1, a1, . . . , am, am, aj , j 2 [2m+ 1, N ],

where ai 6= aj for i 6= j
 
.

One checks readily that Y r
m = gm1 .

Consider the case m = N/2 = n. For ! = I, II, let

Y
r,!
n =

�
x 2 greg1 | x has eigenvalues a1, a1, . . . , an, an, where ai 6= aj for i 6= j,

and the nilpotent part of x lies in the orbit O!
2n
 
,

where O!
2n is the nilpotent orbit given by the partition 2m and defined by the equation

Im⇡
2n,!
n = Ō!

2n . Then Y
r,!
n is an open dense subset in gn,!1 .

Let (pm1 )r = pm1 \ Y
r
m and (lm1 )rs = lm1 \ (lm)rs.

Proposition 3.2. (1) Suppose that 1 6 m < N/2. There is a natural surjective map

⇡
K
1 (Y r

m) ⇣ ⇡
Lm
K

1 ((lm1 )rs) ⇠= Bm ⇥ eBN�2m (3.2)

such that for an L
m
K-equivariant local system T on (lm1 )rs associated to a ⇡

Lm
K

1 ((lm1 )rs)-
representation E, we have

Indg1lm1 ⇢pm1
IC(lm1 , T ) ⇠= IC(gm1 , T 0),
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where T 0
is the K-equivariant local system on Y

r
m associated to the representation of ⇡

K
1 (Y r

m)
which is obtained from E by pull-back under the map (3.2).

(2) We have a natural surjective map

⇡
K
1 (Y r,!

n ) ⇣ ⇡
Ln,!
K

1 ((ln,!1 )rs) ⇠= Bn, ! = I, II, (3.3)

such that for an L
n,!
K -equivariant local system T on (ln,!1 )rs associated to a ⇡

Ln,!
K

1 ((Ln,!
1 )rs)-

representation E, we have

Indg1
ln,!
1 ⇢pn,!

1
IC(ln,!1 , T ) ⇠= IC(gn,!1 , T 0),

where T 0
is the K-equivariant local system on Y

r,!
n associated to the representation of ⇡

K
1 (Y r,!

n )
which is obtained from E by pull-back under the map (3.3).

3.1 Proof of Proposition 3.1
We begin with the proof of (1). Consider the following projection

⌧
N
m : {(x, 0 ⇢ Vm ⇢ V

?
m ⇢ V = C

N ) |x 2 g1, xVm = 0, xV
?
m ⇢ Vm} ! N1.

When m 6= N/2, the map ⌧Nm can be identified with the map ⇡Nm . When N = 2m, the image of
the map ⌧2mm has two irreducible components, i.e., closures of the two orbits OI

2m and OII
2m . The

two maps ⇡N,I
m and ⇡

N,II
m can be identified with the map ⌧

2m
m restricted to (⌧2mm )�1(OI

2m) and

(⌧2mm )�1(OII
2m) respectively. Thus it su�ces to show that

the map ⌧Nm is small over its image and generically one-to-one. (3.4)

When m 6= N/2, one can check that the image of ⌧Nm is as follows

Im ⌧
N
m = Ō3m1N�3m if N > 3m, Im ⌧

N
m = Ō3N�2m23m�N if N < 3m.

Assume that N > 3m and x 2 O3m1N�3m . Then (⌧Nm )�1(x) consists of the flag 0 ⇢ Vm ⇢ V
?
m ⇢ V ,

where Vm = Imx
2. Assume that N < 3m and x 2 O3N�2m23m�N . Then (⌧Nm )�1(x) consists of the

flag 0 ⇢ Vm ⇢ V
?
m ⇢ V , where Vm = kerx. This proves that ⌧Nm is generically one-to-one.

Let x 2 O3i2j1N�3i�2j ⇢ Im ⌧
N
m . We assume that 3i2j1N�3i�2j 6= 3m1N�3m if N > 3m, and

3i2j1N�3i�2j 6= 3N�2m23m�N if N < 3m. It su�ces to show that

dim(⌧Nm )�1(x) < codimIm ⌧Nm
O3i2j1N�3i�2j/2.

Let x0 2 O2j1N�3i�2j ⇢ Im ⌧
N�3i
m�i . (Note that ⌧N�3i

m�i is defined since m � i 6 (N � 3i)/2.) One
checks readily that (using (2.2) for the second equality)

(⌧Nm )�1(x) ⇠= (⌧N�3i
m�i )�1(x0) and codimIm ⌧Nm

O3i2j1N�3i�2j = codimIm ⌧N�3i
m�i

O2j1N�3i�2j .

Thus it su�ces to show that

dim(⌧N�3i
m�i )�1(x0) < codimIm ⌧N�3i

m�i
O2j1N�3i�2j/2.

Let us write
⌦N
m,j = (⌧Nm )�1(⇣j) for ⇣j 2 O2j1N�2j ⇢ Im ⌧

N
m

and
a
N
m,j = codimIm⇡N

m
O2j1N�2j = m(2N � 3m)� j(N � j).
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To prove that the map ⌧Nm is small, we are reduced to proving that

dim⌦N
m,j <

a
N
m,j

2
. (3.5)

To prove this we recall the partitioning of ⌦N
m,j into ⌦N,k

m,j given in [CVX15b, § 2] as follows:

⌦N,k
m,j = {(0 ⇢ Vm ⇢ V

?
m ⇢ V = C

N ) | dim(Vm \ ⇣jV ) = k}.

We have
⌦N,k
m,j 6= ; , max{m+ j �N/2, j/2} 6 k 6 min{j,m}.

Recall that we have a surjective map ⌦N,k
m,j ! OGr(j � k, j) ⇥ OGr(m � k,N � 2j) with fibers

being a�ne spaces A(m�k)(j�k). We have

dim⌦N,k
m,j = �2k2 + (�N + 3j + 2m+ 1) k +mN �mj � j

2 + 3m2 + j +m

2
.

One checks that

if j > N � 2m, dim⌦N,k
m,j is maximal when k = m+ j �


N

2

�
,

if j < N � 2m, dim⌦N,k
m,j is maximal when k =


j + 1

2

�
.

Thus a direct calculation shows that

dim(⇡Nm)�1(⇣j) =

8
>><

>>:

a
N
m,j

2
+

j +m�N

2
if j > N � 2m and N even, or j < N � 2m and j odd,

a
N
m,j

2
� m

2
if j > N � 2m and N odd, or j < N � 2m and j even.

This proves (3.5) (note that m+ j < N). The proof of (3.4) is complete. This finishes the proof
of the claim (1) in the proposition.

It then follows that we have

(⇡Nm)⇤C[�] ⇠= IC(O�,C) (respectively ((⇡NN/2)
!)⇤C[�] ⇠= IC(O!

� ,C), ! = I, II), (3.6)

where
� = 3m1N�3m if N > 3m, � = 3N�2m23m�N if N < 3m.

Note that K⇥Pm
K pm1 is the orthogonal complement of K⇥Pm

K (nPm)1 in the trivial bundle K⇥g1
over K/P

m
K . By the functoriality of Fourier transform, we have that

F((⇡Nm)⇤C[�]) ⇠= (⇡̌Nm)⇤C[�]. (3.7)

Since Fourier transform sends simple perverse sheaves to simple perverse sheaves, we can conclude
from (3.6) and (3.7) that

(⇡̌Nm)⇤C[�] ⇠= IC(Im ⇡̌
N
m ,C).

This proves the claim (2) of the proposition. The argument for (⇡̌2nn )!, ! = I, II, is the same.
The proof of the proposition is complete.

2410

�((%D���+++ 64"5C�7:8 $C:�6$C8�(8C"D ��((%D���7$� $C:��� �����1����	��3�
���		�
�$+#!$4787��C$"��((%D���+++ 64"5C�7:8 $C:�6$C8 �2#�*8CD�(,�$��/�##8D$(4�.�5C4C�8D��$#����06(������4(�����	��
��D)5 86(�($�(�8�,4"5C�7:8�,$C8�(8C"D�$��)D8��4*4�!45!8�4(



Springer correspondence for the split symmetric pair in type A

3.2 Proof of Proposition 3.2
Note that we have that

L
m
K

⇠= GL(m)⇥ SO(N � 2m) and (lm)1 ⇠= gl(m)� sl(N � 2m)1. (3.8)

To ease notation, let us now write that L = L
m, P = P

m, and ⇡̌ = ⇡̌
N
m etc.

We first show the following.

The map ⇡̌ (respectively ⇡̌!n ), when restricted to ⇡̌�1(Y r) (respectively ⇡̌�1(Y r,!
n )),

is one-to-one. (3.9)

Each element in Y
r is K-conjugate to an element x0 2 p1 (see [KR71, Theorem 7]), where

x0ei = aiei, x0eN+1�i = ei + aieN+1�i for i 2 [1,m],

x0ej = bjej + cjeN+1�j , x0eN+1�j = cjej + bjeN+1�j for j 2 [m+ 1, [N/2]]

x0e(N+1)/2 = b(N+1)/2e(N+1)/2 if N is odd

(3.10)

and the numbers ai, i = 1, . . . ,m, bj + cj , bj � cj , j = m+ 1, . . . , [N/2], b(N+1)/2 are distinct.
Thus it su�ces to show that ⇡̌�1(x0) consists of one point. Note that ⇡̌�1(x0) consists

of x0-stable m-dimensional isotropic subspaces of V . Assume that Um 2 ⇡̌
�1(x0). Then Um is a

direct sum of generalized eigenspaces of x0. The generalized eigenspace of x0 with eigenvalue ai is
span{ei, eN+1�i}, i = 1, . . . ,m, and the eigenspace of x0 with eigenvalue bj + cj , bj � cj , b(N+1)/2

is span{ejeN+1�j}, span{ej + eN+1�j}, span{e(N+1)/2}, respectively. Since Um is isotropic, Um

has to equal span{ei, i = 1, . . . ,m}. This proves (3.9) for ⇡̌m, m < N/2. The proof for ⇡̌!n is
entirely similar and omitted.

Now we show the following.

The image of pr1 under the map pr : p1 ! l1 is lrs1 . (3.11)

Let x 2 pr1. By the above proof of (3.9) we can assume that Ad(k)x = x0 for some k 2 K, where
x0 is as in (3.10). Thus (k, x) 2 ⇡̌

�1(x0). It follows from (3.9) that (k, x) = (1, x0) 2 K ⇥PK p1.
Hence k 2 PK . Assume that k = lu where l 2 LK and u 2 UK = U \ K (U is the unipotent
radical of P ). Then we have pr(x) = pr(Ad(u�1

l
�1)x0) = pr(Ad(l�1)x0) = Ad(l�1) pr(x0). It is

clear that pr(x0) 2 lrs. Thus (3.11) follows.
By (3.9) and (3.11), we have the following diagram, when restricting (2.10) to Y

r,

lrs1 pr1
proo K ⇥ pr1

p1oo p2 // K ⇥PK pr1
⇡̌ // Y r

.

Using (3.9), we see that

⇡
K
1 (Y r) ⇠= ⇡

K⇥PK
1 (Y r) ⇠= ⇡

K⇥PK
1 (K ⇥PK pr1) ⇠= ⇡

K⇥PK
1 (K ⇥ pr1) ⇠= ⇡

PK
1 (pr1).

Finally, the canonical map ⇡
PK
1 (pr1) ! ⇡

PK
1 (lrs1 )

⇠= ⇡
LK
1 (lrs1 ) is surjective. We see this as

follows. First, the canonical map above can be identified with the canonical map ⇡
PK
1 (pr1) !

⇡
PK
1 (pr�1(lrs1 )). Now, because pr1 is an open subset in pr�1(lrs1 ), which is smooth, the map
⇡1(pr1) ! ⇡1(pr�1(lrs1 )) is a surjection. To conclude that this property persists when we pass
to the equivariant fundamental group it su�ces to remark that the equivariant fundamental
group is always a quotient of the ordinary fundamental group as long as the group is connected.
We now conclude the argument making use of Proposition 3.1.
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4. Fourier transform of nilpotent orbital complexes for (SL(N), SO(N))

Consider the symmetric pair (G,K) = (SL(N), SO(N)). Let us write AN for the set of all simple
K-equivariant perverse sheaves on N1 (up to isomorphism), that is, the set of IC complexes
IC(O, E), where O is a K-orbit in N1 and E is an irreducible K-equivariant local system on O
(up to isomorphism). An IC complex in AN is called a nilpotent orbital complex.

Let n = [N/2]. We set

⌃N = {(⌫;µ1
, µ

2) | 0 6 m 6 n, ⌫ 2 P(m),

0 6 k 6 n�m, µ
1 2 P2(k), µ

2 2 P2(N � 2m� k)
 
.

In the case when N is even, we identify the triple (⌫;µ1
, µ

2) with (⌫;µ2
, µ

1) if |µ1| = |µ2| and
µ
1 6= µ

2, and the triples (⌫;µ, µ) attain two labels I and II.
Given a triple (⌫;µ1

, µ
2) 2 ⌃N (respectively (⌫;µ, µ)! 2 ⌃N , ! = I, II), where |⌫| =m<N/2,

we define an irreducible K-equivariant local system T (⌫;µ1
, µ

2) (respectively T (⌫;µ, µ)!) on Y
r
m

(here we write Y
r
0 = grs1 ) as follows. We obtain a map

⌧ : ⇡K1 (Y r
m) ! Bm ⇥ eBN�2m ! Sm ⇥ eBN�2m

by composing the map in (3.2) with the natural map Bm ⇥ eBN�2m ! Sm ⇥ eBN�2m. Note
that the map ⌧ is surjective. Then T (⌫;µ1

, µ
2) (respectively T (⌫;µ, µ)!) is the irreducible

local system associated to the irreducible representation of ⇡K1 (Y r
m) given by pulling back

the irreducible representation ⇢⌫ ⇥ Vµ1,µ2 (respectively ⇢⌫ ⇥ V
!
µ,µ) via the map ⌧ ; here ⇢⌫ 2 S

_
m

is the irreducible representation of Sm corresponding to ⌫ 2 P(m) and Vµ1,µ2 (respectively V
!
µ,µ)

is the irreducible representation of eBN�2m defined in (2.7) (respectively (2.9)).
Assume now that N = 2n. Given a triple (⌫; ;, ;)! 2 ⌃N , ! = I, II, we define the

irreducible K-equivariant local system T (⌫; ;, ;)! on (Y r
n )

! as the local system associated to the
representation of ⇡K1 ((Y r

n )
!) obtained by pulling back the representation ⇢⌫ 2 S

_
n corresponding

to ⌫ 2 P(n) under that map
⇡
K
1 ((Y r

n )
!) ⇣ Bn ⇣ Sn.

Now we are ready to formulate our main result.

Theorem 4.1. The Fourier transform F : PervK(g1) ! PervK(g1) induces a bijection

F : AN
⇠�!
�
IC(gm1 , T (⌫;µ1

, µ
2)) | (⌫;µ1

, µ
2) 2 ⌃N , µ

1 6= µ
2
, |⌫| = m < N/2

 

[
�
IC(gm1 , T (⌫;µ, µ)!) | (⌫;µ, µ)! 2 ⌃N , ! = I, II, |⌫| = m < N/2

 
(if N is even),

[
�
IC(gn,!1 , T (⌫; ;, ;)!) | (⌫; ;, ;)! 2 ⌃N , ! = I, II, |⌫| = n = N/2

 
(if N is even),

where g01 = g1, gm1 and gn,!1 are defined in (3.1).

4.1 Proof of Theorem 4.1
Let p(k) denote the number of partitions of k and let q(k) denote the number of 2-regular
partitions of k. We write p(0) = q(0) = 1. Let us define

d(k) =
kX

s=0

q(s)q(2k + 1� s), (4.1)

e(k) =
k�1X

s=0

q(s) q(2k � s) +
q(k)2 + 3q(k)

2
. (4.2)
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Lemma 4.2. We have

|A2n+1| =
nX

k=0

p(n� k)d(k) = |⌃2n+1|, (4.3)

|A2n| =
nX

k=0

p(n� k)e(k) = |⌃2n|. (4.4)

Proof. Note that
X

k>0

p(k)xk =
Y

s>1

1

1� xs
and

X

k>0

q(k)xk =
Y

s>1

(1 + x
s). (4.5)

Let p(l, k) denote the number of partitions of l into (not necessarily distinct) parts of exactly k

di↵erent sizes. We have (see for example [Wil83])

X

l,k>0

p(l, k)xlyk =
Y

s>1

✓
1 +

yx
s

1� xs

◆
. (4.6)

Assume first that N = 2n+1. Note that if � is a partition of N with parts of k di↵erent sizes,
then the component group AK(x) of the centralizer ZK(x) for x 2 O� is (Z/2Z)k�1. Thus there
are 2k�1 irreducible K-equivariant local systems on O� (up to isomorphism). Hence using (4.6),
we see that

|A2n+1| =
X

k>0

p(2n+ 1, k)2k�1 = Coe�cient of x2n+1 in
1

2

Y

s>1

✓
1 + x

s

1� xs

◆
.

Using (4.5), we see that

Y

s>1

✓
1 + x

s

1� xs

◆
=

✓X

k>0

p(k)x2k
◆✓X

k>0

q(k)xk
◆2

. (4.7)

It then follows that |A2n+1| is the desired number. The fact that |⌃2n+1| equals the same number
is clear from the definition. Thus (4.3) holds.

Assume now that N = 2n. Suppose that � is a partition of N with parts of exactly k di↵erent
sizes. If � has at least one odd part, then there are 2k�1 irreducible K-equivariant local systems
on O� (up to isomorphism). If � has only even parts, then there are 2k irreducible K-equivariant
local systems on each O!

� (up to isomorphism), ! = I, II.
Thus we have that

|A2n| =
X

k>0

p(2n, k) 2k�1 +
X

k>0

p(n, k) 3 · 2k�1

= Coe�cient of x2n in
1

2

Y

s>1

✓
1 + x

s

1� xs

◆
+Coe�cient of xn in

3

2

Y

s>1

✓
1 + x

s

1� xs

◆

=
1

2

✓ nX

k=0

p(n� k)

✓
2
k�1X

s=0

q(s)q(2k � s) + q(k)2
◆◆

+
3

2

nX

k=0

p(n� k)q(k) =
nX

k=0

p(n� k)e(k).

Here we have used (4.7) and the following equation

Y

s>1

✓
1 + x

s

1� xs

◆
=

✓X

k>0

p(k)xk
◆✓X

k>0

q(k)xk
◆
.

Again the fact that |⌃2n| equals the desired number is clear from the definition. 2
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Note that the IC sheaves appearing on the right-hand side of the Fourier transform map F
in Theorem 4.1 are pairwise non-isomorphic. Thus, in view of Lemma 4.2, Theorem 4.1 follows
from the following.

Proposition 4.3. Let (⌫;µ1
, µ

2) 2 ⌃N (respectively (⌫;µ, µ)! 2 ⌃N , ! = I, II) and write

m= |⌫|. The Fourier transform of IC(gm1 , T (⌫;µ1
, µ

2)) (respectively IC(gm1 , T (⌫;µ, µ)!), IC(gn,!1 ,

T (⌫; ;, ;)!)) is supported on a K-orbit in N1.

Proof. Let n = [N/2]. We begin the proof by showing the following for (;;µ1
, µ

2) 2 ⌃N

(respectively (;;µ, µ)! 2 ⌃N , ! = I, II).

The Fourier transform of IC(g1, T (;;µ1
, µ

2))(respectively IC(g1, T (;;µ, µ)!))
is supported on a K-orbit in N1.

(4.8)

Recall that T (;;µ1
, µ

2) (respectively T (;;µ, µ)!) is the irreducible K-equivariant local system
on grs1 corresponding to Vµ1,µ2 (respectively V

!
µ,µ).

We will now appeal to the nearby cycle construction in [GVX18]. Let us recall the characters
�m 2 I

_
N , 0 6 m 6 n of (2.3). In [GVX18] we apply a nearby cycle construction to local systems

associated to the �m and obtain a K-equivariant perverse sheaf P�m on the nilpotent cone N1.
More precisely, for each character �m, let us write W�m = StabW (�m). Consider the following
base-change diagram of the adjoint quotient map.

g1,�m
//

f�m
✏✏

g1

f
✏✏

a/W�m
// a/W

(4.9)

Let us write grs1,�m
for the base change of the regular semisimple locus grs1 . Denote by F�m the K-

equivariant local system on grs1,�m
corresponding to the representation of ⇡K1 (grs1,�m

) = IN oB�m ,
where IN acts via the character �m and B�m acts trivially (recall that B�m = StabBN (�m)). We
form the nearby cycle sheaf P�m =  f�m

F�m , appropriately shifted, so that P�m 2 PervK(N1).
Applying [GVX18, Theorem 3.2], we obtain that

F(P�m) = IC(g1,M�m),

where M�m is the K-equivariant local system on grs1 corresponding to the eBN -representation

M�m = C[ eBN ]⌦
C[ eB0

�m ] (C�m ⌦HW 0
�m

).

Let us explain the notation in the above formula in our setting. LetW 0
�m

be the Coxeter subgroup
of W generated by s↵ with �m(↵̌(�1)) = 1, ↵ 2 �(g, a), where �(g, a) is the root system of g
with respect to a. Note that ↵̌(�1) 2 IN . Then HW 0

�m
is the Hecke algebra associated to the

Coxeter group W
0
�m

with parameter �1. Let B0
�m

⇢ BN be the inverse image of W 0
�m

⇢ W under

the natural map BN ! W = SN . Then eB0
�m

= IN oB
0
�m

. In our setting, one readily checks that
W

0
�m

= hsi, i 6= mi, HW 0
�m

= H�m,�1 and B
0
�m

= Bm,N�m (here we use the notation in § 2.3).
The action of eB0

�m
on (C�m ⌦HW 0

�m
) is given by IN acting via the character �m and B

0
�m

acting

via the quotient map C[B0
�m

] ! HW 0
�m

. Thus we conclude

F(P�m) ⇠= IC(g1,L�m), (4.10)
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where L�m is the K-equivariant local system on grs1 corresponding to the representations L�m of

⇡
K
1 (grs1 ) = eBN defined in (2.8).

By Lemma 2.1 the IC sheaves IC(g1, T (;;µ1
, µ

2)) and IC(g1, T (;;µ, µ)!) are composition
factors of the IC(g1,L�m). Hence (4.8) follows from (4.10).

Now let (⌫;µ1
, µ

2) 2 ⌃N with |⌫| = m > 0. Let

K(⇢⌫ ⇥ Vµ1,µ2)

denote the irreducible LK-equivariant local system on lrs1 associated to the irreducible
representation of ⇡LK

1 (lrs1 ) obtained as a pullback of ⇢⌫ ⇥ Vµ1,µ2 via the map ⇡
LK
1 (lrs1 )

⇠=
Bm ⇥ eBN�2m ⇣ Sm ⇥ eBN�2m.

By Proposition 3.2, we have that

IC(gm1 , T (⌫;µ1
, µ

2)) = Indg1lm1 ⇢pm1
IC(l1,K(⇢⌫ ⇥ Vµ1,µ2)). (4.11)

Since Fourier transform commutes with induction (see (2.11)), it su�ces to show that the
Fourier transform of IC(l1,K(⇢⌫ ⇥ Vµ1,µ2)) is supported on an LK-nilpotent orbit in l1. This
follows from the classical Springer correspondence for gl(m) and (4.8) applied to the symmetric
pair (SL(N � 2m), SO(N � 2m)) (see (3.8)).

The proof for IC(gm1 , T (⌫;µ, µ)!), IC(gn,!1 , T (⌫; ;, ;)!) proceeds in the same manner; in the
latter case one uses the corresponding ✓-stable Levi and parabolic subgroups. We omit the
details. 2

4.2 More on induction
Let (⌫;µ1

, µ
2) 2 ⌃N . Assume that |⌫| = m > 0. Let L

m ⇢ P
m be as in § 3. Recall that L

m
K

⇠=
GL(m)⇥ SO(N � 2m) and lm1

⇠= gl(m)� sl(N � 2m)1.
A nilpotent Lm

K-orbit in lm1 is given by a nilpotent orbit in gl(m) and a nilpotent SO(N�2m)-
orbit in sl(N�2m)1. Thus the nilpotent Lm

K-orbits in lm1 are parametrized by P(m)⇥P(N�2m),
with extra labels I and II for partitions in P(N � 2m) with all parts even. For ↵ 2 P(m) and
� 2 P(N�2m), we denote by O↵,� (or O!

↵,�) the nilpotent L
m
K-orbit in lm1 given by the nilpotent

orbit O↵ in gl(m) and the nilpotent SO(N � 2m)-orbit O� (or O!
� ) in sl(N � 2m)1.

In the following we will omit the labels I and II with the understanding that everything
should have corresponding labels, for example, O!

� = Indg1lm1 ⇢pm1
O!

↵,� etc.

Proposition 4.4. Let ↵ 2 P(m) and � 2 P(N � 2m). Let O� = Indg1lm1 ⇢pm1
O↵,� , i.e.,

�i = �i + 2↵i. Assume that u 2 O↵,� and v 2 O� \ (u + (nPm)1). We have a natural surjective

map

 : AK(v) ⇣ ALm
K
(u).

Moreover, let C ⇥ E be an L
m
K-equivariant irreducible local system on O↵,� and let Ẽ be the

K-equivariant local system on O� obtained from C⇥ E via the map  above. Then IC(O�, Ẽ) is
a direct summand of Indg1lm1 ⇢pm1

IC(O⌫,µ,C⇥ E).

Corollary 4.5. If moreover (Oµ, E) 2 AN�2m is a pair such that F(IC(Oµ, E)) has full support,
then we have

Indg1lm1 ⇢pm1
IC(O⌫,µ,C⇥ E) ⇠= IC(O�, Ẽ).

As before let us now write L = L
m and P = P

m etc. We begin the proof of the above
proposition with the following lemma.
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T.-H. Chen, K. Vilonen and T. Xue

Lemma 4.6. The map

� : K ⇥PK (Ō↵,� + (nP )1) ! Ō�

is generically one-to-one.

Proof. Let x0 2 O�. We can and will assume that x0 2 O↵,� + (nP )1. We show that ��1(x0) is a

point. Assume that �(k, x) = x0, i.e., Ad k(x) = x0. Then x 2 O↵,� +(nP )1. Let eO� (respectively
eO↵,�) be the (unique) G-orbit (respectively L-orbit) in g (respectively l) that contains O�

(respectively O↵,�). We have that
eO� = Indgl

eO↵,�

in the notation of Lusztig and Spaltenstein [LS79]. By [LS79, Theorem 1.3], we have Z0
G(x0) ⇢ P .

In fact, we have that ZG(x0) ⇢ P . This can be seen by enlarging the group G to GL(N) and
using the fact that ZGL(N)(x0) is connected. Thus ZK(x0) ⇢ PK . Furthermore, eO�\ ( eO↵,� +nP )
is a single orbit under P . Thus there exists p 2 P such that Ad p(x) = x0. It follows that
k
�1

p 2 ZG(x0) ⇢ P . Thus k 2 P \K = PK . Now we have that (k, x) = (1,Ad k(x)) = (1, x0). 2

Proof of Proposition 4.4. Note that the proof of the above lemma shows that ZG(v) = ZP (v).
We have ZP (v) ⇢ ZL(u)UP . Thus ZK(v) = ZPK (v) ⇢ ZLK (u)(UP \K). It follows that we have
a natural projection map

ZK(v)/Z0
K(v) = ZPK (v)/Z

0
PK

(v) ! ZLK (u)/Z
0
LK

(u).

We show that this gives us the desired map  . Following [LS79], we have that ZLK (u)(UP \K)
has a dense orbit, i.e., the orbit of v, in the irreducible variety u+ (nP )1. Thus ZPK (v) = ZK(v)
meets all the irreducible components of ZLK (u)(UP \K), which implies that  is surjective.

It is easy to see that

supp(Indg1l1⇢p1
IC(O↵,� ,C⇥ E)) = Ō�. (4.12)

The proposition follows from the definition of parabolic induction functor and Lemma 4.6. 2

Remark 4.7. The proof of Lemma 4.6 and the existence and surjectivity of the map  in
Proposition 4.4 works for any ✓-stable Levi contained in a ✓-stable parabolic subgroup.

Proof of Corollary 4.5. Note that the assumption implies that F(IC(O↵,� ,C ⇥ E)) has full
support, i.e., IC(O↵,� ,C ⇥ E) = IC(l1,G) for some irreducible LK-equivariant local system G
on lrs1 . We have that

F(Indg1l1⇢p1
IC(O↵,� ,C⇥ E)) = Indg1l1⇢p1

F(IC(O↵,� ,C⇥ E)) = Indg1l1⇢p1
IC(l1,G).

It su�ces to show that Indg1l1⇢p1
IC(l1,G) is irreducible. This follows from the definition of the

induction functor and Proposition 3.1. 2

Corollary 4.8. The Fourier transform of a nilpotent orbital complex IC(O, E) 2 AN has full

support, i.e., suppF(IC(O, E)) = g1, if and only if it is not of the form Indg1l1⇢p1
IC(O0

, E 0) where
suppF(IC(O0

, E 0)) = l1, and L ⇢ P is a pair chosen as in § 3.

Proof. The only if part follows from the facts that Fourier transform commutes with parabolic
induction and that supp Indg1l1⇢p1

A ( g1. The if part follows from (4.11), Corollary 4.5 and
Theorem 4.1. 2
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Springer correspondence for the split symmetric pair in type A

Corollary 4.9. Let � = (�1 > �2 > · · ·) 2 P(N).

(1) If �i��i+1 > 3 for some i, then suppF(IC(O�, E)) 6= g1 for any K-equivariant local system

E on O�. The same holds for O!
� if � has only even parts.

(2) Suppose that �i � �i+1 6 2 for all i. Let f� be the number of di↵erent sizes of parts of �,

and g� the number of i such that �i � �i+1 = 2.

(a) If at least one part of � is odd, then there are 2f��1�g� irreducible K-equivariant local

systems E on O� such that suppF(IC(O�, E)) = g1.

(b) If all parts of � are even, then there is exactly one irreducible K-equivariant local

system E!
on each orbit O!

� , ! = I, II, such that suppF(IC(O!
� , E!)) = g1.

In particular, if �i � �i+1 6 1 for all i, then suppF(IC(O�, E)) = g1 for any K-equivariant local

system E on O�.

Proof. (1) Assume that �i0 � �i0+1 > 3. Let m = i0, ↵ = 1i0 , � = (�1 � 2, . . . , �i0 � 2, �i0+1, . . .).
Then O� = Indg1lm1 ⇢pm1

O↵,� . Let u 2 O↵,� and v 2 O�\(u+(nPm)1). Note that AK(v) ⇠= ALm
K
(u).

It then follows from Proposition 4.4 that for each irreducible K-equivariant local system E on
O�, IC(O�, E) is a direct summand of Indg1lm1 ⇢pm1

IC(O↵,� , E0) for some irreducible LK-equivariant

local system E0 on O↵,� . As before, this shows that F(IC(O�, E)) has smaller support.
In the case when � has only even parts, we let O!

� = Indg1lm1 ⇢pm1
O!

↵,� , if m < N/2, and we let

O!
� = Indg1

ln,!
1 ⇢pn,!

1
O↵,� , if m = N/2 = n, where ! = I, II. The proof for O!

� then proceeds in the
same way.

(2) We argue by induction on g�. If g� = 0, then (2) follows from (4.12) and Corollary 4.8.
Assume by induction hypothesis that (2) holds for all µ with gµ < g�.

Assume first that � has at least one odd part. Suppose that i1, . . . , ik are such that
�ij � �ij+1 = 2, where k = g�.

Let a = (a1 > a2 > · · · > ak > 0) be a partition such that a 6= ;, ak 6 1, and al 6 al+1 � 1.
Note that the number of such partitions is 2k�1. Consider a partition µ(a) such that µl = �l � 2aj
for l 2 [ij�1+1, ij ]. Then µ(a) satisfies that µ(a)i�µ(a)i+1 6 2 and gµ(a) < g�. Moreover, µ has

at least one odd part, and f� � g� = fµ(a) � gµ(a). Let m =
Pk

j=1 ij . We have that

Indg1lm1 ⇢pm1
Oa,µ(a) = O�.

By induction hypothesis, there are 2f��g��1 irreducible K-equivariant local systems E on Oa,µ(a)

such that F ( IC(Oa,µ(a), E) has full support. By Corollary 4.5, we have that

Indg1lm1 ⇢pm1
IC(Oa,µ(a), E) = IC(O�, Ẽ).

This gives rise to (2k � 1) · 2f��g��1 = 2f��1 � 2f��g��1 irreducible K-equivariant local systems
Ẽ on O� such that F ( IC(O�, Ẽ) has smaller support (with a varying).

The case when all parts of � even can be argued in the same way. Note that in this case
g� = f�.

Let us write m� (respectively m
!
� , ! = I, II) for the number of irreducible K-equivariant local

systems Ẽ on O� (respectively O!
� ) such that F ( IC(O�, Ẽ) (respectively F ( IC(O!

� , Ẽ)) has full
support when at least one part of � is odd (respectively when all parts of � are even).

We conclude from the discussion above that

m� 6 2f��g��1 if � has at least one odd part,

respectively m
!
� 6 1 if all parts of � are even.

(4.13)
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Theorem 4.1 implies that the number of pairs IC(O, E) 2 AN such that suppF(IC(O, E)) = g1
is d(n) (see (4.1)), when N = 2n+ 1, and e(n) (see (4.2)), when N = 2n. In view of (4.13) and
claim (1) of the corollary, it su�ces to show that

X

�2P(2n+1)
�i��i+162

2f��g��1 = d(n),
X

�2P(2n),�i��i+162,
not all parts of � even

2f��g��1 + 2q(n) = e(n). (4.14)

This can be seen as follows. Note that when N is even, the number of orbits of the form O!
� ,

where all parts of � are even and �i � �i+1 6 2, is 2q(n). We know that

d(n) = Coe�cient of x2n+1 in
1

2

Y

s>1

(1 + x
s)2,

e(n) =
3

2
q(n) + Coe�cient of x2n in

1

2

Y

s>1

(1 + x
s)2.

A partition � satisfies that �i � �i+1 6 2 if and only if each part of the transpose partition
�
0 has multiplicity at most 2. We have f� = f�0 and g� equals the number of parts in �

0 with
multiplicity 2. It is easy to see that each �0 whose parts have multiplicity at most 2 appears inQ

s>1(1 + x
s)2 exactly 2f��g� times. Hence (4.14) follows. 2

Remark 4.10. In [CVX15a, Conjecture 1.2], we conjectured that one can obtain all nilpotent
orbital complexes by induction from those of smaller groups whose Fourier transforms have full
support. This conjecture follows from Corollary 4.8.

5. Cohomology of Hessenberg varieties

Hessenberg varieties, defined generally in [GKM06], arise naturally in our setting (for details,
see [CVX15b]). In particular, they arise as fibers of maps ⇡ and ⇡̌ in the following diagram

K/PK ⇥ g1

K ⇥PK E

⇡

✏✏

77

K ⇥PK E
?

⇡̌

✏✏

gg

N1 g1

where PK = P \ K for a ✓-stable parabolic subgroup P of G, E is a PK-stable subspace of
g1 consisting of nilpotent elements, and E

? is the orthogonal complement of E in g1 via a
K-invariant non-degenerate form on g1. The generic fibers of maps ⇡̌ are Hessenberg varieties.

In this section we discuss an application of our result to cohomology of Hessenberg varieties.
Let us fix s 2 grs1 and consider the corresponding Hessenberg variety

Hess := ⇡̌
�1(s) = {gPK 2 K/PK | g�1

sg 2 E
?}.

The centralizer ZK(s) acts naturally on Hess and it induces an action of the component group
⇡0(ZK(s)) ⇠= IN on the cohomology groups H⇤(Hess,C). Let

H⇤(Hess,C) =
M

�2I_N

H⇤(Hess,C)�

be the eigenspace decomposition with respect to the action of IN .
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Definition 5.1. The stable part H⇤(Hess,C)st of H⇤(Hess,C) is the direct summand
H⇤(Hess,C)�triv where �triv 2 I

_
N is the trivial character.

For simplicity we now assume ⇡̌ is onto. In this case ⇡̌ is smooth over grs1 (e.g. see [CVX15b,
Lemma 2.1]) and the equivariant fundamental group ⇡K1 (grs1 , s)

⇠= IN oBN acts on H
⇤(Hess,C)

by the monodromy action. Recall that for � 2 I
_
N , B� stands for the stabilizer of � in BN . Clearly,

each summand H
⇤(Hess,C)� is stable under the action of B�. Let �m 2 I

_
N , B�m , and Bm,N�m

be as in § 2.3. Assume that � is in the BN -orbit of �m. Then for any b 2 BN with b.� = �m

we have an isomorphism ◆b : B�
⇠= B�m , u ! bub

�1. Note that �triv = �0 and B�m = Bm,N�m

except when N is even and m = N/2. In that case, Bm,N�m is an index-2 subgroup of B�m .
Recall the algebra H�m,�1 = Hm,�1 ⌦ HN�m,�1 and their representations Dµ1 ⌦ Dµ2

introduced in § 2.3. Each H�m,�1 is a quotient of the group algebra C[Bm,N�m] and H�0,�1 =
H�triv,�1 = HN,�1 is the Hecke algebra of SN at q = �1.

Theorem 5.2. (i) Let �m 2 I
_
N be the representatives of BN -orbits in § 2.3. To every � 2 I

_
N

in the orbit of �m and an element b 2 BN satisfying b(�) = �m, the monodromy action of b on

H⇤(Hess,C) induces an isomorphism H⇤(Hess,C)� ⇠= H⇤(Hess,C)�m compatible with the actions

of B�

◆b⇠= B�m on both sides.

(ii) The action of C[Bm,N�m] on H⇤(Hess,C)�m factors through the algebra H�m,�1 and the

resulting representation is a direct sum of Dµ1⌦Dµ2 , µ
1 2 P2(m), µ2 2 P2(N�m). In particular,

the stable part H⇤(Hess,C)st is generated by irreducible representations of the Hecke algebra of

SN at q = �1.

Proof. Part (1) is clear. To prove part (2) we proceed as follows. By the decomposition theorem
⇡⇤C is a direct sum of shifts of nilpotent orbital complexes. Since F(⇡⇤C) ⇠= ⇡̌⇤C (up to shift),
Theorem 4.1 implies that a generic stalk of ⇡̌⇤C, which is isomorphic to H

⇤(Hess,C), is a direct

sum of the local systems Vµ1,µ2 = IndC[BN ]
C[Bm,N�m]Dµ1 ⌦Dµ2 introduced in (2.8). Since IN acts on

Vµ1,µ2 by the formula a.(b⌦ v) = ((b.�m)(a))(b⌦ v) for a 2 IN , b 2 BN and v 2 Dµ1 ⌦Dµ2 , we
have (Vµ1,µ2)� ⇠= Dµ1 ⌦Dµ2 . The theorem follows. 2

Example 5.3. Let C be the hyper-elliptic curve with a�ne equation y
2 =

QN
j=1(x � aj) (here

ai 6= aj for i 6= j). Assume N = 2n + 2 is even. Then according to [CVX17, § 2.3] the Jacobian
Jac(C) is an example of Hessenberg variety and the monodromy action of ⇡1(grs1 , s) factors
through BN , that is, H⇤(Jac(C),C) = H⇤(Jac(C),C)st. Let µk = (N � k, k) 2 P2(N) and Dµk

be the corresponding representation of HN,�1. Using [A’Ca79], one can check that the induced
action of the group algebra C[BN ] on Hi(Jac(C),C) factors through HN,�1 and for i 6 n the
resulting representation of HN,�1 is isomorphic to

Hi(Jac(C),C) ⇠=
[i/2]M

j=0

Dµi�2j

with the primitive part Hi(Jac(C),C)prim ⇠= Dµi .

Remark 5.4. It would be nice to have an explicit decomposition ofH⇤(Hess,C)�m into irreducible
representations of H�m,�1. For this one needs finer information for the bijection in Theorem 4.1
(see § 7). In [CVX15a, CVX17], we establish an explicit bijection for certain nilpotent orbital
complexes and we work out an explicit decomposition for the cohomology of the Hessenberg
varieties that are isomorphic to Fano varieties of k-planes in smooth complete intersections of
two quadrics in projective space.
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6. Representations of HN,�1

In this section we show that all irreducible representations of the Hecke algebra HN,�1 come
from geometry. Indeed they all appear in intersection cohomology of a Hessenberg variety with
coe�cient in a local system. In particular, this shows that all irreducible representations ofHN,�1

carry a Hodge structure. In particular, the irreducible representations of HN,�1 can be viewed
as variations of Hodge structure.

Let O be a nilpotent K-orbit on g1 and L an irreducible K-equivariant local system on O.
We call (O,L) a nilpotent pair. Following [LY17], we associate to each nilpotent pair (O,L) two
families of Hessenberg varieties HessL,±1 ! g1 together with local systems L̂±1 on open subsets

�
HessL,±1 ⇢ HessL,±1.

Let x 2 g1 be a nilpotent element in O. Choose a normal sl2-triple {x, h, y} and let

g(i) = {v 2 g | [h, v] = iv}, g0(i) = g(i) \ g0, and g1(i) = g(i) \ g1.

For any N 2 Z we write N 2 {0, 1} for its image in Z/2Z. Define

pxN =
M

k>2N

gN (k), lxN = gN (2N), and lx =
M

N2Z
lxN .

One can check that lx ⇢ g is a graded Lie subalgebra of g and x 2 lx1 = g1(2). Let L
x
0 ⇢ K be

the reductive subgroup with Lie algebra lx0 = g0(0). By [LY17, 2.9(c)], the restriction

L0
1 := L|lx1

is an irreducible L
x
0-equivariant local system on the unique open L

x
0-orbit

�
lx1 on lx1 .

According to [Lus95], there exists a graded parabolic subalgebra q =
L

N2Z qN of lx, a Levi

subalgebra m =
L

N2ZmN of q, and a cuspidal local system L1 on the open M0-orbit
�
m1 of m1

(here M0 is the reductive subgroup of Lx
0 with Lie algebra m0) such that

some shift of the IC-complex IC(lx1 ,L0
1) is a direct summand of Ind

lx1
m1⇢q1 IC(m1,L1).

In addition, we have
F(IC(m1,L1)) ⇠= IC(m�1,L�1),

where L�1 is a cuspidal local system on the unique open orbit
�
m�1 ⇢ m�1.

Define q̂N to be the pre-image of qN under the projection map pxN ! lxN . Let QK ⇢ K be the

parabolic subgroup with Lie algebra q̂0. Denote by
�
q̂±1 the preimage of

�
m±1 under the projection

map q̂±1 ! q±1 ! m±1. The group QK acts naturally on q̂±1 and
�
q̂±1 and we define

HessL,±1 := K ⇥QK q̂±1,
�

HessL,±1 := K ⇥QK
�
q̂±1.

Let
⇡L,±1 : HessL,±1 ! g1, (x, v) ! xvx

�1

and let
�
⇡L,±1 be its restriction to

�
HessL,±1. For any s 2 g1, we denote by HessL,±1,s and

�
HessL,±1,s

the fiber of ⇡L,±1 and
�
⇡L,±1 over s, respectively.
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There are natural maps

hL,±1 : HessL,±1 ! [m±1/M0],
�
hL,±1 :

�
HessL,±1 ! [

�
m±1/M0]

sending (k, v) 2 HessL,±1 = K⇥QK q̂±1 to v̄, the image of v 2 q̂±1 under the map q̂±1 ! m±1 !
[m±1/M0]. We define the following local system

L̂±1 := (
�
hL,±1)

⇤L±1

on
�

HessL,±1. Here we view the M0-local systems L±1 as sheaves on [
�
m±1/M0].

Example 6.1. Consider the nilpotent pair (O,L = Ltriv) where Ltriv is the trivial local system
on O. Using [Lus95, Proposition 7.3] one can check that in this case q =

L
N2Z qN is a Borel

subalgebra of lx and m =
L

N2ZmN is a Cartan subalgebra. Moreover the grading on m is
concentrated in degree zero, i.e., m = m0, and the cuspidal local system L±1 is the skyscraper

sheaf supported on m±1 = {0}. It follows that in this case HessLtriv,±1 =
�

HessLtriv,±1 and L̂±1 is
the constant local system.

In [LY17, § 7], the authors prove the following:

(⇡L,�1)⇤ IC(HessL,�1, L̂�1)is the Fourier transform of (⇡L,1)⇤ IC(HessL,1, L̂1). (6.1)

Some shift of IC(O,L) (respectively the Fourier transform of IC(O,L)) appears in
(⇡L,1)⇤ IC(HessL,1, L̂1) (respectively (⇡L,�1)⇤ IC(HessL,�1, L̂�1)) as a direct summand.

(6.2)

Assume from now on that ⇡L,�1 : HessL,�1 ! g1 is surjective. Then the sheaf

(⇡L,�1)⇤ IC(HessL,�1, L̂�1) is smooth over grs1 . One sees this as follows. According to the first

statement of (6.1) the characteristic variety of (⇡L,�1)⇤ IC(HessL,�1, L̂�1) coincides with that of

(⇡L,1)⇤ IC(HessL,1, L̂1) as they are Fourier transforms of each other. But (⇡L,1)⇤ IC(HessL,1, L̂1)
is K-equivariant and supported on the nilpotent cone. A straightforward calculation then shows
the smoothness of (⇡L,�1)⇤ IC(HessL,�1, L̂�1) on grs1 . Thus, by the decomposition theorem, we
conclude that

(⇡L,�1)⇤ IC(HessL,�1, L̂�1)|grs1 is a direct sum of shifts of irreducible local systems. (6.3)

In addition, the IC(HessL,�1, L̂�1) and hence (⇡L,�1)⇤ IC(HessL,�1, L̂�1) has a canonical
structure as a Hodge module and thus the direct summands are IC-extensions of irreducible
variations of pure Hodge structure, see, [Sai88].

We fix a generic s 2 grs1 and then

H
⇤((⇡L,�1)⇤ IC(HessL,�1, L̂�1))s = IH*(HessL,�1,s, L̂�1). (6.4)

Thus we obtain an action of the fundamental group ⇡
K
1 (grs1 , s) on IH*(HessL,�1,s, L̂�1) and by

the discussion above this action breaks into a direct sum of irreducible representations which are
also variations of Hodge structure.

The component group ⇡0(ZK(s)) ⇠= IN acts on IH*(HessL,�1,s, L̂�1) and we write

IH*(HessL,�1,s, L̂�1) =
M

�2I_N

IH*(HessL,�1,s, L̂�1)�

for the corresponding eigenspace decomposition.
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Definition 6.2. The stable part IH*(HessL,�1,s, L̂�1)st of IH*(HessL,�1,s, L̂�1) is the direct

summand IH*(HessL,�1,s, L̂�1)�triv where �triv 2 I
_
N is the trivial character.

Observe that IH*(HessL,�1,s, L̂�1)st is stable under the monodromy action of ⇡K1 (grs1 , s).
Moreover, the action factors through the braid group BN via the quotient map ⇡K1 (grs1 , s) ! BN .

For every irreducible representation Dµ of HN,�1, let Vµ be the local system on grs1 associated
to Dµ. By Theorem 4.1, there exists a unique nilpotent pair (Oµ,Lµ) such that F(IC(Oµ,Lµ)) ⇠=
IC(g1, Vµ).

Theorem 6.3. Let Dµ be an irreducible representation of HN,�1 and let (Oµ,Lµ) be the

associated nilpotent pair as above. We have the following.

(i) The map ⇡Lµ,�1 is onto, the action of the braid group BN on IH*(HessLµ,�1,s, L̂µ,�1)st
factors through the Hecke algebra HN,�1 and IH*(HessLµ,�1,s, L̂µ,�1)st is a direct sum of

irreducible representations of HN,�1.

(ii) Dµ appears in IH*(HessLµ,�1,s, L̂µ,�1)st with non-zero multiplicity.

Proof. Since for every irreducible subrepresentation W of IH*(HessLµ,�1,s, L̂µ,�1)st the
corresponding Fourier transform F(IC(g1,W)) is supported on the nilpotent cone (here W
is the local system on grs1 associated to W ), the same argument as in the proof of Theorem 5.2
implies part (1). Part (2) follows from (6.1), (6.2), and (6.4). 2

7. Conjecture on more precise matching

In Theorem 4.1 we show that the Fourier transform establishes a bijection between two sets
of intersection cohomology sheaves. In this section we formulate a conjecture which refines the
bijection in Theorem 4.1. We also relate the conjecture to our earlier conjectures in [CVX15b].
Our conjecture is not strong enough to produce an exact matching. The exact description of the
bijection is crucial for applications, for example, computing cohomologies of Hessenberg varieties
as explained in § 5.

We begin with associating to each nilpotent orbit O� (respectively O!
� , ! = I, II) a subset

⌃� ⇢ ⌃N (respectively ⌃!
� ⇢ ⌃N ), if � 2 P(N) has at least one odd part (respectively has only

even parts). Let � be a partition of N and let �0 be the transpose partition of �. Suppose that

�
0 = (�01)

2m1 · · · (�0l)2ml(�0l+1)
2ml+1�1 · · · (�0k)2mk�1

, (7.1)

where mi > 1, i = 1, . . . , k. Here and in what follows we write the parts in a partition in the order
which is most convenient for us. In particular, in (7.1) we place the parts with even multiplicity
before the parts with odd multiplicity.

Let �i 2 {0, 1} for i 2 [1, l] and let

⌫(�1, . . . , �l) = (�01)
m1��1 · · · (�0l)ml��l(�0l+1)

ml+1�1 · · · (�0k)mk�1
,

µ(�1, . . . , �l) = (�01)
2�1 · · · (�0l)2�l(�0l+1) · · · (�0k).

Note that 2|⌫(�1, . . . , �l)|+ |µ(�1, . . . , �l)| = N . Let

J ⇢ J0 := {l + 1, . . . , k} such that
X

j2J
�
0
j <

X

j2J0�J

�
0
j .
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We define
µ
1(�1, . . . , �l; J) = (�01)

�1 · · · (�0l)�l(�0j1) · · · (�
0
js), J = {j1, . . . , js}.

µ
2(�1, . . . , �l; J) = (�01)

�1 · · · (�0l)�l(�0i1) · · · (�
0
ik�l�s

), J0 � J = {i1, . . . , ik�l�s}.

Note that �0l+1 = 0 if and only if all parts of � are even. In this case, J0 = ; = J and
µ
1(�1, . . . , �l; J) = µ

2(�1, . . . , �l; J) and we write µ(�1, . . . , �l) = µ
i(�1, . . . , �l; J), i = 1, 2.

If � has at least one odd part, then let

⌃� :=

⇢
(⌫(�1, . . . , �l);µ

1(�1, . . . , �l; J), µ2(�1, . . . , �l; J)) | �i 2 {0, 1}, i = 1, . . . , l,

J ⇢ {l + 1, . . . , k}, such that
X

j2J
�
0
j <

X

j2J0�J

�
0
j

�
.

If all parts of � are even (in which case �0l+1 = 0), then let

⌃!
� = {(⌫(�1, . . . , �l);µ(�1, . . . , �l), µ(�1, . . . , �l))! | �i 2 {0, 1}, i = 1, . . . , l}, ! = I, II.

We have |⌃�| = 2k�1 (respectively |⌃!
� | = 2l), which equals the number of non-isomorphic

irreducible K-equvariant local systems on O� (respectively O!
� ).

Conjecture 7.1. Let � be a partition of N .
(1) If � has at least one odd part, then the Fourier transform F induces the following bijection:

F : {IC(O�, E) | E irreducible K-equivariant local system on O�(up to isomorphism)}
⇠�! {IC(g|⌫|1 , T (⌫;µ1

, µ
2)) | (⌫;µ1

, µ
2) 2 ⌃�}.

Moreover,

F(IC(O�,C)) = IC(g|⌫0|1 , T (⌫0;µ
1
0, µ

2
0))

where (⌫0;µ1
0, µ

2
0) 2 ⌃� is the unique triple such that |⌫0| = max{|⌫|, (⌫, µ1

, µ
2) 2 ⌃�} and the

parts of µ1
0 and the parts of µ2

0 have the opposite parity (in particular, all parts of µi
0 have the

same parity).
(2) If all parts of � are even, then the Fourier transform induces the following bijection

F : {IC(O!
� , E) |! = I, II, E irreducible K-equivariant local system on O!

� (up to isom)}
⇠�! {IC(g|⌫|1 , T (⌫;µ, µ)!) | ! = I, II, (⌫;µ, µ)! 2 ⌃!

� , µ 6= ;}
[
�
IC(gn,!1 , T (⌫; ;, ;)) | ! = I, II, (⌫; ;, ;) 2 ⌃!

�

 
.

Moreover,
F(IC(O!

� ,C)) = IC(gn,!1 , T (⌫0; ;, ;)),
where |⌫0| = n and (⌫0; ;, ;) 2 ⌃�.

Note that F(IC(O�, E)) has full support if and only if ⌫(�1, . . . , �l) = ;. Thus we see that the
conjecture is compatible with Corollary 4.9. We also remark that special cases of the conjecture
are verified by [CVX15a, Theorems 4.1 and 4.3].

Let us relate the conjecture above to our previous conjectures in [CVX15b]. In [CVX15b] we
constructed local systems E2n+1

i,j and eE2n+1
i,j on grs1 . In terms of the parametrization introduced
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in this paper, we have
E

2n+1
i,j = T (;; (2i� j, j), (2n+ 1� 2i))

eE2n+1
i,j = T (;; (2i� 1� j, j), (2n+ 2� 2i)).

Thus we see that Conjecture 7.1 applied to E2n+1
i,j agrees with [CVX15b, Conjectures 6.1 and 6.3].

Applied to eE2n+1
i,j , Conjecture 7.1 implies that the supports of F(IC(g1, eE2n+1

i,j )) are as follows:

O3j22i�2j�112n+3�4i+j if 4i� j 6 2n+ 3,

O3j22n+2�2i�j14i�j�2n�3 if 2i+ j 6 2n+ 2 and 4i� j > 2n+ 3,

O32n�2i+222i+j�2n�212i�2j�1 if 2i+ j > 2n+ 2.

Note that the above orbits are all of even dimension and each of the even-dimensional orbits
appears twice there.
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