
Viewing the 360◦ Future: Trade-Off Between User

Field-of-View Prediction, Network Bandwidth, and Delay

Shahryar Afzal

Computer Science and Engineering

University of California, Riverside

Riverside, CA, USA

safza001@ucr.edu

Jiasi Chen

Computer Science and Engineering

University of California, Riverside

Riverside, CA, USA

jiasi@cs.ucr.edu

K. K. Ramakrishnan

Computer Science and Engineering

University of California, Riverside

Riverside, CA, USA

kk@cs.ucr.edu

Abstract—Predicting a user’s field-of-view (FoV) accurately
can help to significantly reduce the high bandwidth requirements
for 360◦video streaming, as it enables sending only the tiles
corresponding to the predicted FoV. Since many approaches for
user head-orientation (i.e., FoV) prediction have been proposed
in the literature, ranging from simple linear regression to more
complex neural networks, it is difficult to comprehensively decide
which method to use. Towards resolving this gap in knowledge,
in this work we benchmark user prediction algorithms over an
aggregation of multiple datasets and study the implications of
this analysis. Our results demonstrate that it is indeed difficult
for any prediction algorithm to accurately predict a user’s FoV
beyond a very short future time window of approximately 300
ms. We also observe that users’ viewing behavior is dominated
by sideways head movement, rather than up-and-down. These
findings have implications on network bandwidth, latency, and
playback buffering at the client: (1) Extra “padding” tiles are
needed around the user’s FoV in order to correct for prediction
errors; in particular, a rectangular padding achieves lower stall
rate than square padding, for the same bandwidth usage; (2)
Video playout buffers, network delay, and jitter need to be small
in order to avoid stale predictions of the user’s field-of-view,
which are only valid 300 ms into the future; (3) Per-video and
per-user personalization of the padding can save bandwidth for
slow-moving users or videos. We mathematically quantify these
tradeoffs and present simulation results to demonstrate these
findings and implications. Our results have implications for FoV
prediction methods in future 360◦streaming systems.

I. INTRODUCTION

360◦videos provide a more immersive user experience, and

entertainment providers are increasingly offering 360◦videos

on their online platforms (e.g., YouTube, CNN). However,

from a networking perspective, 360◦videos pose a significant

challenge as they require substantial amounts of bandwidth

(20-30 Mbps) in comparison to standard two-dimensional (3-

6 Mbps). There have been a number of efforts to reduce the

bandwidth consumption for delivering 360◦videos [1], [2], [3].

One of the most common approaches is to deliver only a

portion of the 360◦video. As opposed to regular videos where

the whole scene is viewed by the user, in 360◦videos, only

a portion of the scene – the field of view (FoV) – is viewed

by the user at any given time, reducing the bandwidth usage

by almost 80% [4], [5]. This partial viewing is supported by

modern video codecs such as HEVC [6], [4], which allow for

partitioning the video into tiles (illustration in Fig. 1).

Being responsive to what the user is currently viewing in her

FoV requires the system to support an extreme level of interac-

tivity: the user’s head orientation needs to be determined, the

FoV computed, and the corresponding tiles of the 360◦video

delivered from the server. Academia and industry have been

actively studying FoV prediction (i.e., how to predict the

user’s head orientation at some point in the future), and using

this to request the tiles of the 360◦video encompassing the

expected FoV of the user, thereby both reducing the amount

of bandwidth consumed while at the same time ensuring that

the user’s quality-of-experience (QoE), in terms of infrequent

stalls, is maintained [7], [8], [9], [10]. Most of the systems

designed to efficiently stream 360◦videos [2], [11], [1] depend

on accurate user FoV predictions.

Challenges: Predicting the user’s head orientation/FoV and

choosing which portions of the video to transmit is chal-

lenging, especially as we seek to predict further and further

ahead into the future if the system has a large playback delay.

These challenges are caused by the erratic nature of the user’s

head movement, as the user’s head orientation depends on a

number of characteristics, such as the user’s usual behavior

itself (relatively active users vs. passive users), the nature

of the video (content with lot of action and movement vs.

relatively static content), objects and actions of interest in the

content, location of those interesting objects in the content

(always in front vs. being located all around), the amount of

inherent motion in the content, etc. Tiling of the video helps to

an extent, because of the coarser spatial granularity at which

the prediction can be made, but cannot fully alleviate user

prediction challenges.

Related work: There have been a number of methods

proposed to predict the user’s head orientation or FoV. These

approaches range from simple linear regression methods [2],

[1], [12] or k-nearest neighbor [7], [8] to more sophisticated

machine learning such as decision trees or neural networks [7],

[9]. The inputs to these prediction methods are typically the

recent history of head orientation of the current user, and

optionally the historical data of previous users viewing the

same 360◦video in the past, and the output is the predicted

head orientation/FoV of the current user. These prediction

methods have been typically designed and evaluated ad hoc

across disparate datasets, both public [13], [14], [10] and





(a) Quaternions (q0, q1, q2, q3) (b) Cartesian coordinates (x, y, z) (c) Longitude/latitude

Fig. 2: Examples of different representations of the same head orientation trace. The same trace looks quite different under

different representations, which can then affect the prediction method.

• Dataset 1 [13]: There are 59 users watching 7 different

videos, with average video length of 3.5 minutes.

• Dataset 2 [14]: There are 48 users watching 18 videos, with

average video length of 3.8 minutes. In the first 9 videos,

users are allowed to explore the videos as they wish, while

in the latter 9 videos, users are told they will be quizzed on

the video content. Unless otherwise specified, we consider

the first 9 videos in this work in order to be comparable

with datasets 1 and 3.

• Dataset 3 [10]: There are 45 users watching 208 videos.

Each video is watched by a subset of all users (ranging from

28-34 users). The video length ranges from 20-60 seconds.

Head-orientation representation: There are multiple ways

to represent the user’s head orientation, including angu-

lar orientation (used by [2], [11], [9]), latitude/longitude,

Cartesian coordinates on the sphere or video plane (used

by [10]), Quaternions (used by [13], [14]), and Axis-angle

representations. Latitude/longitude is similar to angular ori-

entation (yaw, pitch, and roll), except neglecting the roll

dimension (which is empirically uncommon among users).

Quaternion and axis-angle representations are commonly used

in virtual reality [16], and represent rotation in 3D space

by defining a vector (axis of rotation) v = (v1, v2, v3)
and an angle θ. The axis-angle representation is written as

(θ, v1, v2, v3), while the quaternion representation is defined

as
(

cos
(

θ
2

)

, v1 sin
(

θ
2

)

, v2 sin
(

θ
2

)

, v3 sin
(

θ
2

))

. Examples of

different representations are shown in Fig. 2.

Dataset pre-processing: We have undertaken a number of

steps to pre-process the datasets. In our experience, these pre-

processing steps, particularly the head orientation representa-

tion and time series differencing, can have a significant impact

on the performance of the prediction methods (see Sec. II-B).

1) Interpolation: Each dataset records the head orientations

with a different sampling frequency. Since we are do-

ing per-frame prediction, we desire one data point per

frame; therefore, we remove extra data points per frame,

and also perform linear interpolation (using the SLERP

method [17]) to make the sampling frequencies consistent

across the three datasets.

2) Conversion to common representation: As discussed

in Section II-B, we convert the datasets to a common

head orientation representation - namely, the Cartesian

representation.

3) Differencing: Differencing (i.e., computing the difference

between the current data point and the most recent data

point) [18] is a well-known time series analysis technique,

and helps by making the time series have a more stable

mean and variance, which is then easier to model/predict.

4) Remove discontinuities: Because the head rotations are

limited to a specific range, e.g., [-180◦, +180◦] for

longitude or [-1, +1] for the axis-angle representation,

we apply a modulo of the interval length to the input

data to avoid these discontinuity issues.

2) Evaluation Metrics: The evaluation metrics considered

in this paper are the following:

• Prediction Loss (in ◦): Prediction loss is defined as the

angular distance (smallest angle) between the actual and

the predicted user’s head orientation.

• Stalls: We consider a stall to occur if any part of the user’s

FoV is not available in the playout buffer, and requires the

client to request the missing information from the server.

• Bandwidth consumed (kbps): The bitrate of each tile is

estimated as the total bitrate of the video divided by the

total number of tiles. The total bandwidth consumed is the

sum of the bitrates of all the tiles sent to the user.

3) User Head-Orientation Prediction Methods: We have

chosen a variety of prediction methods to estimate the users’

head orientation, ranging from simple methods such as lin-

ear regression and k-nearest neighbors, to machine learning

methods such as decision trees and neural networks. Our goal

is capture the spirit of the main methods proposed in the

literature, and perform apples-to-apples comparison of them.



(a) Lookahead = 7 (b) Lookahead = 10 (c) Lookahead = 15

Fig. 3: CDF of prediction loss for different head orientation representations and lookaheads values. Cartesian coordinates plus

time differencing has the lowest prediction loss.

All prediction methods are trained on each video’s data using

a randomly selected subset of training users (70%), and tested

on the remaining users (30%). We also perform k-fold cross

validation, with the value of k = 5.

• Naive (used by [15]): This baseline prediction method

chooses the current head orientation as the predicted user’s

head orientation at a future time instant.

• Linear or Ridge Regression (RR): (used by [2], [12],

[1]): Linear regression is a simple and popular method

for user head orientation prediction. In ridge regression,

a regularization parameter is added that tends to avoid

complex models with many parameters, in order to avoid

overfitting, while still achieving high prediction accuracy.

• K-nearest neighbors (KNN): (used by [7], [8]) This

method finds the K historical users, across all time, whose

subsequence of head orientations are closest to the test

user’s current head orientation subsequence. The average

of these K historical users’ head orientations is output as

the predicted future head orientation of the test user.

• Decision trees (XGBoost): (used by [7]) XGBoost is a

popular machine learning library [19] using decision trees.

Since XGBoost by default only supports scalar outputs

predictions, we train and predict each individual coordinate

of the head orientation separately.

• Long short-term memory (LSTM): (used by [11], [7],

[10]) LSTM is a neural network architecture geared towards

time series prediction. It consists of cells and gates, and

uses feedback loops to maintain state and so produce better

predictions than the standard feedforward neural networks.

Hyperparameter selection: For each of the prediction meth-

ods described above, there are a number of hyperparameters

that can be set/optimized. Unless otherwise noted, we perform

grid search to find the best hyperparameter values. The hyper-

parameters common to all prediction methods include:

• Lookahead (L): The lookahead value specifies how many

frames into the future the head orientation prediction

method should predict.

• History window (H): The history window is how many

frames in the past should be used to predict the future

head orientation of the user. In the case of KNNs, the

history window is defined as the subsequence length. A

larger window size provides more information about the

user and potentially better predictions, but increases the

computational complexity.

There are also several hyperparameters specific to each predic-

tion method. Based on the grid search, for KNN, we selected

K = 5 and H = 1. For XGBoost, H = 10. For Ridge

Regression, the penalty weight (α) is selected from 1, 0.1,

0.01, 0.001, 0.0001, and H = 30. For LSTM, H = 10, and

there are two LSTM layers (the size of each layer and the

learning rate is determined by the grid search) and one output

layer (a dense layer with 4 neurons).

B. Comparison of User Prediction Algorithms

In this subsection, we benchmark the performance of the

user head orientation prediction algorithms across datasets,

carefully examining the impact of various parameters such

as head orientation representation and prediction lookahead

on the prediction loss. Our main findings are that: (1) Head

orientation representation and time differencing significantly

impacts prediction loss; (2) LSTMs, linear regression, and

decision trees have very similar prediction loss across all the

considered user prediction algorithms; and (3) Prediction loss

strongly depends on how far into the future the prediction

algorithm needs to predict (i.e., the lookahead value). Very

low lookahead values (e.g., 10 frames ∼300 ms) are needed

to achieve prediction loss of less than 7◦.

Impact of head orientation representation: Fig. 2 shows

an example of the same user trace plotted with different rep-

resentations. We can see that depending on the representation,

the data values change over time more smoothly or with higher

variance, which can impact the ease of prediction. Therefore

we compare the user head orientation prediction loss with the

different head orientation representation formats using ridge

regression in Fig. 3 (results for other prediction methods are

similar). The cases where differencing is applied is labeled

with “+ diff”. The Cartesian coordinates representation has the

lowest loss, followed by axis-angle and longitude/latitude. This

pattern persists across all lookahead values Fig. 3. Therefore,

we proceed with using the Cartesian representation (+diff)

for all datasets. Note that while differencing is a common

technique in time series analysis, it is typically not con-

sidered by existing FoV prediction methods [2], [11], [1].

Using differencing results in a prediction loss improvement

of approximately 5◦ on average across all lookahead values



(a) Comparison of user prediction algorithms
(lookahead L = 7).

(b) Comparison of user prediction algorithms
(lookahead L = 30).

(c) Impact of prediction lookahead.

Fig. 4: Comparing loss of the various prediction methods across all datasets. LSTM, ridge regression, and decision trees have

the lowest loss. Prediction loss is strongly dependent on how far into the future the prediction method needs to predict.

and representations, and hence we recommend the use of

differencing in future 360◦streaming.

Which prediction method has the lowest loss? We next

compare the prediction loss of the various user prediction

methods across all users and datasets. The CDF of the loss of

each frame across all videos and users are shown in Figs. 4a

and 4b, for two different lookahead values. The median loss of

ridge regression, XGBoost, LSTM, naive, and KNN is 24.0◦,

24.0◦, 24.1◦, 28.5◦, and 34.1◦, respectively, for a 30-frame

lookahead, with similar patterns for a 7-frame lookahead. We

observe that the prediction methods can be split into two

clusters: one cluster with relatively high prediction accuracy

(XGBoost, LSTM, RR, Naive), and the other cluster with low

accuracy (KNN). Intuitively, the relatively large gap between

the performance of the methods in the two clusters can be

explained by the fundamental nature of these algorithms.

KNN tries to find the most similar user(s) and copy the

similar users’ head orientations to make predictions. On the

other hand, XGBoost, LSTM, and linear regression can model

user behavior through their internal parameters (determined

during the training process), and find trends in user behavior,

resulting in better predictions. Unless otherwise specified, for

the remainder of this work, we use the Linear Regression

model as it has very similar performance to the other “good”

prediction methods (XGBoost and LSTM).

We also note that the Naive method has fairly good

performance, somewhere in between the sophisticated linear

regression and the KNN method. While simple, it has several

advantages: (1) prediction has negligible latency and compute

requirements, which can be helpful on resource-constrained

mobile devices; (2) there is no training process, making this

method usable for live videos that lack historical training data;

and (3) for video-on-demand, if additional viewing data is

collected from users, the naive method does not require re-

training, unlike the other prediction methods which would

require re-training to update the models. Thus the Naive

method can be considered a good candidate for user head

orientation prediction in 360◦streaming systems.

Per-user comparison: We also investigate the prediction

accuracy of individual users. Our hypothesis is that users with

more head movement should tend to have higher prediction

loss. To investigate this, we plot the average head movement

Fig. 5: Users’ average head movement (colorful bars) is

correlated with their prediction loss (black bars).

within one second for each user and each video, along with the

corresponding prediction loss. We plot examples of 4 videos

in Fig. 5 (for L=30). We make several observations: (1) The

relative amount of head rotations for each of the different

users remain about the same across different videos, i.e., the

users who move a lot in a given video tend to move a lot

while viewing other videos as well. For example, user 37 has

the lowest average movement in 2 of the 4 videos, and the

second-lowest average movement in the remaining 2 videos.

(2) Prediction loss is positively correlated with the magnitude

of the user’s movement. The black narrow bars in Fig. 5 show

the average prediction loss, and their height appears to be

positively correlated with the colorful bars representing the

user’s average head movement. This implies it is harder to

predict the FoV of the users who tend to move a lot, while

users who move less will have better prediction accuracy.

Combining the above two observations, users who tend to

be difficult to predict in one video also tend to be difficult



(a) Rank of user movement across
videos

(b) Rank of user head orientation
prediction loss across videos

Fig. 6: Rank of user movement and prediction loss (compared

to their peers) across videos (dataset 2, experiment 1). Users

tend to be consistent across videos, both in terms of user

movement and prediction loss.

to predict in other videos. To investigate this further, we

calculate the average head movement of each user for each

video, and rank the user’s head movement compared to her

peers. We then plot the distribution (box plot) of each user’s

rank across videos. We repeat this calculation for each user’s

prediction loss as well, and show all the results in Fig. 6.

As we can see, the order of the users are the same in

both the movement ranking and the prediction loss ranking,

suggesting the correlation between movement and prediction

loss. This suggests opportunities for personalizing each user’s

tile selection policy, as users who have more head movements

may require more extra padding tiles to account for their

movements. This implication is discussed in Section IV.

Impact of lookahead on prediction loss: We next evaluate

the impact of different prediction lookahead values on the

prediction loss, i.e., how far into the future can the user

orientation prediction method predict? We sweep lookahead

across several values of L = [7, 10, 15, 20, 25, 30] frames,

re-training each prediction method every time. The average

prediction loss of LSTM, linear regression, and Naive for

different lookahead values is shown in Fig. 4c (we focus

on these three algorithms because they have relatively low

prediction loss compared to the other methods, as discussed

earlier in this section). We can see that short-term predictions,

such as 7 frames ahead, result in lower prediction loss (e.g.,

3.6◦average loss when L = 7 for RR); while, predicting

further ahead into the future, such as 1-2 seconds ahead,

results in higher loss (e.g., 24◦average loss when L = 30
for RR). Such a 24◦prediction error in the vertical direction

would, for example, result in approximately 24◦/90◦≈25% of

the user’s FoV area being missing, causing a stall while the

system requests those missing tiles. Requesting the missing

tiles to correct the stall incurs at least an extra round-trip time,

plus the transmission and playout buffer delay. Even if some

extra visual information from around the FoV (i.e., padding)

was sent to accomodate for the prediction error, this would

still require a prediction accuracy of less than the size of that

padding. For example, a default 15◦of padding in the vertical

direction [15] would require prediction loss of less than 15◦to

avoid a stall, on average. It is well known that users are highly

sensitive to stalls [20]. So, the tolerable prediction loss should

be much less than 15◦to avoid a stall in the majority of cases.

In current practice, lookahead values are often set based

(a) % of stalls across all datasets,
without padding

(b) Bandwidth savings of perfect
prediction vs. sending all tiles,
for select videos (dataset 1)

Fig. 7: Importance of FoV-based 360◦streaming.

on chunk duration. 360◦videos are typically temporally split

into chunks of 1-second long or more, so prior work on

360◦streaming (e.g., [2], [11], [12]) mainly sets the user

prediction lookahead value to 1 second or more. For example,

Petrangeli et al. [12] predicts 1 second into the future, while

Flare [2] predicts 3 seconds into the future. However, based

on our results, we argue that a lookahead value of 1 second

or more is very difficult to predict accurately (i.e., has high

prediction loss of 24◦ when L = 30), potentially leading

to stalls and wasted network bandwidth by sending wrongly

predicted tiles. Hence we believe that user head orientation

prediction methods should set a very short lookahead value, in

order to avoid a number of associated problems: stalls, wasted

network bandwidth and overall poor QoE.

III. MITIGATING NETWORK BANDWIDTH NEEDS AND

STALLS WITH FOV PADDING

Building on predicting the user’s head orientation, we now

compute the tiles corresponding to the user’s FoV based on

her head orientation, and discuss how extra padding tiles can

be used to overcome FoV prediction errors, at the expense of a

carefully-managed increase in bandwidth usage. In particular,

we leverage the natural tendency of users to look side-to-side

rather than up-and-down and propose an asymmetric, wide

padding shape to account for user prediction errors.

Tile computation: We split each video into 72 equal-sized

tiles, with 6 tiles per column and 12 tiles per row of the

rectangular video [7], and define the FOV as 90◦× 90◦ [7].

To convert the user’s head orientation, which is ouput by the

user head orientation prediction methods, into the set of tiles

actually viewed by a user, we take the point representing

the center of the user’s FoV, find the area on the surface of

the sphere representing a 90◦× 90◦rectangle area (the FoV)

around that point, and compute the corresponding region of

the video using the equirectangular projection. Finally, we

choose the video tiles overlapping with the specified region.

An example is shown in Fig. 1.

Padding to reduce stalls: We first motivate why padding is

needed to reduce the fraction of frames that may contribute to

stalls. In our first experiment, we evaluate a baseline approach

of sending only exactly the tiles needed to cover the FoV of

the user, i.e., a default 90◦x 90◦FoV. Fig. 7a illustrates how

the lookahead (choosing 7 and 30 frame lookahead (which

we select as being at the two ends of the range of reasonable



Fig. 8: Heatmap of all users’ FoVs, across all datasets.

lookahead values based on our experiments)) impacts the

percentage of frames that have a stall (across all videos,

datasets, and head orientation prediction algorithms). Similar

to the trend in Fig. 4c, as the lookahead increases, the fraction

of stalls increases. This is because as the lookahead increases,

the head orientation prediction loss increases, causing missing

tiles and thus stalls, and the client has to request the missing

tiles. Furthermore, we observe that the absolute values of the

stall percentage is quite high (>30% of frames have stalls

when lookahead is 7 frames, and more than 70%(!) of frames

have stalls when the lookahead is 30 frames), suggesting that

a baseline approach of only sending the minimum tiles needed

to cover the FoV is clearly insufficient. Since prediction errors

are likely inevitable, especially for predicting further into

the future, additional padding tiles outside of the FoV need

to be added to mitigate the number of stalls [12]. Adding

more padding tiles decreases the risk of stalling, but increases

the network bandwidth requirement. In the extreme case, the

maximum size padding surrounding the predicted FoV would

mean the client will download all the tiles for each frame.

Optimizing padding shape to trade bandwidth for stalls:

Next, we study how to select the tiles that should be part

of the padding. Going beyond the simple intuitive approach

of selecting the tiles that are directly adjacent to the tiles in

the user’s FoV (e.g., symmetrically encircling the FoV), we

leverage a key insight about the users’ viewing behavior: most

of the movement results from users looking side-to-side. This

is demonstrated in Fig. 8, which shows a heatmap of all videos

from all three datasets. We find the tiles inside the FoV of each

user and count the number of times each tile is present inside

the FoV. The brighter a tile is in Fig. 8, the larger number

of times it has appeared inside the FoV of the users. This

suggests generally it is more likely that the users move along

the horizontal axis (i.e., change in longitude), and prediction

errors are also more likely along the horizontal axis. Thus,

padding horizontally around the user’s FoV is likely to help

reduce stalls more than adding padding vertically.

To show the implications of this, we plot the fraction of

stalls vs. bandwidth for different padding shapes and sizes

in Fig. 9. Bandwidth is normalized by the total bit rate

of each 360◦video, and stalls are normalized by the total

number of frames in each video. The green and dashed

red lines correspond to the same lookahead value (7, 10

or 15 frames) for the square and rectangular paddings. For

example, consider a lookahead of L = 10 frames and a

Fig. 9: Tradeoff between bandwidth usage and stalls, for dif-

ferent padding shapes and lookaheads. Rectangular paddings

are at the frontier of the region, i.e., they are Pareto-efficient.

30◦×20◦ padding as the “baseline” (this padding is in addition

to to the default FoV). A square 30◦×30◦ padding represents

expanding the FOV vertically, while a 40◦×20◦ padding rep-

resents a horizontal expansion. The square 30◦×30◦ padding

decreases stalls by 0.46% compared to the baseline 30◦×

20◦ padding, for a 3.4% increase in total bandwidth. How-

ever, the wide 40◦×20◦reduces stalls even further (1.53%),

with a lesser amount of additional bandwidth (only 1.89%

more bandwidth compared to the baseline) needed than the

30◦× 30◦ padding. Similar arguments hold when compar-

ing the 40◦×30◦padding with the 40◦×40◦padding (vertical

expansion), and the 50◦×30◦padding (horizontal expansion).

Overall, the horizontal, wide padding shapes tend to lie at the

Pareto frontier of the tradeoff between bandwidth and stalls.

Having made the case for rectangular paddings (horizontal

expansion), we now explore further the bandwidth/stall trade-

offs for different lookahead values. Intuitively, the padding

shape has a much bigger role at higher lookahead values (e.g.,

L = 15) , because higher lookahead values tend to result in

higher prediction losses (Sec. II-B). For example, in Fig. 9,

the rectangular 50◦×20◦padding, when L = 7 frames, saves

0.59% of stalls for the same bandwidth usage as compared

to the square 30◦×30◦padding; making the same comparison

when L = 15 frames, the rectangular padding saves 4.82% of

stalls. However, no matter the lookahead value, the horizontal

padding shapes (solid line in Fig. 9) tend to lie at the Pareto

frontier of the bandwidth-stall tradeoff, and square padding

shapes (dashed lines in Fig. 9) should be avoided since they

are interior points in the tradeoff region. Plotting the results in

another way, in Fig. 10, we see the average stall rates across

all videos across all datasets for different lookahead values.

We can easily see that the rectangular padding (50◦×20◦or

60◦×30◦) is more effective in terms of reducing the stall rate

than the square padding (30◦×30◦) for the same bandwidth.

This pattern is consistent across all lookahead values.

These results give us the opportunity to choose the padding

size based on the the preferred values for stall rate and



Fig. 10: Dependency between lookahead and stalls for differ-

ent padding sizes (dataset 1).

Fig. 11: Average stalls of selected users (dataset 2, exp. 1).

bandwidth usage. For example, if we choose to predict 10

frames ahead (L = 10) and want to have a stall rate of less

than 5%, then we need a padding size of 30◦×20◦. In this case

the bandwidth consumption is ∼35% (of the complete video’s

bandwidth). Or, if we choose to predict 15 frames ahead,

which enables us to have a larger playback buffer, we will need

at least a 60◦×30◦padding which consumes ∼45% bandwidth

on average. For the remainder of this paper’s experimental

results, unless otherwise stated, we fix the padding shape and

lookahead value. Based on the shape of the curve in Fig. 9, we

focus on 50◦×20◦padding and L = 10 as achieving a good

balance between the fraction of stalls and bandwidth usage,

with less than 5% stall rate (closer to about 3%) and only 40%

of the video’s total bandwidth.

IV. PERSONALIZATION PER USER AND PER VIDEO

A. Per User Personalization

Given that we use machine learning techniques to predict the

user head orientation and derive the expected FoV in the near

future, we seek ways to exploit these predictions to mitigate

the bandwidth demands even further. Recall that in Sec. II-B,

we observed that the viewing behavior of different users is

different, and a user that has less movement across one video

has the same behavior across other videos. As a result, we

seek to leverage these user level characteristics to customize

the client’s requests to the server for the corresponding video

tiles. The primary customization we explore is how to provide

variable-sized padding depending on the user. The goal is to

ensure their QoE is preserved while maximizing bandwidth

savings. Note that this personalization is enabled by prediction.

Fig. 12: Prediction loss is lower for the “Paris” video due to

audio narration biasing the users’ FoVs towards a common

region in the video (dataset 1).

Without the guidance from the prediction algorithms (e.g., if

one were to use the naive method [15]), it would be difficult to

customize the padding on a per-user basis, requiring a separate

means for learning/predicting individual user behavior.

When the user does not move much, how much smaller can

the padding be? We show in Fig. 11 that reducing the padding

to a 30◦×10◦ size still allows the users with small head

movement (e.g., users 37, 32, 19 from Sec. II-B) to have no

more than 5% stalls for lookahead = 15. As a 50◦×20◦padding

results in a 38.45% bandwidth usage (compared to streaming

the entire 360◦video), while a 30◦×10◦padding would only

use 31.96% bandwidth, a ∼6% saving in bandwidth can be

obtained as a result of personalization. Thus, customization

gives us another lever for mitigating the significant bandwidth

needs of 360 ◦video. This customization would have to be

done online in an incremental manner, using features learned

from the the user’s historical behavior. This could be done

in a holistic fashion, for example using neural networks (as

used for non-360◦video [21]) to both predict the FoV and

which padding shape to select, or in a modular fashion, for

example by creating a machine learning model to classify

users as high or low activity users, mapping the classification

result to padding size, and combining this with the FoV

prediction to choose the set of tiles to deliver. In both cases,

the system would have to continuously receive feedback about

the user’s behavior and adapt the padding size online as more

information is collected.

B. Per Video Personalization

Guided videos: We can also consider adapting to individual

videos instead of individual users, especially for delivering

stored video, by learning the behavior of all of the users

viewing a particular video. This is based on the intuition that

some videos result in very active viewing patterns, while other

videos result in more stationary viewing patterns across users.

For example, Fig. 12 shows the average prediction loss of

two videos from the Dataset 1. “Paris” and “Venice” are two

videos of the same “sightseeing” genre. However, the average

prediction loss is much lower for the video ”Paris” than video

”Venice”. The reason is that Paris is an audio-guided video,

where a narrator points out the interesting regions to watch

in the video and the users, more or less, follow the guide’s

directions. Thus, for such videos where the users are biased



(a) Heatmap of users’ FoVs

(b) Percentage of stalls

Fig. 13: User viewing behavior and stall probability for two

videos. Video 0 has more concentrated user viewing patterns,

and hence experiences fewer stalls, for different lookahead and

padding sizes.

towards watching a specific region of the video or move in a

certain direction, the prediction methods tend to have higher

accuracy because they learn these patterns from the training

process. Thus, it is easier to predict the user’s head movement

for some videos.

Videos with disparate viewing patterns: Some videos also

tend to have different viewing patterns based on the nature of

their content. To show this, we choose two specific “unbiased”

videos from Dataset 2, experiment 1: video 0 and video 4.

Fig. 13a shows the corresponding heat maps of the center of

the users’ FoVs. As we can see, in video 0, center of the FoVs

are focused on one part of the frame, unlike video 4 where

users view much more of the video, in the horizontal direction.

Fig. 13b shows the average percentage of stalls across all

users for videos 0 and 4, for several lookahead values. The

difference between the stall results for these videos matches

the inference we make from the heat maps, in that video 4 has

a higher average stall percentage for the same padding size.

Further, the figure indicates that video 4 might benefit from a

larger padding (50◦×20◦) to get the stalls below 5% across all

users, while for video 0, it may be sufficient to use a smaller

(30×10) padding. However, the differences are not too large.

Besides padding, we also experimented with using features

from the video itself, such as motion vectors and pixel

intensities, to improve prediction accuracy and reduce stalls.

However, despite extensive experiments incorporating such

features into LSTMs, we were unable to find any perfor-

mance improvement (typically incorporating motion features

degraded prediction accuracy by 1-2◦), and therefore we did

not pursue content features further, and instead focused on

customized padding per-video.

Fig. 14: Per-video vs. per-user customization

C. Per-video vs. per-user personalization

Which of the above aspects - per user or per video per-

sonalization - is more beneficial or dominant? We carefully

examine the stalls experienced by the test users for 3 padding

shapes, 30◦×10◦, 50◦×20◦, and 60◦×30◦, across all 9 videos

in dataset 2, experiment 1. We show the box plots in Fig. 14.

There are two takeaways from these results: (a) The variation

in stall rate for the same user watching different videos is

relatively small (small size of boxes in top plot of Fig. 14).

For example, user 37 has very similar stall rates across all the

9 videos that this user watched. (b) The variation in stall rate

for the same video watched by different users is relatively high

(large size of boxes in bottom plot of Fig. 14). This is due to

the fact that different users have different behavioral patterns

when watching the same video. For these reasons, per-user

customization seems to be more beneficial than customization

on a per-video basis. For example, if we consider user 37

and try to pick a good personalized padding size, we can

see that this user is not very active and a 30◦×10◦ padding

would suffice to keep the average stall rate below 5% (the

horizontal dashed line), across videos watched by that user.

The same applies to user 32 and 19. We need bigger padding

sizes for more active users, i.e., 50◦×20◦for users 18 and 47,

and 60◦×40◦for users 28, 21, and 25.

On the other hand, choosing the padding size based on the

video leads to a one size fits most approach, as all but 2 of the

videos in Fig. 14 bottom plot require a 60◦×40◦ padding size

to stay under a 5% stall target (horizontal dashed line), missing

on opportunities for bandwidth savings compared to per-

user personalization, in which a 30◦×10◦or 50◦×20◦ padding

suffice for the majority of users.



user prediction 
lookahead (L)

- (network 1 delay)/3

network jitter (σ)

network 2 with 
higher delay

network 1 with 
lower delay

max jitter of 
network 1

300 ms

max jitter of 
network 2

- (network 2 delay)/3

Fig. 15: Relationship between network delay, jitter, and pre-

diction lookahead.

V. RELATIONSHIP BETWEEN LOOKAHEAD, PLAYOUT

DELAY, AND NETWORK DELAY

The low lookahead value of 300 ms discussed in Sec. III has

implications for the frames’ playout delays and the tolerable

network delay and jitter for streaming 360◦videos. Specifi-

cally, predicting the user’s head orientation only 300 ms into

the future in order to achieve low stalls implies that the total

time from the tile request to rendering at the client, i.e., the

round-trip time plus the frame playout delay, must also be less

than 300 ms. Otherwise, the prediction will be stale. This is in

contrast to prior work that sets the prediction lookahead value

to much higher values, e.g., 2 seconds [11], [22], 3 seconds [2],

1-4 seconds [12], 2-6 seconds [8], etc., which allows for much

higher network delays.

We can derive the relationship between user prediction

lookahead, playout delay, network delay, and network jitter

as follows. The playout delay of a frame is commonly set

as [23]:

Tplayout[i] = 3σ (1)

where Tplayout[i] is the time from when a frame i arrives

at the client to when it is displayed to the user, and σ is the

standard deviation of the packet inter-arrival time as measured

by the client. The factor of 3 is due to approximating the inter-

packet arrival time as a Gaussian distribution (which has been

found to be a reasonable approximation in practice [24]), and

allowing for 3 standard deviations of possible delay. Then the

total round-trip delay from when a frame is requested to when

it is received and displayed is:

Tplayout[i] + Tnetwork[i] + Trender ≤ L (2)

where Tnetwork[i] is the network delay RTT experienced by

frame i, Trender is the frame rendering time, and L is how

far ahead the user prediction method is must predict (i.e., the

lookahead value).

Eqn. 2, while simple, gives a rule of thumb for the tolerable

network RTT and jitter based on the user head orientation

prediction method’s lookahead parameter. Fig. 15 illustrates

Eqn. 2 and shows the maximum tolerable jitter values for

different network RTTs and lookahead values. For example,

network 1 (green) has a lower RTT than network 2 (blue), so

it has a higher tolerable jitter. Network 2 (blue) with a higher

RTT has a lower maximum tolerable jitter, or could even be

infeasible for 360◦video streaming if the network RTT or jitter

is high enough. These tolerable network delay values are much

more stringent than those typically allowed in regular non-

360◦video today. For example, the 5G QoS guidelines [25] for

regular non-360◦buffered video allow a packet delay budget

of up to Tnetwork = 300 ms, or approximately 600 ms round-

trip, for which there is no feasible jitter value that satisfies the

inequality in Eqn. 2, when the lookahead is 300 ms. However,

the 5G guidelines for voice and live streaming guarantee a

much stricter packet delay budget of Tnetwork = 100 ms,

implying that the jitter needs to be σ ≤ 33 ms in order to

have an acceptable low probability of stalls. (Note that here

we assume rendering time Trender is negligible, although the

formula allows for non-zero values). Overall, these numerical

examples and equations demonstrate that in order for the user

FoV prediction to be useful, 360◦video streaming is only

effective for very low network delay RTTs and jitter.

Another way of interpreting Eqn. 2 is based on real-

world observed network performance. An RTT of 122 ms

to request and retrieve a 360◦video frame from a mobile

edge cloud (as reported in [15]), an an approximate jitter

of 51 ms (calculated by approximating the measured 90th

and 10th percentile as 4σ), gives a total lookahead of 275

ms, which is within the recommended 300 ms to achive low

prediction loss. However, the network delay values observed

for a centralized cloud site [15] (212 ms RTT, 58 ms jitter)

would result in a lookahead value of 386 ms, which is barely

outside our recommended 300 ms. Thus, while some types

of network deployments (e.g., edge-based cloud architectures)

can meet the stringent requirements of 360◦video streaming,

other deployments (e.g., centralized cloud) may find it more

difficult to meet the latency requirements, and the level of

interactivity, in 360◦video streaming. While Freedom [15] also

relates network delay to 360◦ streaming performance on edge

networks, our ability to use predictions and user-customized

rectangular padding significantly improves the user QoE and

network bandwidth requirements, even in a more challenging

cloud deployment with higher latencies.

VI. RELATED WORK

User head orientation and FoV prediction: Head orien-

tation and FoV prediction approaches in the literature range

from simple linear regression [2] and KNNs [8] to more

complex models such as neural networks. Neural network

variants employed for user head orientation prediction include

LSTMs [7], LSTMs with content features [10], or attention-

based neural networks [9]. However, such approaches are eval-

uated across disparate datasets and compared against subsets

of prediction methods, whereas this work benchmarks such

prediction methods on common datasets, focusing on methods

that rely on user history only which are commonly used in

360◦streaming systems [2], [11].



Tile encoding: The HEVC codec [6] allows developers to

spatially partition the video into multiple tiles and encode

each tile individually. Some works use homogeneous tiling

schemas (same sized tiles) and some use heterogeneous tiling

schemas [26], [27], [28], [29], [30], [31]. This work focuses

on tiles produced by an equirectangular projection, which is

one of the most widely used projection schemes, but its core

results on user head orientation prediction can be applied to

tiles of any shape.

360◦tile selection: Flare [2], Rubiks [11], Pano [1], and

Petrangeli et al. [12] are 360◦streaming systems, incorporating

FoV prediction modules and/or tile selection modules. Our

insights into FoV prediction performance can lead to improve-

ments in these systems’ FoV prediction modules, and also has

implications for their playout buffer setting (Sec. V).

Padding: Padding can be chosen as surrounding the FoV

symmetrically [12], [32], [33], or irregularly based on complex

algorithms such as model-predictive control or knapsack prob-

lems [8], [2], [11], [1]. In contrast, this work finds a middle

ground by proposing an asymmetric padding that is wider than

it is tall, providing a simple padding selection mechanism

that outperforms existing symmetric padding and can avoid

complex tile selection algorithms. Furthermore, this work also

explores customized, per-video and per-user padding settings

in order to further optimize streaming performance.

VII. CONCLUSIONS

In this paper, we took a detailed look at user FoV prediction

for 360◦video streaming. We found that there was little dif-

ference across popular FoV prediction algorithms, including

linear regression and LSTM neural networks. However, head

orientation prediction loss was acceptably low only when

predicting in the near short-term (e.g., 300 ms ahead). This has

implications for how the video playout delay buffers are con-

figured in 360◦streaming systems, as well as tolerable network

delay and jitter, as short-term predictions imply short playout

delay buffers and stringent demands on network latency. We

also explored how observations of user behavior can be used

to optimize the shape and size of any additional “padding”

tiles. A rectangular padding can substantially mitigate pre-

diction errors, while only adding a relatively small amount

of additional network bandwidth, and still maintaining a low

video stall ratio. Overall, these observations have implications

for how 360◦streaming systems are configured in the future.

Future work includes profiling users for personalized padding,

as well as improving performance on 5G cellular networks.

ACKNOWLEDGEMENTS

This work has been supported in part by NSF grants CNS-

1817216 and 1763929.

REFERENCES

[1] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360 video streaming with a better understanding of quality perception,”
in ACM SIGCOMM, 2019.

[2] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
ACM MobiCom, 2018.

[3] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal tiling
in 360-degree video streaming,” in ACM Multimedia, 2017.

[4] M. Graf, C. Timmerer, and C. Mueller, “Towards bandwidth efficient
adaptive streaming of omnidirectional video over http: Design, imple-
mentation, and evaluation,” in ACM MMSys, 2017.

[5] S. Afzal, J. Chen, and K. K. Ramakrishnan, “Characterization of 360-
degree videos,” in ACM SIGCOMM Workshop on Virtual Reality and

Augmented Reality Network, 2017.
[6] “Hevc,” https://www.itu.int/rec/T-REC-H.265.
[7] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view generation

to enable mobile 360-degree and vr experiences,” in ACM SIGCOMM

Workshop on Virtual Reality and Augmented Reality Network, 2018.
[8] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang, “Cub360:

Exploiting cross-users behaviors for viewport prediction in 360 video
adaptive streaming,” in IEEE ICME, 2018.

[9] J. Yu and Y. Liu, “Field-of-view prediction in 360-degree videos with
attention-based neural encoder-decoder networks,” in ACM Workshop on

Immersive Mixed and Virtual Environment Systems, 2019.
[10] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao, “Gaze

prediction in dynamic 360 immersive videos,” in IEEE CVPR, 2018,
pp. 5333–5342.

[11] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical
360-degree streaming for smartphones,” in ACM MobiSys, 2018.

[12] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An
http/2-based adaptive streaming framework for 360 virtual reality
videos,” in ACM Multimedia, 2017.

[13] X. Corbillon, F. De Simone, and G. Simon, “360-degree video head
movement dataset,” in ACM MMSys, 2017.

[14] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring user
behaviors in vr spherical video streaming,” in ACM MMSys, 2017.

[15] S. Shi, V. Gupta, and R. Jana, “Freedom: Fast recovery enhanced vr
delivery over mobile networks,” in ACM MobiSys, 2019.

[16] S. LaValle, Virtual Reality. Cambridge University Press.
[17] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH

Comput. Graph., vol. 19, no. 3, pp. 245–254, Jul. 1985.
[18] P. J. Brockwell and R. A. Davis, Introduction to time series and

forecasting. springer, 2016.
[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in ACM KDD, 2016.
[20] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,

“Developing a predictive model of quality of experience for internet
video,” in ACM SIGCOMM, 2013.

[21] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in ACM SIGCOMM, 2017.

[22] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in IEEE ICC, 2017.

[23] C. Perkins, RTP: Audio and Video for the Internet. Addison-Wesley
Professional, 2003.

[24] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithms,” Multimedia systems,
vol. 6, no. 1, pp. 17–28, 1998.

[25] 3GPP, “TS 38.300: NR; Overall description; Stage-2,” June 2019.
[26] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl, “Tile based hevc video

for head mounted displays,” in 2016 IEEE International Symposium on

Multimedia (ISM), Dec 2016, pp. 399–400.
[27] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj,

“Viewport-adaptive encoding and streaming of 360-degree video for
virtual reality applications,” in IEEE ISM, 2016.

[28] J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming using
mpeg-dash,” in ACM MMSys, 2016.

[29] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An
overview of tiles in hevc,” IEEE Journal of Selected Topics in Signal

Processing, vol. 7, no. 6, pp. 969–977, Dec 2013.
[30] Y. Snchez, R. Skupin, and T. Schierl, “Compressed domain video

processing for tile based panoramic streaming using hevc,” in IEEE

ICIP, 2015.
[31] C. Zhou, M. Xiao, and Y. Liu, “Clustile: Toward minimizing bandwidth

in 360-degree video streaming,” in IEEE INFOCOM, 2018.
[32] S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile vr on edge cloud: a

latency-driven design,” in ACM MMSys, 2019.
[33] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving

target: Motion-prediction-based transmission for 360-degree videos,” in
IEEE Big Data, 2016.


