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Uncertainty Quantification of
Mode Shape Variation Utilizing
Multi-Level Multi-Response
Gaussian Process
Mode shape information plays the essential role in deciding the spatial pattern of vibratory
response of a structure. The uncertainty quantification of mode shape, i.e., predicting mode
shape variation when the structure is subjected to uncertainty, can provide guidance for
robust design and control. Nevertheless, computational efficiency is a challenging issue.
Direct Monte Carlo simulation is unlikely to be feasible especially for a complex structure
with a large number of degrees-of-freedom. In this research, we develop a new probabilistic
framework built upon the Gaussian process meta-modeling architecture to analyze mode
shape variation. To expedite the generation of input data set for meta-model establishment,
a multi-level strategy is adopted which can blend a large amount of low-fidelity data
acquired from order-reduced analysis with a small amount of high-fidelity data produced
by high-dimensional full finite element analysis. To take advantage of the intrinsic relation
of spatial distribution of mode shape, a multi-response strategy is incorporated to predict
mode shape variation at different locations simultaneously. These yield a multi-level,
multi-response Gaussian process that can efficiently and accurately quantify the effect of
structural uncertainty to mode shape variation. Comprehensive case studies are carried
out for demonstration and validation. [DOI: 10.1115/1.4047700]

Keywords: uncertainty quantification, mode shape, order-reduction, multi-level Gaussian
process, multi-response Gaussian process, computational efficiency, dynamics, modal
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1 Introduction
Mode shapes can be acquired from modal testing experiments on

an actual structure or from numerical simulation of its finite element
model. The mode shape information is one of the most fundamental
properties of a structure, as it essentially decides the spatial pattern
of structural vibratory response. Real structures, meanwhile, are
inevitably subjected to uncertainties caused by material imperfec-
tion, manufacturing tolerance and in-service degradation [1]. The
deterministic analysis of nominal model without considering uncer-
tainties may render the subsequent design or control ineffective [2].
Incorporating uncertainties into dynamic modeling and analysis has
obvious significance. Intuitively, prediction of dynamic response
variation of a structure can be conducted through direct Monte
Carlo simulation under given uncertainty parameters. However,
for a complicated structure, the number of degrees-of-freedom
(DOFs) in its finite element model is large, leading to high compu-
tational cost in solving the eigenvalue problem. When a single run
of finite element simulation is computationally demanding, con-
ducting repeated analyses to facilitate direct Monte Carlo simulation
becomes infeasible [3]. Moreover, in some cases, the introduction
of many different types of uncertainties leads to a high-dimensional
uncertainty parametric space, which further compounds the compu-
tational cost issue.
In recent years, there have been continuous efforts in uncertainty

quantification of structural dynamic responses. One class of
methods aims at reducing the computational time needed for
single run through model order reduction. Indeed, along with the

advancement of finite element analysis, model order reduction has
been one important research subject in computational mechanics/
dynamics. A simple and famous approach is referred to as Guyan
reduction, where the DOFs in a structure are divided into master
DOFs and slave DOFs [4]. The effects of the slave DOFs are trans-
formed onto the master DOFs through static condensation, thereby
eliminating the slave DOFs in the original model. Salvini and Vivio
[5] applied Guyan reduction into modal analysis at high frequen-
cies. Panayirci et al. [6] utilized it directly to facilitate stochastic
structural analysis. To improve the modeling accuracy over
Guyan reduction, a variety of component mode synthesis (CMS)
approaches have been developed to produce order-reduced
models. The fundamental idea of CMS is to retrieve, at least in
part, the dynamic effects of truncated DOFs into the order-reduced
model. Masson et al. [7] developed a CMS-based model reduction
transformation that can be used throughout the entire optimization
process to enhance computational efficiency. Shanmugam and Pad-
manabhan [8] developed a fixed- and free-interface hybrid CMS
method to accurately predict the whirl frequencies of rotor
dynamic systems. Zhou et al. [9] adopted a NURBS finite element-
based free-interface CMS to conduct robust geometry design. While
these order-reduction approaches have shown certain effectiveness
in mitigating the computational cost of single run, the subsequent
sampling-based statistical analysis using direct Monte Carlo simu-
lation still poses significant challenge because it normally requires
very large sample size. Besides, it is generally difficult to guarantee
the accuracy of results, due to the error introduced by model order
reduction.
A different way of realizing uncertainty quantification is through

enhancing the efficiency of statistical sampling by means of meta-
modeling. The establishment of meta-model involves a significantly
reduced sample size (i.e., the size of data set containing concerned
responses under sampled uncertainty parameters) for training. Once
established or trained, the meta-model can directly predict
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responses of a process upon given uncertainty parameters without
going through the original physics model-based simulation. This
can greatly reduce the computational cost of response variation
analysis. Amongst various meta-modeling techniques, the Gaussian
process architecture exhibits several important advantages [10–12].
The underlying idea of Gaussian processes is to extend the multi-
variate Gaussian distribution from a finite dimensional space to
an infinite dimensional space. It yields a probabilistic framework
for nonparametric regression, thereby addressing the issue of pro-
hibitive sample size required in Monte Carlo simulation. In recent
years, there have been attempts of extending Gaussian process
into structural dynamic analysis. DiazDelao and Adhikari [13]
employed Gaussian process as an emulator to approximate the fre-
quency response function (FRF) of simple structures and later [14]
applied Gaussian process together with polynomial chaos expan-
sion to reduce the computational cost of stochastic finite element
analyses. Xia and Tang [15] computed the frequency response
values at a small number of frequency points and then built
Gaussian process meta-model, based on these values, to predict fre-
quency responses with high resolution of frequency points. Wan
et al. [16] utilized the Gaussian process meta-model for analytical
uncertainty quantification of natural frequencies under uniformly-
or normally distributed random parameters, and further generalized
this method to deal with the uncertainty quantification of complex
systems with arbitrary parametric probability distributions [17].
Zhou et al. [18] used Gaussian process to emulate the response
surface (i.e., objective function) with respect to design variables
in vibration analysis of periodic structure with uncertainty and
carried out robust geometry design to mitigate vibration localiza-
tion. It is worth noting that the applications mentioned in these
studies generally focus on scalar-type response of concern. For
example, while frequency response function naturally represents a
series of responses at different frequency points, only the responses
at certain frequency points are investigated and each response of
concern will need a separate Gaussian meta-model. This not only
leads to large computational effort if a large number of responses
are of interest, but also, overlooks the intrinsic relation of these
responses.
For a typical frequency response function, the responses at mul-

tiple frequency points are correlated. Similarly, for a give mode
shape of a structure, the amplitudes at different DOFs (locations)
are correlated intrinsically. Moreover, mode shapes characterize
the spatial distribution of responses at their corresponding natural
frequencies, and in many cases, it is the distribution pattern,
rather than amplitude at specific DOF for a mode, that is of interest.
Therefore, if one wants to carry out uncertainty quantification of
mode shapes, single-response Gaussian process mentioned above
is obviously not an ideal approach. In the realm of statistical meta-
modeling, multi-response Gaussian process (MRGP), which is
capable of providing emulation of multiple and correlated responses
concurrently, has seen recent progresses. Arendt et al. [19] pointed
out that the MRGP could be used to infer true responses when mul-
tiple responses were mutually associated with the same input
parameters. Wei et al. [20] employed MRGP to produce meta-
models for the failure surfaces of system which are then utilized
in reliability-based robust design. Bostanabad et al. [21] utilized
MRGP for uncertainty quantification analysis of woven fiber com-
posites across multiple scales. Ariza Ramirez et al. [22] imple-
mented MRGP to conduct the identification of the ship dynamics
and further facilitate the system modeling. Pan et al. [23] built a
MRGP meta-model to efficiently characterize the frequency
responses with inherent correlation under uncertainties. These
investigations have illustrated the possibility of formulating
MRGP-based meta-modeling to tackle the uncertainty quantifica-
tion of mode shape information as vectors. In addition to MRGP
meta-models, multi-task Gaussian process model (MTGPM) has
also been developed for reconstruction of missing monitoring
data considering the correlations among the tasks [24].
Both the quality and the quantity of training data sets are impor-

tant in establishing Gaussian process metal-model with high

accuracy. In structural dynamic analysis, high-fidelity data can be
acquired from experimental measurement or full-scale finite
element analysis, the size of which is usually very limited. If one
only uses small amount of high-fidelity data as the training data
set, the desired performance of meta-model cannot be ensured.
According to O’Hagan and Kennedy [11], blending a small
amount of high-fidelity data with a large amount of low-fidelity
data is a promising path. It is worth mentioning that in structural
dynamic analysis, those aforementioned order-reduced models
derived through such as Guyan reduction or CMS techniques can
be utilized to generate large amount of response predictions
directly. These responses, containing possible order-reduction
error, are naturally low-fidelity data. Indeed, in a recent study, a
multi-level Gaussian process (MLGP) meta-model was established
to investigate the variation of single response of a vibration system
such as natural frequency [2]. With the large amount of low-fidelity
data from order-reduced model, the Gaussian process may avoid
those errors associated with the inference procedure. Meanwhile,
with the introduction of a few high-fidelity data from full-scale
finite element model, one may correct the error of the low-fidelity
data inherited from the order-reduction procedure.
The objective of this research is to develop an efficient tool

for the uncertainty quantification of mode shape variation. We spe-
cifically investigate the development of Gaussian process based
meta-model. As indicated, mode shape information is a distributed
quantity, requiring a multi-response Gaussian process (MRGP).
Meanwhile, we explore the feasibility of incorporating multi-level
Gaussian process (MLGP) that can take advantage of the order-
reduced modeling techniques available for the computational
dynamic analysis. This will yield a multi-level, multi-response
Gaussian process (MLMRGP) that can adequately address the
uncertainty quantification of mode shape information. The rest of
the paper is organized as follows. Section 2 first explains the high-
fidelity and low-fidelity models and the corresponding data sets to
be produced and then used in the new framework. Without loss
of generality, order-reduced modeling based on Guyan reduction
and CMS is outlined. Subsequently, the mathematical formulation
of the proposed MLMRGP is presented in detail. In this framework,
we train low-level Gaussian process emulator using low-fidelity
data set produced from order-reduced model and then train high-
level Gaussian process emulator by further employing high-fidelity
data set to minimize the residual between high- and low-fidelity
outputs. The finally established meta-model with hyper-parameters
optimized through low- and high-level emulator trainings is used to
predict the output given certain input. In the meantime, the output
correlations identified in low- and high-level emulators will be
assembled to characterize the actual correlation of unseen/testing
outputs. In Sec. 3, comprehensive case studies on a benchmark
plate structure are presented, where the effectiveness of the new
framework is demonstrated. Concluding remarks are summarized
in Sec. 4.

2 Multi-Level Multi-Response Gaussian Process
for Computational Modal Analysis
2.1 Baseline Model and Two-Level Data Sets. We start from

a full-scale finite element model of a vibration system given below:

MZ̈ + CŻ +KZ = f (1)

whereM, C, andK are N×Nmass, damping, and stiffness matrices
where N is the total number of DOFs, and Z and f are the
N-dimensional displacement response vector and external force
vector, respectively. In this research, we study the effects of struc-
tural uncertainty to mode shape information, and let M and K be
functions of θ where θ represents the set of uncertain parameters.
That is, under uncertainty effect, the mass and stiffness matrices
are denoted as M(θ) and K(θ). We assume small damping or pro-
portional damping. Therefore, the natural frequencies and mode
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shapes of the system are determined by the following eigenvalue
problem

[K(θ) − ω2M(θ)]ψ = 0 (2)

Apparently, the natural frequency ω and the mode shape ψ are
affected by θ. Equations (1) and (2) are referred to as the baseline
model hereafter, corresponding to the full-scale finite element
mesh. The goal of this research is to formulate an efficient and accu-
rate framework from which we can predict the variation of mode
shape information. Specifically, we plan to incorporate a two-level
Gaussian process approach that can balance between computational
cost related to training data acquirement and meta-model accuracy.
High-fidelity data can be produced from Eq. (2) (i.e., baseline
model) directly under sampled uncertainty parameter set θ. In
actual practice, the amount of high-fidelity data is usually limited,
due to computational cost involved in full-scale finite element
analysis.
In order to reduce the overall computational cost, the two-level

Gaussian process, to be detailed in the next sub-section, will be
trained through the concurrent usage of (a small amount of) high-
fidelity data and (a large amount of) low-fidelity data. As indicated
in Introduction, in computational structural dynamics, low-fidelity
data can be produced using order-reduced methods which
however may be subjected to various truncation errors. Through
order-reduced analysis that can provide large amount of training
data (i.e., mode shape information under sampled uncertainty
parameter set), the Gaussian processes emulator can avoid the
errors associated with the inference procedure. Meanwhile, with
the introduction of a small amount of high-fidelity data based on
Eq. (2), we can anticipate to correct the error of the low-fidelity
data inherited from the order-reduction procedure. Without loss of
generality, in this paper we present two representative order-
reduced algorithms commonly adopted in structural dynamic anal-
ysis, i.e., the Guyan reduction and the fixed-interface CMS algo-
rithms. The formulation details of these two methods are outlined
in the Appendix for completeness of the presentation. In Guyan
reduction, the DOFs in the baseline full-scale finite element
model are divided into master DOFs and slave DOFs. By means
of a coordinate transformation based on static condensation, the
slave DOFs are eliminated, thereby reducing the dimension of
eigenvalue problem analysis. A variety of CMS techniques have
been developed in the past. In almost all these techniques, the coor-
dinate transform step is improved, aiming at retrieving the dynamic
effects of those DOFs that are eliminated. In a typical CMS proce-
dure, the original, large-scale structure is decomposed into a collec-
tion of substructures first, and smaller-size eigenvalue problems are
computed for all these separate substructures. Then, a global, order-
reduced model is synthesized by combining the reduced-order
representations of substructures together with the interface com-
patibility condition. In the fixed-interface CMS outlined in the
Appendix, the substructure eigenvalue problems all feature
fixed-interface DOFs. The order-reduced model retrieves the inter-
face DOFs (belonging to neighboring substructures) by making the
displacements and internal forces compatible at these DOFs. While
the details are outlined in the Appendix, an order-reduced model
can be generically represented as

�Mz̈ + �Cż + �Kz = fr (3)

where �M, �C, and �K are n× n mass, damping, and stiffness matrices
where n is the total number of DOFs in the order-reduced model,
and z and fr are them-dimensional displacement vector and external
force vector, respectively. Under uncertainty effect, the eigenvalue
problem becomes

[�K(θ) − ω2
r
�M(θ)]ψr = 0 (4)

where ωr and ψr denote the natural frequency and the correspond-
ing mode shape solved from the order-reduced model. After a coor-
dination transform, one can obtain the mode shape with respect to

the original coordinate system. As the order of the system is
reduced significantly, we can expect to produce a large amount of
mode shape information under uncertainty efficiently from repeat-
edly solving the eigenvalue problems (Eq. (4)).
In summary, Eqs. (2) and (4) will be employed to generate,

respectively, high-fidelity data set and low-fidelity data set which
are then used as training data for the subsequent two-level Gaussian
process meta-modeling.

2.2 Multi-Level Multi-Response Gaussian Process
Framework. We employ the Gaussian process architecture to
establish meta-model. In Gaussian process formulation, an
unknown system is denoted as f(x), where x is an input vector.
Here for uncertainty quantification of mode shape variation, the
input vector is the set of uncertainty parameters θ shown in
Eqs. (2) and (4). The observed value of f(x), i.e., the training data
of response, is denoted as y. It is worth noting that, as we are inter-
ested in mode shape variation, y represents the specific mode shape
of interest. Therefore, f (x) and y are both vectors, which is the basis
of multi-response Gaussian process (MRGP). In the context of com-
putational analysis, we neglect the noise effect, which then results in
f(x) = y. Given a set of ns observations described as ϑ =
{(yi, xi), i = 1, 2, . . . .ns} (ns is the number of training data), a
single-level Gaussian process regression can be implemented to
predict the output over target input. Each input xi and output yi
are r-dimensional and q-dimensional vectors, respectively. In this
research, we formulate a two-level MRGP with two types of data
sets, i.e., low- and high-fidelity data sets that are introduced as
ϑ(u) = {(y(u)i , x(u)i ), i = 1, 2, . . . .n(u)s ; u = 1, 2}. The superscript u
indicates the fidelity level of data, and each (y(u)i , x(u)i ) is referred
to as a data point at the uth level. We predict the output vector at
target input given two observed data sets ϑ(1) and ϑ(2). Specifically,
ϑ(1) is the low-fidelity data set acquired from order-reduced model
(Eq. (4)), and ϑ(2) is the high-fidelity data set acquired from full-
scale baseline model (Eq. (2)). Essentially, we will establish a multi-
level multi-response Gaussian process (MLMRGP) to facilitate the
uncertainty quantification of modal information.
We let the outputs Y in different data sets be expressed, under

assumed quasi-linear relations, as

Y(1) = δ(1), Y(2) = ρ(1)δ(1) + δ(2) (5a,b)

where ρ(1) is a regression parameter. δ(1) and δ(2) are modeled as two
q-dimensional independent stationary multivariate Gaussian pro-
cesses [2]. As the summation of independent Gaussians remains
in the closed form, we can derive the Gaussian process representa-
tion of observed low- and high-fidelity data points as

Y(1)

Y(2)

[ ]
∼ GP(H(X)β, QΣ(X, X′)) (6)

The first item at the right side of Eq. (6), H(X)β, represents
the linear mean functions of all outputs where

H(X) = h(X(1)) 0
ρ(1)h(X(2)) h(X(2))

[ ]
. Here, X denotes the samples

of both low- and high-fidelity inputs. We use h(X(u)) =

1 x(u)1,1 . . . x(u)1,r

1 x(u)2,1 . . . x(u)2,r
.. .. .. ..

1 x(u)
n(u)s ,1

. . . x(u)
n(u)s ,r

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ to capture the linear characteristic

under small uncertainties, where subscript n(1)s and n(2)s are the
numbers of low- and high-fidelity data sets, respectively. Therefore,
the dimension of H(X) is (n(1)s + n(2)s ) × (2r + 2). In reality, n(2)s is
much smaller than n(1)s due to the costly acquisition of high-fidelity
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data sets through full-scale finite element simulation. β is unknown regression coefficient matrix with dimension (2r+ 2) × q, Q is non-
spatial q× q matrix representing the covariance among output variables, and Σ is a spatial covariance matrix formed by the spatial
inputs with dimension (n(1)s + n(2)s ) × (n(1)s + n(2)s ). The above equation can be re-organized into vector representation form as shown below:

vec(Y(1))
vec(Y(2))

[ ]
= GP(A, B) (7)

A = vec(h(X(1))β(1))
vec(ρ(1)h(X(1))β(1) + h(X(2))β(2))

[ ]
(8a)

B =Q⊗
Σ(1)(X(1), X(1)) ρ(1)Σ(1)(X(1), X(2))

ρ(1)Σ(1)(X(1), X(2))
T Σ(2)(X(2), X(2)) + ρ(1)2Σ(2)(X(2), X(2))

[ ]
(8b)

where vec(.) is the vectorization operation and ⊗ is the Kronecker product. Each entry of the spatial covariance matrix,

Σ(u)
ij = exp −

∑r
k=1

b(u)k (xi,k − x j,k)2
{ }

, is the so-called squared exponential covariance kernel. In this research, we focus on uncertainty quan-

tification based upon simulation models. As such, we do not consider the noise effect in data. If experimental data, which usually include
the noise effect, are adopted in uncertainty quantification, we can take it into consideration by introducing a noise term in the abovemen-
tioned spatial covariance kernel [12]. The physical nature of this covariance kernel enables producing similar outputs when inputs are spa-
tially close, which aligns with our basic understanding [25]. More specifically, we adopt an anisotropic form of this kernel [12], in which the
reciprocal of scale-length bk is set to be different for different inputs. This configuration adaptively adjusts the weights of inputs with respect
to associated outputs through optimization, which results in a more accurate meta-model as compared to that built upon the kernel with
isotropic form. The anisotropic form generally is used for capturing complex data features, which however renders the optimization com-
putationally intensive as the number of design variables for optimization increases.
The hyper-parameters in the MLMRGP, which include the regression coefficient ρ(1) and the reciprocal scale-length b(u)k in the covari-

ance kernel, will be identified through learning from the training data sets. SinceQ and β depend on these hyper-parameters, only the hyper-
parameters denoted as ϕ = [b(1)1 , b(1)2 , . . . , b(1)r , b(2)1 , b(2)2 , . . . , b(2)r , ρ(1)]T need to be optimized. The number of parameters bk does not have to
be equal to input dimension r and generally can be adjusted to accommodate computational capacity. The selection of kernel and the related
hyper-parameters relies on the essence of the data used, which can be examined through the cross-validation procedure [26]. The key step
here is to optimize hyper-parameters following the Bayesian formula:

p(Y(2)∗|X(2), Y(1), X(2), Y(2), X(2)∗, ϕ) =
p(Y(2)∗|X(2)∗, ϕ)p(Y(1), Y(2)|X(1), X(2), Y(2)∗, ϕ)

p(Y(1), Y(2)|X(1), X(2), ϕ)
(9)

The solution is referred to as the maximum likelihood estimation (MLE), maximizing the marginal likelihood p(Y(1), Y(2)|X(1), X(2), ϕ)
that quantifies the difference between the model prediction under certain hyper-parameters and the corresponding training outputs given the
same inputs [12]. The likelihood can be further written as the product of the likelihoods at two different levels of emulations [10]

p(Y(1), Y(2)|X(1), X(2), ϕ) = p(Y(1)|X(1), b(1), σ(1)f )p(y(2)|Y(1), X(2), b(2), σ(2)f , ρ(1)) (10)

The second term at the right-hand side of Eq. (10) stands for the likelihood of high-level emulator δ(2) trained with the high-fidelity data
set utilized to offset the residual error of low-level emulator δ(1) trained with low-fidelity data set. Therefore, this term may be rewritten as
p(Y(2) − ρ(1)Y(1),2|, X(2), b(2), σ(2)f , ρ(1)) because δ(2) = Y(2) − ρ(1)Y(1) as indicated in Eq. (5). Here,Y(1),2 denotes the low-fidelity output cor-

responding to the high-fidelity output Y(2) under the same input. In other words, the inputs of high-fidelity data sets are a subset of inputs of
low-fidelity data sets, i.e.,X(2) ⊆ X(1). Based on the independence condition, we can estimate the parameters (b(1), σ(1)f ) that are independent

of (b(2), σ(2)f , ρ(1)), by maximizing the logarithms of the aforementioned terms [27]

ln ( p(Y(1)|X(1), b(1), σ(1)f )) = −
n(1)s

2
ln (detQ(1)) −

q

2
ln (detΣ(1)) −

1
2
vec(Y(1) − h(X(1))β(1))T (Q(1) ⊗ Σ(1))−1vec(Y(1) − h(X(1))β(1)) (11a)

ln ( p(Y(2)|Y(1), X(1), X(2), b(2), σ(2)f , ρ(1))) = −
n(2)s

2
ln (detQ(2)) −

q

2
ln (detΣ(2))

−
1
2
vec(Y(2) − h(X(2))β(2) − ρ(1)Y(1),2)T (Q(1) ⊗ Σ(2))−1vec(Y(2) − h(X(2))β(2) − ρ(1)Y(1),2) (11b)

where

β(u) = [h(X(u))
TΣ(u)h(X(u))]−1h(X(u))TΣ(u)Y (12a)

Q(u) =
1

n(u)s
(Y − h(X(u))β(u))TΣ(u)−1(Y − h(X(u))β(u)) (12b)

Y representsY(1), if u= 1. OtherwiseY representsY(2) − ρ(1)Y(1),2. β(u) andQ(u) denote, respectively, the unknown regression coefficient
matrix of the mean function and the output covariance matrix involved in the u-level emulator.
A sequential, two-step optimization scheme, to be further discussed in the subsequent sub-section, is adopted to identify the optimal

hyper-parameters. Once the hyper-parameters ϕ̂ = [b̂(1)1 , b̂(1)2 , . . . , b̂(1)r , b̂(2)1 , b̂(2)2 , . . . , b̂(2)r , ρ̂(1)]T and the associated β̂(u) and Q̂(u) are
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optimized, the target output Y(2)∗ over target input X(2)∗ can be simply characterized as the posterior Gaussian distribution

[Y(2)∗] ∼ GP(μ̂(X(2)∗), Ξ̂(X(2)∗, X(2)∗′ )) (13)

The updated mean and covariance functions are given as

μ̂(X(2)∗) = vec(H′β̂ + Σ∗TΣ−1(Y −Hβ̂)) (14a)

Ξ̂(X(2)∗, X(2)∗) = Q̂⊗ (Σ(2)(X(2)∗, X(2)∗) + ρ(1)2Σ(1)(X(2)∗, X(2)∗) − Σ∗TΣ−1Σ + (H∗−Σ∗TΣ−1H)β̂(H∗−Σ∗TΣ−1H)
T
) (14b)

where H∗=(ρ(1)h(X(1)∗),h(X(2)∗)) Σ= Σ(1)(X(1),X(1)) ρ(1)Σ(1)(X(1),X(2))
ρ(1)Σ(1)(X(2),X(1)) ρ(1)2Σ(1)(X(2),X2)+Σ2(X(2),X(2))

[ ]
Σ∗= ρ(1)Σ(1)(X(1),X(2)∗)

ρ(1)2Σ(1)(X(2)∗,X(2))+Σ(2)(X(2)∗,X(2))

[ ]
β̂=[HTΣH]−1HTΣY, Q̂=1/n(1)s +n(2)s (Y−Hβ̂)TΣ−1(Y−Hβ̂), Y = [Y(1) Y(2)]T β̂ and Q̂ are determined by the hyper-parameters that are
optimized through the sequential procedure of two-level emulation shown in Eqs. 11(a) and 11(b). Collectively they are used to characterize
the posterior GP of outputs over target inputs (Eq. (13)).

2.3 Computational Treatment. Since the objective functions
(Eqs. 11(a) and 11(b)) cannot be expressed in a closed form with
respect to the hyper-parameters, sampling-based optimization
approaches are preferred. In this study, two algorithms, i.e., simu-
lated annealing [28] and particle swarm [29], are examined. It is
found that particle swarm outperforms simulated annealing in pre-
diction accuracy. Hence, the particle swarm algorithm is adopted in
the case analysis. The evaluation of objective functions necessitates
the computations of matrix inverse and determinant associated with
covariance matrices Σ(u) andQ(u). In general, this may lead to some
numerical issues:

• Σ(u) theoretically is positive definite as long as the reciprocal
of b(u)k is greater than 0 (negative b(u)k is against the physical
nature of this kernel). However, it may be nearly singular or
ill-conditioned, when a small value of b(u)k is statistically
sampled during optimization. Extremely ill-conditioned Σ(u)

will cause numerical instability in matrix inversion. Numerical
computation is generally subjected to resolution (i.e., the
smallest non-zero number). Therefore, the determinant of ill-
conditioned Σ(u) cannot be differentiated.

• Q(u) should be positive definite as well. However, it is often
close to being singular, especially when a large number of
output variables are involved. Earlier studies have noted that
very large number of output variables are not recommended
since it may induce numerical instability [30].

• Q(u) ⊗ Σ(u) yields a high-dimensional matrix when many
response variables and training data sets are taken into
account. The inversion of such a large matrix required in
each iteration of objective function evaluation is computation-
ally expensive.

Our strategies to address these issues are summarized as follows:

• Matrix inversion: We monitor the condition numbers of Σ(u)

andQ(u), and set a threshold to decide if current objective eval-
uation is executed or ignored. Meanwhile, we add a small
diagonal perturbation into matrices to be inverted.

• Matrix determinant: We incorporate matrix decomposition,
i.e., LU decomposition, or eigenvalue analysis to compute
the determinant [23].

• Large-size matrix inverse: We take advantage of a Kronecker
product principle, i.e., (Q(u) ⊗ Σ(u))−1 =Q(u)−1 ⊗ Σ(u)−1 [31],
where Σ(u) and Q(u) are both invertible. Recall that the compu-
tational complexity of inverting a P×P matrix is O(P3). The

original complexity O((n(u)s × q)
3
) can be reduced to

O(n(u)s
3
) + O(q3).

3 Case Studies: Meta-Model Establishment and
Uncertainty Quantification Illustration

In this section, we demonstrate the effectiveness of the proposed
framework. We specifically focus on the mode shape variations and

utilize the multi-level multi-response Gaussian process approach.
We highlight the influences of low-fidelity and high-fidelity data
sets to the uncertainty quantification performance.

3.1 Benchmark Structure and Data Preparation

3.1.1 Nominal Structure and Model Order Reduction. We
consider a benchmark structure shown in Fig. 1(a). It consists of
essentially three rectangular plates connected together. For the
nominal structure without uncertainty, the mass density and
Young’s modulus are 7850 kg/m3 and 206 GPa. From bottom to
top, these three plates have, respectively, 2,214, 630, and 858
DOFs. Altogether, the full-scale finite element model of this bench-
mark structure has 3510 DOFs. We choose this structural configura-
tion so interested readers can readily re-construct the mesh for
validation and comparison. This structure can be directly decom-
posed into substructures to facilitate various order-reduction analy-
ses. The order-reduction approach adopted hereafter can be
extended easily to more complicated structures where substructure
decomposition is straightforward.

As mentioned in the preceding sections, one important compo-
nent of this proposed methodology is to incorporate low-fidelity
data set into uncertainty quantification, which has the prospect of
significantly reducing the computational cost needed for the gener-
ation of training data for meta-model establishment. Commonly,
Guyan reduction and component mode synthesis (CMS)
approaches are used in order-reduction of structural dynamic anal-
ysis. The standard Guyan reduction and fixed-interface CMS are
outlined in the Appendix. In Guyan reduction, the DOFs are first
divided into master DOFs and slave DOFs, and the responses of
the slave DOFs are transformed onto the master DOFs through
static condensation. The fixed-interface CMS takes into consider-
ation the dynamic effects of the DOFs that are truncated in order
reduction, and therefore is generally more accurate at the price of
additional computations compared with Guyan reduction. Here,
we analyze both order-reduction methods. We consider the first
three z-direction bending modes. For Guyan reduction, the master
DOFs selected are indicated in Fig. 1(b). Apparently, z-direction
DOFs that are away from the clamped boundaries play a dominant
role in these modes, which are selected as the master DOFs. Speci-
fically, 150, 48, and 32 master DOFs are selected for three substruc-
tures (from bottom to top), respectively, yielding an order-reduced
model with 230 DOFs in total. For fixed-interface CMS, we keep
the first 10, 5, and 2 modes of the substructures (from bottom to
top), respectively. We also keep all the interface DOFs (between
neighboring substructures) in the order-reduced model. The CMS
order-reduced model thus has 209 DOFs in total.

The computation is carried out on a two-processor desktop (Intel
E5620@2.4 GHz) under MATLAB environment [32]. In this research,
we use self-developed finite element code to carry out the investi-
gations. This will facilitate a streamlined process to generate data
sets with multiple fidelity levels. The finite element model of the
benchmark structure used in the analysis is fully validated using
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ANSYS [33]. When the first 20 natural frequencies and mode shapes
are sought, the full finite element analysis takes 1.15 s to complete
one run. In comparison, the Guyan reduction and the fixed-interface
CMS take 0.13 s and 0.25 s, respectively. The first 5 natural fre-
quencies are listed in Table 1, and the mode shapes are shown in
Fig. 2. For illustration purpose, we present only the z-direction
DOFs in mode shape comparison since the modes involved are
all bending modes. In general, the natural frequencies and mode
shapes obtained from order-reduced approaches have good accu-
racy as compared with full-scale finite element analysis. The perfor-
mance degrades as the mode order increases. Unsurprisingly, the
fixed-interface CMS generally outperforms Guyan reduction in
terms of accuracy, while the results are somewhat comparable.
Since our goal is to demonstrate that a two-level Gaussian
process that integrates together a small amount of high-fidelity
data with a large amount of low-fidelity data can yield a satisfying
meta-model, in what follows we adopt Guyan reduction as the low-
fidelity data generator. The Guyan reduction features faster compu-
tation with lower fidelity (i.e., less accuracy) and therefore can
better highlight the advantage of two-level meta-modeling.

3.1.2 Model Uncertainties and Data Set Preparation. We
assume model uncertainties come from material properties, i.e.,
mass density and Young’s modulus. Specifically, the benchmark
structure is divided into six segments (as shown in Fig. 1), and
each segment features its material property uncertainties, leading
to 12 uncertainty parameters. We let these 12 uncertainty parame-
ters be subjected to multivariate normal distribution, in which the
means take the nominal values and the standard deviations are set
as 20% of the means. As we assume uncertainty parameters are
independent and identically distributed random variables, the
covariance matrix of this multivariate normal distribution is diago-
nal. Following Latin hypercube sampling [34], we generate 1000
uncertainty input samples. The sampled uncertainty parameters
are then employed in Monte Carlo simulations of both full-scale
finite element analysis and Guyan reduction. In this case study,
since the full-scale finite element mesh of the benchmark structure

has relatively low dimension, we can readily produce the Monte
Carlo simulation results which are then used for validation.
As mentioned in Sec. 2.3, the number of output variables of the

meta-model may not be very large, in order to yield tractable com-
putation and also to avoid numerical instability. As such, for each
vibration mode of interest, we focus on 50 DOFs on the top
surface of the structure where the mode shape amplitudes of the
nominal structure have the largest absolute values. In other
words, these DOFs are used to represent/characterize the respective
mode shapes. The multiple responses defined in MLMRGP hence
consist of these 50 interrelated mode shape amplitudes.
Figure 3 shows the variations of the first two bending modes

obtained from the Monte Carlo simulation of full-scale finite
element analysis. At each selected DOF, the probabilistic density
function (PDF) based on 1000 uncertainty samples is shown as
the violin plot. Similarly, Fig. 4 shows the results of the first two
bending modes obtained from the Monte Carlo simulation of the
Guyan reduction analysis. There are notable discrepancies when
we compare Figs. 3 and 4. Apparently, the second-mode shape is
more sensitive to uncertainties, as larger amplitude variations can
be observed. In addition, the output distribution at each DOF
varies. In the subsequent analysis, these mode shape data will be
used for meta-model training and validation.

3.2 Multi-Level Multi-Response Gaussian Process Meta-
Model Establishment and Validation

3.2.1 Meta-Model Establishment. The multi-level multi-
response Gaussian process (MLMRGP) proposed in this research
takes advantage of the multi-fidelity data sets generated in
Sec. 3.1.2 and takes into consideration the inherent correlation
among mode shape amplitudes. We start from employing 30 high-
fidelity data and 300 low-fidelity data, both of which are randomly
selected from the respective databases generated by the Monte
Carlo simulation of full-scale finite element and order-reduced anal-
ysis (Sec. 3.1.2). The remaining 700 low-fidelity data and the cor-
responding 700 high-fidelity data (under the same uncertainty
inputs/parameters) are used for validation. To facilitate the optimi-
zation of hyper-parameters through Eqs. 11(a) and 11(b), prepro-
cessing of input/output data is necessary. The input data (i.e., the
set of uncertainty parameters) are converted into standard normal
distributions, and the output data, i.e., mode shape amplitudes are
scaled to [−1 1].
In establishing the meta-model using MLMRGP, we adopt linear

mean and anisotropic squared exponential covariance kernels (Eqs.
(6) and 8(b)). The squared exponential covariance kernel at each
level’s emulator includes six reciprocals of scale-length values.
Each scale-length is used to weigh the spatial correlation of two
input samples, i.e., the variations of mass density and Young’s

Table 1 First five natural frequencies of the nominal structure

Mode
order

Full-scale finite
element

Guyan
reduction

Fixed-interface
CMS

1 144.3078 144.5716 142.5492
2 334.7630 345.8223 330.8748
3 367.8749 373.9271 362.5558
4 571.4485 596.7220 566.7540
5 709.2347 828.6293 702.0148

Fig. 1 Benchmark structure: (a) configuration and (b) DOFs at grayed areas are selected as the master DOFs in Guyan reduction
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modulus of one specific segment in the structure analyzed. For
example, b(u)k characterizes the spatial correlation of parameterized
inputs, i.e., the mass density and Young’s modulus of the kth
sector in the uth level emulator. In addition to 6 b(u)k at each
level’s emulator, there is one regression coefficient considered.

Therefore, a total of 13 hyper-parameters are to be optimized.
Using less number of hyper-parameters would render the meta-
model incapable of capturing the underlying data features. On the
other hand, more hyper-parameters would increase the computa-
tional cost and may cause model overfitting. Particle swarm

(a)

(b)

(c)

Fig. 2 Mode shape comparison: (a) first z-direction bending mode shape,
(b) second z-direction bending mode shape, and (c) third z-direction bending mode
shape
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algorithm is used for hyper-parameter optimization. We need to
define the design boundaries for all hyper-parameters. Here, 6 b(1)k
and 6 b(2)k are specified with bounds [0.01, 50] and [0.01, 300],
respectively. Regression coefficient ρ(1) is specified with bound
[0.001, 1]. The simulation variables, i.e., swarm size and
maximum iteration number of particle swarm algorithm are set as
300 and 50,000, respectively. The MLMRGP-based meta-model
is then established following the procedure outlined in Sec. 2.2.

3.2.2 Characterization of the First-Mode Shape Variation.
Once the meta-model is trained using the MLMRGP framework,
we can use it as an emulator to predict mode shape variation
under given input parameters (i.e., various uncertainty parame-
ters). Recall that 700 high-fidelity and low-fidelity data sets,
under the same 700 samples of uncertainty parameters, are not

used in training. They will be used in validation. Using these
700 samples of uncertainty parameters, we can predict the corre-
sponding mode shape outputs through the meta-model established.
We consider the high-fidelity, full-scale finite element results as
the accurate results. The prediction errors of the first-mode
shape amplitudes by the meta-model are shown in Fig. 5, where
the PDF of mode amplitude at given DOF is estimated based
on 700 prediction error values. It is worth noting that the peaks
of PDFs do not truly represent the worst-case (i.e., maximum)
errors. For clear illustration, we include the worst-case errors
over entire DOFs in the plot, which are marked as crosses
(Fig. 5). The results show that the mean errors vary slightly at dif-
ferent DOFs. Overall, however, the mean errors are all below 2%.
The worst-case errors versus DOFs follow the similar trend and
are all under 8%.

(a)

(b)

Fig. 3 Distributions of mode shape amplitudes at selected DOFs using full-scale finite element model:
(a) first mode and (b) second mode
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To further assess the overall error level, we define the average of
mean errors (AMR)

AMR =
1
m

∑m
i=1

�ei (15)

where �ei represents the mean error at the i-th DOF (over the 700
samples), and m denotes the number of DOFs selected in mode
shape characterization. In this case study, m= 50. The AMR of the
first-mode shape variation prediction is 1.08%. Recall that the low-
fidelity data set is generated by Guyan reduction and bears order-
reduction error. For comparison purpose, we calculate the AMR
for the corresponding 700 low-fidelity data directly and find an
AMR of 1.18% for the first mode. The AMR is slightly reduced by
using MLMRGP, as the original AMR for the first mode of the low-
fidelity data is already small. As will be shown subsequently, more

significant accuracy improvement by MLMRGP is achieved in the
prediction of the second-mode shape variation.
We now take further look at some prediction instances. For

example, the 26th and the 43rd DOFs show larger prediction
errors. Recall that the posterior mean values of MLMRGP are
employed as the prediction results here. Meanwhile, the prediction
results of MLMRGP are actually statistically characterized by pos-
terior mean and covariance. The posterior covariance essentially
indicates the confidence/likelihood of posterior mean. We then
analyze the PDFs of prediction results of mode amplitudes at
DOFs of interest that are built upon the posterior mean and covari-
ance. The covariance in this case is the variance, as we focus on sta-
tistical relation of samples that have the same response variable. For
comparison, we also include good prediction instances, i.e., the
42nd DOF and the 48th DOF with smaller prediction errors. We
attempt to make the comparison for DOFs with similar nominal

(a)

(b)

Fig. 4 Distributions of mode shape amplitudes of selected DOFs using Guyan order-reduced model:
(a) first-mode shape and (b) second-mode shape
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mode shape amplitudes. Figure 6 shows the prediction performance
comparison from a probabilistic perspective. A shaded area denotes
the region between plus and minus one standard deviations. It can
be observed that all true values fall within the shaded areas of pre-
dicted PDF. While the worst-case errors (i.e., deviation between the
posterior mean and the actual value) in the top two sub-plots (the

43rd and the 26th DOFs) are much larger, the corresponding vari-
ance increases significantly. This indicates that while relatively
larger errors occur at these DOFs, the meta-model is capable of
pointing out the low confidence at these locations. This capability
of probabilistic prediction illustrates that the Gaussian process is a
powerful statistical meta-modeling technique.

Fig. 5 Prediction errors of first-mode shape amplitudes

Fig. 6 First-mode shape error analysis based on predicted PDF
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One important feature of the proposed MLMRGP framework is
its capability of taking the correlation of different outputs (modal
amplitudes at different DOFs) into consideration. The covariance
matrix Q̂ identified (Eq. 14(b)) reflects the most probable correla-
tion among outputs. In order to facilitate the comparison, this
covariance matrix is converted to the correlation matrix in the fol-
lowing manner [35]

D =
�����������
diag(Cov)

√
, Corr = D−1CovD−1 (16a,b)

where Cov and Corr represent the original covariance matrix and
the resultant correlation matrix, respectively. The output correlation
is then used to evaluate the MLMRGP framework by comparing it
with the true correlation of testing data sets. In this case, it is inter-
esting to observe that the values in correlation matrix are all close to
1, which indicates the high correlation of all response variables. We
arbitrarily choose 4 of 50 response variables for comparison, as
shown in Fig. 7. The top-left and bottom-right numbers represent
the true correlation of testing data set and the correlation identified
from meta-model prediction, respectively. Clearly, they match quite
well, illustrating that MLMRGP is capable of accurately identifying
statistical correlation among different response variables.

3.2.3 Characterization of the Second-Mode Shape Variation.
Following a similar process, we analyze and interpret the meta-
model prediction of the second-mode shape variation. We first
analyze the order-reduction error of the entire low-fidelity testing
data set as a whole, and the AMR (Eq. (15)) calculated is 6.91%.
Utilizing the MLMRGP meta-model, we carry out emulation and
the AMR is calculated as 3.39%. This indicates a significant
improvement through the MLMRGP process due to the incorpora-
tion of a small amount (30) high-fidelity data. The results are shown
in Fig. 8. The largest error occurs at the 48th DOF with the mean
error at around 9%. The 30th, 37th, and 40th DOFs also exhibit con-
siderable errors. Recall Fig. 3. One may readily notice that the error
magnitude is generally associated with the original response distri-
bution. The larger the variance of original output distribution is, the

larger the corresponding errors will likely be, simply because the
variance reflects the sensitivity of mode shape with respect to
input uncertainty parameters. Additionally, the low-fidelity data
set of the second mode inherently has greater error than that of
the first- mode shape, which can be seen in the deterministic anal-
ysis result (Fig. 2). The framework of MLMRGP allows us to
tune/optimize the hyper-parameters to ensure prediction accuracy
of multiple response variables (i.e., mode shape amplitudes of inter-
est). It reduces large errors at certain DOFs while at the same time it
may indeed yield tradeoff at some other DOFs. The final prediction
errors reflect how the trained meta-model fits the testing data sets.
While the facts mentioned above indeed pose a challenge for the
mode shape amplitude prediction, the MLMRGP outperforms the
Monte Carlo simulation utilizing Guyan-order reduction analysis
with much higher accuracy.
Some example prediction instances are examined probabilisti-

cally as shown in Fig. 9. Once again, all true values are within
the region between plus and minus one standard deviations. The
result illustrates that large prediction error generally occurs with
large variance of predicted PDF, which reflects the confidence
level of predicted output. The identified correlation (bottom-right
number) and the true correlation (upper left number) extracted
from testing data sets are put together for comparison in Fig. 10.
The correlation among different outputs becomes more complicated
due to larger sensitivity of the second-mode shape with respect to
uncertainty parameters. The negative correlation here indicates a
relationship between two response variables in which one variable
increases and the other decreases. It can be observed that the general
trend/pattern of correlation is completely captured, which verifies
that MLMRGP takes output correlation into consideration during
emulation analysis.

3.2.4 Effect of Training Data Set Size. An important condition
in the formulation of the MLMRGP framework (Sec. 2.2) is that the
inputs to the high-fidelity training data set are a subset of the inputs
to the low-fidelity training data set. In other words, within this case
study setup, when the size of the low-fidelity data set remains to be
the same (i.e., 300), the size of high-fidelity training data sets can be

Fig. 7 Comparison of output correlation with respect to the original correlation from testing data sets (first-mode shape)
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adjusted from 0 to 300. The high-fidelity training data are reliable
evidences used to correct the meta-model error owing to the low-
fidelity model truncation. Figure 11 shows the AMR results for
the first two modes as we increase the high-fidelity training data
size. Unsurprisingly, both show performance improvement with
increasing the high-fidelity training data size.

3.2.5 Meta-Model Cross-Validation. The effect of increasing
size of high-fidelity training data size indicated in the preceding
sub-section is intuitive. It is also worth noting that the accuracy
improvement may not be simply proportional to the training data
size. Essentially, the performance has to do with whether the train-
ing data set captures the underlying features of the output variables.

Fig. 8 Prediction errors of second-mode shape amplitudes

Fig. 9 Second-mode shape error analysis based on predicted PDF
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The training data set, on the other hand, is generated based on
random inputs. When the training data set changes, one may
expect change of the prediction performance. In order to examine
how well a meta-model generalizes to new data set and to avoid
model under-fitting or overfitting, we apply the cross-validation
analysis. Particularly, here we use the bootstrap sampling-based
cross-validation, which allows the random sampling with replace-
ment [36]. We use the same sizes of low-fidelity and high-fidelity
data sets, 300 and 30, respectively. Five emulations with different
randomly selected training and testing data sets are implemented.
Table 2 shows the AMR values of both mode shapes under different
emulations. It is found that the results under different emulations are
quite consistent, showing the robustness of MLMRGP. Besides, the
mean of AMR values using MLMRGP is always smaller than the
AMR of low-fidelity data evaluated as a whole, which demonstrates
the effectiveness of MLMRGP.

4 Conclusion
A new MLMRGP meta-modeling technique is developed in this

research, aiming at uncertainty quantification of mode shape varia-
tion. This framework allows the usage of a small amount of high-
fidelity data produced by full-scale finite element analysis together
with a large amount of low-fidelity data produced by order-reduced
model such as Guyan reduction as training data sets for meta-model
establishment. This reduces significantly the computational cost
needed for generating the training data. The new framework
also yields the simultaneous prediction of mode shape amplitudes
at different DOFs, thereby capturing their intrinsic correlations.
Case studies using a benchmark structure indicate that the
MLMRGP technique can effectively characterize the mode shape
variations. The incorporation of a small amount of high-fidelity
data can increase the prediction accuracy compared with using

Fig. 10 Comparison of output correlation with respect to the original correlation from testing data sets (second-mode shape)

Fig. 11 AMR of first two mode shapes versus size of high-
fidelity training data

Table 2 AMR comparion between cross-validation of MLMRGP
and low-fideltiy testing data

AMR (%)

Prediction using
MLMRGP built upon
300 low-fidelity data
and 30-fidelity data

Prediction using Guyan
order-reduced model

First-mode shape 1.081 Mean:1.023
STD:0.098

1.183
0.864
1.043
1.119
1.010

Second-mode shape 3.390 Mean:3.286
STD:0.292

6.910
2.911
3.057
3.467
3.609
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order-reduced data alone. This framework can be extended to
general structural dynamic analysis concerning multiple output
responses.
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Appendix: Order-Reduced Models
This section outlines the mathematical formulations of Guyan

reduction and fixed-interface component mode synthesis (CMS).

Guyan Reduction. Guyan reduction is a well-established model
order reduction technique, where the DOFs are divided into master
and slave DOFs. This division can be expressed in the matrix form
as follows [4]:

Mmm Mms

Msm Mss

[ ]
z̈m
z̈s

[ ]
+

Kmm Kms

Ksm Kss

[ ]
zm
zs

[ ]
=

0
0

[ ]
(A1)

where subscripts m and s denote the master and slave DOFs, respec-
tively. The second row in the above matrix equation yields

zs = −K−1
ss (Msmz̈m +Mssz̈s +Ksmzm) (A2)

Neglecting the inertia terms in Eq. (A2) results in the transforma-
tion matrix TG for Guyan reduction

zm
zs

[ ]
=

I
−K−1

ss Ksm

[ ]
zm = TGzm (A3)

The order-reduced stiffness and mass matrices can be obtained as

�M = TT
GMTG (A4a)

�K = TT
GKTG (A4b)

Fixed-Interface Component Mode Synthesis. In CMS-
based order reduction, a structure is divided into a group of sub-
structures first [37]. For the sth substructure, the DOFs are
divided into interior DOFs and interface DOFs (between adjacent
substructures). Its equation of motion under free vibration condition
can be written as

Ms
ii Ms

ij
Ms

ji Ms
jj

[ ]
z̈si
z̈sj

[ ]
+

Ks
ii Ks

ji
Ks

ji Ks
jj

[ ]
zsi
zsj

[ ]
=

0
fsj

[ ]
(A5)

where subscript i and j indicate the interior and interface DOFs. fsj
represents the internal force due to neighboring structure. In
fixed-interface CMS, at the substructure level we let Zs

j = 0 and sub-
sequently solve the eigenvalue problem

(Ks
ii − ωs2

ii M
s
ii)ψ

s
ii = 0 (A6)

where ψs
ii denotes the eigenvector set of the fixed-interface sub-

structure. In CMS, order-reduction is facilitated by retaining only
the lower-order eigenvectors to represent the dynamic characteris-
tics of each substructure. All interface DOFs are retained in the
order-reduced model. Let ψs

k denote the set of kept eigenvectors
of the sth substructure. As a basic fixed-interface CMS, we apply
a static condensation to take into account the coupling between
interface DOFs and the interior DOFs. The transformation
between the original DOFs and the order-reduced DOFs for the
sth substructure can then be expressed as

Ts
CMS =

ψs
k ψs

ij
Is

[ ]
(A7)

where ψs
ij = −Ks−1

ii Ks
ij and Is is an identity matrix. Using the above

transformation matrix, order-reduced mass and stiffness matrices
can be formed. It is worth noting that, while CMS generally
yields much improved accuracy as compared with Guyan reduction,
eigenvalue analysis at the substructure level is needed which
increases the computational cost.
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