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Abstract—1In cache-aided networks, the server populates the
cache memories at the users during low-traffic periods in order to
reduce the delivery load during peak-traffic hours. In turn, there
exists a fundamental tradeoff between the delivery load on the
server and the cache sizes at the users. In this paper, we study this
tradeoff in a multicast network, where the server is connected
to users with unequal cache sizes and the number of users is
less than or equal to the number of library files. We propose
centralized uncoded placement and linear delivery schemes
which are optimized by solving a linear program. Additionally,
we derive a lower bound on the delivery memory tradeoff with
uncoded placement that accounts for the heterogeneity in cache
sizes. We explicitly characterize this tradeoff for the case of three
end-users, as well as an arbitrary number of end-users when the
total memory size at the users is small, and when it is large.
Next, we consider a system where the server is connected to
the users via rate-limited links of different capacities and the
server assigns the users’ cache sizes subject to a total cache
budget. We characterize the optimal cache sizes that minimize
the delivery completion time with uncoded placement and linear
delivery. In particular, the optimal memory allocation balances
between assigning larger cache sizes to users with low capacity
links and uniform memory allocation.

Index Terms— Coded caching, uncoded placement, cache size
optimization, multicast networks.

I. INTRODUCTION

HE immense growth in wireless data traffic is driven by

video-on-demand services, which are expected to account
for 82% of all consumer Internet traffic by 2020 [1]. The high
temporal variation in video traffic leads to under-utilization
of network resources during off-peak hours and congestion in
peak hours [2]. Caching improves uniformization of network
utilization, by pushing data into the cache memories at the
network edge during off-peak hours, which in turn reduces
congestion during peak hours. The seminal work [3] has
proposed a novel caching technique for a downlink setting,
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in which a server jointly designs the content to be placed
during off-peak hours and the delivered during peak hours,
in order to ensure that multiple end-users can benefit from
delivery transmissions simultaneously. These multicast coding
opportunities are shown to provide gains beyond local caching
gains, which result from the availability of a fraction of the
requested file at the user’s local cache. They are termed
global caching gains since they scale with the network size.
Reference [3] has shown that there exists a fundamental trade-
off between the delivery load on the server and the users’ cache
sizes.

The characterization of this trade-off has been the focus
of extensive recent efforts [4]-[14]. In particular, references
[4]-[6] have characterized the delivery load memory trade-off
with the uncoded placement assumption, i.e., assuming that
the users cache only uncoded pieces of the files. The deliv-
ery load memory trade-off with general (coded) placement
has been studied in [7]-[14]. Coded caching schemes were
developed for various cache-aided network architectures, such
as multi-hop [15]-[17], device-to-device (D2D) [18], [19],
multi-server [20], lossy broadcast [21]-[24], and interference
networks [25], [26]. In addition to network topology, sev-
eral practical considerations have been studied, such as the
time-varying nature of the number of users [27], distortion
requirements at the users [28]-[30], non-uniform content
distribution [31]-[35], delay-sensitive content [36], and sys-
tems with security requirements [37]—[39].

End-users in practical caching networks have varying stor-
age capabilities. In this work, we address this system constraint
by allowing the users to have distinct cache sizes. In particular,
we study the impact of heterogeneity in cache sizes on
the delivery load memory trade-off with uncoded placement.
Models with similar traits have been studied in references
[28], [40]-[42]. In particular, references [40], [41] have
extended the decentralized caching scheme in [27] to systems
with unequal cache sizes. References [28], [42] have proposed
a centralized scheme in which the system is decomposed into
layers such that the users in each layer have equal cache
size. More specifically, the scheme in [3] is applied on each
layer and the optimal fraction of the file delivered in each
layer is optimized. Additionally, reference [42] has proposed
grouping the users before applying the layered scheme which
requires solving a combinatorial problem. In a follow-up
work to some of our preliminary results presented in [43],
reference [44] proposed optimizing over uncoded placement
schemes assuming the delivery scheme in [27].
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(a) Fixed cache sizes and equal download rates.

Fig. 1. Centralized caching system with unequal cache sizes.

In this work, we focus on uncoded placement and linear
delivery, where the server places uncoded pieces of the files
at the users’ cache memories, and the multicast signals are
formed using linear codes. Our proposed caching scheme
outperforms the schemes in [28], [42], [44], because it allows
flexible utilization of the side-information in the creation of the
multicast signals, i.e., the side-information stored exclusively
at ¢t users is not restricted to multicast signals of size ¢ + 1
as in [3], [28], [40]-[42], [44]. We show that the worst-case
delivery load is minimized by solving a linear program over
the parameters of the proposed caching scheme. In order to
evaluate the performance of our caching scheme, we derive
a lower bound on the worst-case delivery load with uncoded
placement. Using this bound, we explicitly characterize the
delivery load memory trade-off for arbitrary number of users
with uncoded placement in the small total memory regime,
large total memory regime, the definitions of which are
made precise in the paper, and for any memory regime for
the instance of three-users. Furthermore, we compare the
achievable delivery load with the proposed lower bound with
uncoded placement, and the lower bounds with general place-
ment in [13], [41]. From the numerical results, we observe
that our achievable delivery load coincides with the uncoded
placement bound.

Next, inspired by the schemes developed for distinct
cache sizes we consider a middle ground between noiseless
setups [3], [28], [42] and noisy broadcast channels with cache-
aided receivers [21]-[24]. More specifically, we assume that
the server is connected to the users via rate limited links of
different capacities, and the server assigns the users’ cache
sizes subject to a cache memory budget. Reference [45]
has considered a similar model and proposed jointly design-
ing the caching and modulation schemes. Different from
[21]-[24], [45], we consider a separation approach where the
caching scheme and the physical layer transmission scheme
are designed separately. This is inline in general with the
approach of [3] and followup works that consider server to
end-users links as bit pipes. We focus on the joint optimiza-
tion of the users’ cache sizes and the caching scheme in
order to minimize the worst-case delivery completion time.
More specifically, the optimal memory allocation, uncoded
placement, and linear delivery schemes are again obtained by
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(b) Cache memory budget and unequal download rates.

solving a linear program. For the case where the cache memory
budget is less than or equal to the library size at the server,
we derive closed form expressions for the optimal memory
allocation and caching scheme. We observe that the optimal
solution balances between assigning larger cache memories
to users with low capacity links, delivering fewer bits to
them, and uniform memory allocation, which maximizes the
multicast gain.

II. SYSTEM MODEL

Notation: Throughout the paper, vectors are represented by
boldface letters, sets of policies are represented by calligraphic
letters, e.g., A, @ refers to bitwise XOR operation, (x)" £
max{0, z}, |WW| denotes the size of W, A\ B denotes the set
of elements in A and not in B, ¢ denotes the empty set, [K]| £
{1,...,K}, A C B denotes A being a subset of or equal
to B, C4 [K] denotes non-empty subsets of [K], and P4 is
the set of all permutations of the elements in the set A, e.g.,
7){1,2} ={[1,2], [2,1]}.

Consider a centralized system consisting of a server con-
nected to K users via an error-free multicast link [3], see
Fig. 1(a). A library {W1,...,Wx} of N files, each with size
F bits, is stored at the server. User k is equipped with a
cache memory of size My F' bits. Without loss of generality,
we assume that M; < My < -+ < Mg. We define my =
Mj:/N to denote the memory size of user k& normalized by
the library size NF, i.e., my € [0,1] for M, € [0, N]. The
cache size vector is denoted by M = [M;,..., M| and its
normalized version by m = [m1,...,mg]. We focus on the
case where the number of files is larger than or equal to the
number of users, i.e., N > K.

In Section VII, we introduce rate limited download links of
distinct capacities to the model. In particular, we consider that
the link between the server and user k has capacity Cj, bits
per channel use, which we refer to as the download rate at
user k, as illustrated in Fig. 1(b). We denote the collection of
link capacities by C = [C},...,Ck]. In this setup, we seek
the system configuration with best performance, including the
memory sizes { M}, subject to Zkl,{:l M, F < muNF bits,
where my is the cache memory budget normalized by the
library size.
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The system operates over two phases: placement phase
and delivery phase. In the placement phase, the server pop-
ulates users’ cache memories without knowing the users’
demands. User k stores Z, subject to its cache size constraint,
i.e., |Zk| < MF bits. Formally, the users’ cache contents are
defined as follows.

Definition 1 (Cache Placement): A cache placement func-
tion oy : 271N — [2WMKFD) maps the files in the library to
the cache of user k, i.e., Z = o (Wh, Wa, .., Wn).

In the delivery phase, user k requests file Wy, from the
server. Users” demand vector d = [dy,...,dk] consists of
independent uniform random variables over the files as in [3].
In order to deliver the requested files, the server transmits a
sequence of unicast/multicast signals, X7 g4, to the users in
the sets 7 Cy4 [K]. X7 4 has length vy F' bits, and is defined
as follows.

Definition 2 (Encoding): Given d, an encoding function
Yra 21K — (27 F1) maps requested files to a signal
with length vrF bits, sent to users in T, ie, X744 =
wT,d(de 0y WdK)'

At the end of the delivery phase, user k£ must be able to
reconstruct Wy, from the transmitted signals X7 4,7 Cy [K]
and its cache content Z, with negligible probability of error.

Definition 3 (Decoding): A decoding  function g j:
[2LEF]] x [2WMkF]] — [2F), with R £ Y7, [K) VT, maps
cache content of user k, Zy, and the signals Xr.a,T Sy [K]
to de, ie., de = d.k (X{l},d7X{2},da . 7X[K],d; Zk).

A caching scheme is defined by (¢x(.), Y1 ,a(.), tax(.)).
The performance is measured in terms of the achievable
delivery load, which represents the amount of data transmitted
by the server in order to deliver the requested files.

Definition 4: For a given normalized cache size vector
m, the delivery load R(m) is said to be achievable
if for every € > 0 and large enough F, there exists

(@k(')awT,d(')aﬂd,k(~)) such thar max Pr(de 7£ de) <
d,k€[K]|

¢, and R*(m) = inf{R : R(m) is achievable}.

The set of cache placement policies 2( considered in this
work are the so-called uncoded policies, i.e., only pieces
of individual files are placed in the cache memories. Since
we have uniform demands, the cache memory at each user
k is divided equally over the files, i.e., myF bits per file.
We consider the set of delivery schemes ©, in which multicast
signals are formed using linear codes. The worst-case delivery
load achieved by a caching scheme in (2, D) is defined as
follows.

Definition 5: With placement and delivery policies in A
and ©, the worst-case delivery load is defined as Ry o =
maxq Raop = ZTQ¢[K]UT’ and the minimum delivery
load overall Ry o is denoted by Ry o(m) £ inf{Ry o :
Ry »(m) is achievable}. /

Definition 6: The minimum delivery load achievable with a
placement policy in A and any delivery scheme, is defined as
Ry (m) £ inf{Ry : Ry (m) is achievable}.

Remark 1: Note that Ry o > Ry > R, since R* is
obtained by taking the infimum over all achievable delivery
loads, Ry is restricted to uncoded placement policies in
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A, and Ry 5 is restricted to cache placement and delivery
policies in A and D, respectively.

In Section VII, we consider download links with limited
and unequal capacities. Thus, X7 4 will need to have a rate
< %1%1 C; [46]. Additionally, there is no guarantee that the

users outside the set 7 can decode X7 4, as their download
rates may be lower than miirrl C;. Consequently, a more relevant
j€

J

system-wide metric is the total time needed by the server

to deliver all the requested files to all the users, defined as

follows, assuming uncoded placement and linear delivery.
Definition 7: With a placement policy in 2, and a delivery

policy in ®, the worst-case delivery completion time (DCT) is

N vT
defined as Og » = mgx Od,0 =

7,1k Mn G5’
Observe that, for Cy, = 1,Vk € [K], Oy » = Ro .

IIT. MOTIVATIONAL EXAMPLE

In order to motivate our caching scheme which is tailored
to capitalize on multicast opportunities to the fullest extent,
we consider an example and compare the state-of-the-art
caching schemes in [28], [42], [44] with our scheme.

Consider a three-user system with three files, {A, B, C},
and m = [0.4, 0.5, 0.7]. Without loss of generality, we assume
that the users request files A, B, and C, respectively. In the
placement phase, the files are divided into subfiles, which are
labeled by the users exclusively storing them, e.g., subfile A; ;
is stored at users ¢ and j.

1) The layered scheme [28], [42]: In the placement phase,
the files are partitioned over three layers, we denote the
files in layer ! by the superscript (). By optimizing the
file partitioning over the layers, we get the following
scheme. In layer 1, users have equal caches with size
M F bits and files A, BW (M) with size 0.9F bits,
each of which is split into six disjoint subfiles, e.g.,
AW s divided into ATV, A8, AV, AT A A5,
where |A§1)| = 0.2F, and |A§1j)| = 0.1F. In delivery
phase, the server sends the multicast signals B (1) D A(l),
¢ o AP, ¢ o B, and 0 o BY o AL,
In layer 2, we have a single user with no cache and a
two-user system with file size 0.1F bits and equal cache
size (Mz—M;)F = 0.1 N F bits. The server only needs to
send a unicast signal of size 0.1F bits to user 1. In layer 3,
the (M3 — M,)F bits of the cache at user 3 are not
utilized.

2) The caching scheme in [44]: Each file is split into six
disjoint subfiles, e.g., A is divided into A;, A,, As,
ALQ, A173, A273, where |AIL| = 04F/3, |A172| = 01F/3,
|A1 3] = 0.7F/3, and |As 3| = F/3. In delivery phase,
the server sends By @ Az, C1 @ Az, Co @ Bs, and
C120B1,3PAs 3, where © denotes an XOR operation
that allows zero padding. Note that C 2D B 3543
can be decomposed into Ci o @ 31’3 ® A’2’3, Bi”3 a5
A’2’13, and the unicast signal A’Q’f3, where |B{’3| =
A5 5| = [Chz2l, |BY 3] = [A5 3] = [Bis| —[Ci2|, and
|A3's| = [A2,3] — |Bi3l.



5324
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Fig. 2.  Optimal scheme with uncoded placement for K = N = 3 and
M =[1.2, 1.5, 2.1].

3) Our proposed scheme: In the placement phase, each file
is split into five disjoint subfiles, e.g., A is divided into
Al, A27 A3, A1,3, A2,3, where |A1| = |A173| = OZF,
|A2| = |As| = 0.1F, and |A3 3| = 0.4F. First, the server
partitions A 3 into Aj 5, A5 5 such that [A5 5| = 0.3F
and |A5 ;] = 0.1F. Then, the server sends the multicast
signals (31 U Bl,3) &) (A2 U A’2,3), C1 & (Ag U A’2’73),
and Cs @ Bs. One can easily verify that these multicast
signals enable the users to decode the requested files. The
caching scheme is illustrated in Fig. 2.

Our caching scheme achieves a delivery load equal to 0.7,
compared to 0.8 by the layered scheme [28], [42], and 0.7333
by the scheme in [44]. The schemes in [28], [42], [44] need
an additional unicast transmission compared with our scheme,
as we have better utilization of side-information, e.g., A’2,3 is
used in the multicast signal to users {1, 2}. Additionally, in this
example, the layered scheme does not utilize (M3 — Ms)F
bits of the cache at user 3. In Theorem 4, we show that our
proposed scheme is optimal with uncoded placement.

IV. CACHE PLACEMENT PHASE

Each file W, is partitioned into 2K gsubfiles. A subfile VT/Z,S
is labeled by the set of users S exclusively storing it. The set
of uncoded placement schemes for a given m is defined as

Ql(m) = {a Z as =1, Z as < my,
SC[K] C[K]: keS
%emﬁ M

where a is the vector of allocation variables as, S C [K]
and |[W; s| = asF bits,Vl € [N]. For example, for K = 3,
we have

agp +apy +aqey +agsy + a2y + a3

+agpe3y +aqez =1, 2)
agiy +agigy +agiky +agigky < M,
i,j,k €{1,2,3},i#j#k (3
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V. DELIVERY PHASE
A. Multicast Signals X1 q

A multicast signal X7 4 delivers a piece of the file Wy,
WdT , to user j € 7. The server generates X7 4 by XORing
Wj, Vj € T, where |WT .| =vr F bits, Vj € T. Each user
inT \ {7} must be able to cancel Wd from X7 g, in order to
decode its requested piece. Consequently, Wd is constructed
using the side-information cached by all the users in 7 \ {j}
and not available at user j:

X7.d=Djer WZ = @jeT(

U WZ,S>, “)

T
SeB;

where W(Z s C W(Z which is stored exclusively at the users
in the set S and

BT 2 {SC (K] : T\{j} cs,jgs},w eT, (5

for example, for K = 3 and 4,j,k € {1,2,3}, i # j # k,

the multicast signals are defined as

X{z,]} 4= W{ 5} D W{%J}
_ {i.7} {i.7} {i.5} {i.7}
= (Wdi,{a}UW e k}) (Wd Uwail k})
(6)
X{172,3}7d _ W{1,2,3} a W{1,2,3} @ W{1,2,3}
_ {123} {123} {123}
=W 23 ©Wa, sy © Wa, 2y (7

where [W1"| = Wi} | = v, , F bits and [W">%| =
W2 = W) = vgm P W gl = uIF bis,
i.e., the assignment variable ukl € o, ag] represents the
fraction of Wy, s involved in the multicast signal X7 4.
Note that one subﬁle can contribute to multiple multicast
transmissions, for example in a three-user system de,{i, 5y 18
used in Xy ry.d> X¢jr).d> X{i,5,k},4- Lherefore, in order to
guarantee that no redundant bits are transmitted, each subfile
de,g is partitioned into disjoint pieces, e.g., for K = 3,
we have

W{z k} ) U W{J k} ) U W{%J k}
5] J

de’{i’j} dy{i dy. {1, di,{i,5}

dkv{l,]}’

@)

where Wi s denotes the remaining piece which is not
involved in any transmission.

Remark 2: By contrast with [3], [28], [42], [44], where
multicast signals of size t + 1 utilize only the side-information
stored exclusively at t users, i.e., X7 4 = @keTWg;j\{k},
the structure of the multicast signal in (4) represents all
feasible utilizations of the side-information. This flexibility is
instrumental in achieving the delivery load memory trade-off
with uncoded placement Ry.

B. Unicast Signals X,

A unicast signal X, delivers the fraction of the requested
file which is not stored at user ¢ and will not be delivered by
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the multicast transmissions. For example, for K = 3, we have
= ij ik i,k
Xiy.a=Wa, \ ( U Wa..s uwi s ywiss ywit }) ;
S:eS
g,k €{1,2,3}, i£j#k )
where (Jg.ics Wdi,s is stored at user ¢ and Wg; is delivered
to user ¢ via X7 4.

C. Delivery Phase Constraints

Recall that v € [0, 1] and vkl € [0,as] represent
| X7.al/F, and |Wd7; s|/F, respectively. Our delivery scheme
can be represented by constraints on vy and ug as follows.
First, the structure of the multicast signals in (6), (7) imposes

Y uf=vr, VT Gy [K], VjeT. (10)
Ser
For example, for K = 3, we have
vy = gy Fuh =ui i), an
o o{1,2,3} {123} _ {123}
V{1,2,3} = Ugp 3y = Ury 3y = Ugy oy - (12)

In order to prevent transmitting redundant bits from the subfile
Wa,.s to user j, we need

Z 'Uzg < as, v] ¢ Sa
TColK]: JET, TNS#H,T\{j}CS

VSG{Sc[K]: 2§|§|gK—1}, (13)
where the condition 7 \ {j} C S follows from (5).
For example, for K = 3, (13) implies

Gk} | Lk}, ik}
Uggy T UGG U

Finally, the delivery signals sent by the server must complete
all the requested files:

o ur>1- > asVke[K]

Tg¢[K]:kET SCIK]: keS

< agj)- (14)

5)

for example, for K = 3, the delivery completion constraint
for user ¢ is given by
Uiy T 0y T VR T 0GR 2 1= (e e

Ftagig +aggk). (16)

Therefore, for given a, the set of feasible delivery schemes,
D(a), is defined as

D(a) = {(v,U)‘ Yoo ur>1- > asVke[K],
TCy[K:keT SC[K):keS
> uf=vr, VT Gy [K], V€T,

seBy
T .
Ug <as, v] ¢S7
TColK]: JET, TNS#¢,T\{j}CS

VSG{SC[K]: 2§|S|§K—1},

0 <uf <as,¥T Sy [K]VS €| BZ}, (17)
JjeT
where the transmission and assignment variables are repre-
sented by v and wu respectively.
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D. Discussion

The linear constraints in (17) guarantee the delivery of
the requested files. Successful delivery is guaranteed by
1) By (10), user j € 7 can retrieve WdTJ from the signal X7 4.
2) By (13) and (15), Wy, can be reconstructed from the pieces
decoded at user j. The delivery completion constraints ensure
that the number of decoded bits are sufficient for decoding the
file, and the redundancy constraints prevent the server from
transmitting redundant bits. Formally, we have:

Proposition 1: For §' C [K| such that 1 < |§'| < K —2,
and some user j ¢ S', the size of the multicast transmissions
X71.4, where {j} US" C T, is limited by the amount of side-
information stored at the users in S’ and not available at

user j, i.e.,
E vy < E as,

TCy[K]: {j}US'CT SC[K]: S'CS,j¢S

which is guaranteed by (10) and (13).
The proof of Proposition 1 is provided in Appendix A.

(18)

VI. FORMULATION AND RESULTS

In this section, we first show that the optimal uncoded place-
ment and linear delivery schemes can be obtained by solving a
linear program. Next, we present a lower bound on the delivery
load with uncoded placement. Based on this bound, we show
that linear delivery is olp(timaI with uncoded placement for
three cases; namely, » ., m, < 1, Zkl,{:l mp > K—1,
and the three-user case. That is, for these cases we explicitly
characterize the delivery load memory trade-off with uncoded
placement R} (m).

A. Caching Scheme Optimization

In Sections IV and V, we have demonstrated that an
uncoded placement scheme in 2 is completely characterized
by the allocation vector a, which represents the fraction of
files stored exclusively at each subset of users S C [K].
Additionally, the assignment and transmission vectors (u, v)
completely characterize a delivery scheme in ®, where v
represents the size of the transmitted signals, and « determines
the structure of the transmitted signals. For a given normalized
memory vector m, the following optimization problem char-
acterizes the minimum worst-case delivery load R o (m) and
the optimal caching scheme in 2,9, i.e., the optimal values
for a, v, and wu.

Ol: min > ur (19a)
e TC, K]
s.t. a € A(m), and (u,v) € D(a), (19b)

where A(m) and D(a) are defined in (1) and (17),
respectively.

Remark 3: For equal cache sizes, Ry o(m) is equal to
the worst-case delivery load of [3], which was shown to
be optimal for uncoded placement in [4] for N > K. For
N < K, the optimal scheme for uncoded placement was
proposed in [6]. The solution of (19) is equivalent to the
memory sharing solution proposed in [3].
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Remark 4: In Section V, Xt q is formed by XORing pleces
of equal size. A delivery scheme with XTd = BjeT Wd ,
where @ denotes an XOR operation that allows zero paddlng
so that the pieces are of equal length, is equivalent to a deliv-
ery scheme in ® and both yield the same delivery load. For
example, X{172}7d Wd{l{QQ} Wd{l{Ql}}, with u%f} > H}Q},
is equivalent to a multicast signal Xy, 9y q and a unicast
( {1,2} {1 2})F

signal X9y g, with sizes “h} 2 bits, and Urgy  —Uryy

bits, respectively.

Remark 5: In this work, we assume the file size to be
large enough, such that the cache placement and delivery
schemes can be tailored to the unequal cache sizes by
optimizing over continuous variables. More specifically, for
F large enough, uLF can be used instead of [ulF] for

L € [0,1]. The required subpacketization level is the least-
common-denominator of the assignment variables ug That
is, the minimum packet size is equal to the greatest-common-
divisor (gcd) of all uSF assuming uSF are integers.

B. Lower Bounds

Next, using the approach in [4], [6], we show that R} (m)
is lower bounded by the linear program in (20).

Theorem 1: (Uncoded placement bound) Given K, N >
K, and m, the minimum worst-case delivery load with
uncoded placement Ry (m) is lower bounded by

02: | pax _ ~ho- > mrA (20a)
st Ao+ Y A+rs 20, VSCIK],  (20b)
keS
> aq=1, (200)
q€P k]
where
K, for § = ¢,
07 fOl” S = [K],
vs £ K-|S| @21
> Jj g, otherwise.
Jj=1 q€Pix): qj+1 €S,
{q1,..,q; }NS=¢
and Pix is the set of all permutations of 1,2,...,K].

The proof of Theorem 1 is provided in Appendix B. We
compare the achievable delivery load Ry o(m) with the
following lower bounds on the worst-case delivery load R*.
From [41], R*(m) is lower bounded by

{N—(N—Kl)*
[]

max
selK], le[[ X !
s+
sN >> m; +y(N—Is)*
i=1
- 22
l(s+7) }’ @2)

where v £ min{((%} — s)+,K — s} and mp < ---
The following proposition is a straightforward generalization

of the lower bounds in [13] for systems with distinct cache
sizes.

S meg.
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Proposition 2: Given K, N, m, and m; < --- < mg,

we have

max

R*(m) > max s—
s€[min{K,N}] =1

i 0S| e

i=1

NZ?:lmi
N—-k+1 [’

C. Special Cases

Next, we consider three special cases, for which we explic-
itly characterize Rj(m) and show that the solution of (19)
is the optimal caching scheme with uncoded placement. First,

. . K
we consider the small cache regime, Zi:l m; <1,

Theorem 2: The minimum worst-case delivery load with

uncoded placement is given by

KZ

formy < --- < mg, Zfilmi <1, and N > K.
Proof: Achievability: In the placement phase, each file
is spht into K + 1 subfiles such that ag;; = m; and ay =

Ry (m —j+1)m,, (24)

Ek 1 mg. In the delivery phase, we have v;;; = 1 —
Zj Lmi — (K — j+1)m; and vy; 5y = u‘{{i’}]} B}j} =
min{ag;y,ag;y ). In turn, Ry p(m) = K — E]:l( —-J+
1)m; is achievable. Converse: By substituting a2, k=1
in Theorem 1, we get

K
— )Xo — 2
\Jmax Ao l;mk Ak (25a)
S Ao+ Y A ts 20, VS C K], (25b)
keS
where 75 = j—1if {j} € Sand [j —1]NS = ¢ for

je[K]l. A =—-K,\j = K—j+1is a feasible solution
to (25), since Ao + \j + (j — 1) = 0. Therefore, R} (m) >
K — Z] (K =+ 1)m1 u
Next theorem characterlzes Ry (m
ory regime where Z _ym; > K—1.
Theorem 3: The minimum worst-case delivery load with
uncoded placement is given by

Ry(m)

for my < - <mK,ZzK1mz>K 1, and N > K.

Proof:  Achievability: In the placement phase, W; is
partitioned into subfiles TV JKN\{i}»? € [K] and W k], such
that aK] = Zfil m;— (K— ) and AR\{i} = 1-m;, 1 € [K]
In the delivery phase, we have the following cases.

e For (K—2)m; > ZZKZQ m; — 1, we have the following
multicast transmissions

m) in the large total mem-

= R*(m (26)

):1—m1,

K}, 27
(28)

- K
Xipfiy.a = Orern (i War gy 1€ {2
_ [K]
Xix).a = Bre)Wa, 1k]\ (k)
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with

Vr\{iy = M —ma, 1€ {2, K}, (29)

K
vig) = 1+ (K —2)my —ka.
k=2

(30)

e For (K—I—1)m; < ZiK:H_l m;—1 and (K—1—2)mj41 >

Zfiuz m;—1, where | € [K —2], we have the following
transmissions
— [i] ;
Xli,a = @kE[i]Wdh[K]\{k}a i €[], (3D
_ [KI\{i} :
XK\ {i},d = @kE[K]\{i}de,[K]z\{k}7 ie{l+1,...,K}. (32)
with
v = Migr —m, 1€ [I-1], (33)
1 K
vy = m( Z mj—1— (K—Z—l)ml), (34)
j=141
1 K
VKNG T ((K—l—l)mi +1- ) mj>7

j=l+1
1e{l+1,...,K}. (35)
In both cases, the size of the assignment variables satisfies
“F}(]\{k = v7,Vk € 7. Converse: By substituting s = 1 in
(23), we get R*(m) > 1 —m;. [ ]

In the next theorem, we characterize Rj(m) for K = 3.

Theorem 4: For K = 3, N > 3, and mi < mo <
ms, the minimum worst-case delivery load with uncoded
placement

* 4—j mj
Rm(m):max{ 3— Z_] 1( )mja 3 Z?:l %7
2—2m1 —ma, 1—m1}. (36)

In particular, we have the following regions
3 3
1) For 3> mj<1, Rj(m)=3-> (4—j)m
j=1 j=1
3
2) For 1<) m; <2, we have three cases
7j=1
o If mg < m2+3m1—1 and 2mso + m3 < 2, then
4 —j)m,
Rm( m) =7 — Z 3 :

o If mg 2m2+3m1—1 and my; + mo < 1, then

R3(m) =2 —2m; — ma.
o If 2mo + ms > 2, and my + mo > 1, then
Ry (m) = 1= m

3) For Emj>2 Ry(m)=1-m,.

Proof of Theorem 4 is provided in Appendix C.

Remark 6: By substituting ms = 1 in Theorem 4, we obtain
the two-user delivery load memory trade-off with uncoded
placement, given as Rj(m)=max{2—2 mi; —ma, 1—m}.
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Remark 7: From the proposed schemes, we observe that the
allocation variables satisfy

K
Y as=t+1-Y my (37)
SC[K]: |S|=t i=1
K
> as =Yy m;—t, (38)
SCIK): |S|=t+1 i=1

fort < ZZK:1 m; < t+1and as =0 for |S| &€ {t,t+1}. That
is, the proposed placement scheme generalizes the memory
sharing scheme in [3], where as = as' for |S| = |S’|.

D. Comparison With Other Schemes With
Heterogeneous Cache Sizes

Previous work includes the layered heterogeneous caching
(LHC) scheme [28], [42], where the users are divided into
groups and within each group the users’ cache memories are
divided into layers such that the users in each layer have equal
cache sizes. The Maddah-Ali—Niesen caching scheme [3] is
applied to the fraction of the file assigned to each layer. Let
Rinc(m) denote delivery load of this scheme. We have

Proposition 3: Given K,N > K and m, we have
R*ﬁ,i) (m) < RLyc(m).

Proof: LHC scheme is a feasible (but not necessarily opti-
mal) solution to (19) shown as follows. Grouping: Dividing the
users into disjoint groups can be represented in the placement
phase by setting as = 0 for any set S containing two or more
users from different groups. Similarly, in the delivery phase
vy =01if {q1,q2} C T, ¢1 and g2 belong to distinct groups.
Layering: Without loss of generality, assume there is one
group, i.e. there are K layers. Let a; be the fraction of the
file considered in layer [, and assign aSJ, vr 1, and Ug,z to
layerl such that ag = Ez 1081, VT = El L vT,1, and ug =
Zl 1u5 ;- Additionally, we have > s
and Esqz, K {khes @S0 DT, Ky {kyeT VT = U
for k € {iI,...,K}. Thus, the LHC scheme is a feasible
solution to (19). |

The recent reference [44] has proposed optimizing over
uncoded placement schemes 2( with the decentralized delivery
scheme in [27], ~i.e., the multicast signals are defined as
X77d = @keTde,T\{k} where V7 = MaXgeT ag—\{k},
which limits the multicast opportunities [33] as illustrated
in Section III.

Remark 8: For fixed cache contents, reference [33] pro-
posed a procedure for redesigning the multicast signals,
formed by XORing pieces of unequal size, in order to better
utilize the side-information stored at the users. In contrast,
our scheme is a centralized scheme, where we jointly optimize
the cache contents and the delivery procedure which allows
flexible utilization of the side-information at the users.

Different from [28], [42], [44], we propose a more general
delivery scheme that allows flexible utilization of the side-
information. Both our solution and that of [44] is exponential
in the number of users. Notably, for systems with only two
distinct cache sizes over all users, reference [44] has a caching

K} aS,l = oy,
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scheme which is obtained by solving an optimization problem
with polynomial complexity.

VII. OPTIMIZING CACHE SI1ZES WITH
TOTAL MEMORY BUDGET

In this section, we consider a centralized system where the
server is connected to the K users via rate limited download
links of distinct capacities, as described by Fig. 1(b).

A. Problem Formulation

Next, we consider the joint optimization of both the caching
scheme and the users’ cache sizes for given download rates C'
(see Fig. 1(b)) and normalized cache budget my. More
specifically, the minimum worst-case DCT, ©j s, (Myor, C),
is characterized by

. T
03: agl'lun'rn Z min C, (39a)
TColK] jeT
s.t. a € A(m), (v,u) € D(a), (39b)
K
> mi < i, (39)
k=1
0<mp <1, Vk € [K], (39d)

where 2((m) is defined in (1) and ©(a) is defined in (17).

B. Optimal Cache Sizes

The linear program in (39) characterizes the optimal mem-
ory allocation assuming uncoded placement and linear delivery
schemes. For the case where m; < 1, we are able to derive
a closed form expression for the optimal memory allocation,
and show that the optimal solution balances between allocating
larger cache memories to users with low decoding rates and
uniform memory allocation. In particular, the cache memory
budget myy is allocated uniformly between users {1,...,q},
where ¢ is determined by C' as illustrated in the following
theorem.

Theorem 5: For C1 < --- < Cg and my,, < 1, the mini-
mum worst-case delivery completion time (DCT) is given by

K
1
O3 (Mo, C) = > & — max

prs 1€[K]

LT, @)
=1
and the optimal memory allocation is given by mj =

— m; = D where the user index q =

argmax,c(x) { 21213/ Cj) }.

Proof of Theorem 5 is provided in Appendix D. Note that if
the optimal solution is not unique, i.e., ¢ € {¢1,...,qr}, for

* L m m

some L < K, then m* = 37, a;["e, ..., T 0, 0],
where Zle a; = 1 and o; > 0. The next proposition
shows that uniform memory allocation combined with the
Maddah-Ali—Niesen caching scheme yields an upper bound
on @*ﬁ,g ('I’I’l[ot7 C)

Proposition 4: For myy € [K] and C; < Cy < -+ < Ck,
we have

1 K*mtut(K—j)
O, 0 (Mior, C) < Ounig(Muor, C) = ( K ) Z gj 41)
Mot/ J=1
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Proof: Assuming m; = my/K,Vj € [K], the placement
phase is described by as = 1/(;;‘) for |S| = myy and
zero otherwise. While, the delivery phase is defined by vy =
1/(;5[) for |7| = my + 1 and ug =wvr for S € {T\ {j}:

j € T}. In turn, we have

vT
G)unif("nlot; C) = Z nC.’
min C;
TCy[K] jeT
- Y 1
o ( K ) min C'j’
Mmoo/ TCy[K]: |T|=mw+1 j€T

K—myo (Kfj)

1 o
IEARSRCE

Mot ] =1

(42)

since C; < Cy < -+ < Ck and there are (Ifn;f) sets of
size myo + 1 that include user 7 and do not include users
{]-a 27 cee 7j - 1} Finally’ @;1,33 (mtolv C) < @unif(mtol; C)9
since uniform memory allocation is a feasible solution (but
not necessarily optimal) to (39). [ |

VIII. NUMERICAL RESULTS

First, we provide a numerical example for the optimal
caching scheme obtained from (19).

Example 1: Consider a caching system with K = 3, and
m = [0.4, 0.5, 0.6]. The caching scheme obtained from (19),
is described as follows.

Placement phase: Every file WV is divided into six subfiles,
such that ag1y = 7/30, agoy =4/30, agzy = 4/30, ag12y =
1/30, a{1,3} 24/30, and a{2,3} = 10/30.

Delivery phase: We have the following transmissions

X2y = (Wé{ll,’{zg}UWillf{Qz},z})@(Wé{;,’{?}UW;QI,’{Qiz}) J

_ w23l {2,3}
X{2,3},d = Wd27{3} D Wd37{2}a

_ {13} {1,3} {1,3}
X3y = (Wdl,{B} UWdl,{2,3}) ® de,{1}’
_ {1,2,3} {1,2,3} {1,2,3}
Xprzara =Wy o3 © Wa, s © Wa 12y

and the subfile sizes are as follows
1) vy 0y = 10/30, where u‘{{;’f}

uE’}Q} = ayyy, and UE? =0.1.

2) w13y = 7/30, where u{éf} = agsy, ugg = 0.1, and

1,3
u}l} 4 = a{l}.

3) vi2,3y = 4/30, where ug}s} = a3y and ug}s} = a2}

_ {1,2} _
= aqs}, u{273} = 0.2,

4) vi1,2,3) = 1/30, where ugi}?’} = ugi}?’} = ugg}?’} =
af1,2}-
The minimum worst-case delivery load Ry(m) = Ry 5

(m) = 22/30. Note that, per Remark 5, the required sub-
packetization level for the proposed scheme is 30, i.e., the
minimum packet size is given by

gcd(u)—gcd<7F 6F 4F 3F F) F

30°

30730 30 30730/
for F=30n,n=1,2,....

In Fig. 3, we compare the delivery load Ry 5 (m) obtained
from optimization problem (19), with the lower bounds on
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Fig. 3. Comparing R} o (m) with the lower bounds in (20)-(23), for

K =5, and my = 0.95 MEg41-

T T T T

- = =Our scheme K =4
o0 Lower bound K =4
----- Our scheme K =5

< Of o Lower bound K =5
g ——Our scheme K =6
; 4 ¢ Lower bound K =6
o
23
©
Aol
T >
1 O - g B
®--e-%
O A2 A4 1 1 1
0 0. 0. my 0.6 0.8
Fig. 4. Comparing Ry 5 (m) with the lower bounds on Ry (m), for

mp = 0.75 Mpg41-

R*(m) in (22), (23), and the lower bound with uncoded
placement in (20), for N = K =5 and my = 0.95mp41.

From Fig. 3, we observe that Ry o(m) = Ry(m),
which is also demonstrated in Fig. 4, for K = 4,5,6, and
my = 0.75 my41. In Fig. 5, we compare Ry o (m) with the
achievable delivery loads in [28], [42], [44], for K = 5 and
mg = 0.75 mME+1.

The next example concerns with solving (39) for a system
with unequal download rates, and comparing the optimal
memory allocation and caching scheme with the Maddah-Ali—
Niesen caching scheme with uniform memory allocation.

Example 2: Consider a caching system with K = 3,
memory budget my,, = 1, and C; < Cy < (5
which implies ©,,y(1,C) = % (C% + C%) , and ¢ =

L)
argmax;e|s) {j; iC;
lowing cases for the download rates:

1) For C =10.2, 0.4, 0.5], we get ¢ = 3, hence the optimal

solution is the Maddah-Ali-Niesen caching scheme with
m* = [1/3, 1/3, 1/3], and we have O3 5 = 4.1667.

}. In particular, we consider the fol-
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25 v , , : ;
——Our scheme
0 - - -LHC scheme [28]
2l s x. _ x LHC + grouping [42]| |
< % _ Scheme in [44]
<
2151
o
Z
2
1 L
0.5 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1
ms

Fig. 5. Comparing Ra’g (m) with the achievable delivery loads in [28],
[42], [44], for K = 5 and my = 0.75 my41.
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© 1250
g \ ~©- Optimal allocation
= Q . :
= \ - = = Uniform allocation
< 10F S
< \
o) \.&
o I N
‘% 7 5 “\‘\
z RN
g 5 [ 0*\ N
% .»@,‘:\ ~o
~= 25F o, Sl
= 0., -~
Q... O, ~-~6 1
0 \ \ \ \ it Q":--Bﬁ..a
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Mot

Fig. 6. Comparing O} o (muet, C) and Ouyit(muor, C) for C = [0.2, 0.4,
0.6, 0.6, 0.8, 0.8, 1].

2) For C = [0.3, 0.3, 0.6], we get ¢ € {2,3}, ie., the
optimal solution is not unique. m* = [+ 15(’, 7+
59 28] where oo € [0,1], and Oun = Ouir =
3.3333.

3) For C = [0.2, 0.3, 0.6], we get ¢ = 2. m* =
[0.5, 0.5, 0] and the optimal caching scheme is a?l} =

* * *{1,2 *{1,2 *
algy = 0.5, Vi12) = u{{l} - u{{Q} - 0.5, Vigy = 1,

which results in @El’@ = 4.1667 < O = 4.4444.
In Fig. 6, we compare @;[79 (Myor, C) with Oypir(myer, C') for
K ="7and C =10.2, 0.4, 0.6,0.6, 0.8, 0.8, 1]. We observe
that 951,@(77%” C) < Ouit(Mor, C). For myy < 1,
we have argmax;c(x Z;Zl(j M)/ (4 Cj) = K, which
implies O o (Myot, C') = Ounir(Myor, C).

In Fig. 7(a) and 7(b), we show the optimal memory allo-
cation for C = [0.2, 0.2, 0.2, 0.5, 0.6, 0.7, 0.7] and C =
[0.2, 0.2, 0.4, 0.4, 0.6, 0.7, 0.8], respectively. A general
observation is that the optimal memory allocation balances the
gain attained from assigning larger memories for users with
weak links and the multicast gain achieved by equating the
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(@ C1 =

Cy =
Cs = C7 =0.7.

Fig. 7. The optimal memory allocations with different link capacities.
cache sizes. Consequently, in the optimal memory allocation,
the users are divided into groups according to their rates,
the groups that include users with low rates are assigned larger
fractions of the cache memory budget, and users within each
group are given equal cache sizes. These characteristics are
illustrated in Fig. 7(a), which shows that the users are grouped
into G; = {1,2,3} and G = {4,5,6,7} for all my, € [0,7).
Fig. 7(b) shows that the grouping not only depends on the
rates C, but also on the cache memory budget myy. For
instance, for my = 2, we have two groups G; = {1,2}
and Go = {3,4,5,6,7}, however, for my = 3, we have
g1 = {1,2}, g2 = {3,4}, and gg = {5,6,7}

IX. CONCLUSION

In this paper, we have considered a downlink where the end-
users are equipped with cache memories of different sizes.
We have shown that the problem of minimizing the worst-
case delivery load with uncoded placement and linear delivery
can be modeled as a linear program. We have derived a
lower bound on the worst-case delivery load with uncoded
placement. We have characterized the exact delivery load
memory trade-off with uncoded placement for the case where
the aggregate cache size is less than or equal to the library
size (small memory), the case where the aggregate cache size
is greater than or equal to K — 1 times the library size (large
memory), and the three-user case for arbitrary memory size.
The proposed scheme outperforms other works in the same
setup [28], [42], [44], and is numerically observed to verify the
excellent performance of uncoded placement for parameters of
interest.

We have also considered a system where the links between
the server and the users have unequal capacities. In this
scenario, the server suggests the memory sizes for cached
contents along with contents to the users subject to a total
memory budget, in order to minimize the delivery completion
time. We have observed that the optimal solution balances
between allocating larger cache sizes to the users with low link
capacities and uniform memory allocation which maximizes
the multicast gain. For when the total cache budget is less
than the library size, we have shown that the optimal memory
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by C1 =C2=02,C3=0C4 =04,Cs =0.6,Cs = 0.7, and
C7 =0.8.

allocation distributes the cache memory budget uniformly over
some number of users with the lowest link capacities. This
number is a function of the users’ link capacities.

The optimization perspective in this work provides a prin-
cipled analysis of optimal caching and delivery schemes for
cache-enabled networks, by translating the design elements of
cache placement and delivery into structural optimization con-
straints. Future directions include different network topologies
and systems with multiple servers and multiple libraries.

APPENDIX A
PROOF OF PROPOSITION 1

> s
SC[K]: S'CS,j&S
= as'1(s/=1) + Z as (43)
SCIK]: §'CS,j¢S,|S|>2
.
> a7 150 + >
SCIK]: 8'CS,j¢S,|S|>2
> uf, (44)

TCylK]: jET, TNS#¢,T\{j}CS

jJus’
w1 oy +

Y

>

SC[K]: 8'CS8,j¢S,|S|>2
ul, (45)
TColK): {j}US'CT, T\{j}CS

TCHIK): {jIuS'CT

ituSs’
= uf 1s020) +

> ulk, (46)
SCIK): S'CS,T\{j}CS,i#S,|5]>2
= > > uk, @7
TCy[K]: {j}US'CT SC[K]: T\{j}CS,j¢S
= > vr, (48)

TC4IK): {jlus'cT

where the indicator function 1(s/=1) = 1, if |[S’| = 1 and
zero otherwise, (44) follows from the redundancy constraints

in (13) and ug}us’ < asr, (45) follows from the fact that
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TABLE I
OPTIMAL CACHING SCHEME FOR REGION II

Placement scheme Delivery scheme

agy = (2+ma —m3)/3 —my, vi1,2) = (24 2m3 — 2my2)/3 —my, u }1’31 = ms — Mo,
agay = agsy = (2—2ma —m3)/3, | vz = (2+me—m3)/3—my, u %2 3{ =mg —my,
agr,2y = mi — (mz+1—ma)/3, V({2,3} = U‘{{Q} b= g}g} (2 —2my —m3)/3,

ag3y =m1 — (2mg +1—2m3)/3, | vi1,2,3) = m1+ (ma —m3z —1)/3, ug :2,)} =ms —mi,
ag2,3y = (4ma +2m3z —1)/3 —m;. 3}2} = UE}S} =ay, ugf’} = aysy, u{Q’} 2 agoy.

S C S8, and & C 7 implies 7 NS # ¢. By interchanging
the order of summations over S and 7 in (45), we get (46),
since both represent the set defined by

{(T.9)] 88, ¢ 8,182 2,4} US T, T\ {j}cS}.
(49)

The equality in (47) follows from the fact that {j} US’ C T
and 7 \ {j} C S implies S’ C S, which can be proved by
contradiction. More specifically, if S’ ¢ S, i.e.,, 31 € &’ and
1 ¢S, then {j}US" C 7T implies [ € T\{j}. This contradicts
T\{j} € S, since l € T\{j} and I ¢ S. The last equality
follows from the structural constraints in (10).

APPENDIX B
PROOF OF THEOREM 1: LOWER BOUND
WITH UNCODED PLACEMENT

References [4], [5] have shown that the delivery phase
is equivalent to an index-coding problem and the delivery
load is lower bounded by the acyclic index-coding bound
[47, Corollary 1]. Reference [6] has proposed an alternative
proof for the uncoded placement bound [4], [5] using a genie-
aided approach. For ease of exposition, we will follow the
genie-aided approach [6]. We consider a virtual user whose
cache memory is populated by a genie. For any permutation
of the users [q1, . . ., gi |, the virtual user caches the file pieces
stored at user ¢; excluding files requested by {q1,...,¢j—1}
for j € [K ], i.e., the virtual users cache content is given by

U U U s

q371} SC[K]: {(1;’}687{(]17---7(1j—1}ﬂ8=¢

(50)
Using the virtual user cache content and the transmitted
signals, we can decode all the requested files. Additionally,

for any uncoded placement a € 2((m), the worst-case delivery
load R} (m, a) satisfies [6]

K
R;l(mva)zz Z as, Vq€P[K],
Jj=1SC[K]:{q1,....,q; }NS=¢

where P is the set of all permutations of [K]. Hence, by tak-
ing the convex combination over all possible permutations of
the users, we get

K
Ry(m,a) > Z O“J(Z

q€P k]

&1V

> as>, (52)
sqj }ﬂ8=¢

=1 SC[K]:{q1,...

K-1
= Z qu<Ka¢—|— Z]

qEP k) Jj=1

>

as) , (53)
4 }NS=¢, qj11E€S

where qu? ag =1,and ag > 0,Yq € Pk]. By rearrang-
ing the summatlons we get

SC[K]{q1,...

Ry (m,a) Z Vs as, (54)
SC[K]
where s is given by (21).
Ry(m) 2> min > vsas, (55)
2™ § Tk

Furthermore, the dual of the linear program in (55) is given by

K
— /\0 — ka )\k’
k=1

subject t0 Ao + > _ A\ +7s >0, VS C [K], (56b)
keS

(56a)

max
Ak=>0,X0

where A\ and )\, are the dual variables associated with

ZSC[K] as = 1, and ZSQ[K]:keS as < my, respec-
tively. By taking the maximum over all convex combination,
we obtain (20).

APENDIX C
PROOF OF THEOREM 4 : R} (m

A. Region I: Ei’z

B. Region II: 1 < Zj’:
ms < 2(1 — mg)

JFOR K =3
1 my; < 1 (Follows from Theorem 2)

1my; <2, m3 <mz+3my—1, and

Achievability: The caching scheme defined in Table I
achieves R} (m)=>5/3—mi— 2msa/3—ms3/3.
Converse: For any a € 2(m) and a permutation g, we have

Ry (m,a) >3ag+2ag3y+agay +aga 3y, forg=[1, 2, 3],
(57)

Ry(m,a) > 3ag+2ar1y+agsy+ag 3y, forg=[2, 3, 1],
(58)

Ry (m,a) > 3ay+2a0y+agzy+aqe 3y, forg=[1, 3, 2].
(59)
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TABLE 11
OPTIMAL CACHING SCHEME FOR REGION III

Conditions Placement scheme Delivery scheme
my < 1/3, agy = ma, vy =1—3my, UEQ} = ms3 — ma,
mi+mgz <1 | aggy =1— (m1 +ms3), V{1,2) = u{i’}Q} =u ;7}2} = my,
_ _ o A13F <{[173} _
agy =1-— (m1 + ma), V{1,3} = Ug) o = Uggy s =M,
_\3 _ 423} _ }273} _
age3y =2 5y mj — L. V{2,3) = Upp) = Uggy =1— (my + ms).

mi > 1/3,
ms < 2my

agy = 1—2mq,

agoy = 2my —mg,
agzy = 1 — (m1 +ma),
agy 3y =3my — 1,

a3y =meo +ms — 2mq.

V{g} = 1+mg —3mi — mo,

_ 41,2} {1,2} _ {1,2} _
U{1,2} = Ug) T Ugyigy =0, Uyt = Gz

V{1,3} = U 1}3 =1-2mq, u{:l,)} - agsy
v =u 2.3} _ o (23} 2mqy —m
{2,3} {2} 1 3

Ug;i =mg —my, uggi = Mo — my.

mi1+mz>1, | apy =1—ms,

ma>2m | agy =1 (mtm), | vpy =uli Ful) = el =m,
agr 3y =mi+ms—1, V{13 = up) = 1—ma,
= {1,3} f1,3} .
Hzsp = T Ufsy tupp =1-—ms

V{1} = M3 —2m, > U{2}y = 1—(m1+ma),

Hence, by taking the average of (57)-(59), we get

Ry(m,a) > 3 ays+ 2”_3{1} agy + 4 C;{:s}
Ry(m)> min ){&% n @ fog, + 4a§3}
+2a{—§"°’} + a{;g?’}} 61)

which is obtained by solving the dual linear program, as in
Appendix B.

C. Region III: 1 < E;:] mj <2, m;+my <1, and
mz > my+3my—1

Achievability: There are multiple caching schemes that
achieve Ry 5 (m)=2—2 mj— ms. In particular, we consider
caching schemes that satisfy

apy +aq sy =mi, (63)
ag2y + ag233 = ma, (64)
agzy =1—my —ma, (65)
ag13y + a3y =mi+ma+ms—1, (66)
V{1,2} =M1, V{13} = Q{1}, V{2,3} = aqz},  (67)
v{1,3} T V(2,3 =1 —ms, (68)
v{1}y +U{1,3) = 1—2mq, (69)
vz} +v2,3) = 1 —m1 — ma. (70)

In Table II, we provide one feasible solution to (63)-(70).
Converse: For any a € 2(m) and g = [1, 2, 3|, we have

(71)

(72)

Ry(m,a) > 3 ag +2 agzy + agay + aga.3y,
>2ay+2 a(zy + agoy + a2 3y,

Ry (m) > aenglli(r;l){Q% +2a3y + agoy + aga 31}, (73)

=2 - 2m1 — mMma. (74)

D. Region IV: m; +my > 1, and m3 > 2(1 — my)

Achievability: There are multiple caching schemes that
achieve Ry o (m)=1-m;. In particular, we consider caching
schemes that satisfy

a{273} =1- mi, (75)
agqy — aqi23) = 2 — (m1 + ma + mg), (76)
agi2y +aq 23y =mi+mg—1, (77)
ag1 3y +agi23y =mi+ms—1, (78)
vy up2y oy Fopesy =1—my,  (79)
U{1,2} V{1,233 = 1 —ma, (80)
v{1,3} + V{1,233 =1 —ms3. (31)

In Table III, we provide one feasible solution to (75)-(81).
Converse: From the cut-set bound in (23), we have
R* (m) Z 1 —mi.

APENDIX D
PROOF OF THEOREM 5: OPTIMAL CACHE SIZES

First, for a given memory allocation with Zkl,{:l my < 1,
we have the following Lemma.
Lemma 1: For C; < --- < Cgk and memory allocation

m satisfying Z§=1 my < 1, the optimal caching scheme for
_ gleay _oplid)
_ iy T
mm{a?i}, a?j}}, and ??j} = 1—mj;—zi=17i?éj rpm{mi,mj}.

Proof: By combining (15) with (1), dividing it by C},
and summing over k, we get

(39) is given by a?j} = my, vfm,}

v K 1—my
- > ; (82)
; qub%k’eT g kz::l C
i w - K 1—myg _ Z Z ’U_T (83)
e Cr : C;’
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TABLE IIT
OPTIMAL CACHING SCHEME FOR REGION IV

Conditions Placement scheme Delivery scheme
my+mg+mg >2, | ag9y =1-—ms, V{1,2} = U{l 3} u{é’i} =m3 — mi,
vap e
I+mi >me+ms | app3r =1—mo, V{1,3} = Ugylp) = Ugy'zy = M2 — M,
aga3y =1—mq, v{1,2,3) = L +my — (ma +ma3),

3
a{1,2,3) = D j=1 My — 2.

mi1+mg+mg>2, | agoy =1—ms,

vV{1} = M2 + mg — (1 +mq),

a{g}g} =1- mai.

1+mi <mo+mg a3y = 1 —mo, V{1,2}) = Ug; 33}; u?% =1—mao,
13 13
afa,3y =1 —mi, V{13) = Ugygy = Uglzy = 1 —
3

a{1,2,3} = Zj:l mj; — 2.
my+mg+m3 <2, | apy=2— 2?21 mj , V{1,2) = u{;% =ms3 — my, %1} =agy,
Lbmy 2my +my | aggy = mitmy =1 | o) =gl = ma —mugg? = aq),

agy,3y =mi +mg— 1, 123}—1+m1—(m2—|—m3)

u{l 3} —m2—|—2m3 2, u}l 2{—2m2+m3—2.

mi + mo +mg < 2, a{l}:2—2§:1m]~,

14+mi <mo+mg a{l}g}:ml—i—mg—l,

agy,3y =mi+mg—1,

CI,{273} =1- mi.

vy = me +m3 — (1+my),
{12} {1,2}

V{1,2) = Uy = L —ma, upy = aqy,
v = uh?’}}’ =1—-m { 8h =a
{1,3} {2,3} 3{»1 {1} {1}

3{—7711 +mo — 1.

Therefore, we get the lower bound

1-m
Og, o (Mo, C) > c b E vr
k
k=1 TC,HK]: m>2
. (84)
(;, C;  miner C; )

Additionally, for C; <
K

- < Ok, we have

> vt

k=1 i=1 j=i+1 Cj TCylK]:{i,j}cT
(85)

@21 D mlot;

mm{ml, min{m;, m;} (86)

i=1 j=i+1

where the last inequality follows from the fact that the
multicast transmissions that include users {7,j} are lim-
ited by the side-information stored at each of them,
which is upper bounded by the cache memory size,

ie., ETCd,[K] Gyt v7 < min{m;, m;}.

Finally, for ZZ im; <1, a{j} = m,;, v{j} =1-—m; —

K {1, 41,7
> 1H,éjmm{ml,mj} and v{ g = {{z}j} = u{{j}j} =
mm{a{z},a{ ]}} is a feasible solution to (39) that achieves

the lower bound. ]
Now, using Lemma 1, we can simplify (39) to

mln Z 1—my Z Z mm{mz,mj} 87a)
=1 j=1+1
K
sty mg <, 0<my < 1, Vk € [K]. (87b)
k=1

Next, we show that the optimal memory allocation from (87)
satisfies my > m3 > --- > mj,.

Lemma 2: For Cy < --- < Cg and my, < 1, the objective
function of (87) satisfies Oy o(m) < Oy (M), where m; =
my, fori € [K|\{r,r+1}, and some r € [K—1]. Additionally,
My = Mpp1 = @+ 06, Mpp1 = My = o, for §,a > 0, and

mip = mg > -0 2 My
Proof: For m = [mi,ma,...,my—1,a + 6,a,
Myt2,...,mg] and m = [my,mo,...,Mp_1,0, + 0,
Myt2, ..., Mk, we have Og o (m) — Oy o (M) = x1 + X2,
where
1—m 1—m 1—m 1—m
X1 = C T C r+1 _ C T C 7“-1—17 (88)
r r+1 r r+1
1 1
=05——=, (89)
(CrJrl CT’)

— min{m;, m, }
XQ—z( ST

min{m;, M, 41}
; (o
i=1

Cr—i—l

r—

3 i (min{mi7 my} n
i=1 C

min{mi,mH_l}) (90)

T CrJrl
1 1 r—1
_<cr+1 _Fr);(mm{m“” 8} —min{m;, a}), ©O1)
1 1
é(r—1) (Cm Q) (92)
ThuS, @Q[’Q (m) — @m’g (Th) = 7/*5( o _C%) é 0,
as CTJrl 2 Cr~ ]

Using Lemma 2, (87) can be simplified to (93).
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Lemma 3: For Cy < --- < Ck and my, < 1, optimization
problem (39) reduces to

K 1—kmy
min > o (93a)
k=1
K
St Mg < M, (93b)
k=1
0 < mp+1 < my, Vk‘E[K—l] (93¢)

Equivalently, the optimal memory allocation for (93) is
obtained by solving

a km
max > Ckk (94a)
k=1
K
st mg < M, (94b)
k=1
Ogkarl < my, Vk‘E[K—l] (94¢)

Finally, the optimal memory allocation in Theorem 5 is
obtained by solving the dual of the linear program in (94).
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