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Abstract— In cache-aided networks, the server populates the
cache memories at the users during low-traffic periods in order to
reduce the delivery load during peak-traffic hours. In turn, there
exists a fundamental tradeoff between the delivery load on the
server and the cache sizes at the users. In this paper, we study this
tradeoff in a multicast network, where the server is connected
to users with unequal cache sizes and the number of users is
less than or equal to the number of library files. We propose
centralized uncoded placement and linear delivery schemes
which are optimized by solving a linear program. Additionally,
we derive a lower bound on the delivery memory tradeoff with
uncoded placement that accounts for the heterogeneity in cache
sizes. We explicitly characterize this tradeoff for the case of three
end-users, as well as an arbitrary number of end-users when the
total memory size at the users is small, and when it is large.
Next, we consider a system where the server is connected to
the users via rate-limited links of different capacities and the
server assigns the users’ cache sizes subject to a total cache
budget. We characterize the optimal cache sizes that minimize
the delivery completion time with uncoded placement and linear
delivery. In particular, the optimal memory allocation balances
between assigning larger cache sizes to users with low capacity
links and uniform memory allocation.

Index Terms— Coded caching, uncoded placement, cache size
optimization, multicast networks.

I. INTRODUCTION

THE immense growth in wireless data traffic is driven by
video-on-demand services, which are expected to account

for 82% of all consumer Internet traffic by 2020 [1]. The high
temporal variation in video traffic leads to under-utilization
of network resources during off-peak hours and congestion in
peak hours [2]. Caching improves uniformization of network
utilization, by pushing data into the cache memories at the
network edge during off-peak hours, which in turn reduces
congestion during peak hours. The seminal work [3] has
proposed a novel caching technique for a downlink setting,
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in which a server jointly designs the content to be placed
during off-peak hours and the delivered during peak hours,
in order to ensure that multiple end-users can benefit from
delivery transmissions simultaneously. These multicast coding
opportunities are shown to provide gains beyond local caching
gains, which result from the availability of a fraction of the
requested file at the user’s local cache. They are termed
global caching gains since they scale with the network size.
Reference [3] has shown that there exists a fundamental trade-
off between the delivery load on the server and the users’ cache
sizes.

The characterization of this trade-off has been the focus
of extensive recent efforts [4]–[14]. In particular, references
[4]–[6] have characterized the delivery load memory trade-off
with the uncoded placement assumption, i.e., assuming that
the users cache only uncoded pieces of the files. The deliv-
ery load memory trade-off with general (coded) placement
has been studied in [7]–[14]. Coded caching schemes were
developed for various cache-aided network architectures, such
as multi-hop [15]–[17], device-to-device (D2D) [18], [19],
multi-server [20], lossy broadcast [21]–[24], and interference
networks [25], [26]. In addition to network topology, sev-
eral practical considerations have been studied, such as the
time-varying nature of the number of users [27], distortion
requirements at the users [28]–[30], non-uniform content
distribution [31]–[35], delay-sensitive content [36], and sys-
tems with security requirements [37]–[39].

End-users in practical caching networks have varying stor-
age capabilities. In this work, we address this system constraint
by allowing the users to have distinct cache sizes. In particular,
we study the impact of heterogeneity in cache sizes on
the delivery load memory trade-off with uncoded placement.
Models with similar traits have been studied in references
[28], [40]–[42]. In particular, references [40], [41] have
extended the decentralized caching scheme in [27] to systems
with unequal cache sizes. References [28], [42] have proposed
a centralized scheme in which the system is decomposed into
layers such that the users in each layer have equal cache
size. More specifically, the scheme in [3] is applied on each
layer and the optimal fraction of the file delivered in each
layer is optimized. Additionally, reference [42] has proposed
grouping the users before applying the layered scheme which
requires solving a combinatorial problem. In a follow-up
work to some of our preliminary results presented in [43],
reference [44] proposed optimizing over uncoded placement
schemes assuming the delivery scheme in [27].
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Fig. 1. Centralized caching system with unequal cache sizes.

In this work, we focus on uncoded placement and linear
delivery, where the server places uncoded pieces of the files
at the users’ cache memories, and the multicast signals are
formed using linear codes. Our proposed caching scheme
outperforms the schemes in [28], [42], [44], because it allows
flexible utilization of the side-information in the creation of the
multicast signals, i.e., the side-information stored exclusively
at t users is not restricted to multicast signals of size t + 1
as in [3], [28], [40]–[42], [44]. We show that the worst-case
delivery load is minimized by solving a linear program over
the parameters of the proposed caching scheme. In order to
evaluate the performance of our caching scheme, we derive
a lower bound on the worst-case delivery load with uncoded
placement. Using this bound, we explicitly characterize the
delivery load memory trade-off for arbitrary number of users
with uncoded placement in the small total memory regime,
large total memory regime, the definitions of which are
made precise in the paper, and for any memory regime for
the instance of three-users. Furthermore, we compare the
achievable delivery load with the proposed lower bound with
uncoded placement, and the lower bounds with general place-
ment in [13], [41]. From the numerical results, we observe
that our achievable delivery load coincides with the uncoded
placement bound.

Next, inspired by the schemes developed for distinct
cache sizes we consider a middle ground between noiseless
setups [3], [28], [42] and noisy broadcast channels with cache-
aided receivers [21]–[24]. More specifically, we assume that
the server is connected to the users via rate limited links of
different capacities, and the server assigns the users’ cache
sizes subject to a cache memory budget. Reference [45]
has considered a similar model and proposed jointly design-
ing the caching and modulation schemes. Different from
[21]–[24], [45], we consider a separation approach where the
caching scheme and the physical layer transmission scheme
are designed separately. This is inline in general with the
approach of [3] and followup works that consider server to
end-users links as bit pipes. We focus on the joint optimiza-
tion of the users’ cache sizes and the caching scheme in
order to minimize the worst-case delivery completion time.
More specifically, the optimal memory allocation, uncoded
placement, and linear delivery schemes are again obtained by

solving a linear program. For the case where the cache memory
budget is less than or equal to the library size at the server,
we derive closed form expressions for the optimal memory
allocation and caching scheme. We observe that the optimal
solution balances between assigning larger cache memories
to users with low capacity links, delivering fewer bits to
them, and uniform memory allocation, which maximizes the
multicast gain.

II. SYSTEM MODEL

Notation: Throughout the paper, vectors are represented by
boldface letters, sets of policies are represented by calligraphic
letters, e.g., A, ⊕ refers to bitwise XOR operation, (x)+ �
max{0, x}, |W | denotes the size of W , A\B denotes the set
of elements in A and not in B, φ denotes the empty set, [K] �
{1, . . . ,K}, A ⊂ B denotes A being a subset of or equal
to B, �φ [K] denotes non-empty subsets of [K], and PA is
the set of all permutations of the elements in the set A, e.g.,
P{1,2} = {[1, 2], [2, 1]}.

Consider a centralized system consisting of a server con-
nected to K users via an error-free multicast link [3], see
Fig. 1(a). A library {W1, . . . ,WN} of N files, each with size
F bits, is stored at the server. User k is equipped with a
cache memory of size MkF bits. Without loss of generality,
we assume that M1 ≤ M2 ≤ · · · ≤ MK . We define mk =
Mk/N to denote the memory size of user k normalized by
the library size NF , i.e., mk ∈ [0, 1] for Mk ∈ [0, N ]. The
cache size vector is denoted by M = [M1, . . . ,MK ] and its
normalized version by m = [m1, . . . ,mK ]. We focus on the
case where the number of files is larger than or equal to the
number of users, i.e., N ≥ K .

In Section VII, we introduce rate limited download links of
distinct capacities to the model. In particular, we consider that
the link between the server and user k has capacity Ck bits
per channel use, which we refer to as the download rate at
user k, as illustrated in Fig. 1(b). We denote the collection of
link capacities by C = [C1, . . . , CK ]. In this setup, we seek
the system configuration with best performance, including the
memory sizes {Mk}, subject to

∑K
k=1MkF ≤ mtotNF bits,

where mtot is the cache memory budget normalized by the
library size.
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The system operates over two phases: placement phase
and delivery phase. In the placement phase, the server pop-
ulates users’ cache memories without knowing the users’
demands. User k stores Zk, subject to its cache size constraint,
i.e., |Zk| ≤MkF bits. Formally, the users’ cache contents are
defined as follows.

Definition 1 (Cache Placement): A cache placement func-
tion ϕk : [2F ]N → [2�MkF�] maps the files in the library to
the cache of user k, i.e., Zk = ϕk(W1,W2, ..,WN ).

In the delivery phase, user k requests file Wdk
from the

server. Users’ demand vector d = [d1, . . . , dK ] consists of
independent uniform random variables over the files as in [3].
In order to deliver the requested files, the server transmits a
sequence of unicast/multicast signals, XT ,d, to the users in
the sets T �φ [K]. XT ,d has length vT F bits, and is defined
as follows.

Definition 2 (Encoding): Given d, an encoding function
ψT ,d : [2F ]K → [2�vT F�] maps requested files to a signal
with length vT F bits, sent to users in T , i.e., XT ,d =
ψT ,d(Wd1 , ..,WdK ).

At the end of the delivery phase, user k must be able to
reconstruct Wdk

from the transmitted signals XT ,d, T �φ [K]
and its cache content Zk, with negligible probability of error.

Definition 3 (Decoding): A decoding function μd,k:
[2�RF�] × [2�MkF�] → [2F ], with R �

∑
T �φ[K] vT , maps

cache content of user k, Zk, and the signals XT ,d, T �φ [K]
to Ŵdk

, i.e., Ŵdk
= μd,k

(
X{1},d, X{2},d, . . . , X[K],d, Zk

)
.

A caching scheme is defined by (ϕk(.), ψT ,d(.), μd,k(.)).
The performance is measured in terms of the achievable
delivery load, which represents the amount of data transmitted
by the server in order to deliver the requested files.

Definition 4: For a given normalized cache size vector
m, the delivery load R(m) is said to be achievable
if for every ε > 0 and large enough F , there exists
(ϕk(.), ψT ,d(.), μd,k(.)) such that max

d,k∈[K]
Pr(Ŵdk

�= Wdk
) ≤

ε, and R∗(m) � inf{R : R(m) is achievable}.
The set of cache placement policies A considered in this

work are the so-called uncoded policies, i.e., only pieces
of individual files are placed in the cache memories. Since
we have uniform demands, the cache memory at each user
k is divided equally over the files, i.e., mkF bits per file.
We consider the set of delivery schemes D, in which multicast
signals are formed using linear codes. The worst-case delivery
load achieved by a caching scheme in (A,D) is defined as
follows.

Definition 5: With placement and delivery policies in A
and D, the worst-case delivery load is defined as RA,D �
maxdRd,A,D =

∑
T �φ[K]vT , and the minimum delivery

load overall RA,D is denoted by R∗
A,D(m) � inf{RA,D :

RA,D(m) is achievable}.
Definition 6: The minimum delivery load achievable with a

placement policy in A and any delivery scheme, is defined as
R∗

A(m) � inf{RA : RA(m) is achievable}.
Remark 1: Note that R∗

A,D ≥ R∗
A ≥ R∗, since R∗ is

obtained by taking the infimum over all achievable delivery
loads, R∗

A is restricted to uncoded placement policies in

A, and R∗
A,D is restricted to cache placement and delivery

policies in A and D, respectively.
In Section VII, we consider download links with limited

and unequal capacities. Thus, XT ,d will need to have a rate
≤ min

j∈T
Cj [46]. Additionally, there is no guarantee that the

users outside the set T can decode XT ,d, as their download
rates may be lower than min

j∈T
Cj . Consequently, a more relevant

system-wide metric is the total time needed by the server
to deliver all the requested files to all the users, defined as
follows, assuming uncoded placement and linear delivery.

Definition 7: With a placement policy in A, and a delivery
policy in D, the worst-case delivery completion time (DCT) is
defined as ΘA,D � max

d
Θd,A,D =

∑

T �φ[K]

vT
min
j∈T

Cj
.

Observe that, for Ck = 1, ∀k ∈ [K], ΘA,D = RA,D.

III. MOTIVATIONAL EXAMPLE

In order to motivate our caching scheme which is tailored
to capitalize on multicast opportunities to the fullest extent,
we consider an example and compare the state-of-the-art
caching schemes in [28], [42], [44] with our scheme.

Consider a three-user system with three files, {A, B, C},
and m = [0.4, 0.5, 0.7]. Without loss of generality, we assume
that the users request files A, B, and C, respectively. In the
placement phase, the files are divided into subfiles, which are
labeled by the users exclusively storing them, e.g., subfile Ai,j

is stored at users i and j.

1) The layered scheme [28], [42]: In the placement phase,
the files are partitioned over three layers, we denote the
files in layer l by the superscript (l). By optimizing the
file partitioning over the layers, we get the following
scheme. In layer 1, users have equal caches with size
M1 F bits and files A(1), B(1), C(1) with size 0.9F bits,
each of which is split into six disjoint subfiles, e.g.,
A(1) is divided into A

(1)
1 , A

(1)
2 , A

(1)
3 , A

(1)
1,2, A

(1)
1,3, A

(1)
2,3,

where |A(1)
i | = 0.2F , and |A(1)

i,j | = 0.1F . In delivery

phase, the server sends the multicast signals B(1)
1 ⊕A(1)

2 ,
C

(1)
1 ⊕ A

(1)
3 , C(1)

2 ⊕ B
(1)
3 , and C

(1)
1,2 ⊕ B

(1)
1,3 ⊕ A

(1)
2,3.

In layer 2, we have a single user with no cache and a
two-user system with file size 0.1F bits and equal cache
size (M2−M1)F = 0.1NF bits. The server only needs to
send a unicast signal of size 0.1F bits to user 1. In layer 3,
the (M3 − M2)F bits of the cache at user 3 are not
utilized.

2) The caching scheme in [44]: Each file is split into six
disjoint subfiles, e.g., A is divided into A1, A2, A3,
A1,2, A1,3, A2,3, where |Ai| = 0.4F/3, |A1,2| = 0.1F/3,
|A1,3| = 0.7F/3, and |A2,3| = F/3. In delivery phase,
the server sends B1 ⊕ A2, C1 ⊕ A3, C2 ⊕ B3, and
C1,2⊕̄B1,3⊕̄A2,3, where ⊕̄ denotes an XOR operation
that allows zero padding. Note that C1,2⊕̄B1,3⊕̄A2,3

can be decomposed into C1,2 ⊕ B′
1,3 ⊕ A′

2,3, B′′
1,3 ⊕

A′′
2,3, and the unicast signal A′′′

2,3, where |B′
1,3| =

|A′
2,3| = |C1,2|, |B′′

1,3| = |A′′
2,3| = |B1,3| − |C1,2|, and

|A′′′
2,3| = |A2,3| − |B1,3|.
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Fig. 2. Optimal scheme with uncoded placement for K = N = 3 and
M = [1.2, 1.5, 2.1].

3) Our proposed scheme: In the placement phase, each file
is split into five disjoint subfiles, e.g., A is divided into
A1, A2, A3, A1,3, A2,3, where |A1| = |A1,3| = 0.2F ,
|A2| = |A3| = 0.1F , and |A2,3| = 0.4F . First, the server
partitions A2,3 into A′

2,3, A
′′
2,3 such that |A′

2,3| = 0.3F
and |A′′

2,3| = 0.1F . Then, the server sends the multicast
signals

(
B1 ∪ B1,3

)
⊕
(
A2 ∪ A′

2,3

)
, C1 ⊕

(
A3 ∪ A′′

2,3

)
,

and C2 ⊕ B3. One can easily verify that these multicast
signals enable the users to decode the requested files. The
caching scheme is illustrated in Fig. 2.

Our caching scheme achieves a delivery load equal to 0.7,
compared to 0.8 by the layered scheme [28], [42], and 0.7333
by the scheme in [44]. The schemes in [28], [42], [44] need
an additional unicast transmission compared with our scheme,
as we have better utilization of side-information, e.g., A′

2,3 is
used in the multicast signal to users {1, 2}. Additionally, in this
example, the layered scheme does not utilize (M3 −M2)F
bits of the cache at user 3. In Theorem 4, we show that our
proposed scheme is optimal with uncoded placement.

IV. CACHE PLACEMENT PHASE

Each file Wl is partitioned into 2K subfiles. A subfile W̃l,S
is labeled by the set of users S exclusively storing it. The set
of uncoded placement schemes for a given m is defined as

A(m) =
{

a ∈ [0, 1]2
K

∣
∣
∣
∣

∑

S⊂[K]

aS = 1,
∑

S⊂[K]: k∈S
aS ≤ mk,

∀k ∈ [K]
}

, (1)

where a is the vector of allocation variables aS , S ⊂ [K]
and |W̃l,S | = aSF bits, ∀l ∈ [N ]. For example, for K = 3,
we have

aφ + a{1} + a{2} + a{3} + a{1,2} + a{1,3}

+ a{2,3} + a{1,2,3} = 1, (2)

a{i} + a{i,j} + a{i,k} + a{i,j,k} ≤ mi,

i, j, k ∈ {1, 2, 3}, i �= j �= k. (3)

V. DELIVERY PHASE

A. Multicast Signals XT ,d

A multicast signal XT ,d delivers a piece of the file Wdj ,
W T

dj
, to user j ∈ T . The server generates XT ,d by XORing

W T
dj
, ∀j ∈ T , where |W T

dj
| = vT F bits, ∀j ∈ T . Each user

in T \{j} must be able to cancel W T
dj

from XT ,d, in order to
decode its requested piece. Consequently, W T

dj
is constructed

using the side-information cached by all the users in T \ {j}
and not available at user j:

XT ,d = ⊕j∈T W T
dj

= ⊕j∈T

( ⋃

S∈BT
j

W T
dj ,S

)

, (4)

where W T
dj ,S ⊂ W T

dj
which is stored exclusively at the users

in the set S and

BT
j �

{
S ⊂ [K] : T \{j} ⊂ S, j �∈ S

}
, ∀j ∈ T , (5)

for example, for K = 3 and i, j, k ∈ {1, 2, 3}, i �= j �= k,
the multicast signals are defined as

X{i,j},d = W
{i,j}
di

⊕ W
{i,j}
dj

=
(
W

{i,j}
di,{j}

⋃
W

{i,j}
di,{j,k}

)
⊕
(
W

{i,j}
dj ,{i}

⋃
W

{i,j}
dj ,{i,k}

)
,

(6)

X{1,2,3},d = W
{1,2,3}
d1

⊕ W
{1,2,3}
d2

⊕ W
{1,2,3}
d3

= W
{1,2,3}
d1,{2,3} ⊕W

{1,2,3}
d2,{1,3} ⊕W

{1,2,3}
d3,{1,2}. (7)

where |W {i,j}
di

| = |W {i,j}
dj

| = v{i,j}F bits and |W {1,2,3}
d1

| =

|W {1,2,3}
d2

| = |W {1,2,3}
d3

| = v{1,2,3}F . |W T
dj ,S | = uTSF bits,

i.e., the assignment variable uTS ∈ [0, aS ] represents the
fraction of W̃dj ,S involved in the multicast signal XT ,d.
Note that one subfile can contribute to multiple multicast
transmissions, for example in a three-user system W̃dk,{i,j} is
used in X{i,k},d, X{j,k},d, X{i,j,k},d. Therefore, in order to
guarantee that no redundant bits are transmitted, each subfile
W̃dk,S is partitioned into disjoint pieces, e.g., for K = 3,
we have

W̃dk,{i,j} = W
{i,k}
dk,{i,j}

⋃
W

{j,k}
dk,{i,j}

⋃
W

{i,j,k}
dk,{i,j}

⋃
Wφ

dk,{i,j},

(8)

where Wφ
dk,S denotes the remaining piece which is not

involved in any transmission.
Remark 2: By contrast with [3], [28], [42], [44], where

multicast signals of size t+1 utilize only the side-information
stored exclusively at t users, i.e., XT ,d = ⊕k∈TW

T
dk,T \{k},

the structure of the multicast signal in (4) represents all
feasible utilizations of the side-information. This flexibility is
instrumental in achieving the delivery load memory trade-off
with uncoded placement R∗

A.

B. Unicast Signals X{i}

A unicast signal X{i} delivers the fraction of the requested
file which is not stored at user i and will not be delivered by
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the multicast transmissions. For example, for K = 3, we have

X{i},d =Wdi\
( ⋃

S:i∈S
W̃di,S

⋃
W

{i,j}
di

⋃
W

{i,k}
di

⋃
W

{i,j,k}
di

)
,

i, j, k ∈ {1, 2, 3}, i �= j �= k (9)

where
⋃

S:i∈S W̃di,S is stored at user i and W T
di

is delivered
to user i via XT ,d.

C. Delivery Phase Constraints

Recall that vT ∈ [0, 1] and uTS ∈ [0, aS ] represent
|XT ,d|/F , and |W T

dj ,S |/F , respectively. Our delivery scheme
can be represented by constraints on vT and uTS as follows.
First, the structure of the multicast signals in (6), (7) imposes

∑

S∈BT
j

uTS = vT , ∀ T �φ [K], ∀ j ∈ T . (10)

For example, for K = 3, we have

v{i,j} = u
{i,j}
{j} + u

{i,j}
{j,k} = u

{i,j}
{i} + u

{i,j}
{i,k}, (11)

v{1,2,3} = u
{1,2,3}
{2,3} = u

{1,2,3}
{1,3} = u

{1,2,3}
{1,2} . (12)

In order to prevent transmitting redundant bits from the subfile
W̃dj ,S to user j, we need

∑

T �φ[K]: j∈T ,T ∩S	=φ,T \{j}⊂S
uTS ≤ aS , ∀ j �∈ S,

∀ S ∈
{
S̃ ⊂ [K] : 2 ≤ |S̃| ≤ K − 1

}
, (13)

where the condition T \ {j} ⊂ S follows from (5).
For example, for K = 3, (13) implies

u
{i,k}
{i,j} + u

{j,k}
{i,j} + u

{i,j,k}
{i,j} ≤ a{i,j}. (14)

Finally, the delivery signals sent by the server must complete
all the requested files:

∑

T �φ[K]: k∈T
vT ≥ 1 −

∑

S⊂[K]: k∈S
aS , ∀ k ∈ [K], (15)

for example, for K = 3, the delivery completion constraint
for user i is given by

v{i} + v{i,j} + v{i,k} + v{i,j,k} ≥ 1 −(a{i} + a{i,j}

+ a{i,k} + a{i,j,k}). (16)

Therefore, for given a, the set of feasible delivery schemes,
D(a), is defined as

D(a) =

{

(v,u)
∣
∣
∣
∣

∑

T �φ[K]:k∈T
vT ≥ 1 −

∑

S⊂[K]:k∈S
aS ,∀k∈ [K],

∑

S∈BT
j

uTS = vT , ∀T �φ [K], ∀j ∈ T ,

∑

T �φ[K]: j∈T ,T ∩S	=φ,T \{j}⊂S
uTS ≤ aS , ∀j �∈ S,

∀S ∈
{
S̃ ⊂ [K] : 2 ≤ |S̃| ≤ K − 1

}
,

0 ≤ uTS ≤ aS , ∀T �φ [K], ∀S ∈
⋃

j∈T
BT

j

}

, (17)

where the transmission and assignment variables are repre-
sented by v and u respectively.

D. Discussion

The linear constraints in (17) guarantee the delivery of
the requested files. Successful delivery is guaranteed by
1) By (10), user j ∈ T can retrieve W T

dj
from the signal XT ,d.

2) By (13) and (15), Wdj can be reconstructed from the pieces
decoded at user j. The delivery completion constraints ensure
that the number of decoded bits are sufficient for decoding the
file, and the redundancy constraints prevent the server from
transmitting redundant bits. Formally, we have:

Proposition 1: For S′ ⊂ [K] such that 1 ≤ |S′| ≤ K−2,
and some user j �∈ S′, the size of the multicast transmissions
XT ,d, where {j} ∪ S′ ⊂ T , is limited by the amount of side-
information stored at the users in S′ and not available at
user j, i.e.,

∑

T �φ[K]: {j}∪S′⊂T
vT ≤

∑

S⊂[K]: S′⊂S,j 	∈S
aS , (18)

which is guaranteed by (10) and (13).
The proof of Proposition 1 is provided in Appendix A.

VI. FORMULATION AND RESULTS

In this section, we first show that the optimal uncoded place-
ment and linear delivery schemes can be obtained by solving a
linear program. Next, we present a lower bound on the delivery
load with uncoded placement. Based on this bound, we show
that linear delivery is optimal with uncoded placement for
three cases; namely,

∑K
k=1mk ≤ 1,

∑K
k=1mk ≥ K − 1,

and the three-user case. That is, for these cases we explicitly
characterize the delivery load memory trade-off with uncoded
placement R∗

A(m).

A. Caching Scheme Optimization

In Sections IV and V, we have demonstrated that an
uncoded placement scheme in A is completely characterized
by the allocation vector a, which represents the fraction of
files stored exclusively at each subset of users S ⊂ [K].
Additionally, the assignment and transmission vectors (u,v)
completely characterize a delivery scheme in D, where v
represents the size of the transmitted signals, and u determines
the structure of the transmitted signals. For a given normalized
memory vector m, the following optimization problem char-
acterizes the minimum worst-case delivery load R∗

A,D(m) and
the optimal caching scheme in A,D, i.e., the optimal values
for a, v, and u.

O1: min
a,u,v

∑

T �φ[K]

vT (19a)

s.t. a ∈ A(m), and (u,v) ∈ D(a), (19b)

where A(m) and D(a) are defined in (1) and (17),
respectively.

Remark 3: For equal cache sizes, R∗
A,D(m) is equal to

the worst-case delivery load of [3], which was shown to
be optimal for uncoded placement in [4] for N ≥ K . For
N < K , the optimal scheme for uncoded placement was
proposed in [6]. The solution of (19) is equivalent to the
memory sharing solution proposed in [3].
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Remark 4: In Section V, XT ,d is formed by XORing pieces
of equal size. A delivery scheme with X̃T ,d = ⊕̄j∈T W T

dj
,

where ⊕̄ denotes an XOR operation that allows zero padding
so that the pieces are of equal length, is equivalent to a deliv-
ery scheme in D and both yield the same delivery load. For
example, X̃{1,2},d = W

{1,2}
d1,{2}⊕̄W

{1,2}
d2,{1}, with u{1,2}

{2} > u
{1,2}
{1} ,

is equivalent to a multicast signal X{1,2},d and a unicast

signal X{2},d, with sizes u{1,2}
{1} F bits, and

(
u
{1,2}
{2} −u{1,2}

{1}
)
F

bits, respectively.
Remark 5: In this work, we assume the file size to be

large enough, such that the cache placement and delivery
schemes can be tailored to the unequal cache sizes by
optimizing over continuous variables. More specifically, for
F large enough, uTS F can be used instead of �uTS F � for
uTS ∈ [0, 1]. The required subpacketization level is the least-
common-denominator of the assignment variables uTS . That
is, the minimum packet size is equal to the greatest-common-
divisor (gcd) of all uTS F , assuming uTS F are integers.

B. Lower Bounds

Next, using the approach in [4], [6], we show that R∗
A(m)

is lower bounded by the linear program in (20).
Theorem 1: (Uncoded placement bound) Given K , N ≥

K , and m, the minimum worst-case delivery load with
uncoded placement R∗

A(m) is lower bounded by

O2: max
λ0∈R,λk≥0,αq≥0

−λ0 −
K∑

k=1

mkλk (20a)

s.t. λ0+
∑

k∈S
λk+γS≥0, ∀S⊂ [K], (20b)

∑

q∈P[K]

αq = 1, (20c)

where

γS �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K, for S = φ,

0, for S = [K],
K−|S|∑

j=1

∑

q∈P[K]: qj+1∈S,

{q1,...,qj}∩S=φ

j αq, otherwise.
(21)

and P[K] is the set of all permutations of [1, 2, . . . ,K].
The proof of Theorem 1 is provided in Appendix B. We

compare the achievable delivery load R∗
A,D(m) with the

following lower bounds on the worst-case delivery load R∗.
From [41], R∗(m) is lower bounded by

max
s∈[K], l∈[�N

s 
]

{
N − (N −Kl)+

l

−
sN

s+γ∑

i=1

mi + γ(N−ls)+

l(s+γ)

}

, (22)

where γ� min
{(
�N

l � − s
)+
,K − s

}
and m1 ≤ · · · ≤ mK .

The following proposition is a straightforward generalization
of the lower bounds in [13] for systems with distinct cache
sizes.

Proposition 2: Given K , N , m, and m1 ≤ · · · ≤ mK ,
we have

R∗(m) ≥ max

{

max
s∈[min{K,N}]

{

s−
s∑

k=1

N
∑k

i=1mi

N − k + 1

}

,

max
s∈[min{K,N}]

{

s
(
1 −

s∑

i=1

mi

)
}}

. (23)

C. Special Cases

Next, we consider three special cases, for which we explic-
itly characterize R∗

A(m) and show that the solution of (19)
is the optimal caching scheme with uncoded placement. First,
we consider the small cache regime,

∑K
i=1mi ≤ 1,

Theorem 2: The minimum worst-case delivery load with
uncoded placement is given by

R∗
A(m) = K −

K∑

j=1

(K − j + 1)mj, (24)

for m1 ≤ · · · ≤ mK ,
∑K

i=1mi ≤ 1, and N ≥ K .
Proof: Achievability: In the placement phase, each file

is split into K + 1 subfiles such that a{j} = mj and aφ =
1 −

∑K
k=1mk. In the delivery phase, we have v{j} = 1 −

∑j−1
i=1 mi − (K − j + 1)mj and v{i,j} = u

{i,j}
{i} = u

{i,j}
{j} =

min{a{i}, a{j}}. In turn, RA,D(m) = K −
∑K

j=1(K − j +
1)mj is achievable. Converse: By substituting α[1,2,...,K] =1
in Theorem 1, we get

max
λk≥0,λ0

− λ0 −
K∑

k=1

mk λk (25a)

s.t. λ0 +
∑

k∈S
λk + γS ≥ 0, ∀S ⊂ [K], (25b)

where γS = j − 1 if {j} ∈ S and [j − 1] ∩ S = φ for
j ∈ [K]. λ0 = −K, λj = K − j + 1 is a feasible solution
to (25), since λ0 + λj + (j − 1) = 0. Therefore, R∗

A(m) ≥
K −

∑K
j=1(K − j + 1)mj .

Next theorem characterizes R∗
A(m) in the large total mem-

ory regime where
∑K

i=1mi ≥ K−1.
Theorem 3: The minimum worst-case delivery load with

uncoded placement is given by

R∗
A(m) = R∗(m) = 1 −m1, (26)

for m1 ≤ · · · ≤ mK ,
∑K

i=1mi ≥ K−1, and N ≥ K .
Proof: Achievability: In the placement phase, Wj is

partitioned into subfiles W̃j,[K]\{i}, i ∈ [K] and W̃j,[K], such
that a[K] =

∑K
i=1mi−(K−1) and a[K]\{i} = 1−mi, i ∈ [K].

In the delivery phase, we have the following cases.

• For (K− 2)m1 ≥
∑K

i=2mi − 1, we have the following
multicast transmissions

X[K]\{i},d =⊕k∈[K]\{i}W
[K]\{i}
dk,[K]\{k}, i∈{2, . . . ,K}, (27)

X[K],d = ⊕k∈[K]W
[K]
dk,[K]\{k}, (28)



IBRAHIM et al.: CODED CACHING FOR HETEROGENEOUS SYSTEMS: OPTIMIZATION PERSPECTIVE 5327

with

v[K]\{i} = mi −m1, i ∈ {2, . . . ,K}, (29)

v[K] = 1 + (K − 2)m1 −
K∑

k=2

mk. (30)

• For (K−l−1)ml <
∑K

i=l+1mi−1 and (K−l−2)ml+1 ≥
∑K

i=l+2mi−1, where l ∈ [K−2], we have the following
transmissions

X[i],d = ⊕k∈[i]W
[i]
dk,[K]\{k}, i ∈ [l], (31)

X[K]\{i},d =⊕k∈[K]\{i}W
[K]\{i}
dk,[K]\{k}, i∈{l+1, . . . ,K}. (32)

with

v[i] = mi+1 −mi, i ∈ [l−1], (33)

v[l] =
1

K−l−1

( K∑

j=l+1

mj−1− (K−l−1)ml

)

, (34)

v[K]\{i} =
1

K−l−1

(

(K−l−1)mi + 1 −
K∑

j=l+1

mj

)

,

i ∈ {l+1, . . . ,K}. (35)

In both cases, the size of the assignment variables satisfies
uT[K]\{k} = vT , ∀k ∈ T . Converse: By substituting s = 1 in
(23), we get R∗(m) ≥ 1 −m1.

In the next theorem, we characterize R∗
A(m) for K = 3.

Theorem 4: For K = 3, N ≥ 3, and m1 ≤ m2 ≤
m3, the minimum worst-case delivery load with uncoded
placement

R∗
A(m)=max

{

3−
∑3

j=1(4 − j)mj ,
5
3−
∑3

j=1
(4−j)mj

3 ,

2−2m1 −m2, 1−m1

}

. (36)

In particular, we have the following regions

1) For
3∑

j=1

mj ≤1, R∗
A(m)=3−

3∑

j=1

(4 − j)mj .

2) For 1≤
3∑

j=1

mj ≤2, we have three cases

• If m3 < m2 + 3m1 − 1, and 2m2 + m3 < 2, then

R∗
A(m) =

5
3
−

3∑

j=1

(4 − j)mj

3
.

• If m3 ≥ m2 + 3m1 − 1, and m1 + m2 < 1, then
R∗

A(m) = 2 − 2m1 −m2.
• If 2m2 + m3 ≥ 2, and m1 + m2 ≥ 1, then
R∗

A(m) = 1 −m1.

3) For
3∑

j=1

mj ≥ 2, R∗
A(m)=1−m1.

Proof of Theorem 4 is provided in Appendix C.
Remark 6: By substituting m3 = 1 in Theorem 4, we obtain

the two-user delivery load memory trade-off with uncoded
placement, given as R∗

A(m)=max {2−2 m1 −m2, 1−m1}.

Remark 7: From the proposed schemes, we observe that the
allocation variables satisfy

∑

S⊂[K]: |S|=t

aS = t+ 1 −
K∑

i=1

mi, (37)

∑

S⊂[K]: |S|=t+1

aS =
K∑

i=1

mi − t, (38)

for t <
∑K

i=1mi ≤ t+1 and aS = 0 for |S| �∈ {t, t+1}. That
is, the proposed placement scheme generalizes the memory
sharing scheme in [3], where aS = aS′ for |S| = |S′|.

D. Comparison With Other Schemes With
Heterogeneous Cache Sizes

Previous work includes the layered heterogeneous caching
(LHC) scheme [28], [42], where the users are divided into
groups and within each group the users’ cache memories are
divided into layers such that the users in each layer have equal
cache sizes. The Maddah-Ali–Niesen caching scheme [3] is
applied to the fraction of the file assigned to each layer. Let
RLHC(m) denote delivery load of this scheme. We have

Proposition 3: Given K,N ≥ K and m, we have
R∗

A,D(m) ≤ RLHC(m).
Proof: LHC scheme is a feasible (but not necessarily opti-

mal) solution to (19) shown as follows. Grouping: Dividing the
users into disjoint groups can be represented in the placement
phase by setting aS = 0 for any set S containing two or more
users from different groups. Similarly, in the delivery phase
vT = 0 if {q1, q2} ⊂ T , q1 and q2 belong to distinct groups.
Layering: Without loss of generality, assume there is one
group, i.e. there are K layers. Let αl be the fraction of the
file considered in layer l, and assign aS,l, vT ,l, and uTS,l to

layer l, such that aS =
∑K

l=1 aS,l, vT =
∑K

l=1 vT ,l, and uTS =
∑K

l=1 u
T
S,l. Additionally, we have

∑
S⊂{l,...,K} aS,l = αl,

and
∑

S⊂{l,...,K}: {k}∈S aS,l +
∑

T ⊂{l,...,K}: {k}∈T vT ,l ≥ αl

for k ∈ {l, . . . ,K}. Thus, the LHC scheme is a feasible
solution to (19).

The recent reference [44] has proposed optimizing over
uncoded placement schemes A with the decentralized delivery
scheme in [27], i.e., the multicast signals are defined as
XT ,d = ⊕̄k∈T W̃dk,T \{k} where vT = maxk∈T aT \{k},
which limits the multicast opportunities [33] as illustrated
in Section III.

Remark 8: For fixed cache contents, reference [33] pro-
posed a procedure for redesigning the multicast signals,
formed by XORing pieces of unequal size, in order to better
utilize the side-information stored at the users. In contrast,
our scheme is a centralized scheme, where we jointly optimize
the cache contents and the delivery procedure which allows
flexible utilization of the side-information at the users.

Different from [28], [42], [44], we propose a more general
delivery scheme that allows flexible utilization of the side-
information. Both our solution and that of [44] is exponential
in the number of users. Notably, for systems with only two
distinct cache sizes over all users, reference [44] has a caching
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scheme which is obtained by solving an optimization problem
with polynomial complexity.

VII. OPTIMIZING CACHE SIZES WITH

TOTAL MEMORY BUDGET

In this section, we consider a centralized system where the
server is connected to the K users via rate limited download
links of distinct capacities, as described by Fig. 1(b).

A. Problem Formulation

Next, we consider the joint optimization of both the caching
scheme and the users’ cache sizes for given download rates C
(see Fig. 1(b)) and normalized cache budget mtot. More
specifically, the minimum worst-case DCT, Θ∗

A,D(mtot,C),
is characterized by

O3: min
a,u,v,m

∑

T �φ[K]

vT
min
j∈T

Cj
(39a)

s.t. a ∈ A(m), (v,u) ∈ D(a), (39b)
K∑

k=1

mk ≤ mtot, (39c)

0 ≤ mk ≤ 1, ∀ k ∈ [K], (39d)

where A(m) is defined in (1) and D(a) is defined in (17).

B. Optimal Cache Sizes

The linear program in (39) characterizes the optimal mem-
ory allocation assuming uncoded placement and linear delivery
schemes. For the case where mtot ≤ 1, we are able to derive
a closed form expression for the optimal memory allocation,
and show that the optimal solution balances between allocating
larger cache memories to users with low decoding rates and
uniform memory allocation. In particular, the cache memory
budget mtot is allocated uniformly between users {1, . . . , q},
where q is determined by C as illustrated in the following
theorem.

Theorem 5: For C1 ≤ · · · ≤ CK and mtot ≤ 1, the mini-
mum worst-case delivery completion time (DCT) is given by

Θ∗
A,D(mtot,C) =

K∑

j=1

1
Cj

− max
i∈[K]

⎧
⎨

⎩

i∑

j=1

j mtot

i Cj

⎫
⎬

⎭
, (40)

and the optimal memory allocation is given by m∗
1 =

· · · = m∗
q = mtot

q , where the user index q =

argmaxi∈[K]

{∑i
j=1 j/(i Cj)

}
.

Proof of Theorem 5 is provided in Appendix D. Note that if
the optimal solution is not unique, i.e., q ∈ {q1, . . . , qL}, for
some L ≤ K , then m∗ =

∑L
i=1 αi

[
mtot
qi
, . . . , mtot

qi
, 0, . . . , 0

]
,

where
∑L

i=1 αi = 1 and αi ≥ 0. The next proposition
shows that uniform memory allocation combined with the
Maddah-Ali–Niesen caching scheme yields an upper bound
on Θ∗

A,D(mtot,C).
Proposition 4: For mtot ∈ [K] and C1 ≤ C2 ≤ · · · ≤ CK ,

we have

Θ∗
A,D(mtot,C) ≤ Θunif(mtot,C) =

1
(

K
mtot

)

K−mtot∑

j=1

(
K−j
mtot

)

Cj
. (41)

Proof: Assuming mj = mtot/K, ∀j ∈ [K], the placement
phase is described by aS = 1/

(
K

mtot

)
for |S| = mtot and

zero otherwise. While, the delivery phase is defined by vT =
1/
(

K
mtot

)
for |T | = mtot + 1 and uTS = vT for S ∈ {T \ {j} :

j ∈ T }. In turn, we have

Θunif(mtot,C) =
∑

T �φ[K]

vT
min
j∈T

Cj
,

=
1

(
K

mtot

)
∑

T �φ[K]: |T |=mtot+1

1
min
j∈T

Cj
,

=
1

(
K

mtot

)

K−mtot∑

j=1

(
K−j
mtot

)

Cj
, (42)

since C1 ≤ C2 ≤ · · · ≤ CK and there are
(
K−j
mtot

)
sets of

size mtot + 1 that include user j and do not include users
{1, 2, . . . , j − 1}. Finally, Θ∗

A,D(mtot,C) ≤ Θunif(mtot,C),
since uniform memory allocation is a feasible solution (but
not necessarily optimal) to (39).

VIII. NUMERICAL RESULTS

First, we provide a numerical example for the optimal
caching scheme obtained from (19).

Example 1: Consider a caching system with K = 3, and
m = [0.4, 0.5, 0.6]. The caching scheme obtained from (19),
is described as follows.

Placement phase: Every file W (l) is divided into six subfiles,
such that a{1} = 7/30, a{2} = 4/30, a{3} = 4/30, a{1,2} =
1/30, a{1,3}=4/30, and a{2,3}=10/30.

Delivery phase: We have the following transmissions

X{1,2},d =
(
W

{1,2}
d1,{2}

⋃
W

{1,2}
d1,{2,3}

)
⊕
(
W

{1,2}
d2,{1}

⋃
W

{1,2}
d2,{1,3}

)
,

X{2,3},d = W
{2,3}
d2,{3} ⊕ W

{2,3}
d3,{2},

X{1,3},d =
(
W

{1,3}
d1,{3}

⋃
W

{1,3}
d1,{2,3}

)
⊕ W

{1,3}
d3,{1},

X{1,2,3},d = W
{1,2,3}
d1,{2,3} ⊕ W

{1,2,3}
d2,{1,3} ⊕ W

{1,2,3}
d3,{1,2},

and the subfile sizes are as follows

1) v{1,2} = 10/30, where u
{1,2}
{2} = a{2}, u{1,2}

{2,3} = 0.2,

u
{1,2}
{1} = a{1}, and u{1,2}

{1,3} = 0.1.

2) v{1,3} = 7/30, where u{1,3}
{3} = a{3}, u{1,3}

{2,3} = 0.1, and

u
{1,3}
{1} = a{1}.

3) v{2,3} = 4/30, where u{2,3}
{3} = a{3} and u{2,3}

{2} = a{2}.

4) v{1,2,3} = 1/30, where u{1,2,3}
{2,3} = u

{1,2,3}
{1,3} = u

{1,2,3}
{1,2} =

a{1,2}.

The minimum worst-case delivery load R∗
A(m) = R∗

A,D

(m) = 22/30. Note that, per Remark 5, the required sub-
packetization level for the proposed scheme is 30, i.e., the
minimum packet size is given by

gcd(u) = gcd
(

7F
30
,

6F
30
,

4F
30
,

3F
30
,
F

30

)

=
F

30
,

for F = 30n, n = 1, 2, . . . .
In Fig. 3, we compare the delivery load R∗

A,D(m) obtained
from optimization problem (19), with the lower bounds on
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Fig. 3. Comparing R∗
A,D (m) with the lower bounds in (20)-(23), for

K = 5, and mk = 0.95 mk+1.

Fig. 4. Comparing R∗
A,D (m) with the lower bounds on R∗

A (m), for
mk = 0.75 mk+1.

R∗(m) in (22), (23), and the lower bound with uncoded
placement in (20), for N = K = 5 and mk = 0.95mk+1.

From Fig. 3, we observe that R∗
A,D(m) = R∗

A(m),
which is also demonstrated in Fig. 4, for K = 4, 5, 6, and
mk = 0.75mk+1. In Fig. 5, we compare R∗

A,D(m) with the
achievable delivery loads in [28], [42], [44], for K = 5 and
mk = 0.75mk+1.

The next example concerns with solving (39) for a system
with unequal download rates, and comparing the optimal
memory allocation and caching scheme with the Maddah-Ali–
Niesen caching scheme with uniform memory allocation.

Example 2: Consider a caching system with K = 3,
memory budget mtot = 1, and C1 ≤ C2 ≤ C3,
which implies Θunif(1,C) = 1

3

(
2

C1
+ 1

C2

)
, and q =

argmaxi∈[3]

{ i∑

j=1

j

i Cj

}
. In particular, we consider the fol-

lowing cases for the download rates:

1) For C = [0.2, 0.4, 0.5], we get q = 3, hence the optimal
solution is the Maddah-Ali–Niesen caching scheme with
m∗ = [1/3, 1/3, 1/3], and we have Θ∗

A,D = 4.1667.

Fig. 5. Comparing R∗
A,D (m) with the achievable delivery loads in [28],

[42], [44], for K = 5 and mk = 0.75 mk+1.

Fig. 6. Comparing Θ∗
A,D (mtot, C) and Θunif(mtot, C) for C = [0.2, 0.4,

0.6, 0.6, 0.8, 0.8, 1].

2) For C = [0.3, 0.3, 0.6], we get q ∈ {2, 3}, i.e., the
optimal solution is not unique. m∗ = [α

2 + 1−α
3 , α

2 +
1−α

3 , 1−α
3 ], where α ∈ [0, 1], and Θ∗

A,D = Θunif =
3.3333.

3) For C = [0.2, 0.3, 0.6], we get q = 2. m∗ =
[0.5, 0.5, 0] and the optimal caching scheme is a∗{1} =

a∗{2} = 0.5, v∗{1,2} = u
∗{1,2}
{1} = u

∗{1,2}
{2} = 0.5, v∗{3} = 1,

which results in Θ∗
A,D = 4.1667 < Θunif = 4.4444.

In Fig. 6, we compare Θ∗
A,D(mtot,C) with Θunif(mtot,C) for

K = 7, and C = [0.2, 0.4, 0.6, 0.6, 0.8, 0.8, 1]. We observe
that Θ∗

A,D(mtot,C) ≤ Θunif(mtot,C). For mtot ≤ 1,
we have argmaxi∈[K]

∑i
j=1(j mtot)/(i Cj) = K , which

implies Θ∗
A,D(mtot,C) = Θunif(mtot,C).

In Fig. 7(a) and 7(b), we show the optimal memory allo-
cation for C = [0.2, 0.2, 0.2, 0.5, 0.6, 0.7, 0.7] and C =
[0.2, 0.2, 0.4, 0.4, 0.6, 0.7, 0.8], respectively. A general
observation is that the optimal memory allocation balances the
gain attained from assigning larger memories for users with
weak links and the multicast gain achieved by equating the
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Fig. 7. The optimal memory allocations with different link capacities.

cache sizes. Consequently, in the optimal memory allocation,
the users are divided into groups according to their rates,
the groups that include users with low rates are assigned larger
fractions of the cache memory budget, and users within each
group are given equal cache sizes. These characteristics are
illustrated in Fig. 7(a), which shows that the users are grouped
into G1 = {1, 2, 3} and G2 = {4, 5, 6, 7} for all mtot ∈ [0, 7).
Fig. 7(b) shows that the grouping not only depends on the
rates C, but also on the cache memory budget mtot. For
instance, for mtot = 2, we have two groups G1 = {1, 2}
and G2 = {3, 4, 5, 6, 7}, however, for mtot = 3, we have
G1 = {1, 2}, G2 = {3, 4}, and G2 = {5, 6, 7}.

IX. CONCLUSION

In this paper, we have considered a downlink where the end-
users are equipped with cache memories of different sizes.
We have shown that the problem of minimizing the worst-
case delivery load with uncoded placement and linear delivery
can be modeled as a linear program. We have derived a
lower bound on the worst-case delivery load with uncoded
placement. We have characterized the exact delivery load
memory trade-off with uncoded placement for the case where
the aggregate cache size is less than or equal to the library
size (small memory), the case where the aggregate cache size
is greater than or equal to K − 1 times the library size (large
memory), and the three-user case for arbitrary memory size.
The proposed scheme outperforms other works in the same
setup [28], [42], [44], and is numerically observed to verify the
excellent performance of uncoded placement for parameters of
interest.

We have also considered a system where the links between
the server and the users have unequal capacities. In this
scenario, the server suggests the memory sizes for cached
contents along with contents to the users subject to a total
memory budget, in order to minimize the delivery completion
time. We have observed that the optimal solution balances
between allocating larger cache sizes to the users with low link
capacities and uniform memory allocation which maximizes
the multicast gain. For when the total cache budget is less
than the library size, we have shown that the optimal memory

allocation distributes the cache memory budget uniformly over
some number of users with the lowest link capacities. This
number is a function of the users’ link capacities.

The optimization perspective in this work provides a prin-
cipled analysis of optimal caching and delivery schemes for
cache-enabled networks, by translating the design elements of
cache placement and delivery into structural optimization con-
straints. Future directions include different network topologies
and systems with multiple servers and multiple libraries.

APPENDIX A

PROOF OF PROPOSITION 1
∑

S⊂[K]: S′⊂S,j 	∈S
aS

= aS′�(|S′|=1) +
∑

S⊂[K]: S′⊂S,j 	∈S,|S|≥2

aS (43)

≥ u
{j}∪S′

S′ �(|S′|=1) +
∑

S⊂[K]: S′⊂S,j 	∈S,|S|≥2
∑

T �φ[K]: j∈T ,T ∩S	=φ,T \{j}⊂S
uTS , (44)

≥ u
{j}∪S′

S′ �(|S′|=1) +
∑

S⊂[K]: S′⊂S,j 	∈S,|S|≥2
∑

T �φ[K]: {j}∪S′⊂T ,T \{j}⊂S
uTS , (45)

= u
{j}∪S′

S′ �(|S′|=1) +
∑

T �φ[K]: {j}∪S′⊂T
∑

S⊂[K]: S′⊂S,T \{j}⊂S,j 	∈S,|S|≥2

uTS , (46)

=
∑

T �φ[K]: {j}∪S′⊂T

∑

S⊂[K]: T \{j}⊂S,j 	∈S
uTS , (47)

=
∑

T �φ[K]: {j}∪S′⊂T
vT , (48)

where the indicator function �(|S′|=1) = 1, if |S′| = 1 and
zero otherwise, (44) follows from the redundancy constraints
in (13) and u

{j}∪S′

S′ ≤ aS′ , (45) follows from the fact that
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TABLE I

OPTIMAL CACHING SCHEME FOR REGION II

S′ ⊂ S, and S′ ⊂ T implies T ∩ S �= φ. By interchanging
the order of summations over S and T in (45), we get (46),
since both represent the set defined by
{
(T ,S)

∣
∣ S′⊂S, j �∈ S, |S| ≥ 2, {j} ∪ S′⊂T , T \ {j}⊂S

}
.

(49)

The equality in (47) follows from the fact that {j} ∪ S′ ⊂ T
and T \ {j} ⊂ S implies S′ ⊂ S, which can be proved by
contradiction. More specifically, if S′ �⊂ S, i.e., ∃ l ∈ S′ and
l �∈ S, then {j}∪S′ ⊂ T implies l ∈ T \{j}. This contradicts
T \{j} ⊂ S, since l ∈ T \{j} and l �∈ S. The last equality
follows from the structural constraints in (10).

APPENDIX B
PROOF OF THEOREM 1: LOWER BOUND

WITH UNCODED PLACEMENT

References [4], [5] have shown that the delivery phase
is equivalent to an index-coding problem and the delivery
load is lower bounded by the acyclic index-coding bound
[47, Corollary 1]. Reference [6] has proposed an alternative
proof for the uncoded placement bound [4], [5] using a genie-
aided approach. For ease of exposition, we will follow the
genie-aided approach [6]. We consider a virtual user whose
cache memory is populated by a genie. For any permutation
of the users [q1, . . . , qK ], the virtual user caches the file pieces
stored at user qj excluding files requested by {q1, . . . , qj−1}
for j ∈ [K], i.e., the virtual users cache content is given by

Zvir =
K⋃

j=1

⋃

l∈[N ]\{dq1 ,...,dqj−1}

⋃

S⊂[K]: {qj}∈S,{q1,...,qj−1}∩S=φ

W̃l,S .

(50)

Using the virtual user cache content and the transmitted
signals, we can decode all the requested files. Additionally,
for any uncoded placement a ∈ A(m), the worst-case delivery
load R∗

A(m,a) satisfies [6]

R∗
A(m,a) ≥

K∑

j=1

∑

S⊂[K]:{q1,...,qj}∩S=φ

aS , ∀q ∈ P[K], (51)

where P[K] is the set of all permutations of [K]. Hence, by tak-
ing the convex combination over all possible permutations of
the users, we get

R∗
A(m,a) ≥

∑

q∈P[K]

αq

(
K∑

j=1

∑

S⊂[K]:{q1,...,qj}∩S=φ

aS

)

, (52)

=
∑

q∈P[K]

αq

(

Kaφ +
K−1∑

j=1

j

∑

S⊂[K]:{q1,...,qj}∩S=φ, qj+1∈S
aS

)

, (53)

where
∑

q∈P[K]
αq = 1, and αq ≥ 0, ∀q ∈ P[K]. By rearrang-

ing the summations, we get

R∗
A(m,a) ≥

∑

S⊂[K]

γS aS , (54)

where γS is given by (21).

R∗
A(m) ≥ min

a∈A(m)

∑

S⊂[K]

γS aS , (55)

Furthermore, the dual of the linear program in (55) is given by

max
λk≥0,λ0

− λ0 −
K∑

k=1

mk λk (56a)

subject to λ0 +
∑

k∈S
λk + γS ≥ 0, ∀S ⊂ [K], (56b)

where λ0 and λk are the dual variables associated with∑
S⊂[K] aS = 1, and

∑
S⊂[K]:k∈S aS ≤ mk, respec-

tively. By taking the maximum over all convex combination,
we obtain (20).

APENDIX C
PROOF OF THEOREM 4 : R∗

A(m) FOR K = 3

A. Region I:
∑3

j=1mj ≤ 1 (Follows from Theorem 2)

B. Region II: 1 <
∑3

j=1mj ≤ 2, m3 < m2 + 3 m1 − 1, and
m3 < 2(1 −m2)

Achievability: The caching scheme defined in Table I
achieves R∗

A(m)=5/3−m1− 2m2/3−m3/3.
Converse: For any a ∈ A(m) and a permutation q, we have

R∗
A(m,a) ≥3aφ+2a{3}+a{2}+a{2,3}, for q=[1, 2, 3],

(57)

R∗
A(m,a)≥ 3aφ+2a{1}+a{3}+a{1,3}, for q=[2, 3, 1],

(58)

R∗
A(m,a) ≥ 3aφ+2a{2}+a{3}+a{2,3}, for q=[1, 3, 2].

(59)
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TABLE II

OPTIMAL CACHING SCHEME FOR REGION III

Hence, by taking the average of (57)-(59), we get

R∗
A(m,a) ≥ 3 aφ +

2 a{1}
3

+ a{2} +
4 a{3}

3

+
2 a{2,3}

3
+
a{1,3}

3
, (60)

R∗
A(m)≥ min

a∈A(m)

{
5aφ

3
+

2a{1}
3

+ a{2} +
4a{3}

3

+
2a{2,3}

3
+
a{1,3}

3

}

, (61)

=
5
3
−m1−

2m2

3
−m3

3
, (62)

which is obtained by solving the dual linear program, as in
Appendix B.

C. Region III: 1 <
∑3

j=1 mj ≤ 2, m1 +m2 < 1, and
m3 ≥ m2 + 3 m1 − 1

Achievability: There are multiple caching schemes that
achieve R∗

A,D(m)=2−2 m1−m2. In particular, we consider
caching schemes that satisfy

a{1} + a{1,3} = m1, (63)
a{2} + a{2,3} = m2, (64)
a{3} = 1 −m1 −m2, (65)
a{1,3} + a{2,3} = m1 +m2 +m3 − 1, (66)
v{1,2} = m1, v{1,3} = a{1}, v{2,3} = a{2}, (67)
v{1,3} + v{2,3} = 1 −m3, (68)
v{1} + v{1,3} = 1 − 2m1, (69)
v{2} + v{2,3} = 1 −m1 −m2. (70)

In Table II, we provide one feasible solution to (63)-(70).
Converse: For any a ∈ A(m) and q = [1, 2, 3], we have

R∗
A(m,a) ≥ 3 aφ + 2 a{3} + a{2} + a{2,3}, (71)

≥ 2 aφ + 2 a{3} + a{2} + a{2,3}, (72)

R∗
A(m)≥ min

a∈A(m)

{
2aφ + 2a{3} + a{2} + a{2,3}

}
, (73)

= 2 − 2m1 −m2. (74)

D. Region IV: m1 +m2 > 1, and m3 ≥ 2(1 −m2)

Achievability: There are multiple caching schemes that
achieve R∗

A,D(m)=1−m1. In particular, we consider caching
schemes that satisfy

a{2,3} = 1 −m1, (75)
a{1} − a{1,2,3} = 2 − (m1 +m2 +m3), (76)
a{1,2} + a{1,2,3} = m1 +m2 − 1, (77)
a{1,3} + a{1,2,3} = m1 +m3 − 1, (78)
v{1} + v{1,2} + v{1,3} + v{1,2,3} = 1 −m1, (79)
v{1,2} + v{1,2,3} = 1 −m2, (80)
v{1,3} + v{1,2,3} = 1 −m3. (81)

In Table III, we provide one feasible solution to (75)-(81).
Converse: From the cut-set bound in (23), we have

R∗(m) ≥1−m1.

APENDIX D
PROOF OF THEOREM 5: OPTIMAL CACHE SIZES

First, for a given memory allocation with
∑K

k=1mk ≤ 1,
we have the following Lemma.

Lemma 1: For C1 ≤ · · · ≤ CK and memory allocation
m satisfying

∑K
k=1mk ≤ 1, the optimal caching scheme for

(39) is given by a∗{j} = mj , v∗{i,j} = u
∗{i,j}
{i} = u

∗{i,j}
{j} =

min{a∗{i}, a
∗
{j}}, and v∗{j} = 1−mj−

∑K
i=1,i	=j min{mi,mj}.

Proof: By combining (15) with (1), dividing it by Ck,
and summing over k, we get

K∑

k=1

∑

T �φ[K]:k∈T

vT
Ck

≥
K∑

k=1

1 −mk

Ck
, (82)

K∑

k=1

v{k}
Ck

≥
K∑

k=1

1 −mk

Ck
−

∑

T �φ[K]:|T |≥2

∑

j∈T

vT
Cj
. (83)
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OPTIMAL CACHING SCHEME FOR REGION IV

Therefore, we get the lower bound

ΘA,D(mtot,C) ≥
K∑

k=1

1 −mk

Ck
−

∑

T �φ[K]:|T |≥2

vT

×
(∑

j∈T

1
Cj

+
1

mini∈T Ci

)

. (84)

Additionally, for C1 ≤ · · · ≤ CK , we have

ΘA,D(mtot,C)≥
K∑

k=1

1 −mk

Ck
−

K−1∑

i=1

K∑

j=i+1

1
Cj

∑

T �φ[K]:{i,j}⊂T
vT ,

(85)

≥
K∑

k=1

1 −mk

Ck
−

K−1∑

i=1

K∑

j=i+1

min{mi,mj}
Cj

, (86)

where the last inequality follows from the fact that the
multicast transmissions that include users {i, j} are lim-
ited by the side-information stored at each of them,
which is upper bounded by the cache memory size,
i.e.,

∑
T �φ[K]: {i,j}⊂T vT ≤ min{mi,mj}.

Finally, for
∑K

i=1mi ≤ 1, a∗{j} = mj , v∗{j} = 1 − mj −
∑K

i=1,i	=j min{mi,mj}, and v∗{i,j} = u
∗{i,j}
{i} = u

∗{i,j}
{j} =

min{a∗{i}, a
∗
{j}}, is a feasible solution to (39) that achieves

the lower bound.
Now, using Lemma 1, we can simplify (39) to

min
m

K∑

k=1

1 −mk

Ck
−

K−1∑

i=1

K∑

j=i+1

min{mi,mj}
Cj

(87a)

s.t.
K∑

k=1

mk ≤ mtot, 0 ≤ mk ≤ 1, ∀ k ∈ [K]. (87b)

Next, we show that the optimal memory allocation from (87)
satisfies m∗

1 ≥ m∗
2 ≥ · · · ≥ m∗

K .
Lemma 2: For C1 ≤ · · · ≤ CK and mtot ≤ 1, the objective

function of (87) satisfies ΘA,D(m) ≤ ΘA,D(m̃), where mi =
m̃i, for i ∈ [K]\{r, r+1}, and some r ∈ [K−1]. Additionally,
mr = m̃r+1 = α + δ, mr+1 = m̃r = α, for δ, α ≥ 0, and
m1 ≥ m2 ≥ · · · ≥ mr.

Proof: For m = [m1,m2, . . . ,mr−1, α + δ, α,
mr+2, . . . ,mK ] and m̃ = [m1,m2, . . . ,mr−1, α, α + δ,
mr+2, . . . ,mK ], we have ΘA,D(m) − ΘA,D(m̃) = χ1 + χ2,
where

χ1 =
1 −mr

Cr
+

1 −mr+1

Cr+1
− 1 − m̃r

Cr
− 1 − m̃r+1

Cr+1
, (88)

= δ

(
1

Cr+1
− 1
Cr

)

, (89)

χ2 =
r−1∑

i=1

(
min{mi, m̃r}

Cr
+

min{mi, m̃r+1}
Cr+1

)

−
r−1∑

i=1

(
min{mi,mr}

Cr
+

min{mi,mr+1}
Cr+1

)

, (90)

=
(

1
Cr+1

− 1
Cr

)r−1∑

i=1

(min{mi, α+δ}−min{mi, α}), (91)

= δ(r − 1)
(

1
Cr+1

− 1
Cr

)

. (92)

Thus, ΘA,D(m) − ΘA,D(m̃) = rδ
(

1
Cr+1

− 1
Cr

)
≤ 0,

as Cr+1≥ Cr.
Using Lemma 2, (87) can be simplified to (93).
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Lemma 3: For C1 ≤ · · · ≤ CK and mtot ≤ 1, optimization
problem (39) reduces to

min
m

K∑

k=1

1 − k mk

Ck
(93a)

s.t.
K∑

k=1

mk ≤ mtot, (93b)

0 ≤ mk+1 ≤ mk, ∀ k ∈ [K−1]. (93c)

Equivalently, the optimal memory allocation for (93) is
obtained by solving

max
m

K∑

k=1

k mk

Ck
(94a)

s.t.
K∑

k=1

mk ≤ mtot, (94b)

0 ≤ mk+1 ≤ mk, ∀ k ∈ [K−1]. (94c)

Finally, the optimal memory allocation in Theorem 5 is
obtained by solving the dual of the linear program in (94).
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