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Abstract

We study bracketing covering numbers for spaces of bounded convex functions in the L p norms.
Bracketing numbers are crucial quantities for understanding asymptotic behavior for many statistical
nonparametric estimators. Bracketing number upper bounds in the supremum distance are known for
bounded classes that also have a fixed Lipschitz constraint. However, in most settings of interest, the
classes that arise do not include Lipschitz constraints, and so standard techniques based on known
bracketing numbers cannot be used. In this paper, we find upper bounds for bracketing numbers of
classes of convex functions without Lipschitz constraints on arbitrary polytopes. Our results are of
particular interest in many multidimensional estimation problems based on convexity shape constraints.

Additionally, we show other applications of our proof methods; in particular we define a new class
of multivariate functions, the so-called m-monotone functions. Such functions have been considered
mathematically and statistically in the univariate case but never in the multivariate case. We show how
our proof for convex bracketing upper bounds also applies to the m-monotone case.
c⃝ 2020 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

To quantify the size of an infinite dimensional set, the pioneering work of [34] studied
the so-called metric entropy of the set, which is the logarithm of the metric covering number
of the set. In this paper, we are interested in a related quantity, the bracketing entropy for
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a class of functions, which serves a similar purpose as metric entropy. Metric or bracketing
entropies quantify the amount of information it takes to approximate any element of a set
with a given accuracy ϵ > 0. This quantity is important in many areas of statistics and
information theory; in particular, the asymptotic behavior of empirical processes and thus of
many statistical estimators is fundamentally tied to the entropy of related classes of functions
under consideration [19].

Let F be a set of functions on some space X and let ρ be a metric on F . Given a
pair of functions l, u on X , a bracket [l, u] is the set of all functions f : X → R with
l ≤ f ≤ u pointwise. For ϵ > 0, we say [l, u] is an ϵ-bracket (for ρ) if ρ(l, u) ≤ ϵ. Then the
ϵ-bracketing number of F , denoted N[ ](ϵ,F , ρ), is the smallest integer N such that there exist
ϵ-brackets [li , ui ], i = 1, . . . , N , such that for all f ∈ F , f ∈ [li , ui ] for some i . (We do not
actually force li , ui ∈ F .) The bracketing entropy is the logarithm of the bracketing number.
Like metric entropies, bracketing entropies are fundamentally tied to rates of convergence of
certain estimators (see e.g., [5,41,42]). In this paper, we study the bracketing entropy of classes
of convex functions. Our interest is motivated by the study of nonparametric estimation of
functions satisfying convexity restrictions, such as the least-squares estimator of a convex or
concave regression function on Rd (e.g., [30,39]), possibly in the high dimensional setting [45],
or estimators of a log-concave or s-concave density (e.g., [14–16,32,33,40], among others).
Entropy bounds, of the metric or bracketing type, are directly relevant for studying asymptotic
behavior of estimators in these contexts.

Fix the dimension d ∈ {2, 3, . . .}. Let D ⊂ Rd be a convex set, let v1, . . . , vd ∈ Rd ,
be linearly independent vectors, let B,Γ1, . . . ,Γd be positive reals, and let v = (v1, . . . , vd )
and Γ = (Γ1, . . . ,Γd ). For f : D → R, let L p,D( f ) ≡ L p( f ) =

(∫
D f (x)p dx

)1/p for
1 ≤ p < ∞, and let L∞( f ) = supx∈D | f (x)|. We will let C with various arguments denote
different classes of convex functions. We let C ≡ Cd be the class of convex functions on Rd ,
where we consider all convex functions f to be defined on all of Rd and to take the value ∞ off
of its effective domain dom( f ) :=

{
x ∈ Rd

: f (x) < ∞
}

[37]. (This approach does not affect
bracketing numbers.) For a function f and a set D ⊂ Rd , we will use the notation f : D → R
to mean that dom( f ) = D and we let Cd (D) ≡ C (D) be the class of convex functions on Rd

with dom( f ) = D. Then we let

C (D, B,Γ , v) := { f ∈ C (D) : L∞( f ) ≤ B, | f (x + λvi ) − f (x)|

≤ Γi |λ| if x, x + λvi ∈ D} (1)

be the class of convex functions on D satisfying uniform boundedness and Lipschitz constraints
given by B and Γ . When {v1, . . . , vn} is the standard basis of Rd , we just write C (D, B,Γ )

for this class. If D is the hyperrectangle
∏d

i=1[ai , bi ] (with ai < bi ), then [7] and [20] (chapter
8) show that if 0 < ϵ ≤ ϵ0 (for some ϵ0 > 0) then

log N
(

ϵ, C
( d∏

i=1

[ai , bi ], B,Γ

)
, L∞

)
≤ Cϵ−d/2 (2)

for a constant C ≡ CD,B,Γ . Here, N (ϵ,F , ρ) is the ϵ-covering number of F in the metric
ρ, which is defined to be the smallest number of balls of ρ-radius ϵ that cover F , and
log N (ϵ,F , ρ) is the corresponding metric entropy of F , discussed in the first paragraph of
this paper.
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One would like to use (2) in the study of asymptotic properties of the statistical estimators
discussed above. Unfortunately, the function classes that arise in those problems generally
do not include Lipschitz constraints, and so the class C (D, B,Γ ) is not of immediate use.
Furthermore, it turns out that without Lipschitz constraints, the L∞ covering or bracketing
numbers are not bounded. Thus, instead of using the L∞ distance, we may consider using
the L p distances, 1 ≤ p < ∞. Let C (D, B) be the class of convex functions on D
with uniform bound B (and no Lipschitz constraints). Then [18] and [29] found bounds
when d = 1 and d > 1, respectively, for metric entropies of C (D, B): they showed that
log N

(
ϵ, C (D, B) , L p

)
≲ ϵ−d/2, again with D a hyperrectangle and 1 ≤ p < ∞. Here ≲

means ≤ up to a constant which does not depend on ϵ (but does depend on D, B, and p).
The d = 1 case (from [18]) was the fundamental building block in computing global rates of
convergence of the univariate log-concave and s-concave MLEs in [14]. In the corresponding
statistical problems when d > 1, the domain of the functions under consideration is not
restricted to be a hyperrectangle but rather may be an arbitrary convex set D. Thus the results
of [29] are not immediately applicable, and there is need for results on more general convex
domains D with a more complicated boundary and no Lipschitz constraints.

In this paper we are indeed able to generalize the results of [29] considerably by finding
bracketing entropy upper bounds for all (convex) polytopes D, attaining the bound

log N[ ]
(
ϵ, C (D, B) , L p

)
≲ ϵ−d/2 (3)

with 1 ≤ p < ∞, D a polytope, and 0 < B < ∞; this result is given in Theorem 3.5. Note that
we work with bracketing entropy rather than metric entropy. Bracketing entropies are larger
than metric entropies for the L p metrics,

N (ϵ,F , L p) ≤ N[ ](2ϵ,F , L p), for 1 ≤ p ≤ ∞, and N (ϵ,F , L∞) = N[ ](2ϵ,F , L∞),

(4)

[42, p. 84], so our bracketing entropy bounds imply metric entropy bounds of the same order.
Along the way, we also generalize the results of [7] to bound the L∞ bracketing numbers of
C (D, B,Γ ) when D is arbitrary. One of the benefits of our method is its constructive nature.
We initially study only simple polytopes (defined in Section 3.2) and in that case we pay careful
attention to how the constants depend on D.

In Section 5, we consider two further applications of our methods and ideas. In Section 5.1
we define a new class of functions, the so-called multivariate m-monotone functions. In
the univariate setting m-monotone functions have been studied mathematically ([43,44], and
references therein) and statistically [1,2,26], but to the best of our knowledge there has been
no consideration or even definition of m-monotone functions in the multivariate case. We define
a class and show that our proof for the bracketing upper bound for convex functions applies
to the case of m-monotone functions. This is given in Theorem 5.16.

In Section 5.2 we consider level set estimation (where the λ-level set of a function f is
{x : f (x) = λ}). Nonparametric level set estimation has gained increasing attention in recent
years, since it can capture very complex dependencies in a distribution or dataset. In Bayesian
analysis, the level set of the posterior distribution is commonly used to form a credible set,
and this level set often has to be estimated based on samples generated from the Markov chain
Monte Carlo method. There are a large number of other settings where level set estimation
arises; see, for instance, the introduction of [17]. Here, we consider convex level set estimation.
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For a recent review of convexity-based methods in set estimation, see [8]. In Section 5.2, we
present upper bounds for the so-called local entropy of level sets of convex functions. These
upper bounds are an important step in proving that fast rates of convergence may be achievable
when one is estimating a polytopal level set of a convex function.

During the course of the development of this paper, we became aware of the related
work [27], which was developed simultaneously and separately from our paper. In [27], the
authors demonstrate in their Theorem 1.6 that if D is a sphere then (3) fails when p(d−1) > d .
This shows that if D is not a polytope the situation may be more complicated than when D is
a polytope. They also find upper bounds of order ϵ−d/2 when D is a polytope. Their methods
are quite different than ours and in particular they do not explicitly construct their bracketing
set but rather rely on an algebraic relation (see their function g(·, ·) in their Section 2.5); our
method on the other hand is explicitly constructive. Our constants differ from those of [27]. Our
constants depend on the volume (measured in the appropriate dimension) of the faces of the
polytope D, which is perhaps an interesting phenomenon (and is (distantly) reminiscent of the
Minkowski–Steiner formula [23]). Besides the fact that our constants differ from those of [27]
and reflect the geometry of D, the constructive nature of our approach enables consideration
of other problems, not considered by [27], which we do in Section 5 (as described above).

This paper is organized as follows. In Section 2 we prove bounds for bracketing entropy
of classes of convex functions with Lipschitz bounds, using the L∞ metric. We use these to
prove our main result, Theorem 3.5, for the bracketing entropy of classes of convex functions
without Lipschitz bounds in the L p metrics, 1 ≤ p < ∞, which we do in Section 3. We defer
some of the details of the proofs to Section 4. In Section 5 we study two more problems. In
Section 5.1 we consider bracketing numbers related to univariate and multivariate m-monotone
function classes. In Section 5.2 we consider local entropies related to level set estimation.

2. Bracketing with lipschitz constraints

If we have sets Di ⊂ Rd , i = 1, . . . , M , for M ∈ N, and D ⊆ ∪
M
i=1 Di then for ϵi > 0,

0 < p < ∞, and any class of functions F ,

N[ ]

(( M∑
i=1

ϵ
p
i

)1/p

,F , L p

)
≤

M∏
i=1

N[ ]
(
ϵi ,F |Di , L p

)
, (5)

where, for a set G, we let F |G denote the class { f |G : f ∈ F} where f |G is the restriction of f
to the set G. We will apply (5) to a cover of D by sets G with the property that C (D, 1) |G ⊆

C (G, 1,Γ ) for some bounded vector Γ , so that we can apply bracketing results for classes of
convex functions with Lipschitz bounds. Thus, in this section, we develop the needed bracketing
results for such Lipschitz classes, for arbitrary (bounded) convex domains D. Recall the
definition of C (D, B,Γ , v) and C (D, B,Γ ) from (1). When we have Lipschitz constraints
on convex functions, we will see that the situation for forming brackets for C (D, 1,Γ ) with
D ⊆ [0, 1]d is essentially the same as for forming brackets for C

(
[0, 1]d , 1,Γ

)
.

Theorem 3.2 from [29] gives the result of Theorem 2.1, stated below, when D =∏d
i=1[ai , bi ]; we now extend it in Theorem 2.1 to the case of a general D. When we consider

convex functions without Lipschitz constraints, we will partition D into sets that are contained
in parallelotopes and apply Theorem 2.1 to those sets.

Theorem 2.1. Let ai < bi and let D ⊂
∏d

i=1[ai , bi ] be a convex set. Let Γ = (Γ1, . . . ,Γd )
and 0 < B,Γ1, . . . ,Γd < ∞. Then there exists a positive constant c ≡ cd such that

log N[ ]
(
ϵ Vold (D)1/p, C (D, B,Γ ) , L p

)
≤ log N[ ] (ϵ, C (D, B,Γ ) , L∞) (6)
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≤ cϵ−d/2
(

B +

d∑
i=1

Γi (bi − ai )
)d/2

(7)

for ϵ > 0 and p ≥ 1.

Here, Vold (D) is d-dimensional volume (Lebesgue measure) of the set D. The proof is given
in [13]; we leave it out here due to space limitations.

3. Bracketing without lipschitz constraints

In the previous section we bounded bracketing entropy for classes of functions with
Lipschitz constraints. In this section we remove those Lipschitz constraints. With Lipschitz
constraints we could consider arbitrary domains D, but without the Lipschitz constraints we
need more restrictions: now we will take D to be a simple polytope (defined below). We now
define notation and assumptions we will use for the remainder of the document.

3.1. Notation and terminology

For y, z ∈ Rd let ⟨y, z⟩ :=
∑d

i=1 yi zi , let ∥z∥2
:= ⟨z, z⟩, and for two sets C, D ⊂ Rd , define

the Hausdorff distance between them by

lH (C, D) := max

(
sup
x∈D

inf
y∈C

∥x − y∥, sup
y∈C

inf
x∈D

∥x − y∥

)
.

Let Bd (z, R) ≡ B(z, R) :=
{

x ∈ Rd
: ∥x − z∥ ≤ R

}
.

We will consider only the case d ≥ 2 since the result when d = 1 is given in [18].
Recall that for a convex set G, a set F ⊂ G is a face of G if F is either ∅ (the empty
set), G, or if F = G ∩ H for some supporting hyperplane H [37] of G. A set F ⊂ G is
a facet of G if F is a (d − 1)-dimensional face (see e.g., [28]). We will focus on simple
polytopes first (see Assumption 1). A simple polytope is one in which all (d − k)-dimensional
faces (abbreviated “(d − k)-faces”) of D have exactly k incident facets for k ∈ {0, . . . , d}.
The simple polytopes are dense in the class of all polytopes in the Hausdorff distance (page
82 of [28]). Any convex polytope can be triangulated into O(n⌈d/2⌉) simplices (which are
simple polytopes) if the polytope has n vertices (see e.g. [11]), and so we can translate our
theorem into a result for a general polytope D; see Corollary 3.7. For two sets A and B let
A + B := {a + b : a ∈ A, b ∈ B}. For a vector v ∈ Rd , we let [0, v] := {λv : λ ∈ [0, 1]}. For a
set G, let d+(x, G, e) := inf {K ≥ 0 : (x + K e) ∩ G ̸= ∅} (which may in general be infinite).
For a point x , a set H , and a unit vector v, let

d(x, H, v) := inf {|k| : x + kv ∈ H} = min
(
d+(x, H, v), d+(x, H, −v)

)
be the distance from x to H along the vector v, and for a set E , let d(E, H, v) :=

infx∈E d(x, H, v). We let ∂G be the boundary of G in Rd and we let ∂r G be the relative
boundary of G, the set difference between the closure of G and the relative interior of G
(e.g., page 44 of [37]). Let Vold−k(G) be the (d − k)-dimensional volume of G (and, in
particular, Vol0(G) is the number of elements in G).2 For a, b ∈ R, we let a ∨ b be the

2 In general, Vold−k can be defined rigorously using the so-called (d − k)-dimensional Hausdorff measure. We
will only need the (d − k)-dimensional volume of polytopes contained in affine spaces, and in such cases the
definition is straightforward (and only requires Lebesgue measure).
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maximum of a and b, and a ∧ b be the minimum of a and b. For two vectors e, v ∈ Rd and a
linear subspace V of Rd , we write e ⊥ v if ⟨e, v⟩ = 0, we write e ⊥ V if e ⊥ v for all v ∈ V ,
and we let V ⊥ be the orthogonal complement linear subspace of V in Rd .

3.2. Definitions and assumptions

In what follows, we will assume that D is a polytope, meaning that for some N ∈ N,
D = ∩

N
j=1 E j where E j :=

{
x ∈ Rd

:
⟨
v j , x

⟩
≥ p j

}
are halfspaces with inner normal unit

vectors v j such that vi ̸= v j if i ̸= j , and where p j ∈ R, for j = 1, . . . , N . Let
H j :=

{
x ∈ Rd

:
⟨
x, v j

⟩
= p j

}
be the corresponding hyperplanes and let F j := H j ∩ D be the

corresponding facets of D. For k ∈ {0, . . . , d}, we will define Jk to index the (d − k)-faces of
D. First let J̃k :=

{
( j1, . . . , jk) ∈ {1, . . . , N }

k
: j1 < · · · < jk

}
, and for j ∈ J̃k , let

G j = ∩
k
α=1 H jα ∩ D if k ̸= 0, and let G j = D if k = 0.

Now let J0 = {1}, and for k ∈ {1, . . . , d}, let Jk :=

{
j ∈ J̃k : G j ̸= ∅

}
. The face G j , j ∈ Jk ,

is (d − k)-dimensional and H j1 ∩ D, . . . , H jk ∩ D are the only facets of D containing G j , by
Theorem 12.14 of [6]. Thus, by John’s theorem, Theorem 5.22 [31], see also [3] or [4], there
exists x j ∈ G j such that G j − x j contains a (d − k)-dimensional ellipsoid A j − x j of maximal
(d − k)-dimensional volume and such that

A j − x j ⊂ G j − x j ⊂ d(A j − x j ). (8)

Let γ j ,α/2 := d+(x j , ∂r A j , eα) be the radius of A j in the direction e j ,α , where e j ,k+1, . . . , e j ,d
are the orthonormal unit vectors given by the axes of the ellipsoid A j − x j . Let E j :=

span
{
e j ,k+1, . . . , e j ,d

}
be the linear space containing G j − x j . Let A be an integer and

u a positive real number, and let

0 = δ0 < δ1 < · · · < δA < u < δA+1 < δA+2 = ∞ (9)

be a sequence. This sequence as well as A and u will be specified in greater detail later. For
k ∈ {1, . . . , d}, let Ik := {0, . . . , A}

k , and let I0 := {A}. For k ∈ {1, . . . , d}, i = (i1, . . . , ik) ∈

Ik , and j = ( j1, . . . , jk) ∈ Jk let

G i, j :=
{

x ∈ D : δiα ≤ d(x, H jα , v jα ) ≤ δiα+1 for α = 1, . . . , N
}

(10)

where in the previous display for α > k we let iα = A + 1 and jα take on the
values in {1, . . . , N } \ { j1, . . . , jk} (in any order). For the k = 0 case, let G A,1 :=

{x ∈ D : d(x, ∂ D) ≥ u}. These sets are not parallelotopes, since for α > k, δiα+1 = ∞.
However, for any x ∈ G j , (G i, j − x) ∩ span

{
v j1 , . . . , v jβ

}
, for β ≤ k, is contained in a

β-dimensional parallelotope by construction; this will be used to understand the volume of
G i, j . We will eventually define u such that D ⊂

⋃d
k=0

⋃
j∈Jk ,i∈Ik

G i, j (see Lemma 3.3).
The setup for our first main results is summarized in the following assumption.

Assumption 1. Let d ≥ 2, let the definitions of the above Section 3.2 hold, and let D ⊂ Rd

be a simple convex polytope.

Additionally, define the support function for a convex set D to be, for x ∈ Rd with
∥x∥ = 1, h(D, x) := maxd∈D ⟨d, x⟩. Then the width function is, for ∥u∥ = 1, w(D, u) :=

h(D, u)+h(D, −u), which gives the distance between supporting hyperplanes of D with inner
normal vectors u and −u, respectively, and let diam(D) := sup∥u∥=1 w(D, u) be the diameter
of D.
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3.3. Main results

We want to bound the slope of functions f ∈ C (D, 1) |G i, j , so that we can apply bracketing
bounds on convex function classes with Lipschitz bounds. Note that each G i, j is distance
δiα in the direction of v jα from H jα , which means that if f ∈ C (D, 1) |G i, j then f has
Lipschitz constant bounded by 2/δiα along the direction v jα . However, the vectors v jα are
not orthonormal, so the distance from G i, j along v jα to a hyperplane other than H jα may be
smaller than δiα .

Note that if P ⊂ R ⊂ Rd where R is a hyperrectangle and P is a parallelotope defined by
vectors v1, . . . , vd , then if A is a linear map with v1, . . . , vd as its eigenvectors (thus rescaling
P), then AR will not necessarily still be a hyperrectangle, i.e. its axes may no longer be
orthogonal. Thus, we cannot argue by simple scaling arguments that bracketing numbers for
P scale with the lengths along the vectors vi .

For each G i, j we will find an orthonormal basis such that G i, j is contained in a rectangle R
whose axes are given by the basis and whose lengths along those axes (i.e., widths) are bounded
by a constant times the width of one of the normal vectors v jα . Furthermore, the distance from
R along each basis vector to ∂ D will be bounded by the distance from G i, j along v jα to H jα .
This will give us control of both the Lipschitz parameters and the widths corresponding to the
basis, and thus control of the bracketing number for classes of convex functions. We rely on
the following basic lemma.

Lemma 3.1. If f ∈ C(D, B), B > 0, and x ∈ D is such that d(x, ∂ D, eα) ≥ δ > 0 then⏐⏐⏐⏐ ∂

∂xi
f (x)

⏐⏐⏐⏐ ≤
2B
δ

(11)

where the derivative stands for both the right and left derivative of f .

Proof. Let z1 = x − γ1eα and z2 = x + γ2eα , γ1, γ2 > 0, both be elements of ∂ D, so that by
convexity we have for any h ∈ [−γ1, γ2],

−2B
δ

≤
f (z1) − f (z1 + δeα)

δ
≤

f (x + heα) − f (x)
h

≤
f (z2) − f (z2 − δeα)

δ
≤

2B
δ

.

Thus, f satisfies a Lipschitz constraint in the direction of eα . □

The following proposition constructs a basis and gives control for the basis elements in
span

{
G j
}
. For the basis elements perpendicular to span

{
G j
}
, control is given by Lemmas 4.3

and 4.4 in Section 4.

Proposition 3.2. Let Assumption 1 hold for a convex polytope D. For each k ∈ {0, . . . , d},
i ∈ Ik, j ∈ Jk , and each G i, j , there is an orthonormal basis ei, j ≡ e := (e1, . . . , ed ) of Rd

such that for any f ∈ C (D, B) |G i, j , f has Lipschitz constant 2B/δiα in the direction eα , where
δiα = δA+1 if k + 1 ≤ α ≤ d. Furthermore, there exists a permutation π of (1, . . . , k) such
that for α = 1, . . . , k, ei, j ,α ≡ eα satisfies

eα ∈ span
{
v jπ(1) , . . . , v jπ(α)

}
, eα ⊥ span

{
v jπ(1) , . . . , v jπ(α−1)

}
, and

⟨
eα, v jπ(α)

⟩
> 0,

(12)

and for α ∈ {k + 1, . . . , d}, eα ⊥ span
{
v jπ(1) , . . . , v jπ(k)

}
=: V . In particular, we may take

ek+1, . . . , ed to be the orthonormal unit axis vectors of A j − x j as defined on Section 3.2.
Thus it is immediate that neither V nor V ⊥ depends on i .
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Proof. Without loss of generality, for ease of notation we assume in this proof that jβ =

β for β = 1, . . . , k, and then that

δi1 ≤ δi2 ≤ · · · ≤ δik ≤ δik+1 = · · · = δiN ,

where we let iα = A + 1 for k < α ≤ N . That is, we assume that H1, . . . , Hk are the nearest
hyperplanes to G i, j , in order of increasing distance; we then take π to be the identity. To define
the orthonormal basis vectors, we will use a Gram–Schmidt orthonormalization, proceeding
according to increasing distances from G i, j to the hyperplanes H j . Define e1 := v1 and for
1 < j ≤ k, define e j inductively by

e j ∈ span
{
v1, . . . , v j

}
, e j ⊥ span

{
v1, . . . , v j−1

}
,
⟨
e j , v j

⟩
> 0, and ∥e j∥ = 1.

Let ek+1, . . . , ed be orthonormal unit vectors given by the axes of the ellipsoid A j − x j . Note
that these vectors form an orthonormal basis of span {v1, . . . , vk}

⊥ because span {ek+1, . . . , ed}

= span(G j − x j ) is perpendicular to span {v1, . . . , vk} by definition. For α ∈ {1, . . . , k}, for
any x ∈ G i, j , since d(x, Hα, v) achieves its minimum when v is vα ,

d(x, Hα, eα) ≥ d(x, Hα, vα) ≥ δiα ,

d(x, H j , eα) ≥ d(x, H j , v j ) ≥ δi j ≥ δiα , for all N ≥ j > α, and

d(x, H j , eα) = ∞ > δiα for j < α,

since eα ⊥ span {v1, . . . , vα−1}. Similarly, for α ∈ {k + 1, . . . , d},

d(x, H j , eα) ≥ d(x, H j , v j ) ≥ δA+1, for all N ≥ j ≥ k + 1, and

d(x, H j , eα) = ∞ > δA+1 for j ≤ k,

since eα ⊥ span {v1, . . . , vk}. Thus, we have d(G i, j , H j , eα) ≥ δiα for α ∈ {1, . . . , d} and for
j ∈ {1, . . . , N }. That is, we have shown

d(G i, j , ∂ D, eα) ≥ δiα for all α ∈ {1, . . . , d} . (13)

Thus by (11), f has Lipschitz bound 2B/δiα in the direction eα . □

The next lemma is necessary for us to be able to apply (5). To state it, we first define some
constants. For k ∈ {1, . . . , d}, let di, j,k := d(Ei , F j ) where Ei , i = 1, . . . , Nk , is a (d − k)-face
and F j , j = 1, . . . , N , is a facet. Then let

rD := min
{
di, j,k : di, j,k ̸= 0, k ∈ {1, . . . , d}

}
> 0. (14)

Let

u ≡ uD := rD/2 ∧ 2−2(p+1)2(p+2)
∧ min

k∈{1,...,d−1}

min
j∈Jk ,e∈E j

d+(x j , ∂r G j , e)
Lk,2

(15)

where for k ∈ {1, . . . , d − 1},
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Lk,2 := 1 ∨ max
j∈Jk

max
i∈{1,...,N }\ j

k∑
γ=1

⟨
f̃ j ,γ , vi

⟩
⟨

f̃ j ,γ , v jγ

⟩ , (16)

where f̃ j ,γ are defined in Proposition 4.2, and E j is defined on Section 3.2.

Lemma 3.3. Under Assumption 1, with u given in (15), we have

D ⊂

d⋃
k=0

⋃
j∈Jk ,i∈Ik

G i, j .

Proof. Fix x ∈ D. We need to show that there are no more than d facets F such that
d(x, F) < u. If d(x, ∂ D) ≥ u then x ∈ G A,1 (corresponding to k = 0), so we assume
d(x, ∂ D) < u. Then let kx := max {k ∈ {1, . . . , d} : d(x, G) < u, some (d − k)-face G} and
let Gx be any (d − kx )-face such that the minimum is attained. Now for any facet F , if
d(x, F) < u then we also have d(Gx , F) < 2u ≤ rD . But this contradicts the definition
of rD unless d(Gx , F) = 0. Because Gx is nonempty, Gx = G j for some j ∈ Jkx (rather than
j ∈ J̃kx \ Jkx ). The distance from x to the boundary of Gx is no smaller than u, because
otherwise we would contradict the maximality defining kx since the boundary is given by
(d − (kx + 1))-faces. Thus the distance from x to any facet intersecting but not containing
Gx is no smaller than u. Furthermore because D is simple, there are exactly kx ≤ d facets
containing Gx ; and we have shown that the distance to every facet excluding these kx is no
smaller than u. Thus, Gx is unique and x lies in G i, j for some i ∈ Ikx . □

The next lemma combines Lemmas 4.3 and 4.4 with Theorem 2.1. The statement depends
on the constants Lk,1, k ∈ {1, . . . , d}, and L j ,4, j ∈ Jk . These depend only on D and are
defined in (24) and (45).

Lemma 3.4. Let Assumption 1 hold. Fix k ∈ {1, . . . , d}, i ∈ Ik, j ∈ Jk . Then for any p ≥ 1
and for ϵ > 0,

log N[ ]

(
ϵ Vold (G i, j )1/p, C (D, 1) |G i, j , L p

)
≤ cdϵ

−d/2

(
1 +

2d2

L j ,4
max

α=1,...,k

δiα+1

δiα
+

d∑
α=k+1

8Lk,1ρ j ,α

u

)d/2

.

(17)

Proof. Let

Γ i :=

(
2

d(G i, j , ∂ D, e1)
, . . . ,

2
d(G i, j , ∂ D, ek)

,
2
u

, . . . ,
2
u

)
(18)

where ei, j ,α ≡ eα , α = 1, . . . , d, is given by Proposition 3.2. Then

C (D, 1) |G i, j ⊂ C
(
G i, j , 1,Γ i , e

)
(19)

where e = (e1, . . . , ed). Let f̃ jγ be given by Lemma 4.1 applied to the k linearly independent
unit normal vectors v j1 , . . . , v jk , and (as in that lemma, with “dβ” given by (δiγ +1 − δiγ )), let

f i, j , jγ ≡ f jγ := (δiγ +1 − δiγ ) f̃ jγ /
⟨

f̃ jγ , v jγ

⟩
. (20)
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Let Pi, j :=
∑k

γ=1[0, f jγ ], where [0, v] := {λv : λ ∈ [0, 1]}. By Lemma 4.3, Pi, j ⊂∑k
α=1[0, γαeα] where γα are given by the lemma. Thus by (53), for some x ∈ G i, j ,

G i, j ⊂ x +

k∑
α=1

[0, γαeα] +

d∑
α=k+1

[
−2Lk,1ρ j ,αeα, 2Lk,1ρ j ,αeα

]
. (21)

Now, using (19), we apply Theorem 2.1 to see

log N[ ]

(
ϵ Vold (G i, j )1/p, C (D, 1) |G i, j , L p

)
≤ cdϵ

−d/2

(
1 +

k∑
α=1

2γα

d(G i, j , ∂ D, eα)
+

d∑
α=k+1

8Lk,1ρ j ,α

u

)d/2 (22)

Now by applying (55), (61), and (62) with v = eα , we see that

2γα

d(G i, j , ∂ D, eα)
≤

2d diam(G i, j , eα)
d(G i, j , ∂ D, eα)

≤

2d minβ=1,...,k
δiβ+1⏐⏐⏐⟨eα ,v jβ

⟩⏐⏐⏐
maxβ=1,...,k

δiβ⏐⏐⏐⟨eα ,v jβ

⟩⏐⏐⏐
≤

2d
L j ,4

max
β=1,...,k

δiβ+1

δiβ

(23)

where

L j ,4 := min
e1,...,ed

min
v jβ :

⟨
v jβ ,eα

⟩
>0

⏐⏐⟨eαv jβ

⟩⏐⏐. (24)

(We can restrict to v jβ such that
⟨
v jβ , eα

⟩
> 0 in the definition of L j ,4 because the numerator

in (23) is finite.) Thus (22) is bounded above by

cdϵ
−d/2

(
1 +

2d2

L j ,4
max

β=1,...,k

δiβ+1

δiβ
+

d∑
α=k+1

8Lk,1ρ j ,α

u

)d/2

. □

Now we present our main theorem. It gives a bracketing entropy of order ϵ−d/2 when D is a
fixed simple polytope. Its proof relies on embedding G i, j in a set Ri, j (defined in (52)) which
is a set-sum of a parallelotope and a hyperrectangle with axes given by Proposition 3.2. We
need to control the distance of G i, j to ∂ D, and we need to control the size of Ri, j in terms of
the widths along its axes. Then we can use the results of Section 2 on Ri, j and thus on G i, j .
We defer some statements and proofs of needed facts about G i, j and Ri, j until Section 4.

Theorem 3.5. Let Assumption 1 hold for a convex polytope D ⊆
∏d

i=1[ai , bi ]. Fix p ≥ 1.
Then for all ϵ > 0,

log N[ ]
(
ϵ, C(D, B), L p

)
≤ Sϵ−d/2

(
B
( d∏

i=1

(bi − ai )
)1/p)d/2

, (25)

where S is a constant depending only on d and D.

The form of the constant S is given in the proof of the theorem.

Proof. Fix ϵ > 0. First, we will reduce to the case where D ⊂ [0, 1]d and B = 1 by a scaling
argument. Let C be an affine map from

∏d
i=1[ai , bi ] to [0, 1], where D̃ is the image of D, and
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assume we have a bracketing cover [l̃1, ũ1], . . . , [l̃N , ũN ] of C
(

D̃, 1
)

. Let li := B l̃i ◦ C and
similarly for ui , so that [l1, u1], . . . , [lN , uN ] form brackets for C (D, B). Their L p

p size is∫
D

(ui (x) − li (x))p dx = B p
∫

D̃
(ũi (x) − l̃i (x))p

d∏
(bi − ai )dx .

Thus,

N[ ]

(
ϵB
( d∏

bi − ai

)1/p

, C (D, B) , L p

)
≤ N[ ]

(
ϵ, C

(
D̃, 1

)
, L p

)
,

so apply the theorem with η = ϵ/B
(∏d bi − ai

)1/p
for ϵ. Note that the constant S depends

on D̃, the version of D normalized to lie in [0, 1]d .
We now assume D ⊂ [0, 1]d and B = 1. We specify the sequence in (9) and ai,k ≡ ai > 0,

which will govern the L p-sizes of our brackets on G i, j , as follows. Let

δi := exp

{
p
(

p + 1
p + 2

)i−1

log ϵ

}
for i = 1, . . . , A, and δ0 = 0. (26)

Note that this implicitly defines A, by (9) and (15). For k ∈ {1, . . . , d} and i ∈ Ik , we will let
a(i1,...,ik ) = 2 if iα = 0 for any α ∈ {1, . . . , k}, and otherwise we let

a(i1,...,ik ) :=

k∏
β=1

aiβ :=

k∏
β=1

ϵ1/k exp
{
−p

(p + 1)iβ−2

(p + 2)iβ−1 log ϵ

}
.

For the k = 0 case, let aA := ϵ/u. Let

a =

( d∑
k=0

∑
j∈Jk ,i∈Ik

a p
i Vold (G i, j )

)1/p

. (27)

Then since D ⊂ ∪
d
k=0 ∪ j∈Jk ,i∈Ik G i, j by Lemma 3.3, as in (5),

log N[ ]
(
a, C (D, 1) , L p

)
≤

d∑
k=0

∑
j∈Jk

∑
i∈Ik

log N[ ]

(
ai Vold (G i, j )1/p, C (D, 1) |G i, j , L p

)
.

(28)

First, consider the case k ∈ {1, . . . , d} and compute the sum over Ik for a fixed j ∈ Jk . We use
the trivial bracket [−1, 1] for any G i, j where iα = 0 for any α ∈ {1, . . . , k}. Otherwise apply
Lemma 3.4 which shows us that the sum over the remaining terms in (28) is bounded by

A∑
i1=1

· · ·

A∑
ik=1

cda−d/2
i

(
1 +

2d2

L j ,4
max

α=1,...,k

δiα+1

δiα
+

d∑
α=k+1

8Lk,1ρ j ,α

u

)d/2

. (29)

Since Lk,1 ≥ 1 and u ≤ ρ j ,α by (15) for all k, i, j and α = k + 1, . . . , d , we have∑d
α=k+1

8ρ j ,α Lk,1
u = 4Lk,1

∑d
α=k+1

2ρ j ,α
u ≤ 4Lk,1

∏d
α=k+1

2ρ j ,α
u (using the fact that for a, b ≥ 2,

ab ≥ a + b). We also bound maxα=1,...,k 2δiα+1/δiα ≤
∏k

α=1 2δiα+1/δiα since 2δiα+1/δiα > 2.
Thus (29) is bounded above by

cdd2L−1
j ,4

(
1 + 2d−k+2Lk,1

d∏
α=k+1

ρ j ,α

u

)d/2 A∑
i1=1

· · ·

A∑
ik=1

a−d/2
i

k∏
α=1

(
2δiα+1

δiα

)d/2

, (30)
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which is

cdd2L−1
j ,4

(
1 + 2d−k+2Lk,1

d∏
α=k+1

ρ jα

u

)d/2 A∑
i1=1

· · ·

A∑
ik=1

k∏
β=1

(
2δiβ+1

δiβ aiβ

)d/2

. (31)

Note that when k = d we take the product over an empty set to be 1. For i = 1, . . . , A, let

ζi ≡ ζi,k :=

√
ϵ1/kδi+1/(δi ai ), (32)

so that
∑A

i1=1 · · ·
∑A

ik=1
∏k

β=1

(
2δiβ+1

δiβ aiβ

)d/2

equals

A∑
i1=1

· · ·

A∑
ik=1

2kd/2ϵ−d/2
k∏

β=1

ζ d
iβ = 2kd/2ϵ−d/2

A∑
i1=1

ζ d
i1

A∑
i2=1

ζ d
i2

· · ·

A∑
ik=1

ζ d
ik

= ϵ−d/22kd/2 Bk
u

where, for 0 < ϵ ≤ 1

Bu :=

A∑
i=1

ζ d
i ≤ 2ud/(2(p+1)(p+2)), (33)

by Lemma 3.6.

Next, we will relate the term
(

1 + 2d−k+2Lk,1
∏d

α=k+1
ρ jα

u

)d/2
to Vold−k(G j ). Recall that

A j is the ellipsoid defined in (8) which has diameter in the eα direction given by γ j ,α . By (8),
ρ j ,α ≤ dγ j ,α . The volume of A j is Vold−k(A j ) =

(∏d
α=k+1 γ j ,α/2

)
π (d−k)/2/Γ ((d − k)/2 + 1).

Thus, letting Cd :=
(2d)d−kΓ ((d−k)/2+1)

π (d−k)/2 , we have

d∏
α=k+1

ρ j ,α ≤ Cd Vold−k(A j ) ≤ Cd Vold−k(G j ).

Thus we have shown that (31) is bounded above by

cdd2L−1
j ,42kd/2 (1 + 2d−k+2Lk,1u−(d−k)Cd Vold−k(G j )

)d/2
Bk

u · ϵ−d/2. (34)

Therefore, letting c̃d,k := cdd22k2kd/2, we have shown that∑
i∈Ik

log N[ ]

(
ai Vold (G i, j )1/p, C (D, 1) |G i, j , L p

)
≤ L−1

j ,4c̃d,kukd/2(p+1)(p+2) (1 + 2d−k+2Lk,1u−(d−k)Cd Vold−k(G j )
)d/2

ϵ−d/2.

(35)

Display (35) holds for k ∈ {1, . . . , d}. When k = 0, recalling aA = ϵ/u, we have

log N[ ]
(
aA Vold (G A,1)1/p, C (D, 1) |G A,1 , L p

)
≤ cd (u + 2d)d/2 ϵ−d/2 (36)

by Theorem 2.1 since C (D, 1) |G A,1 ⊂ C
(
G A,1, 1, 2

u 1
)

where 1 ∈ Rd is the vector of all 1’s.
Then, combining (35) and (36), the cardinality of the collection of brackets covering the entire
domain D is given by summing over j ∈ Jk and k ∈ {0, . . . , d}.
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We have computed the cardinality of the brackets. Now we bound their size. Let I 0
k be the

subset of i ∈ Ik such that some iα is 0, and let I +

k := Ik \ I 0
k . We have

a p
≤ a p

A Vold (D) +

d∑
k=0

∑
j∈Jk ,i∈I 0

k

2p Vold (G i, j )

+

d∑
k=1

(2Lk,1)d−k
∑
j∈Jk

Vold−k(G j )
∑
i∈I+

k

a p
i

k∏
α=1

δiα+1 − δiα⟨
f̃α, v jα

⟩ (37)

by Proposition 4.2 with f̃α ≡ f̃ j ,α defined there. Recalling δ1 = ϵ p, note that

d∑
k=0

∑
j∈Jk ,i∈I 0

k

2p Vold (G i, j ) ≤ 2pϵ p Vold−1(∂ D). (38)

Fixing k ∈ {1, . . . , d}, we have

∑
j∈Jk

Vold−k(G j )
∑
i∈I+

k

a p
i

k∏
α=1

δiα+1 − δiα⟨
f̃α, v jα

⟩ ≤

∑
j∈Jk

Vold−k(G j )Lk
j ,3

A∑
i1=1

· · ·

A∑
ik=1

k∏
α=1

a p
iαδiα+1

≤

∑
j∈Jk

Vold−k(G j )Lk
j ,3

A∑
i1=1

a p
i1
δi1+1 · · ·

A∑
ik=1

a p
ik
δik+1.

where L j ,3 := maxα∈{1,...,k} 1/
⟨

f̃ j ,α, v jα

⟩
. We have

A∑
α=1

a p
α δα+1 = ϵ p/k

A∑
α=1

ϵ1/kδα+1

δαaα

= ϵ p/k
A∑

α=1

ζ 2
α =: ϵ p/k Au, (39)

where Au ≤ 2u1/(p+1)2
by Lemma 3.6. Thus

∑
j∈Jk

Vold−k(G j )Lk
j ,3

⎛⎝ A∑
i1=0

a p
i1
δi1+1

⎞⎠ · · ·

⎛⎝ A∑
ik=0

a p
ik
δik+1

⎞⎠ ≤ ϵ p Ak
u

∑
j∈Jk

Vold−k(G j )Lk
j ,3,

so by (37) a ≤ S2/d
D,sϵ where

S2/d
D,s :=

(Vold (D)
u p

+ 2p Vold−1(∂ D) +

d∑
k=1

(2Lk,1)d−k Ak
u

∑
j∈Jk

Vold−k(G j )Lk
j ,3

)1/p
. (40)

We have thus bounded the bracketing entropy when D ⊂ [0, 1]d and B = 1. Thus, by
the scaling at the beginning of the proof, for any convex polytope D ⊂

∏d
i=1[ai , bi ] and any

B > 0, we have shown for 0 < ϵ ≤ B
(∏d

i=1 bi − ai

)1/p
that

log N[ ]

(
ϵS2/d

D̃,s
, C (D, B) , L p

)
≤ SD̃,cϵ

−d/2
(

B

(
d∏

i=1

(bi − ai )

)1/p)d/2
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where SD̃,c equals

cd (u+2d)d/2
+

d∑
k=1

∑
j∈Jk

L−1
j ,4c̃d,kukd/2(p+1)(p+2) (1 + 2d−k+2Lk,1u−(d−k)Cd Vold−k(G j )

)d/2
.

(41)

Letting δ := S2/d
D̃,s

ϵ, we have shown that

log N[ ]
(
δ, C (D, B) , L p

)
≤ SD̃,c SD̃,sδ

−d/2
(

B

(
d∏

i=1

(bi − ai )

)1/p)d/2

(42)

for 0 < δ ≤ S2/d
D̃,s

B
∏d

i=1(bi − ai )1/p.

Finally, we can extend from requiring δ ≤ SD,s B
∏d

i=1(bi − ai )1/p to allowing any δ > 0,
just as in the proof of Theorem 2.1, in [13] (at the slight cost of increasing the constant on the
right hand side of (42)). □

Note that the constants SD̃,s and SD̃,c should be calculated using the rescaling of D that lies
in [0, 1]d , D̃. The following lemma was used above.

Lemma 3.6. For any γ ≥ 1, 0 < ϵ ≤ 1, with ζi given in (32), and with A and u given by
(9) and (26), we have

A∑
α=1

ζ γ
α ≤ 2uγ /(2(p+1)2).

Proof. Straightforward algebra shows

ζ 2
α = exp

{
p

(p + 1)α−2

(p + 2)α
log ϵ

}
. (43)

We have, for α = 1, . . . , A − 1,

ζα

ζα+1
= exp

{
p log ϵ

2(p + 1)2(p + 2)

(
p + 1
p + 2

)α}
,

which is bounded above by

exp

{
p log ϵ

2(p + 1)2(p + 2)

(
p + 1
p + 2

)A−1
}

≤ exp
{

log u
2(p + 1)2(p + 2)

}
=: R−1.

Then, ζ
γ
α (Rγ

− 1) ≤ ζ
γ
α Rγ

− (Rζα−1)γ so ζ
γ
α ≤ (Rγ /(Rγ

− 1)) (ζ γ
α − ζ

γ

α−1) and thus

A∑
α=1

ζ γ
α ≤ ζ

γ

1 +
Rγ

Rγ − 1

A∑
α=2

(ζ γ
α − ζ

γ

α−1) = ζ
γ

1 +
Rγ

Rγ − 1
(ζ γ

A − ζ
γ

1 ) ≤
Rγ

Rγ − 1
ζ

γ

A (44)

and ζ
γ

A ≤ uγ /(2(p+1)(p+2)). Since u ≤ exp
(
−2(p + 1)2(p + 2) log 2

)
by its definition (15), R ≥ 2

so Rγ /(Rγ
− 1) ≤ 2 for any γ ≥ 1. □

For any convex D and convex subset D̃ ⊂ D, note that C (D, 1) |D̃ ⊂ C
(

D̃, 1
)

.
Thus by covering any convex polytope D by simple polytopes Di ⊂ D, we can bound
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N[ ]
(
ϵ, C (D, B) , L p

)
by applying Theorem 3.5 repeatedly to C (Di , 1) and using (5). A cover

of D can be attained by, for instance, subdividing D into simple polytopes [35], such as
simplices. The constant in the bound then depends on the subdivision of D.

Corollary 3.7. Fix d ≥ 1 and p ≥ 1. Let D ⊆
∏d

i=1[ai , bi ] be any convex polytope. Then for
ϵ > 0,

log N[ ]
(
ϵ, C (D, B) , L p

)
≤ Cd,Dϵ−d/2

(
B
( d∏

i=1

(bi − ai )
)1/p)d/2

.

Proof. By the same scaling argument as in the proof of Theorem 3.5 we may assume
[ai , bi ] = [0, 1] and B = 1. The d = 1 case is given by [18]. Any convex polytope D
can be triangulated into d-dimensional simplices (see e.g. [11,38]). We are done by applying
Theorem 3.5 to each of those simplices, by (5). □

4. Properties of G i, j

In this section we show how to embed the domains G i, j , which partition D, into hyperrect-
angles. We used this in the proof of Theorem 3.5 so we could apply Theorem 2.1. Theorem 2.1
says that the bracketing entropy of convex functions on domain D with Lipschitz constraints
along directions e1, . . . , ek depends on w(D, ei ) (since that gives the maximum “rise” in “rise
over run”). In our proof of Theorem 3.5 we partitioned D into sets related to parallelotopes.
Thus we will study these parallelotopes. We know the width of G i, j in the directions v jα ,
which are δiα+1 − δiα , by definition.

A polytope P is a d-parallelotope if P =
∑d

i=1[ai , bi ] for vectors ai , bi ∈ Rd , where for
all i , [ai , bi ] is not parallel to the affine hull of [a j , b j ] for any j ̸= i ([28] page 56). We will
rely on the following representation for a k-dimensional parallelotope.

Lemma 4.1. Let k be a positive integer and let P := ∩
k
β=1 Ẽβ be a parallelotope where

Ẽβ :=
{

x ∈ Rk
: 0 ≤

⟨
x, vβ

⟩
≤ dβ

}
for k linearly independent normal unit vectors vβ . Let

H 0
β :=

{
x ∈ Rk

:
⟨
x, vβ

⟩
= 0

}
. Let f̃β be the unit vector lying in ∩

k
γ=1,γ ̸=β H̃ 0

β with
⟨

f̃β, vβ

⟩
> 0,

for β = 1, . . . , k. Then 0 is a vertex of P and we can write

P =

k∑
β=1

[0, fβ]

where fβ := dβ f̃β/
⟨

f̃β, vβ

⟩
, [0, fβ] =

{
λ fβ : λ ∈ [0, 1]

}
.

Proof. Since the vectors vβ are unique, ∩
k
β=1 H 0

β = 0 and the intersection of any k − 1 of

the hyperplanes H 0
β gives a 1-dimensional space, span

{
f̃β
}

. A k-dimensional parallelotope
can be written as the set-sum of the k intervals emanating from the vertex, each given by
the intersection of k − 1 of the hyperplanes H 0

β . See page 56 of [28]. Note that fβ satisfy⟨
fβ, vβ

⟩
= dβ so that fβ ∈ H̃+

β :=
{

x ∈ Rk
:
⟨
x, vβ

⟩
= dβ

}
; thus the k intervals are given by

[0, fβ], β = 1, . . . , k. □

Note the vector f̃β can be written as (I −Q)vβ where I is the identity projection in Rk and Q
is the projection onto span

{
v1, . . . , vβ−1, vβ+1, . . . , vk

}
. The next proposition uses Lemma 4.1
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to bound the widths of G i, j , in certain directions, in terms of the width of G j in those
directions. We will need the following constant (depending on D). For k ∈ {1, . . . , d − 1},
let

Lk,1 := 1 ∨ max
j∈Jk

max
∥e∥=1
e∈E j

max
j∈{1,...,N }\ j;⟨e,v j⟩<0

⟨vi ,v j⟩>0, some i∈ j

⟨
−e, v j

⟩−1
, (45)

where E j := span
{
e j ,k+1, . . . , e j ,d

}
from Proposition 3.2, and we abuse notation as convenient

to treat j as if it were a set rather than a vector. We also (arbitrarily) define Ld,1 := 1, for ease
of presentation later on.

Proposition 4.2. For each k ∈ {1, . . . , d − 1}, i ∈ Ik, j ∈ Jk , and each G i, j , and the basis
e ≡ ei, j from Proposition 3.2, for α ∈ {k + 1, . . . , d}, we have

w(G i, j , eα) ≤ 2Lk,1w(G j , eα). (46)

Then for k ∈ {1, . . . , d}, let f̃α ≡ f̃ j ,α be the unit vector with
⟨

f̃α, v jα

⟩
> 0 lying in

span
{
v j1 , . . . , v jk

}
∩

(
∩

k
γ=1,γ ̸=α H 0

jγ

)
, α = 1, . . . , k, where H 0

jγ :=
{

y ∈ Rd
:
⟨
y, v jγ

⟩
= 0

}
.

Then for k ∈ {1, . . . , d}, we have

Vold (G i, j ) ≤ (2Lk,1)d−k Vold−k
(
G j
)
·

k∏
α=1

δiα+1 − δiα⟨
f̃α, v jα

⟩ (47)

where Lk,1 is given by (45) for k ∈ {1, . . . , d − 1} (and we set Ld,1 := 1 arbitrarily).

Proof. Fix k ∈ {1, . . . , d − 1}. Let x ≡ x j ∈ G j (from (8)). Let f jγ be as given in (20). Let
Pi, j :=

∑k
γ=1[0, f jγ ]. We will show that G i, j is contained in the set-sum of a hyperrectangle

and Pi, j . To begin with let G i, j ∋ z = x +
∑k

γ=1 f ∗

jγ where f ∗

jγ = d jγ f̃ jγ where

0 ≤ d jγ ≤ (δiγ +1 − δiγ )/
⟨

f̃ jγ , v jγ

⟩
≤ u/

⟨
f̃ jγ , v jγ

⟩
. (48)

Take an arbitrary e ∈ span {ek+1, . . . , ed} with ∥e∥ = 1. Let λz,e := d+(z, ∂G i, j , e) and let j
give the corresponding facet of G i, j that x + λz,ee hits, so that

⟨
z + λz,ee, v j

⟩
= p j + u for

some j /∈ j (abusing notation to treat j as if were a set rather than a vector). Note that this
means⟨

e, v j
⟩
< 0. (49)

If
⟨∑k

γ=1 f ∗

jγ , v j

⟩
≤ 0 then

λz,e ≤ d+(x, ∂G i, j , e). (50)

Thus if (50) does not hold then
⟨

f ∗

jγ , v j

⟩
> 0 for some γ ∈ {1, . . . , k}, so

⟨
v jα , v j

⟩
> 0 for

some α ∈ {1, . . . , k}. Now, since
⟨
z + λz,ee, v j

⟩
= p j + u, we have

λz,e =
p j + u −

⟨
z, v j

⟩⟨
e, v j

⟩ ≤

⟨
x, v j

⟩
− p j + u

∑k
γ=1

⟨
f̃γ ,v j

⟩
⟨

f̃γ ,v jγ

⟩⟨
−e, v j

⟩



C.R. Doss / Journal of Approximation Theory 256 (2020) 105425 17

Now ⟨
x, v j

⟩
− p j ≤ d(x, H j ) ≤ d+(x, ∂r G j , e)

since H j is the closest hyperplane to x in the direction e. Recall the definition of Lk,1 in (45).
Now, by (15) and the definition of Lk,2 (16), we have shown

λz,e ≤ 2Lk,1d+(x, ∂r G j , e), (51)

by (49) and (50). This means that

(G i, j − z) ∩ span {ek+1, . . . , ed} ⊂ 2Lk,1
(
G j − x

)
so we can conclude that w(G i, j − z, eα) ≤ 2Lk,1w(G j , eα) and w(G i, j , eα) ≤ 2Lk,1w(G j , eα)
since ⟨z, eα⟩ = 0 for all d jγ given by the range (48), α = k + 1, . . . , d, for k = 1, . . . , d − 1.

Let ρ j ,α := w(G j , eα). Then let

Ri, j := Pi, j +

d∑
α=k+1

[
−2Lk,1ρ j ,αeα, 2Lk,1ρ j ,αeα

]
. (52)

Then for any x ∈ G i, j such that
⟨
x, v jα

⟩
= p jα + δiα for α ∈ {1, . . . , k}, we have shown

G i, j ⊂ x + Ri, j . (53)

It then also follows that

Vold (G i, j ) ≤ (2Lk,1)d−k Vold−k
(
G j
)
· Volk

(
k∑

α=1

[
0, f jα

])
. (54)

Since of parallelotopes with given axis lengths, the one with largest volume is the hyperrect-
angle, Volk

(∑k
α=1

[
0, f jα

])
≤
∏k

α=1
δiα+1−δiα⟨

f̃ jα ,v jα

⟩ , and so we have shown (47) (with this bound

on Volk
(∑k

α=1

[
0, f jα

])
being all that is needed in the k = d case). □

The previous proposition controls the width and volume of G i, j in directions lying in
span

{
G j
}
. Next we control width, volume, and also distance to ∂ D in directions perpendicular

to span
{
G j
}
.

Lemma 4.3. Let P :=
∑k

α=1[0, fα] be a parallelotope in Rk where f1, . . . , fk are k linearly
independent vectors. Then there exists an orthonormal basis of Rk , e1, . . . , ek ∈ Rk and
γ1, . . . , γk ∈ R, such that

P ⊂

k∑
α=1

[0, γαeα] where |γα| ≤ k diam(P, eα). (55)

Proof. We will construct a permutation π of {1, . . . , k} and inductively define e1, . . . , ek

based on the sequence fπ (1), . . . , fπ (k). Let e1 := fπ (1)/∥ fπ (1)∥ where ∥ fπ (1)∥ is maximal
over {∥ fα∥}

k
α=1. Now let Q j−1 be the projection of Rk onto span

{
e1, . . . , e j−1

}
and let Q⊥

j−1

be the projection onto span
{
e1, . . . , e j−1

}⊥. Then let e j := Q⊥

j−1 fπ( j)/∥Q⊥

j−1 fπ ( j)∥ where
π ( j) ∈ {1, . . . , k} \ {π (1), . . . , π ( j − 1)} is defined so that ∥Q⊥

j−1 fπ( j)∥ is maximal.
Let Pj :=

∑ j
α=1[0, fπ ( j)]. Now, diam(Pj , eα) is given by the value of ⟨x − y, eα⟩ such

that x, y ∈ Pj and ⟨x − y, eα⟩ is maximal. Since fπ ( j) /∈ span
{

fπ (i)
}

i ̸= j , we also have that
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e j /∈ span
{

fπ (i)
}

i ̸= j . Thus for i ≥ j , diam(Pi , e j ) ≤
⟨
fπ( j), e j

⟩
and so in fact diam(Pi , e j ) =

diam(P, e j ) =
⟨
fπ ( j), e j

⟩
.

Now we prove by induction that

Pj ⊂

j∑
α=1

[0, γ j,αeα] (56)

where 0 ≤ γ j,α ≤ j diam(Pj , eα) = j diam(P, eα). The statement is immediate for j = 1. Thus
let 1 < j ≤ k and assume the induction hypothesis holds for j − 1. Then for 1 < i ≤ j⏐⏐⟨ei , fπ ( j)

⟩⏐⏐ ≤ ∥Q⊥

i fπ ( j)∥ ≤ ∥Q⊥

i fπ (i)∥ =
⏐⏐⟨ei , fπ(i)

⟩⏐⏐ = diam(P, ei ) (57)

where the first inequality is because ei ∈ span {e1, . . . , ei−1}
⊥, and the next inequality and

equality are by the definition of ei . Also, (57) is immediately verifiable for i = 1.
Now, we can write

fπ ( j) = λ j,1e1 + · · · + λ j, j e j (58)

where |λ j,i | ≤ diam(P, ei ) by (57). For any x ∈ Pj = Pj−1 + [0, fπ( j)], we can write

x =

j−1∑
α=1

η j−1,αeα + η fπ ( j) (59)

where 0 ≤ η ≤ 1 and |η j−1,α| ≤ ( j − 1) diam(P, eα) by the induction hypothesis. Thus (59)
equals

j−1∑
α=1

(
η j−1,α + ηλ j,α

)
eα + ηλ j, j e j ,

and |η j−1,α + ηλ j,α| ≤ ( j−1) diam(P, eα)+diam(P, eα) for α ≤ j−1 and |λ j, j | = diam(P, e j ),
so the induction hypothesis is shown. □

To state the next lemma we make the following definitions. For a set D ⊂ Rd and a unit
vector v, let

diam(D, v) := sup
x,y∈D

x−y∈span{v}

∥x − y∥. (60)

Lemma 4.4. Let Assumption 1 hold. Let k ∈ {1, . . . , d}, i ∈ Ik , and j ∈ Jk . Then for any
unit length v ∈ span

{
v j1 , . . . , v jk

}
,

diam(G i, j , v) ≤ min
α∈{1,...,k}

δiα+1⏐⏐⟨v, v jα

⟩⏐⏐ , and (61)

d(G i, j , ∂ D, v) ≥ max
α∈{1,...,k}

δiα⏐⏐⟨−v, v jα

⟩⏐⏐ . (62)

Proof. Fix k ∈ {1, . . . , d}, i ∈ Ik , j ∈ Jk . Fix v ∈ span
{
v j1 , . . . , v jk

}
with ∥v∥ = 1, fix

α ∈ {1, . . . , k}. Since diam(G i, j , v) = diam(G i, j , −v), we restrict attention to v such that⟨
−v, v jα

⟩
≥ 0. (63)
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We will upper bound diam(G i, j , v). Consider x, y ∈ G i, j such that x − y ∈ span {v}. In
particular, assume without loss of generality that x − y = λv for λ ≥ 0. Since x, y ∈ G i, j ,⟨
y, v jα

⟩
≤ p jα +δiα+1 and p jα +δiα ≤

⟨
x, v jα

⟩
; thus δiα −δiα+1 ≤ p jα +δiα −

⟨
y, v jα

⟩
≤ λ

⟨
v, v jα

⟩
.

Since
⟨
−v, v jα

⟩
≥ 0, we have λ ≤ (δiα+1 − δiα )/

⟨
−v, v jα

⟩
. Thus we see diam(G i, j , −v) =

diam(G i, j , v) ≤ (δiα+1 − δiα )/|
⟨
v, v jα

⟩
|. This holds for all α ∈ {1, . . . , k}, so for any

ṽ ∈ span
{
v j1 , . . . , v jk

}
(where we do not assume

⟨
ṽ, v jα

⟩
≥ 0)

diam(G i, j , ṽ) ≤ min
α∈{1,...,k}

δiα+1 − δiα⏐⏐⟨ṽ, v jα

⟩⏐⏐ . (64)

Next we take v as above and now lower bound d(G i, j , ∂ D, v). Fix α ∈ {1, . . . , k}. We
begin by considering d(G i, j , H jα , v). Again, since d(G i, j , ∂ D, v) = d(G i, j , ∂ D, −v), we can
and do assume (63) holds. Fix x ∈ G i, j . Consider λ > 0 such that x + λv ∈ H jα . Then
λ
⟨
v, v jα

⟩
= p jα −

⟨
x, v jα

⟩
≤ −δiα since

⟨
x, v jα

⟩
≥ δiα + p jα , and so λ ≥ δiα/

⟨
−v, v jα

⟩
. This

shows for any β ∈ {1, . . . , k} that

d(G i, j , ∪
k
α=1 F jα , v) ≥ min

α∈{1,...,k}

δiα⏐⏐⟨v, v jα

⟩⏐⏐ . (65)

To complete the proof, note for j ∈ {1, . . . , N } \ j , that

d(x, F j , v) ≥ u = u min
α=1,...,k

⏐⏐⟨v, v jα

⟩⏐⏐−1

which is larger than the right hand side of (65). □

5. Further applications

We now consider further entropy bounds that rely on the above ideas, results, or their proofs.
In Section 5.1 we consider so-called univariate and multivariate m-monotone functions. In
Section 5.2 we briefly consider estimation of level sets of convex functions and the question
of adaptation to polytopal level sets. Further discussion is given at the beginning of the two
subsections.

5.1. Bracketing entropy of m-monotone function classes

The shape constraint of m-monotonicity, for m ∈ {0, 1, 2, . . .}, is useful because it serves,
roughly, as a higher order convexity restriction (when m > 2). An m-monotone function f
satisfies further convexity restrictions besides simply convexity of f , and so in many settings
is even nicer to work with than convex functions are. When d = 1, m-monotonicity is defined
as follows (by, e.g., [43,44]).

Definition 5.1. A function f : [0, ∞) → R is 0-monotone if it is nonnegative, 1-monotone
if it is nonnegative and nonincreasing, and 2-monotone if it is nonnegative, nonincreasing, and
convex; f is m-monotone for m ≥ 2 if (−1)l f (l) exists and is nonnegative, nonincreasing, and
convex for l = 0, 1, . . . , m − 2.

(Here f (l) is the lth derivative, with f (0)
≡ f .) When m = 1 or 2, a large body of statistical

work and results exists (some of which also allows the case where d > 1), some of which
is referenced in the introduction of this paper. Statistical properties of two (nonparametric)
estimators of a (univariate) m-monotone density, for general m (and d = 1), were introduced
and studied in [1,2]; see also [26]. For instance, in statistical settings, if a function being
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nonparametrically estimated is known to be m-monotone, then it can be estimated at a faster
rate of convergence than if it were just convex [1,2,26]. As discussed in Section 1, in the
univariate setting m-monotone functions have been studied, but we do not even know of
a formal definition of m-monotonicity in the multivariate case. In fact, as discussed below,
there are several possible definitions one could use for m-monotonicity that generalize the
univariate definition. We present one definition which has the benefit of being amenable to
finding bracketing upper bounds. We then show that our proof for the bracketing upper bound
for convex functions, Theorem 3.5 (and Corollary 3.7), applies to yield a bracketing bound
for classes of m-monotone functions. This is the main result of Section 5.1 and is given
in Theorem 5.16. Recall that the proof of Theorem 3.5 relies on Theorem 2.1. There is no
known or immediate analog for Theorem 2.1 in the general m-monotone case. Thus we prove
an analog, Theorem 5.11 (under a certain technical restriction, given below in Definition 5.2
Part A), which we use to prove Theorem 5.16.

As mentioned above, there are many possible methods for defining a class of m-monotone
functions in the multivariate setting. This is perhaps illustrated by the fact that there are many
competing definitions of monotonicity (i.e., 1-monotonicity) in dimension d ≥ 2. One can
define a function f to be multivariate monotone (or unimodal) via star monotonicity, meaning
that along all rays emanating from a special fixed point, f is monotone. This, for instance, is a
suggested definition used in the related context of hyperbolic monotonicity by [9, p. 600]. [25]
consider entropy bounds for block-decreasing densities. Even “block decreasing” can be defined
in multiple ways: [25] and [12] differ in their definitions of this term. Very recent statistical
work has considered entire monotonicity in the regression setting [22]. See [12, chapter 2]
for several other possible definitions of unimodality (they focus on unimodality rather than
monotonicity, but the two settings are very similar). Many of the above definitions are not
amenable to accurate entropy computations, at least with the tools we are aware of at present.
In Sub Section 5.1.1 we present a definition of multivariate m-monotonicity that is amenable
to entropy calculations; the results we get suggest that the entropies are of the “right” order of
magnitude (ϵ−d/m as ϵ ↘ 0) that we might expect a priori. This suggests that our definition is
indeed a reasonable one. In Sub Section 5.1.2 we return briefly to the particular d = 1 case.

5.1.1. Multivariate m-monotone functions
Fix the dimension d ≥ 1. We will use so-called d-dimensional multi-index notation: a vector

of nonnegative integers i = (i1, . . . , id ) is a multi-index. We let |i | := i1+· · ·+id . Let Im be the
set of multi-indices i with |i | = m. For two vectors K = (K1, . . . , K j ), L = (L1, . . . , L j ) ∈ R j

with L i > 0, we let L K
:= L K1

1 · · · L
K j
j . For any function f , we let f (i) be ∂ |i |

∂xi1 ···∂xid
f , whenever

this is well-defined. We let ∂
∂ei

f (x) denote d
dt |t=0 f (x + tei ), and for an orthonormal basis

e := {e1, . . . , ed} and j ∈ Ii , we let f ( j )
e :=

∂ | j |

∂e
j1
1 ···∂e

jd
d

f .

Our m-monotone classes are based on any subclass C∗ of convex functions having a certain
needed property. The idea of multivariate m-monotonicity involves convexity of partial deriva-
tives in certain directions; since such convexity is not preserved by rotation (see Remark 5.4),
we will define m-monotonicity to be relative to a domain D0. In the case where D0 is a
hyperrectangle, the definition simplifies (see Remark 5.4).

Definition 5.2.

A. For a convex set G ⊂
∏d

i=1[ai , bi ], let C∗(G) be any subclass of C(G) such that for all B,Γ ,
C∗(G, B,Γ ) := C∗(G)∩C(G, B,Γ ) satisfies the following L∞ cover property. For all ϵ > 0,
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there exists a L∞-ϵ-cover of log cardinality no larger than cϵ−d/2(B +
∑d

i=1 Γi (bi −ai ))d/2.
The cover must satisfy the following. For any f ∈ C∗(G, B,Γ ), any x, y ∈ G, and any
rotation matrix A ∈ Rd×d (det A = 1 and A′

= A−1), we have

∂

∂xi

∫ 1

0
|h(A(x + t(y − x))) − f (A(x + t(y − x)))|dt ≤ ϵ (66)

for all i ∈ {1, . . . , d}, where h is the L∞-closest element of the cover to f .
B. Let D0 ⊂ [0, ∞)d be a convex polytope, let 0 < B < ∞, and let m ≥ 2 be an integer. We

define the class of m-monotone functions relative to D0, denoted Cm(D0, B), to be the set
of all f ∈ C(D0, B) satisfying the following. For each vertex of D0, for all (d! possible)
orthornomal bases e given by Proposition 3.2, either f (i)

e or − f (i)
e lies in C∗(D0) for all

i ∈ I j , 0 ≤ j ≤ m − 2.

Remark 5.3. The fundamental idea of m-monotonicity is given by Part B of Definition 5.2.
The technical requirement (66) of Part A is needed for the proof of our bracketing bound. It
is not clear at this point if it can be removed or not. When y = x + x j and A is the identity,
for continuously differentiable h and f , the property holds automatically by the Fundamental
Theorem of Calculus. Ideally we would like to replace C∗ by the full class C (which is possible
when d = 1, see Remark 5.13 and Sub Section 5.1.2). We leave an investigation of whether
this is possible for future work.

Remark 5.4. The property of m-monotonicity is preserved by translation and rescaling.
However, while rotations of convex functions are still convex, if f ( j ) is convex, | j | > 2, then
after rotation (by, say, a matrix A), g( j )

:= ( f (A·))( j ) is not necessarily convex. This is because
a mixed partial derivative of a rotation is a linear combination of mixed partial derivatives;
if some of the linear coefficients are negative, then the resulting function may no longer be
convex. This is why our definition is relative to the domain, D0 (so an m-monotone function
after a rotation will be m-monotone relative to the rotated domain). Note that when D0 is a
hyperrectangle, for f to be m-monotone relative to D0, it is sufficient that f (i) be convex for
all i ∈ Ii , 0 ≤ i ≤ m − 2.

Remark 5.5. Our definition of multivariate m-monotonicity captures a higher order type of
convexity. It does not enforce the alternating sign condition “(−1) j f j

≥ 0” that is generally
required in the univariate case. That is, we allow f (i)

e to be either convex or to be concave. In
the univariate case, there is only one direction in which one is computing a derivative. In the
multivariate case, since we consider many different bases e, and may have instances where a
vector ei and its opposite −ei are contained in two different bases, thus potentially switching
the sign of f (i)

e , we must allow f (i)
e to be either convex or concave. Further restrictions to our

definition could be enforced if needed in a specific application; our entropy bounds would of
course still apply.

Example 5.6. Let a ∈ Rd have nonnegative components and let b > 0; let (·)+ := max(·, 0).
The function f (x) := b (1 − ⟨a, x⟩)m−1

+
1[0,∞)d (x) is a primary example of an m-monotone

function (i.e., satisfies Part B of Definition 5.2). For any m ≥ 1, the function f (x) :=

e−b⟨a,x⟩1[0,∞)d (x) is m-monotone. Both are m-monotone relative to any hyperrectangle. Further
examples of m-monotone functions can be generated by taking linear combinations.
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Example 5.7. The functions in Example 5.6 are also m-monotone relative to polytopes beyond
hyperrectangles. For simplicity, let f (x) := (1 − (x1 + x2))m−1

+ 1[0,∞)2 (x). Note that if we let
g(x) = (1 − (a1x1 + a2x2))m−1

+ 1[0,∞)2 (x), then for k ≤ m − 1,

∂k

∂x j
1 ∂xk− j

2

g(x) =
(m − 1)!

(m − 1 − k)!
(−1)ka j

1 ak− j
2 (1 − a1x1 − a2x2)(m−1−k)

+ (67)

Thus (−1)k ∂k

∂x j
1 ∂xk− j

2
g(x) is convex if ai > 0, i = 1, 2, and k ≤ m − 2.

Let e1 = (1, 0)′, e2 = (0, 1)′ (where ′ denotes transpose), and let the basis d := {d1, d2} be
defined by di := Aei where

A =

(
cos θ − sin θ

sin θ cos θ

)
is the matrix giving rotation by angle θ . If g(y) := f (Ay′) then g( j )

= f ( j )
d . Thus, by (67), f

is m-monotone relative to any polytope since the partial derivatives are always either convex
or concave.

Furthermore, as long as cos θ + sin θ ≥ 0 and cos θ − sin θ ≥ 0, i.e., as long as
−π/4 ≤ θ ≤ π/4, f ( j )

d is convex (for j ∈ I j , 0 ≤ j ≤ m − 2). Thus, for instance, if we
take −π/4 ≤ θ ≤ 0, and let Hθ := {x : ⟨d2, x⟩ ≤ cos θ} (the rotation of the line {x2 = 1} by
angle θ about the point (0, 1)), then if we let D0 := [0, 1]2

∩ Hθ , then f ( j )
d is convex where d

is one basis given by Proposition 3.2 at the upper right vertex of D0. (The other basis given
by Proposition 3.2 is the standard basis e = {e1, e2}.)

We now define classes of Lipschitz bounded m-monotone functions, which are needed for
us to generalize Theorem 2.1.

Definition 5.8. Let D0 ⊂ [0, ∞)d be a convex polytope, let 0 < B < ∞, and let m ≥ 2 be
an integer. For all vertices v of D0, for all orthonormal bases e given by Proposition 3.2, and
all i ∈ Im−1, let 0 < Γe,i < ∞, and let Γ be the set of all such Γe,i . Let Cm

d (D0, B,Γ ) be the
class of functions f ∈ Cm

d (D0, B) such that for all i ∈ Im−2 and orthonormal bases e (given by
Proposition 3.2 for any vertex of D0) the function f (i)

e is Lipschitz in the following sense. For
each i ∈ Im−1 and j ∈ Im−2, i − j is 1 in a single coordinate, which we denote αi, j . Then,
for any j ∈ Im−2, assume for all x, x + λeαi, j ∈ D0 that | f ( j )(x + λeαi, j ) − f ( j )(x)| ≤ Γe,i |λ|.

Remark 5.9. Let Cm,◦
d (D0, B,Γ ) denote the subset of f ∈ Cm

d (D0, B,Γ ) that are (m − 1)-
times continuously differentiable. Note that for such f , we have | f (i)

| ≤ Γi . Let Cm−1 denote
the class of (m − 1)-times continuously differentiable functions. Then C1

∩ Cd (D0, B,Γ )
is L∞-dense in Cd (D0, B,Γ ), so Cm,◦

d (D0, B,Γ ) := Cm−1
∩ Cm

d (D0, B,Γ ) is dense in
Cm

d (D0, B,Γ ) [10]; see also Lemma 1.1 of [24]. This means that any L∞ (bracketing or metric)
entropy bound for Cm,◦

d (D0, B,Γ ) implies the same bound on Cm
d (D0, B,Γ ). We will use this

in our proofs.

The following lemma provides uniform bounds on the smoothness of the functions in
Cm

d (D, 1)|G i, j , which, together with Theorem 5.11, allows us to later prove Lemma 5.15 and
thus prove the main Theorem 5.16.

Lemma 5.10. Let D0 be a convex polytope, let Cm,◦
d (D0, 1) be as defined in Remark 5.9 for

m ≥ 2, and let f ∈ Cm,◦
d (D0, 1).
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A. If x is interior to D0 such that B(x, r0) ⊂ D0, r0 > 0, then for any j ∈ I j , 0 ≤ j ≤ m − 1,
we have | f ( j )(x)| ≤ K j/r j

0 for a constant 0 < K j .
B. Let e be any orthonormal basis of Rd such that f (i)

e is convex for all i ∈ I j , 0 ≤ j ≤ m −2.
Assume we have d(x, ∂ D0, ei ) ≥ δi , where δi > 0 for i = 1, . . . , d. Let δ = (δ1, . . . , δd ).
Then for any j ∈ I j , 0 ≤ j ≤ m − 1, we have | f ( j )

e (x)| ≤ K j/δ
j .

Proof. We first show part A. We will show, by induction on l < m − 1, that for i ∈

Il , we have that ( f (i))|B(x,r0/2l ) ∈ C(B(x,
r0
2l ), 2l(l+3)/2

r l
0

). When l = m − 1, the statement

(| f (i)
|)|B(x,r0/2l ) ≤

2l(l+3)/2

r l
0

holds. The base case of l = 0 is satisfied trivially by assumption,

since f ∈ Cm,◦
d (D0, 1). Now we show the induction hypothesis holds for a general l ≤ m − 1

by assuming it holds for the l − 1 case. Take i ∈ Il . Write (non-uniquely) i = i1 + i2 for
i1 ∈ Il−1 and i2 ∈ I1. Since l − 1 ≤ m − 2, f (i1) is convex by assumption, so by the
induction hypothesis ( f (i1))|B(x,r0/2l−1) ∈ C(B(x,

r0
2l−1 ), 2(l−1)(l+2)/2

r l−1
0

). Note for z ∈ B
(

x,
r0
2l

)
, that

d(x, ∂ B
(

x,
r0

2l−1

)
, ei ) ≥ r0/2l for any i . Since f (i)

= ( f (i1))(i2), Lemma 3.1 implies for any

z ∈ B
(

x,
r0
2l

)
that | f (i)(z)| ≤

2
r0/2l

2(l−1)(l+2)/2

r l−1
0

=
2l(l+3)

r l
0

. Thus part A has been shown. Part B
follows from part A by a simple scaling argument: let A be the diagonal matrix of δ, so that
g(y) := f (Ay) is defined on a hyperrectangle E where d(Ax, ∂ E, ei ) ≥ 1. Note δ i f (i)

= g(i),
and then apply part A. □

Theorem 5.11. Let m ≥ 2. Let D =
∏d

i=1[ai , bi ] be a hyperrectangle, with −∞ <

ai < bi < ∞. For all i ∈ Im−1, let 0 < Γi < ∞ and let Γ := {Γi : i ∈ Im−1}. Let
0 < B ≤ maxi∈Im−1 Γi (b − a)i . Then there exists c ≡ cm,d such that for all ϵ > 0,

N[ ]
(
ϵ, Cm

d (D, B,Γ ), L∞

)
≤ exp

⎧⎨⎩c

(
maxi∈Im−1 Γi (b − a)i

ϵ

)d/m
⎫⎬⎭ , (68)

where a := (a1, . . . , ad ) and b := (b1, . . . , bd ). Note in (68), Cm
d (D, B,Γ ) may trivially be

replaced by Cm
d (D, B,Γ )|G for any G ⊂ D.

The proof proceeds via several lemmas. The following lemma was inspired in part by
Lemma 1 in [26].

Lemma 5.12. Let F be a class of functions on
∏d

i=1[0, L i ], 0 < L i < ∞, let x ∈ [0, 1]d ,
and let

G :=

{
y ↦→

∫ 1

0
f (x + t(y − x))dt : f ∈ F

}
.

Assume log N[ ](ϵ,F , L∞) ≤ φ(ϵ) < ∞ for some function φ and all ϵ > 0, and assume further
that the ϵ-bracketing cover of F can be taken to satisfy (66) with A the identity (and where h
is replaced by the lower and upper bracket of f ). Then there exists 0 < C < ∞ such that

log N[ ]
(
ϵ/φ(ϵ)1/d ,G, L∞

)
≤ Cφ(ϵ).

Proof. By (4), we will bound the metric covering number rather than the bracketing number,
just for ease of notation. Without loss of generality, assume φ(ϵ) takes on integer values and



24 C.R. Doss / Journal of Approximation Theory 256 (2020) 105425

take x = 0. Let { fi }
eφ(ϵ)

i=1 be an ϵ-L∞-net for F . For f ∈ F write g(y) :=
∫ 1

0 f (t y)dt =∫ 1
0 ( f (t y) − fi (t y))dt + gi (y) where gi (y) :=

∫ 1
0 fi (t y)dt and L∞( f − fi ) ≤ ϵ. Define

Gi :=

{
g(y) =

∫ 1

0
( f (t y) − fi (t y))dt : y ∈ [0, 1]d , f ∈ F , L∞( f − fi ) ≤ ϵ

}
.

Thus G ⊆ ∪i (Gi + gi ).
Now, for each i , Gi consists of functions g satisfying L∞(g) ≤ ϵ, and also (by (66))

satisfying

L∞

(
∂

∂x j
g
)

≤ ϵ for j ∈ {1, . . . , d} .

Thus, by Theorem 5.23 (in the Appendix), we see that log N (δ,Gi , L∞) ≤ C(2ϵ/δ)d for a
constant C and any δ > 0. Take δ = ϵ/φ(ϵ)1/d and see

log N (ϵ/φ(ϵ)1/d ,Gi , L∞) ≤ 2Cφ(ϵ),

and let gi j , 1 ≤ j ≤ eCφ(ϵ), denote a corresponding cover. Then
{
gi + gi j

}
i, j is an L∞-cover

of G with size (ϵ/φ1/d (ϵ)) and with cardinality no larger than e(2C+1)φ(ϵ), so we are done. □

Remark 5.13. The above lemma depends on (66). Note that in the d = 1 case, this property
is satisfied for the entire class C(L , B,Γ ): see Lemma 5.18.

Let D ⊂
∏d

i=1[0, L i ] be convex, and for simplicity assume 0 ∈ D. Let 0 < B and
Γ := (Γ1, . . . ,Γd ). For m ≥ 3, let

Gm
d (D, B,Γ ) :=

{
x ↦→

∫ 1

0

∫ z1

0
· · ·

∫ zm−2

0
f (sx) dsdzm−2 · · · dz1 : f ∈ Cd (D, B,Γ )

}
,

be a class of functions, where x ∈ D. Note that the functions in Gm
d (D, B,Γ ) are normalized

so their size does not increase with the size of D.

Lemma 5.14. Fix D ⊂
∏d

i=1[0, L i ] be convex with 0 ∈ D. Let Γ := (Γ1, . . . ,Γd ) ∈ (0, ∞)d

and L := (L1, . . . , Ld ) ∈ (0, ∞)d . Let 0 < B ≤
∑d

i=1 Γi L i . Let m ≥ 2 be an integer and
p ≥ 1. Then, abbreviating Gm

d ≡ Gm
d (D, B,Γ ), we have

log N[ ](ϵ Vold (D)1/p,Gm
d , L p) ≤ log N[ ]

(
ϵ,Gm

d , L∞

)
≤ cm

(∑d
i=1 Γi L i

ϵ

)d/m

. (69)

Proof. The first inequality of (69) is immediate. The proof of the second inequality is
by induction. We can start with the base case of m = 2 by identifying G2

d (D, B,Γ ) with
Cd (D, B,Γ ) and then the result is by Theorem 2.1. Now we assume the m − 1 case holds,
i.e.,

log N[ ]
(
ϵ,Gm−1

d (D, B,Γ ), L∞

)
≤ cm−1

(∑d
i=1 Γi L i

ϵ

)d/(m−1)

, (70)
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and show (69) holds. By (70) and Lemma 5.12, we have

log N[ ]

⎛⎜⎜⎜⎜⎝ ϵ(∑d
i=1 Γi L i

ϵ

) 1
m−1

,Gm
d (D, B,Γ ), L∞

⎞⎟⎟⎟⎟⎠ ≤ Cm

(∑d
i=1 Γi L i

ϵ

) d
m−1

(71)

which is equivalent to (69). □

Proof of Theorem 5.11. We consider (only) f ∈ Cm,◦
d (D, B,Γ ), by Remark 5.9. Since D has

nonempty interior there exists an open ball contained in D, which, by translation, we take to be
B(0, r0) without loss of generality, for r0 > 0. Now, by iterated application of the Fundamental
Theorem of Calculus, for any (m − 1)-times continuously differentiable h : R → R, we can
write

h(x) = h(0) + · · · +
h(m−2)(0)
(m − 2)!

xm−2
+

∫ x

0

∫ z1

0
· · ·

∫ zm−2

0
h(m−1)(s)dsdzm−2 · · · dz1. (72)

By applying (72) to t ↦→ f (t y), for any y ∈ D we can write

f (y) =

m−3∑
i=0

∑
j∈Ii

1
j !

f ( j )(0)y j
+

∑
j∈Im−2

(
m − 2

j

)
y j Im−2( f ( j ), y) (73)

where

Im−2( f ( j ), y) :=

∫ 1

0

∫ z1

0
· · ·

∫ zm−3

0
f ( j ) (sy) dsdzm−3 · · · dz1.

Let

Pm
:=

⎧⎨⎩y ↦→

m−3∑
i=0

∑
j∈Ii

a j y j
: 0 ≤ a j ≤ c j

⎫⎬⎭
where c j := Km/rm

0 j ! and where Km := max j K j comes from Lemma 5.10.
Now, for i ∈ Im−2, let jα(i) := i + (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the α index.

Let Γ i := (Γ j1(i), . . . ,Γ jd (i)). This is the vector of Lipschitz constraints for f (i). Let

Fm
:=

⎧⎨⎩y ↦→

∑
j∈Im−2

(
m − 2

j

)
y j Im−2(g j , y) : g j ∈ Cd (D, B,Γ j )

⎫⎬⎭ . (74)

Then Cm
d (D, B,Γ ) ⊂ Pm

+ Fm so

N (ϵ, Cm
d (D, B,Γ ), L∞) ≤ N (ϵ/2,Pm, L∞)N (ϵ/2,Fm, L∞). (75)

Recall by (4), L∞-ϵ-bracketing numbers equal L∞-(ϵ/2)-covering numbers, and so simply for
ease of notation and without any loss of generality, we form a L∞ (metric) cover rather than
L∞ bracketing cover.

First we form a cover for Pm . For an integer N ≥ 1, we can construct a grid to cover Pm by
taking a j ∈

{
c j/N , . . . , Nc j/N

}
. Since j ∈ Ii , 0 ≤ i ≤ m takes on no more than md values,

the cover has cardinality N md
. The L∞ size is mdC Lµ/N where C := max j c j , L := b − a,

and µ := (m − 3, . . . , m − 3). Take N to be ⌈ϵ−1mdC Lµ
⌉. Then we have formed a cover
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for Pm in the L∞ norm with distances no larger than ϵ and log cardinality bounded above by
md log(1 + mdC Lµϵ−1).

Now consider forming an L∞-cover for Fm . By Lemma 5.14, for a fixed j ∈ Im−2, we
can form an ϵ-L∞-cover, h j ,i , for i = 1, . . . , N j , for the functions Im−2(g j ), where log N j ≤

cm

(∑d
i=1 Γ j ,i L i/ϵ

)d/m
and L i := bi − ai . Let f j ,i (y) :=

(m−2
j

)
y j h j ,i (y), i = 1, . . . , N j . Let

L = (L1, . . . , Ld ). Then for a function f (y) =
(m−2

j

)
y j Im−2(g j ), with L∞( f j ,i − f ) ≤ ϵ, we

have L∞( f j ,i − f ) ≤ mm L jϵ. Equivalently, we can cover the same function class with size ϵ

and log cardinality cm,2

(∑d
i=1 Γ j ,i L i L j/ϵ

)d/m
. Let g j ,i denote such a cover. Then the class

Fm is covered by the set of functions
∑

j∈Im−2
g j ,i which have L∞ distance bounded above

by
∑

j∈Im−2
ϵ and log cardinality bounded above by cm,2

∑
j∈Im−2

(∑d
i=1 Γ j ,i L i L j/ϵ

)d/m
.

Equivalently, Fm can be covered by a class with ϵ/2 L∞-distance and log cardinality bounded
above by cm,3ϵ

−d/m(max j∈Im−1 Γ j L j )d/m . Then, by (75), we have

log N (ϵ, Cm
d (D, B,Γ ), L∞) ≤ md log(1 + md2C Lµϵ−1) + cm,3ϵ

−d/m
(

max
j∈Im−1

Γ j L j
)d/m

.

This completes the proof. □

We can now prove the following bound on bracketing entropy of m-monotone function
classes, using the same approach used to prove Theorem 3.5. We use the same G i, j partition
construction as in the proof of Theorem 3.5, except that we modify the δi ’s. First we have the
following m-monotone version of Lemma 3.4.

Lemma 5.15. Let Assumption 1 hold. Fix k ∈ {1, . . . , d}, i ∈ Ik , j ∈ Jk . Then for any p ≥ 1
and ϵ > 0,

log N[ ]

(
ϵ Vold (G i, j )1/p, Cm

d (D0, 1)|G i, j , L p

)
≤ cD,d

(
1
ϵ

max
α=1,...,k

δm−1
iα+1

δm−1
iα

)d/m

.

Proof. Let ei, j ,α ≡ eα , α = 1, . . . , d be given by Proposition 3.2, so that d(G i, j , ∂ D0, eα) ≥

maxβ∈1,...,k δiβ /|
⟨
eβ, v jβ

⟩
| for α = 1, . . . , k, and d(G i, j , ∂ D0, eα) ≥ 2/u for α = k + 1, . . . , d .

Recall (21) from the proof of Lemma 3.4, and recall that γα ≤ d L−1
j ,4 maxβ∈{1,...,k} δiβ+1. Let

η0 := (δiβ1
, . . . , δiβk

, 2/u, . . . , 2/u) and η1 := (δiβ1 +1, . . . , δiβk +1, 4Lk,1ρ j ,k+1, . . . , 4Lk,1ρ j ,d ).
For l ∈ Im−1, let Γl := supx∈G i, j , f ∈Cm

d (D0,1) | f (l)(x)|. Then by Lemma 5.10 we have

Γlη
l
1 ≤ c

ηl
1

ηl
0

≤ c max
β∈{1,...,k}

δm−1
iβ+1

δm−1
iβ

.

Now we can apply Theorem 5.11. We use the fact that G i, j is embedded in a hyperrectangle
H with axes given by the orthonormal basis e := {eα}

d
α=1 specified by Proposition 3.2. Thus

Cm
d (D, 1)|G i, j is contained in Cm

d (H, 1)|G i, j . Thus, letting Γ := {Γ l : l ∈ Im−1}, we may apply
Theorem 5.11 to Cm(H, 1,Γ )|G i, j (after applying a rotation, see Remark 5.4). By (68) (and
the logic leading to (6)), the proof is complete. □

We are now in a position to prove the following m-monotone version of Theorem 3.5.
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Theorem 5.16. Assume the setup and conclusions of (68) hold. Fix p ≥ 1. Then for all ϵ > 0,

log N[ ]
(
ϵ, Cm

d (D, B), L p
)

≤ Cϵ−d/m

(
B

d∏
i=1

(bi − ai )1/p

)−d/m

. (76)

Proof. The same scaling argument as given in (the beginning of) the proof of Theorem 3.5
applies here, since rescalings of m-monotone functions are still m-monotone. Thus assume
D ⊂ [0, 1]d and B = 1. Now we define

u ≡ uD := rD/2 ∧ 2−m(1+p(m−1))2(2+p(m−1))
∧ min

k∈{1,...,d−1}

min
j∈Jk ,e∈E j

d+(x j , ∂r G j , e)
Lk,2

(77)

(where Lk,2 is still given by (16)). We define A and {δi }
A
i=1 as in (9), by

δi := exp

{
p
(

p − 1/(m − 1)
p + 2/(m − 1)

)i−1

log ϵ

}
for i = 1, . . . , A, and δ0 = 0. (78)

For k ∈ {1, . . . , d}, i ∈ Ik we let a(i1...ik ) = 2 if iα = 0 for any α ∈ {1, . . . , k}, and otherwise
let

a(i1,...,ik ) :=

k∏
β=1

aiβ :=

k∏
β=1

ϵ1/k exp
{
−p

(p + 1/(m − 1))iβ−2

(p + 2/(m − 1))iβ−1 log ϵ

}
. (79)

When k = 0, let aA := ϵ/u. Now define a by (27), as before, and then

log N[ ]
(
a, Cm

d (D, 1), L p
)

≤

d∑
k=0

∑
j∈Jk

∑
i∈Ik

log N[ ]

(
ai Vold (G i, j )1/p, Cm

d (D, 1)|G i, j , L p

)
.

(80)

holds. We consider the case where k ∈ {1, . . . , d} (i.e., k ̸= 0), and compute the sum above
over Ik for a fixed j ∈ Jk . We again use the trivial bracket [−1, 1] for any G i, j where iα = 0
for any α ∈ {1, . . . , k}. By Lemma 5.15, the sum over the remaining terms is bounded above
by

A∑
i1=1

· · ·

A∑
ik=1

c1a−d/m
i

(
max

α=1,...,k

δm−1
iα+1

δm−1
iα

)d/m

(81)

which (using maxα∈{1,...,k} 2δiα+1/δiα ≤
∏k

α=1 2δiα+1/δiα as in the proof of Theorem 3.5) is
bounded above by

c2

A∑
i1=1

· · ·

A∑
ik=1

k∏
β=1

(
δm−1

iβ+1

δm−1
iβ

aiβ

)d/m

. (82)

The constants c1, c2 depend on D and d .
We now let

ζi ≡ ζi,k,m :=
(
ϵ1/kδm−1

i+1 /(δm−1
i ai )

)1/m
. (83)
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By Lemma 5.17,
∑A

i=1 ζ d
i ≤ Kd < ∞ for a constant Kd . Now,

d∏
α=k+1

ρm−1
j ,α ≤ Cd Vold−k(A j )m−1

≤ Cd Vold−k(G j )m−1. (84)

Thus we have shown that (82) is bounded above by K ϵ−d/m . where K depends only on D, d ,
m, and p, but not on ϵ. Therefore, for a different constant K , we have shown that the right
side of (80) is bounded above by K ϵ−d/m for all ϵ > 0.

We now bound the size of the brackets, a. Define I +

k , I 0
k as in the proof of Theorem 3.5. Just

as in Theorem 3.5, (37) holds (using the current definitions of δiα and aiα ). For the middle term
on the right side of (37), recall (38), and for the first term recall aA := ϵ/u. It remains only to
bound the last term. We can check that a p

i δi+1 ≤ ϵ p/kζ m
i (equality holding when m = 2). Thus,

arguing as in the proof of Theorem 3.5, we can see we need only bound ϵ p/k ∑A
α=1 ζ m

α which
by Lemma 5.17 is bounded above by ϵ p/k Au . Thus a ≤ Cϵ for a constant C not depending
on ϵ. This completes the proof. □

In the m-monotone case, we did not relate the constants involved in the bound to the volumes
of the faces of D as explicitly as we did in the convex case. The following lemma was used
to bound both the cardinality and the size of the brackets in Theorem 5.16.

Lemma 5.17. Define A, u, δi , and ai by (9), (77), (78), and (79), respectively. Assume
0 < ϵ ≤ 1. Let ζi be defined by (83). Then for any γ ≥ 1,

A∑
i=1

ζ
γ

i ≤ 2γ /(2γ
− 1).

Proof. Straightforward algebra shows

ζi = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m − 1)p

(
p+

1
m−1

p+
2

m−1

)i

m(1 + (m − 1)p)2 log ϵ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Thus, for α = 1, . . . , A − 1, further algebra shows

ζ m
α

ζ m
α+1

= exp
{

(m − 1)p
(1 + p(m − 1))α−2

(2 + p(m − 1))α+1 log ϵ

}
,

which (since α ≤ A − 1) is bounded above by

exp
{

(m − 1)p
(1 + p(m − 1))2(2 + p(m − 1))

(1 + p(m − 1))A−1

(2 + p(m − 1))A−1 log ϵ

}
≤ exp

{
log u

(1 + p(m − 1))2(2 + p(m − 1))

}
=: R−m .

Now, note that ζA ≤ 1 (since ϵ ≤ 1), and by its definition (77), we see R ≥ 2. The rest of the
proof follows in fashion similar to the proof of Lemma 3.6. □

5.1.2. Univariate m-monotonicity
In this subsection, we prove that when d = 1, (66) holds, and so the conclusion of

Theorem 5.11 holds with C∗ replaced by the full class C. We point out that [26] provide
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bracketing entropy for classes of bounded (univariate) m-monotone functions on a com-
pact interval in Hellinger distance, but their result does not immediately give a bound for
L∞-bracketing entropy. The methods of the previous section do give such a bound though.
Recall λ is Lebesgue measure.

Lemma 5.18. Let F be a class of functions on [0, L] and let G :=
{

x ↦→
∫ x

0 f dλ : f ∈ F
}

be the class of primitives of F on [0, L]. Assume log N[ ](ϵ,F , L∞) ≤ φ(ϵ) < ∞ for a function
φ and ϵ > 0. Then there exists 0 < C < ∞ such that

log N[ ]
(
ϵ/φ(ϵ), L−1G, L∞

)
≤ Cφ(ϵ). (85)

Proof. By (4), we will bound the metric covering number rather than the bracketing number,
just for ease of notation. We take L = 1, by rescaling: if F and G are classes of functions
defined on [0, 1], let F̃ be {x ↦→ f (x L) : f ∈ F} and define G̃ := {x ↦→ Lg(x L) : g ∈ G}.
Then N (ϵ,F , L∞) = N (ϵ, F̃ , L∞) and G̃ is the class of primitives of F̃ . We see that
N (ϵ,G, L∞) = N

(
ϵ, L−1G̃, L∞

)
so we can take L = 1. Now, by the Fundamental Theorem

of Calculus, (66) holds, and so we can apply Lemma 5.12. This completes the proof. □

Now let G1
≡ G1(L , B) be the class of non-decreasing functions f on [0, L] satisfying

0 ≤ f ≤ B, and let

Gk
≡ Gk(L , B) :=

{
g(x) =

∫ x

0

∫ z1

0
· · ·

∫ zk−2

0
f (s)dsdzk−2 · · · dz1 : f ∈ G1

}
(86)

where g is defined on [0, L]. Note, when f is continuous, then 0 ≤ g(k−1)
≤ B.

Lemma 5.19. Fix L , B > 0 and define Gk(L , B) by (86). Let k ≥ 2 be an integer and p ≥ 1.
We have

log N (ϵL1/p,Gk(L , B), L p) ≤ log N[ ]
(
ϵ,Gk(L , B), L∞

)
≤ ck

(
BLk−1

ϵ

)1/k

. (87)

Proof. This follows from using Lemma 5.18 in the proof of Lemma 5.14 (i.e., from the fact
that (66) is satisfied when d = 1). □

For L , B,Γ > 0, let Cm(L , B,Γ ) be the class of m-monotone functions (per Definition 5.1)
f on [0, L] satisfying 0 ≤ f ≤ B and f (m−2) is Lipschitz with constant Γ .

Theorem 5.20. Let B, L, Γ > 0. Let m ≥ 2 be an integer. Assume B < Γ Lm−1. Then there
exists a constant cm > 0 (not depending on B, L ,Γ , or ϵ) such that for all ϵ > 0,

log N[ ]
(
ϵ, Cm(L , B,Γ ), L∞

)
≤ cm

(
Γ Lm−1

ϵ

)1/m

. (88)

Proof. This follows from Theorem 5.11 together with the fact that (66) is satisfied when
d = 1. □

5.2. Entropy of classes related to level set estimation

Now, we consider the entropy of certain classes of functions related to estimating the level
sets of convex functions; we may consider, for instance, estimating the level set of a convex
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or concave regression function, or of a so-called log- or s-concave density.3 We refer to [14]
for the definition of log- or s-concavity. We are specifically concerned with the case when the
level set is a polytope.

In the present paper, we are concerned with bracketing entropy bounds, rather than statistical
methodological developments. We provide here an extremely brief discussion of methodology
to motivate the classes we are developing bounds for. The methodology is to first pick a
bandwidth h > 0, then to minimize an objective function Q, based on i.i.d. data points,
over functions of the form f |L( f )+B(0,h) for convex f . The bandwidth h will converge to 0
as the sample size increases. The model will need to satisfy some regularity conditions for
M-estimation theory to apply (it must be such that if H (p f , p f0 ) ≤ δ then lH (L( f ), D0) ≤ Cδ

where H 2(p f , p f0 ) :=
∫

(√p f −
√p f0 )2dµ is Hellinger distance for some dominating measure

µ on the sample space, and p f is the data generating density corresponding to convex function
f ).

We now proceed to find bracketing entropy bounds for a function class that will govern
rates of convergence for the above procedure, specifically when the level set is a polytope. We
operate under the following basic setup or assumption.

Assumption 2. Let C0 be a closed, bounded convex set in Rd with nonempty interior. Let
f0 ∈ C(C0, B) satisfy infx∈C0 f0(x) < infx∈∂C0 f0(x). Let λ ∈ R satisfy infx∈C0 f0(x) < λ <

supx∈C0
f0(x). Assume further that D0 := L( f0) is a polytope.

The assumption restricts attention to functions which attain their minimum on the interior of
C0 and are strictly larger everywhere on their boundary than the minimum. (This is somewhat
analogous to the assumption of so-called “coercivity”, except that we are restricting attention
to a compact domain C0.) For a function f , define L( f ) ≡ Lλ( f ) :=

{
x ∈ Rd

: f (x) = λ
}
.

For two sets C, D ⊂ Rd , define the Hausdorff distance between them by

lH (C, D) := max

(
sup
x∈D

inf
y∈C

∥x − y∥, sup
y∈C

inf
x∈D

∥x − y∥

)
.

Let Sδ := {D : lH (D, D0) ≤ δ}. Define set addition A1 + A2 := {a1 + a2 : a1 ∈ A1, a2 ∈ A2}

and recall that f |A1 is the restriction of a function f to the set A1. For h > 0, the class of
functions we consider is

Cδ,h(C0, B) :=
{

f |L( f )+B(0,h) : f ∈ C(C0, B),L( f ) ∈ Sδ

}
; (89)

this is a class of bounded convex functions on C0 restricted to a neighborhood about their
λ-level set (which is generally not a convex set).

Let F j , j = 1, . . . , N , be the facets of D0. Let T j := F j + B(0, δ + h). Note that T j is a
convex set. Thus for any f ∈ C(C0, B) with lH (L( f ), D0) ≤ δ, we have L( f ) + B(0, h) ⊆

∪
N
j=1T j . Thus for ϵ > 0, restating (5), we have

N[ ]
(
N 1/pϵ, Cδ,h(C0, B), L p

)
≤

N∏
j=1

N[ ]
(
ϵ, Cδ,h(C0, B)|T j , L p

)
. (90)

To bound the terms on the right side of the above display we will use Theorem 2.1. To do so,
we need to compute Vold (T j ), we need to find a hyperrectangle containing T j , and we need

3 As shown by [14] in the univariate log- or s-concave cases and [32] in the multivariate log-concave case,
bracketing entropies of log- or s-concave density classes are related to those of bounded concave function classes.
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to show that Cδ,h(C0, B)|T j is Lipschitz, which we will do by using an idea from the proof of
Theorem 3.5.

By Assumption 2, 0 < lH (D0, C0). Let η0 := lH (D0, C0). Thus for any f ∈ Cδ,h(C0, B),
for δ, h small enough, for any j ∈ {1, . . . , N }, lH (T j , C0) ≥ η0 − δ − h > η0/2. Thus by
Lemma 3.1,

Cδ,h(C0, B)|T j ⊂ C(T j , B,Γ ) (91)

where Γ := (4B/η0, . . . , 4B/η0). Now, let V0, j := Vold−1(F j ). Then

Vold (T j ) ≤ 2V0, j · 2(δ + h). (92)

Next, note each facet F j is compact so can be embedded in a hyperrectangle. Let
∏d−1

i=1 [a j,i , b j,i ]
be a hyperrectangle of minimum volume containing F j (after an orthogonal rotation). Then by
its definition, T j is (after rotation) contained in

(∏d−1
i=1 [a j,i − δ − h, b j,i + δ + h]

)
× [−δ −

h, δ + h], for δ, h > 0 small enough. Thus by Theorem 2.1, for 1 ≤ p < ∞, for any
j ∈ {1, . . . , N }, and for δ, h small enough, log N[ ]

(
ϵ, C(T j , B,Γ ), L p

)
is bounded above by

c
(

Vold (T j )1/p

ϵ

)d/2
(

B +
4B
η0

(
2(δ + h) +

d−1∑
i=1

(2(δ + h) + b j,i − a j,i )

))d/2

≤ c2

(
V 1/p

0, j (δ + h)

ϵ

)d/2 (
B +

4B
η0

(
d−1∑
i=1

2(b j,i − a j,i )

))d/2

.

Let U0, j :=
∑d−1

i=1 (b j,i − a j,i ). Then the right side of the above display is bounded above by

c3

(
V 1/p

0, j (δ + h)/ϵ
)d/2 (

B + BU0, j/η0
)d/2. Thus the log of the right of (90) is bounded above

by
∑N

j=1 c3

(
V 1/p

0, j (δ + h)/ϵ
)d/2 (

B + BU0, j/η0
)d/2. Thus we have shown the following.

Theorem 5.21. Let Assumption 2 hold. Fix δ > 0, h > 0, and let Cδ,h(C0, B) be defined as
in (89). Then

log N[ ]
(
ϵ, Cδ,h(C0, B), L p

)
≤ S0

(
δ + h

ϵ

)d/2

,

where S0 is a constant depending on B, f0, and C0.

This result suggests that fast rates of convergence may be possible when estimating polytopal
level sets of convex functions. As mentioned above, we do not here develop a full estimation
procedure. To do so will require studying the optimal choice of the bandwidth h. If we can
take h = δ for instance, then the bound is of order (δ/ϵ)d/2. When d = 2 or 3, one can
then compute the entropy integral (see, e.g., [21,41,42]),

∫ δ

0

√
log N[ ]

(
ϵ, Cδ,h(C0, B), L2

)
dϵ =

δd/4
∫ δ

0 ϵ−d/4 dϵ and see that it is of order δd/4δ1−d/4
= δ. This corresponds, at least

heuristically, to a
√

n rate of convergence (the rate
√

n arises from combining, e.g., Lemma
3.4.2 (p. 324) and Theorem 3.2.5 (p. 289) of [42]). These calculations are only suggestive in
nature (and indeed we have not formally proposed an estimator in a specific model!). They are
presented to explain potential repercussions of Theorem 5.21.
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Appendix

Theorem 5.22 (John’s Theorem, [31]; Theorem 13.4.1 [36]). Let K ⊂ Rd be a bounded closed
convex body with nonempty interior. Then there exists an ellipsoid E of maximal volume such
that E ⊆ K ⊆ nE.

Theorem 5.23 (Theorem 2.7.1 of [42]). Let L be a class of functions on
∏d

i=1[0, L i ],
0 < L i < ∞, such that for all f ∈ L, we have L∞( f ) ≤ B < ∞ and f has Lipschitz
constant in the direction xi given by Γi < ∞. Then

log N (ϵ,L, L∞) ≤ K

(
B +

∑d
i=1 Γi L i

ϵ

)d

. (93)

Proof. The theorem is given by [42] when the domain is [0, 1]d and the sup and Lipschitz
bounds are all 1. A scaling argument gives the general form. □
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