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INFERENCE FOR THE MODE OF A LOG-CONCAVE DENSITY

BY CHARLES R. DOSS! AND JON A. WELLNER?
University of Minnesota and University of Washington

We study a likelihood ratio test for the location of the mode of a log-
concave density. Our test is based on comparison of the log-likelihoods cor-
responding to the unconstrained maximum likelihood estimator of a log-
concave density and the constrained maximum likelihood estimator where
the constraint is that the mode of the density is fixed, say at m. The con-
strained estimation problem is studied in detail in Doss and Wellner (2018).
Here, the results of that paper are used to show that, under the null hypothesis
(and strict curvature of —log f at the mode), the likelihood ratio statistic is
asymptotically pivotal: that is, it converges in distribution to a limiting dis-
tribution which is free of nuisance parameters, thus playing the role of the
X12 distribution in classical parametric statistical problems. By inverting this
family of tests, we obtain new (likelihood ratio based) confidence intervals
for the mode of a log-concave density f. These new intervals do not de-
pend on any smoothing parameters. We study the new confidence intervals
via Monte Carlo methods and illustrate them with two real data sets. The new
intervals seem to have several advantages over existing procedures. Software
implementing the test and confidence intervals is available in the R package
logcondens .mode.

1. Introduction and overview: Inference for the mode. Let P denote the
class of all log-concave densities f on R. It is well known since Ibragimov
(1956) that all log-concave densities f are strongly unimodal, and conversely;
see Dharmadhikari and Joag-Dev (1988) for an exposition of the basic theory. Of
course, “the mode” of a log-concave density f may not be a single point. It is,
in general, the modal interval MI(f) ={x e R: f(x) = SUpy R f(»)}, and to de-
scribe “the mode” completely we need to choose a specific element of MI( f), for
example, M (f) = inf{x € MI(f)}. For a large subclass of log-concave densities,
the set reduces to a single point. Our focus here is on the latter case and, indeed, on
inference concerning M (f) based on i.i.d. observations X1, ..., X, with density
fo € P. We have restricted to log-concave densities for several reasons:
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(a) Itis well known that the MLE over the class of all unimodal densities does
not exist; see, for example, Birgé (1997).

(b) On the other hand, MLEs do exist for the class P of log-concave densities
if n > 2; see, for example, Pal, Woodroofe and Meyer (2007), Rufibach (2006),
Diimbgen and Rufibach (2009).

(c) Moreover, the MLEs for the class of log-concave densities have remarkable
stability and continuity properties under model misspecification; see, for example,
Diimbgen, Samworth and Schuhmacher (2011).

Before proceeding with our overview, it will be helpful to introduce some no-
tation for derivatives. (Further notation and terminology will be given in Sec-
tion 1.1.) In particular, we let f” denote the derivative of a differentiable function
f,and we write f” for the second derivative. We also use the notation f) for the
ith derivative of f, particularly for higher derivatives.

Concerning estimation of the mode, Balabdaoui, Rufibach and Wellner (2009)
showed that if fy = ¢%® where the concave function ¢g has second derivative
(p(()z) = ¢ at the mode mo = M (fp) of fo satisfying (p(()z) (mg) < 0, then the MLE

-~

M( f,) satisfies

2 1/5
4!) fo(MO)) M(Hz(z)),

(1.1) n'P(M(fa) = M(fo)) —>a ( O (mo)2
0

where M (Hz(z)) has a universal distribution (not depending on fy). Here, { H>(?) :
t € R} is the “invelope” process on R defined in terms of the “driving process”
{Y(¢) :t € R} defined by Y (¢) = —t*+ fé W(s)ds for t € R. Thus with X (¢) =
YD (1) =43 + W),

(1.2) dX(@)=got)dt +dW(),

where W is two-sided Brownian motion on R and go(¢) = —12¢2. The process Hp
and its concave second derivative H2(2) first appeared in Groeneboom, Jongbloed
and Wellner (2001a, 2001b) in the study of other nonparametric estimation prob-
lems involving convex or concave functions; see also Balabdaoui, Rufibach and
Wellner (2009).

The limit distribution (1.1) gives useful information about the behavior of
M (fn), but it is somewhat difficult to use for inference because of the constant
((41)2 fo(mg)/ fo(z) (mo)?)1/3 which involves the unknown density through the sec-

ond derivative fo(z) (mg). This can be estimated via smoothing methods, but be-
cause we wish to avoid the consequent problem of choosing bandwidths or other
tuning parameters, we take a different approach to inference here.

Instead, we first consider the following testing problem: test

H:M(f)=m versus K:M(f)#m,
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where m € R is fixed. To construct a likelihood ratio test of H versus K, we
first need to construct both the unconstrained MLEs fn and the mode-constrained
MLEs f?. The unconstrained MLEs f, are available from the results of Pal,
Woodroofe and Meyer (2007), Rufibach (2006) and Diimbgen and Rufibach (2009)
cited above. Corresponding results concerning the existence and properties of the
mode-constrained MLEs fno are given in the companion paper Doss and Wellner
(2018). Global convergence rates for both estimators are given in Doss and Wellner
(2016a). Once both the unconstrained estimators ﬁ, and the constrained estimators
fno are available, then we can consider the natural likelihood ratio test of H versus
K : reject the null hypothesis H if

2log Ay = 2log A, (m) = 2nP, (log f, — log f2) = 2nPy, (@n — ¢0)

is “too large” where f, = exp(@n), fno = exp(@)), P, = Y, 8x,/n is the em-
pirical measure, and P,(g) = [ gdP,. To carry out this test, we need to know
how large is “too large”; that is, we need to know the (asymptotic) distribution
of 2logX, when H is true. Thus the primary goal of this paper is to prove the
following theorem.

THEOREM 1.1. If Xy1,..., X, are i.id. fo = e? with mode m where @g is
concave, twice continuously differentiable at m, and go(()2) (m) <0, then

2logA, —4 D,

where D is a universal limiting distribution (not depending on fy); thus 21log A, is
asymptotically pivotal under the assumption (p(()z) (m) <O.

With Theorem 1.1 in hand, our likelihood ratio test with (asymptotic) size « €
(0, 1) becomes: “reject H if 2logi, > d,” where d, is chosen so that P(D >
dy) = a. Furthermore, we can then form confidence intervals for m by inverting
the family of likelihood ratio tests: let

(1.3) Jna ={m eR:2logh,(m) <dy}.

Then it follows that for fo € Py, = {f € P : M(f) = m} with (log fo)® (m) < 0,
we have

PrpmeJ,o) = PMD<dy)=1-a.

This program is very much analogous to the methods for pointwise inference for
nonparametric estimation of monotone increasing or decreasing functions devel-
oped by Banerjee and Wellner (2001) and Banerjee (2007). Those methods have
recently been extended to include pointwise inference for nonparametric estima-
tion of a monotone density by Groeneboom and Jongbloed (2015). Theorem 1.1
says that 2log A, is (asymptotically) pivotal over the class of all log-concave den-
sities fp satisfying (log fo)® (m) < 0. (That log-likelihood ratios are frequently
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asymptotically pivotal is sometimes known as the “Wilks phenomenon” in honor
of the classical result in this direction in regular parametric models by Wilks
(1938).) We can specify more about the form of the limit random variable D; see
Remark 4.1.

A secondary goal of this paper is to begin a study of the likelihood ratio statistics
2log X, under fixed alternatives. We leave the study of the log likelihood ratio
statistic under local (contiguous) alternatives for future work. Our second theorem
concerns the situation when f € P has mode M (f) # m.

THEOREM 1.2. Suppose that fy € P with m ¢ MI( fo). Then

2
;log)\n(m) —>p 2K(f09 fn(’)t)

(1.4) =2inf{K (fo,8): 8 € Pu} >0,
where fn01 € Py, achieves the infimum in (1.4) and
J ) .
(x)log ——dx if f<<g,
K(f.g)= I ) /s
o0 otherwise.

Here, f << g means f = 0 whenever g = 0 except perhaps on a set of
Lebesgue measure 0. The proof of Theorem 1.2 is given in Section 4.2, and relies
on the methods used by Cule and Samworth (2010) and Diimbgen, Samworth and
Schuhmacher (2011), in combination with the results of Doss and Wellner (2016a).
Theorem 1.2 implies consistency of the likelihood ratio test based on the critical
values from Theorem 1.1. That is, let dy satisfy P(D > dy) = for 0 <o < 1,
and suppose we reject H : M(f) =m if 2log A,,(m) > d,.

COROLLARY 1.3. If the hypotheses of Theorem 1.2 hold, then the likelihood
ratio test “reject H if 2log L, (m) > dy,” is consistent: if f & Py, then

Ps(2logrn(m) > dy) — 1.
Here is an explicit example.

EXAMPLE 1.4. Suppose that f is the Laplace density given by

f )= (1/2) exp(—|x]).

First, we note that M (f) = 0 so that f ¢ P;. Thus for testing H : M (f) = 1 versus
K : M(f) # 1, the Laplace density f satisfies f € P\ P;. So we have (incorrectly)
hypothesized that M (f) = 1 = m. In this case, the constrained MLE fno satisfies
f |fno — f0| dx — . 0 where fo = g* € Py is determined by Theorem 4.2 which
is the population analogue of Theorem 2.10 of Doss and Wellner (2018). It also
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satisfies (1.4) in Theorem 1.2. In the present case, g* = g, where {g, : a € (0, 1]}
is the family of densities given by

(1/2)e* -0 <x < —a,
ga(x)=1{(1/2)e” —a<x<l,
(1/2)e—ae—c(x—1) 1 S X < OO,

where ¢ = c(a) = 1/(2¢* — (2 + a)) is chosen so that [ g,(x)dx = 1. Here, it is
not hard to show that a* & 0.490151 . .. satisfies ¢(a*)> = exp(—(a* — 1)), while
K(f, f = K(f, gar) ~0.03377....

Although the basic approach here has points in common with the developments
in Banerjee and Wellner (2001) and Banerjee (2007), the details of the proofs re-
quire several new tools and techniques due to the relative lack of development
of theory for the mode-constrained log-concave MLEs. Furthermore, the proof
of Theorem 1.1 is significantly more complicated than corresponding proofs in
Banerjee and Wellner (2001), Banerjee (2007) or Groeneboom and Jongbloed
(2015): in the present context, the mode-constrained estimator and the uncon-
strained estimator are not identically equal to each other away from the constraint,
whereas in many monotonicity-based cases, the corresponding constrained and un-
constrained estimators are indeed equal away from the constraint. In the case of
monotone density estimation studied by Groeneboom and Jongbloed (2015), the
constrained and unconstrained estimators are not identically equal away from the
constraint, but the differences can be handled using the so-called min-max formula
(see, e.g., Lemma 3.2 of Groeneboom and Jongbloed (2015)), which does not have
an analog for concavity-based problems. Thus, beyond being interesting in its own
right, the proof of Theorem 1.1 is useful for opening the door to the study of like-
lihood ratios in other concavity/convexity-based problems. These could be likeli-
hood ratios for locations of extrema or likelihood ratios for the values (heights) of
functions in concavity/convexity-based problems. We present some discussion of
possible extensions in Section 6.

To prove Theorem 1.1, we first prepare the way by reviewing the local asymp-
totic distribution theory for the unconstrained estimators ﬁ, and ¢, developed by
Balabdaoui, Rufibach and Wellner (2009) and asymptotic theory for ﬁ? and (ﬁg
developed by Doss and Wellner (2018). These results are stated in Section 3.

Section 4 contains an outline of our proof of Theorem 1.1 and the full proof of
Theorem 1.2. The complete details of the long proof of Theorem 1.1 are deferred
to Sections A.1 and A.2 in the Supplementary Material Doss and Wellner (2019).
In Section A.1, we treat remainder terms in a local neighborhood of the mode m,
while remainder terms away from the mode are treated in Section A.2. Our proofs
in Sections A.1 and A.2 rely heavily on the theory developed for the constrained
estimators in Doss and Wellner (2018) and on the new uniform consistency results
for the constrained estimator presented in Section 2 (with proofs in Section A.4).
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In Section 5, we present Monte Carlo estimates of quantiles of the distribu-
tion of I and provide empirical evidence supporting the universality of the limit
distribution (under the assumption that (p(()z) (m) < 0). We illustrate the likelihood
ratio confidence sets with Monte Carlo evidence demonstrating the coverage prob-
abilities of our proposed intervals are near the nominal levels. Further simulation
studies and application to two data sets can be found in Doss and Wellner (2016b).
Section 6 gives a brief description of further problems and potential developments.
We also discuss connections with the results of Romano (1988a, 1988b), Donoho
and Liu (1991) and Pfanzagl (1998, 2000). In Section 1.1, we discuss notation and
terminology.

1.1. Notation and terminology. Several classes of concave functions will play
a central role in this paper.

(1.5) C:={¢:R— [—00,00) | ¢ is concave, closed and proper}
and, for any fixed m € R,
(1.6) Cm = {p €C | @(m) > p(x) for all x € R}.

Here, proper and closed concave functions are as defined in Rockafellar (1970),
pages 24 and 50. We will follow the convention that all concave functions ¢ are
defined on all of R and take the value —oo off of their effective domains dom(¢)
where dom(g) := {x : ¢(x) > —oo} (Rockafellar (1970), page 40). Recall from
the previous section that the classes of unconstrained and constrained log-concave
densities are then

Pi= {e‘p:/e‘pdk=1,<peC}, and

Pm = {e(p:/e(pd)\,zl,(pecm},

where X is Lebesgue measure on R. We let X1, ..., X, be the observations, in-
dependent and identically distributed with density fo with respect to Lebesgue
measure. Here, we assume throughout that fy € P and frequently that fo =
e? € Py, for some m € R. We let X(1) < --- < X(,) denote the order statis-
tics of the X;’s, let P, = n~! "_18x, denote the empirical measure and let
Fo(x)=n""1 Y1 1(—00,x](X;) denote the empirical distribution function. We de-
fine the log-likelihood criterion function ¥, : C — R by

n
(1.7) i) =23 g0 - [ Wdx =P~ [ an,
i=1

where we have used the standard device of including the Lagrange term [ e#Y dx
in W, so that we can maximize W, over all concave functions C or C,, (rather
than maximizing over classes corresponding to density functions). This is as in
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Sllverman (1982). We will denote the unconstrained MLEs of ¢g, fo and Fy by ¢,
fn and F,, respectively. These exist uniquely by Proposition 1 of Walther (2002)
The corresponding constrained estimators with mode m will be denoted by @? o,
fn and F),. FO. These exist uniquely by Theorem 2.6 of Doss and Wellner (2018) (or
Lemma 2 0.3 of Doss (2013b)). Thus

On = argmax W, (p), and @2 = argmax W, (¢).
peC 9€eC

2. Uniform consistency and rates. Here, we recall the uniform rate-consis-
tency theorem of Diimbgen and Rufibach (2009), and give a partial analogue for
the mode-constrained MLE. The new result, given in Theorem 2.1 Part B below,
is of interest in its own right for describing the theoretical behavior of the mode-
constrained MLE. Additionally, the proof of Theorem 1.1 relies on (both parts
of) Theorem 2.1. It should be mentioned that Theorem 2.1 Part B is a nontrivial
extension of the theorem of Diimbgen and Rufibach (2009), with a fairly difficult
proof.

To state the uniform results, we define 7L (I) to be the collection of real-
valued functions g on the closed interval [ satisfying |g(y) — g(x)| < L|y — x|
if B=1and |g’'(y) — g'(x)| < L|y —x|P~Vif B8 > 1, for all x,y € I. We let
on =n"'logn.

THEOREM 2.1 (Uniform consistency and rates of convergence). A. (Diimbgen
and Rufibach (2009)) Suppose that fo € P. If oo € HPL(K) for some 1 < B <2,
L>0,and K = b, c] Cint({ fo > 0}), then

2.1 sup(@n — 90) (1) = O, (pf/ V), and
tekK

2.2) sup (9o — Pu) (1) = 0, (pf/P+D),
tek,
epn

where K,, = [b + pn ,1/ (2p +1)]. These results remain true when @, is
replaced by fn and ¢o by fo.

B Suppose that fo € P, ¢o € H>L(K) for some L > 0, ga(()z)(m) <0, and

=[b,c] C 1nt({f0 > 0}). Then the results OfPart A hold true with 8 =2, with

On replaced by ¢V @, and with fn replaced by f
The proof of Theorem 2.1 is given in Section A.4 in Doss and Wellner (2019).

3. Unconstrained and constrained local limit processes. As can be seen
from Theorem 3.1A below, @, (x) and @° ,, (x) are asymptotically equivalent at fixed
X # m when <p '(x) < 0 and M (fo) = m. Thus, it turns out that the limit distribu-
tion of 2logA,, under the hypotheses of Theorem 1.1, depends on the joint dis-
tribution of @, (x) and @2 (x) at points x near m, and, specifically, within n=1/5.
neighborhoods of m. Thus, in this section we recall the limit distributions of @,
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and @2 from Theorem 2.1 of Balabdaoui, Rufibach and Wellner (2009) and Theo-
rems 5.5 and 5.7 (see also Theorem 5.8) of Doss and Wellner (2018). The process
giving the limit distribution of @, was first studied by Groeneboom, Jongbloed and
Wellner (2001a). Here are the assumptions we will need.

ASSUMPTION 1 (Curvature at m). Suppose that Xy, ..., X, are i.i.d. fo =
e? € Py, and that ¢ is twice continuously differentiable at m with (p(’)/ (m) <O.

ASSUMPTION 2 (Curvature at xg % m). Suppose that Xi,..., X, are i.i.d.
fo = e € Py, and that ¢ is twice continuously differentiable at xo % m with
@( (x0) <0 and fo(xp) > 0.

THEOREM 3.1 (Balabdaoui, Rufibach and Wellner (2009), Doss and Wellner
(2018)). A. (At a point xy # m.) Suppose that ¢y and fy satisfy Assumption 2.
Then

(712/ > (@n(x0) — wo(m))) ., (V)

n*> (@, (x0) — ¢o(x0)) vy
where V = C (xq, o) H 2)(0), where H is described in Theorem 5.1 of Doss and
Wellner (2018), and where C(xq, ¢g) is as given in (B.6) (but with m replaced by
X0):

@ 1/5
lpo~ (x0)
C(x0, o) = <—)
4! fo(x0)?
Consequently,
n* (@1 (x0) — @ (x0)) = 0.
B. (In n='/5—neighborhoods of m.) Suppose @y and fo satisfy Assumption 1.
Define processes X,, and X2 by
X (1) = 0?2 (@u(m +n~1) — go(m),
X9(t) = n?(@2(m + n_l/st) — @o(m)).

Then the finite-dimensional distributions of (X, (1), Xg (1)) converge in distribution
to the finite-dimensional distributions of the processes

1
(Pacr (0.9 0) £ ——5 (@ /72).°(1/1) = (X(0). X))
2

where H, H°, H® = & and (H)® = @° are as described in Theorems 5.1
and 5.2 of Doss and Wellner (2018), and y;, i =1, 2, is described in Section B.1.
Furthermore, for p > 1

(X (), X0(1)) —a (X(1), X°())
in LP[—K, K] x LP[—K, K] for each K > 0.
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4. Proof sketches for Theorems 1.1 and 1.2. Now we present proof sketches
for our two main theorems (and make use of the results in the previous two sec-
tions).

4.1. Proof sketch for Theorem 1.1. To begin our sketch of the proof of Theo-
rem 1.1 we first give the basic decomposition we will use. For the entire proof, we
argue on the event where m € (X(1), X)), which has probability approaching 1
as n — oo (so our convergence in distribution conclusion is not affected by our re-
stricting attention to this event). We begin by using [ fo(u)du =1= [ f2(u)du
to write

2log Ay = 2nPy (@n — (ﬁg)
=20 [ (@~ ), — [ () — Fw)du
:2n/ GndF, — ¢ dF?
[X(l),X(n)]( " n)

4.1) —2n / (P — e@f,’(u)) du,
[X1), Xl

where we have used the characterization Theorems 2.2 and 2.8 of Doss and Well-
ner (2018) with A = £¢,, and A = :I:(’ﬁ,? , respectively. As we will see, inclusion of
the second term in (4.1) will be of considerable help in the analysis.

Now we split the integrals in (4.1) into two regions: let D, = [f1, t2] for some
t1 <m < tp and then let Dj, = [X (1), X(n)] \ D». The set D,, is the region contain-
ing the mode m; here the unconstrained estimator ¢, and the constrained estima-
tor @° tend to differ. On the other hand, D¢ is the union of two sets away from the
mode, and on both of these sets the unconstrained estimator ¢, and the constrained
estimator @2 are asymptotically equivalent (or at least nearly so). Sometimes we
will take the #;, i = 1, 2, to be constant in »n, sometimes to be fixed or random se-
quences approaching m as n — oo. We will sometimes suppress the dependence
of D, = Dy 1, 1, on t;, and will emphasize it when it is important. Now, from (4.1),
we can write

2log A, = 2n{f (@ndF, — 90 dFY) — / (P — (P gy
Dy

n

D§ D

C
n

- 2n{ [ (@ = oom)dFy = @ = goiom)) dFY)
_ Pu) _ po(m)Y _ (,80w) _ ¢o(m)
/Dn((e e?") — (e e?0 ))du}

+ 2n(RI’l,l + R;’l)v
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where

(42) Rugpy =Ru1 = /D o) (fo(x) — FO(x)) dx.

P — PY =0
4.3) Rz,ﬂ,fz ERZ’1 = /DC ((pn dF, — ang'?) — fD (e‘/’n(u) _ e‘p"(”))du.

C

n
Now we use an expansion of the exponential function to rewrite the second part of
the main term: since

1 1«
e’ — et :e“{eb_a — 1} :ea{(b—a) + E(b—a)z—i- gea (b—a)3},
where |a*| < |b — a|, we have

/ (P — Pt _ (B0 _ goolmy) g

n

1
= fD eom ((@(zn — go(m) + (@) - cpo(m>)2)) du+ Ry

1
_ /D oP0(m) ((@2(14) — @o(m)) + = (@ (u) — <P0(m))2>) du— Ry 5.

2
where
(4.4) Ryo= / L fom)e™2® (@) — go(m))? du
. n,2 = D, 6 0 Pn %o ’
1 ~(
(4.5) RO, = /D r Fom)e™ 2@ (@0 ) — go(m))? du.
Thus
2log A,
= n[z fD ((@ () — po(m))(d Fy(u) — fo(m)du)
—2 [ (@ - pom) R w - fo(m)du))
~ [ (@) = gnm))” = (@) o)) fotm) du|
(4.6) +2n(Ry,1 + RS, + Ryp — RY).

Now we expand the first two terms in the last display, again using a two term
expansion, e? — ¢ = (7% — 1)e® = ¢*{(b —a) + %(b — a)Ze?"}, to find that

/D (@) — 9o m)) (dF ) — fo(m) du)
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- / (@) — 9o (m)) (P =90 _ 1) fo\(m) du
Dll

S
~ /D (@0 1) — o (m) ((@ ()~ golm) + 5 (5 0) ~ ¢o<m>)2)
X fo(m)du

- /D (@) — go(m))* fo(m) du + Ry,

where
4.7) R =R —/ lf (m)e* 3 (@, (u) — go(m))° du

. n,3,t1,t2 =Ny 3= D, 2 0 (/’n §00 .
Similarly,

/D (@) — go(m))(dEOw) — fom) du)
= [ @ ~ o) fotm) du + B .

where
(4.8) RO = —/ lf (m)e;c'?ﬁ(”)('\o(u) — go(m))* du

. n,3,t1,tp — "*n,3 — D, 2 0 gon %0 .

Ifweletty =1, =m — bn=15 and 1, = tho=m+ bn=1/5 for b > 0, then from
(4.6) we now have

dlogiy =n /D Folm) (@) — go(m))> — (@0u) — po(m))?} du

+2n(Rp1 + RS | + Rup — Rg’z + Ru3— RO )
(4.9) =D, + Ry

Now we sketch the behavior of D, 5. Let u =m + vn~1/3; with this change of
variables and the definition of #, ;, i = 1, 2, we can rewrite D, j, as

a5 [P~ 15 2
Dyp = fo(m)n® /_ @1l +n7750) = goom)

— (ag(m + nil/Sv) — goo(m))z} dv.

By Theorem 3.1B this converges in distribution to

b
(4.10) fo(m) /_ b{ (Pao ()" = (@2 5 ()} du,
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where the processes (@5, (’5250) are related to (@, °) by the scaling relations
(B.1) and (B.2). We conclude that the limiting random variable in (4.10) is equal
in distribution to

fo(m)/ {(ylyf(p(v/m)z_ (y%yzzg'ﬁo(v/yz)f}dv

fo(m) 1 . 2 0 2
= - d
ENE ﬁh{w(v/yz) @ (v/y2)}dv
bly
@.11) =/b/2 (#()% — %)) ds
—0/Y2

in view of (B.5). This is not yet free of the parameter y», but it will become so if
we let b — oo. If we show that this is permissible and we show that the remainder
term R, in (4.9) is negligible, then the proof of Theorem 1.1 will be complete. For
details, see Section A of Doss and Wellner (2019).

REMARK 4.1. As is suggested by (4.11) (and proved in Section A of Doss
and Wellner (2019)), the form of the random variable D from Theorem 1.1 is

D= [ (0w’ - ' w? du

The form of this random variable is the same as that found in Banerjee and Wellner
(2001) and Banerjee (2007), if we replace our @ and @° with the corresponding
random functions studied in the monotone case.

4.2. Proof of Theorem 1.2. Recall P, ={f € P: M(f) = m}. We now as-
sume that f € P\ P,,. Let A be Lebesgue measure and let

f,?l = argmin{—/loggfodk}

8€Pn
4.12) = argmin/ fo(log fo — log g) dX = argmin K (fy, &),
8€Pm 8€Pm

where we will make (4.12) rigorous later, in Theorem 4.1. Let P, = }"7_, 8x,/n
be the empirical measure and for a function g let P, (g) = [ g dP,,. We now have

n1logkn(m):[Pn(logﬁ/ﬁlO):Pn{ % J{o ;_AZ}
L B e |

From this, we will conclude that as n — oo,

w2108 m) = 0p(n~%) + 22, f10g 0 op (1) = 2K (for 12).

i)
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That P,{log %} = Op(n_4/ 5) follows from Doss and Wellner (2016a), Corol-
lary 3.2, page 962. The convergence of 2P, {log %} to K (fo, fn(z) follows from

the weak law of large numbers. The indicated negligibility of the third term in
(4.13) follows from Theorem 4.3 below (which is a constrained analogue of The-
orem 2.15 of Diimbgen, Samworth and Schuhmacher (2011)).

It remains to justify the definition given in (4.12), and to show that the third
term of (4.13) is 0, (1), under the assumptions of Theorem 1.2. We first state three
theorems. These are mode-constrained analogues of Theorems 2.2, 2.7 and 2.15
of Diimbgen, Samworth and Schuhmacher (2011), and are proved with methods
similar to the methods used in Diimbgen, Samworth and Schuhmacher (2011).

Now we set

L. Q)Effde—/e"’d/\Jrl
and define

L (Q) = sup L(p, Q),
9€Cp

where
Cm = {9 : m € MI(g), ¢ concave}

and recall MI(¢) = {x € R: ¢(x) =sup, g ¢(y)}. If for fixed Q, there exists ¥/, €
C,, such that

L(Ym, Q) =Ln(Q) €R,

then v, will automatically satisfy [ exp(y,(x))dx = 1: note that ¢ + ¢ € C,, for
any fixed ¢ € C,, and ¢ € R. On the other hand,

d d
— c ¢
aCL(C—i—c,Q)_aC{/(qﬁ—l—c)dQ e /e dk+1}

=1—ecfe¢dk

if L(¢, Q) € R. Thus L(¢ + ¢, Q) is maximal for ¢ = —log [ e? dx.
For the next theorem, we need to define

csupp,, (@)= () C

CecC
where € = {C C RY : C closed, convex, Q(C)=1,m € C}.

THEOREM 4.1. Let Q be a measure on R?. The value of L, (Q) is real if
and only if [|x|dQ(x) < oo and int(csupp,,(Q)) # @. In that case, there ex-
ists a unique V¥, = V¥, (-|1Q) € argmax e, L(p, Q). This function v, satisfies
[eVmdr=1and

int(csupp,, (Q)) S dom(y/,,,) < csupp,, (Q),
where dom(y,,) = {x € R : Y (x) > —o0}.
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Theorem 4.1 justifies rigorously the definition given in (4.12), since fp € P
has a finite mean and satisfies int(csupp,,(Pp)) # &, where Py is the measure
corresponding to fo. Now, for ¢, € Cp,, let

S(Ym) = {x € dom ) : Yo (x) > 2_1(wm(x —8) + Ym(x +8)) forall § > 0},

and

SL(m) = {x € SWm) : ¥, (x—) > 0} S (—o00, m],
SR(Wm) = {x € SWYm) : ¥, (x+) < 0} S [m, 00).

It is possible for m to be an element of either of the sets Sy (¥,) and Sg(¥,)
without being a member of the other. The following theorem is the population
analogue of Theorem 2.10 of Doss and Wellner (2018).

THEOREM 4.2. Let Q be a distribution on R with int(csupp,,(Q)) # <&, with
finite first moment, and with distribution function G. Let F,, be a distribution func-
tion with log-density ¢ € Cyy. Then ¢ = ¥, (-] Q) if and only if

X X
4.14) / Fn(y)dy 5/ G(y)dy forallx <m, and
—0o0 —0o0

o0

(4.15) /00(1 — Fu(y))dy < / (1-GW))dy  forallx>m,

X

with equality in (4.14) if x € S (¢m) and equality in (4.15) if x € Sp(¢m).

Thus, again much as in Diimbgen, Samworth and Schuhmacher (2011), for x €
SWn(-10)), x <m, and (small) § > 0,

1 X
0< g/_S(Fm(y) —G()dy —> Fu(x) —G(x—)  asd\0,

1 px+d
0= 5 [ Fa) =GNy > Fa) = G)  ass\0,

and hence G(x—) < F,,,(x) < G(x) forall x € R.
Now we need to understand the properties of the maps Q — L,,(Q) and Q

YU (-|Q) on Q1 N Qo ;n, where we let Q1 ={Q: [|x|dQ < oo} and Qo = {0 :
int(csupp,,(Q)) # @}. As in Diimbgen, Samworth and Schuhmacher (2011), we
show that these are both continuous with respect to Mallows distance Dj:

D1(Q. Q/)E()i(n;,)E|X—X/

’

where the infimum is taken over all pairs (X, X’) of random variables X ~ Q and
X’ ~ Q' on a common probability space. Convergence of Q, to Q in Mallows
distance is equivalent to having [ |x|dQ, — [|x|dQ and Q, = Q (Mallows
(1972)).
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THEOREM 4.3. Let {Q,} be a sequence of distributions on R? such that
D1(Qy, Q) — 0 for some Q € Q1. Then

Ly (Qn) = Lin(Q).

If O € Qom N Qi, the probability densities fo = exp(Ym(-|1Q)) and f, =
exp(Vm (-1 Qn)) are well defined for large n and satisfy

lim yf,?(x) = o)  forally eR4\3{f%> 0],

n— 00,x—

limsup f2(x) < fOG)  forallyed|f®> 0],

n—o00,x—Yy
/|f,?(x) — %) |dx — 0.

We can now show that the third term of (4.13) is 0, (1) under the assumptions of
Theorem 1.2. First, note that P, converges weakly to P, the measure correspond-
ing to fy € P, with probability 1 and P, (|x|) =n~! Y IXi|l —as. [1x|dP(x)
by the strong law of large numbers. Thus D (P, P) — 4. 0. It follows from The-
orem 4.3 that

log f0 = argmax{Pngo - /e‘” dir+ 1}
9€Cm

= Y (-|Pn) = 3,

where, by the last part of Theorem 4.3, [ |f;10 — fn(g |d\ —a5. 0 and by the continu-
ity

Lin(Py) = L(Ym(|Py), Py) =P, log 70
(4.16) —>a.s. L(‘/’m('lp)v P) = P(log fn(g)

But then

70
P, log% =P, log f2 — Plog ) — (P, log £ — Plog £2)
m

—a5.0—0=0

by (4.16) for the first term and the strong law of large numbers for the second term
(using that —oo < L, (P) < 0o by Theorem 4.1).

5. Simulations: Some comparisons and examples.

5.1. Monte Carlo estimates of the distribution of D. To implement our likeli-
hood ratio test and the corresponding new confidence intervals, we first conducted
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F1G. 1. Monte Carlo distributions of 21og A, for four distributions, n = 104, M =5x 103 repli-
cations, together with the exact distribution function of xi .

a Monte Carlo study of the null-hypothesis limit random variable, ID. We did
this by simulating M = 5 x 10% samples of n = 10* from the following distri-
butions satisfying the key hypothesis ((p()’ (m) < 0) of Theorem 1.1: Gamma(3, 1),
Beta(2, 3), Weibull(3/2, 1). The results are shown in Figure 1. Figure 1 also in-
cludes: (i) a plot of the known d.f. of a chi-square random variable with 1 degree
of freedom, (which is the limiting distribution of the likelihood ratio test statistic
for testing a one-dimensional parameter in a regular parametric model); (ii) a plot
of the empirical distribution of 2log A, for M =5 x 10 samples of size n = 10*
drawn drawn from the Laplace density 27! exp(—|x|) for which the assumption
of Theorem 1 fails. In keeping with Theorem 1.1, the empirical results for all the
distributions satisfying Theorem 1.1 are tightly clustered and in fact are almost
visually indistinguishable, in spite of the fact that the various constants associated
with these distributions are quite different, as shown in Table 1; in the next to last
column C(fo) = ((4)2 fo(m)/(f (m)*)/3 from (1.1), and in the last column
SLC stands for “strongly log-concave” (see, e.g., Saumard and Wellner (2014)).

TABLE 1
Numerical characteristics of the distributions in the null hypothesis Monte Carlo study

Distribution m fo(m) fo (m) gp(m)  C(fo) SLC
N, 1) 0 @r)"1/2=03989... —@n)"1/2 -1 4.28 Y
Gamma(3, 1) 2 2¢2 —e2 —1/2  6.109 Y
; - 323 27 9.31/4
Weibull(3/2,1)  37%/3 AT —gos -2 236 N
Beta(2, 3) 3-1 e —24 -z 1.12 Y
Logistic 0 1/4 —~1/8 —1/2  6.207 N
Gumbel 0 el —e~! -1 4.3545 N
X3 2 ~ & -3 87091 N
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TABLE 2
Estimated critical values dy

o 0.25 0.20 0.15 0.10 0.05 0.01
do 0.40 0.49 0.61 0.79 1.11 1.92

Now for « € (0, 1) let dy satisty P(D > dy) = «. Table 2 gives a few estimated
values for d,,: These are based on 350,000 Monte Carlo simulations each based on
simulating 1 x 10° observations from a standard normal. These values, and the sim-
ulated critical values for all @ € (0, 1), are available in the 1ogcondens .mode
package (Doss (2013a)) in R (R Core Team (2016)).

Banerjee and Wellner (2001) study a likelihood ratio test in the context of con-
straints based on monotonicity, and find a universal limiting distribution for their
likelihood ratio test. Let Dyono be a random variable with this distribution. Com-
parison of the values in Table 2 with Table 2 of Banerjee and Wellner (2001) (par-
ticularly Method 2 in column 3 of that table) suggest, perhaps surprisingly, that
P(@2D <t)~ P(Dmono <t) for t € R. It would be quite remarkable if this held
exactly. We do not have any explanation for this observed phenomenon.

5.2. Comparisons via simulations. Code to compute the mode-constrained
log-concave MLE, implement a corresponding test, and invert the family of tests to
form confidence intervals is available in the 1logcondens .mode package (Doss
(2013a)). We can thus test our procedure and compare it to alternatives.

Romano (1988a) proposed and investigated two methods of forming confidence
intervals for the mode of a unimodal density. His estimators of the mode and confi-
dence intervals were based on the classical kernel density estimators of the density
f going back to Parzen (1962). One method, which Romano called the “normal
approximation method,” is based on the limiting normality of the kernel density
estimator of the mode, together with a plug-in estimator of the asymptotic vari-
ance. Romano’s second method involved bootstrapping the mode estimator, and
involved the choice of two bandwidths, one for the initial estimator to determine
the mode, and a second (larger) bandwidth for the bootstrap sampling. The abstract
of Romano (1988a) states: “In summary, the results are negative in the sense that
a straightforward application of a naive bootstrap yields invalid inferences. In par-
ticular, the bootstrap fails if resampling is done from the kernel density estimate.”
That is, one must use a second (larger) bandwidth for the bootstrap resampling to
achieve valid inference. This thus necessitates selection of two tuning parameters
for the bootstrap procedure. Romano (1988a) notes in summarizing his simulation
results:

... but the problem of constructing a confidence interval for the mode for smaller sam-
ple sizes remains a challenging one. In summary, the simulations reinforce the idea
that generally automatic methods like the bootstrap need mathematical and numerical
justification before their use can be recommended.
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The bootstrap simulations that Romano (1988a) refers to in the previous quote
are based on an underlying N(0, 1) or a Xf distribution with a sample size of
n = 100. Romano (1988a) also performs simulations for the normal approxima-
tion method for the same underlying distributions and based on the same sample
size. For the normal approximation method, a grid of bandwidths / are used for the
simulation. For the bootstrap, a matrix of bandwidth pairs (4, b) (one for estima-
tion, one for resampling) are used. Monte Carlo estimates of coverage probabilities
are presented in Tables 1-4 of Romano (1988a).

In Figure 2, we consider the case of a true underlying X} distribution, and we
plot all the estimated coverage probabilities of Romano’s bootstrap CI’s (blue;
these are from Table 4 of Romano (1988a)) together with the target (ideal) cov-
erage (green line) and the estimated coverage probabilities of our likelihood ratio
(LR) based CI’s (magenta). As can be seen, the estimated coverage probabilities of
our LR-based procedure are reasonably close to the target values without requiring
any bandwidth choice.

Corresponding comparison plots based on Tables 1, 2 and 3 of Romano (1988a),
as well as tables of the simulated coverage probabilities, are given in Doss and
Wellner (2016b). We do not include them here due to space constraints. Doss and
Wellner (2016b) also includes a Monte Carlo simulation study of lengths of the
CIs in some settings.

Methods of bandwidth selection for various problems have received consider-
able attention in the period since Romano (1988a); see especially Léger and Ro-
mano (1990), Mammen and Park (1997), Hirdle, Marron and Wand (1990), Hall

1.0 [}
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t °
0.9+ A °
[ ]
° ]
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L A ° °
. .
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0.80 0.85 0.90 0.95 1.00

F1G. 2. Coverage probabilities, Romano’s Table 4 compared with LR coverage probabilities, X;%
data, Bootstrap confidence intervals (blue dots); LR confidence intervals (magenta triangles). The
green line is the nominal level.
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and Johnstone (1992), Ziegler (2001), Hazelton (1996a, 1996b) and Samworth
and Wand (2010). Although bandwidth selection in connection with mode estima-
tion is mentioned briefly by Léger and Romano (1990) (see their last paragraph,
page 734), we are not aware of any specific proposal or detailed study of band-
width selection methods in the problem of confidence intervals for the mode of a
unimodal density. For this reason, we have not undertaken a full comparative study
of possible methods here. Further comparisons of our LR based confidence inter-
vals with methods based on kernel density estimates of the type studied by Romano
(1988a) but incorporating current state of the art bandwidth selection procedures
will be of interest.

5.3. Comparisons via data examples. We used our procedure for formation of
modal confidence intervals (CIs) on two real data sets, the rotational velocities of
stars from the Bright Star Catalogue (Hoffleit and Warren (1991)) and daily log
returns for the S&P 500 stock market index. To see the former, see Section 5.3
of Doss and Wellner (2016b). Here, we discuss the 1006 daily log returns for
the S&P 500 stock market index from January 1, 2003, to December 29, 2006. In
Figure 3, we plot the data, a kernel density estimate with bandwidth 0.13 (Sheather
and Jones (1991)), the log-concave MLE, and the 95% confidence interval for the
mode given by our likelihood ratio statistic. We also plot the maximum likelihood
Gaussian density estimate, for comparison. The sample mean is 0.04, the sample
median is 0.081 and the log-concave mode estimate is 0.17. A 95% CIs for the
mean is [—0.004, 0.09] and a 95% CI for the median is [0.037, 0.122] (Hogg and
Craig (1970), pages 539-540). Our likelihood ratio CI for the mode is [0.10, 0.21].
Note that our confidence interval for the mode excludes 0 and does not intersect
with the CI for the mean. Thus, our procedure highlights some interesting features
of the data and provides evidence for its nonnormality. Also note that the lengths
of the mean, median and our LR-based mode CI are 0.094, 0.085 and 0.11. Thus,
despite the fact that our mode estimator does not generally have a n~!/2 rate of
convergence, the three confidence intervals are of fairly similar length on a data
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F1G. 3. 1006 S&P 500 daily log returns for the years 2003-2006.
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set with 1006 observations, which is encouraging for our mode CI procedure and
for any future extensions (e.g., mode regression CIs).

6. Further problems and potential developments.

6.1. Uniformity and rates of convergence. There is a long line of research giv-
ing negative results concerning nonparametric estimation, starting with Bahadur
and Savage (1956), Blum and Rosenblatt (1966), Singh (1963, 1968) and con-
tinuing with Donoho (1988) and Pfanzagl (1998, 2000). In particular, Pfanzagl
(2000) considers a general setting involving estimators or confidence limits with
optimal convergence rate n=° with 0 < p < 1/2. He shows, under weak addi-
tional conditions, that: (i) there do not exist estimators which converge locally
uniformly to a limit distribution; and (ii) there are no confidence limits with lo-
cally uniform asymptotic coverage probability. As an example, he considers the
mode of probability distributions P on R with corresponding densities p having a
unique mode M (p) and continuous second derivative in a neighborhood of M (p).
Pfanzagl (2000) also reproves the result of Has’minskii (1979) to the effect that
the optimal rate of convergence of a mode estimator for such a class is n~'/3. In
this respect, we note that Balabdaoui, Rufibach and Wellner (2009) established a
comparable lower bound for estimation of the mode in the class of log-concave
densities with continuous second derivative at the mode; they obtained a constant
which matches (up to absolute constants) the pointwise (fixed P) behavior of the
plug-in log-concave MLE of the mode. Romano (1988b) gives a detailed treatment
of minimax lower bounds for estimation of the mode under smoothness and cur-
vature assumptions: assuming a bounded derivative of order p in a neighborhood
of the mode M (fy), Romano shows in his Theorem 3.1 that the minimax rate for
estimation of M (fy) isn~" where r = (p — 1)/(2p + 1). He also shows that when
p =3, the rate n~%/7 can be achieved by a kernel density estimator.

Our approach here has been to construct reasonable confidence intervals with
pointwise (in P or density p) correct asymptotic coverage without proof of any
local uniformity properties. In view of the recent uniform rate results of Kim and
Samworth (2016), we suspect that our new confidence intervals will (eventually)
be shown to have some uniformity of convergence in their coverage probabilities
over appropriate subclasses of the class of log-concave densities, but we leave the
uniformity issues to future work.

6.2. Some further directions and open questions. We now turn to discussion
of some difficulties and potential for further work.

6.2.1. Relaxing the second derivative assumption. As noted in the previous
subsection, most of the available research concerning inference for M (f) has as-
sumed f € C2(m,loc) and f@ (M (f)) < 0. Second derivative-type assumptions
of this type are made in Parzen (1962), Has’minskii (1979), Eddy (1980), Donoho
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and Liu (1991), Romano (1988a, 1988b) and Pfanzagl (2000). Exceptions include
Miiller (1989), Ehm (1996), Herrmann and Ziegler (2004), Balabdaoui, Rufibach
and Wellner (2009).

What happens if the second derivative curvature assumption does not hold, but
instead is replaced by something either stronger or weaker, such as

fm)— f(x) <Clx —m]|

for some C where 1 <r < 2 (in the “stronger” case) or 2 < r < oo (in the “weaker”
case)? It is natural to expect that it is easier to form confidence intervals for m
when 1 <r < 2 holds, but that it is harder to form confidence intervals for m when
2 < r < o0o. In fact, Balabdaoui, Rufibach and Wellner (2009), page 1313, gives
the following result: if f = exp(p) with ¢ concave and where ¢/)(m) = 0 for
j=2,....,k—1but ¢® exists and is continuous in a neighborhood of m with
¢® (m) # 0, then

nV/ @D (M, — m) =4 Ci(f (m), w(k)(m))M(Hk(z))-

Thus the convergence rate of the log-concave MLE of the mode is slower as k in-
creases. [On the other hand, by Theorem 2.1 of Balabdaoui, Rufibach and Wellner
(2009), page 1305, the convergence rate of the MLE fa of f atm (and in a local
neighborhood of m) is faster:

nk/CAD(F () — f(m)) —>q ck(m,f)Hk(Z)(O).]

Furthermore, the sketch of the proof of the limiting distribution of the likelihood
ratio statistic in Section 4.1 (ignoring any remainder terms) together with the re-
sults of Balabdaoui, Rufibach and Wellner (2009), suggest that 2logX,, —4 Dy
under f € P, N Z; where

Zr={feP:oVm)=0,j=2,....k=1,0®m) £0, 9 € C*(m, loc)}

and where with ¢ and w,? denoting the local limit processes in the white noise
model (1.2) with drift term go () = —12¢ replaced by —(k + 2)(k + 1)|¢|¥,

Dy = / () — @)} dv

We provide Monte Carlo evidence in support of this conjecture, by simulating
2log A, based on some parent distributions with k # 2. The results are given
in Figure 4. Figure 4 contains empirical distributions of 2log, (with n = 10*
and M =5 x 10%) for 9 parent distributions, as well as a plot of the df of a
Xl random variable; all of the curves from Figure 1 are present, including F el
the Laplace (with k = 1), the standard normal, Gamma(3, 1), Beta(2, 3) and
Weibull(1.5, 1) (all four having k£ = 2). We also add four parent distributions with
k > 2. We include parent densities proportional to exp{—|x|/ /j} for x € R, labeled
“Subbotin(j),” j = 3,4 (having k = j). We also include parent densities propor-
tional to 1 — |x|/ for x € [—1, 1], labeled “Bump(j),” j = 3,4 (with k = j). The
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Fi1G. 4. Empirical distributions of 2logAy, for f € Py N 2y, k € {2,3,4} with n = 10* and
M=5x103 replications.

(Monte Carlo estimators of) df’s based on the parent distributions with k = 3 (es-
timating D3) are grouped together, and the df’s based on the parent distributions
with k = 4 (estimating D4) are similarly grouped together. Note that the (Monte
Carlo estimator of) the distribution of D3 seems to be stochastically larger than
the (Monte Carlo estimator) of the distribution of D, = ID, and that the distribu-
tion of D4 is apparently stochastically larger than that of D3. This raises several
possibilities:

Option 1: It seems likely that by choosing a critical value from the distribution
of Dg (say), that the resulting confidence intervals will have correct coverage for
f € PN Z¢ with conservative coverage if we happen to have f € PN 2, (in
which case critical points from D = D, would have sufficed), and anticonservative
coverage if the true f belongs to P N (2 \ Z¢) for some k > 8.

Option 2: Try to construct an adaptive procedure which first estimates k (the
degree of “flatness”) of the true f € P (by k say), and then choose a critical point
from the distribution of ;.

We leave the investigation of both of these possibilities to future work.

6.2.2. Relaxing the assumption of log-concavity. It would also be of interest
to relax the assumption of log-concavity used in the developments here. It would
be very desirable to allow fj to be a completely arbitrary unimodal density, and al-
low the smoothness at the mode M ( fy) to vary as noted in the previous subsection.
As a more realistic replacement for this ambitious goal, we might instead consider
enlarging from the class of log-concave densities to some class of s —concave den-
sities, Py with —1 < s < 0; that is, densities of the form fy = q}é/ * with ¢g > 0
convex; see, for example, Koenker and Mizera (2010), Doss and Wellner (2016a),
and Han and Wellner (2016). Extensions in this direction will likely require fur-
ther study of the Rényi divergence estimators studied in Han and Wellner (2016)
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and mode-constrained versions thereof. An interesting possible connection is that
for the classes of a—stable densities S, with 0 < @ < 2, we know that fy € S,
is unimodal. Moreover, it is also known from Hall (1984) that for the symmetric
a—stable distributions f;" exists in a neighborhood of the mode m = M ( fy), and
fo/(m) < 0. It is apparently not known if the o—stable densities are s—concave
for some s € (—1, 0], even though this obviously holds in the (few) examples for
which an explicit formula for the density fy € S, is available: for example, for
fo = Cauchy, fo € S NP_1,2, while for Lévy’s completely asymmetric stable
law, fo € 8172 NP_33, and of course, for fy = Gaussian, fo € S N Py.

6.2.3. Mode inference in other contexts. The methods developed in this pa-
per raise several questions about other settings in which inference about a convex
function may be of interest.

(a) Can we do inference for the maxima or minima in the contexts of estimation
of intensity functions, of (bathtub-shaped) hazard functions (Jankowski and Well-
ner (2009)), or of regression functions? For instance, let ¥; = r(x;) 4+ ¢; where ¢;
are mean zero i.i.d. observations and x; are fixed numbers in R. If we assume r
to be convex, then much is known about the least-squares estimator 7, of r; see,
for example, Hildreth (1954), Hanson and Pledger (1976), Mammen (1991) and
Groeneboom, Jongbloed and Wellner (2001a, 2001b). Can an argmin-constrained
estimator ?,? be developed, in analogy with the estimator f;?, and used to develop
likelihood ratio-based (or rather, residual sum-of-squares) tests and intervals for
the location of the minimum of r? In such a problem, we conjecture that the uni-
versal component of the limit distribution of ?,?(m) will be the same as that studied
in Theorem 1.1.

(b) Can the techniques used here be applied to form tests and intervals for the
value (or height) of a concave function, fy, rather than argmax? Here, fy could be
a log-concave density or a concave regression function (and other settings could
be of interest). That is, can we develop an estimator ﬁ? based on the constraint that
f satisfies f(xg) = yo for xo, yo fixed and use f:lo with an unconstrained estimator
ﬁ, to form a likelihood ratio test for fo(xg)? In the case where fy is a concave
regression function, such a program has recently been studied by Doss (2018).
Can this be extended to the density case, where fy is log-concave?

(c) Can inference for the mode be extended to semiparametric settings? For ex-
ample can we form tests/intervals for the location of the minimum of an unknown
convex “link” function mg in a single index model, ¥ = mo(QéX ) + &, where
X eR4 Y eR, E(e|X) =0 and mg is assumed to be convex (Chen and Sam-
worth (2016), Kuchibhotla, Patra and Sen (2017))? Can we form tests/intervals for
a modal regression function, that is, for my where Y = mo(X) 4+ & where ¢ has
mode 0?
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6.2.4. Beyond dimension d = 1. It seems natural to consider generalizations
of the present methods to the case of multivariate log-concave and s —concave den-
sities. While there is a considerable amount of work on estimation of multivariate
modes, mostly via kernel density estimation, much less seems to be available in
terms of confidence sets or other inference tools. For some of this see, for example,
Tsybakov (1990), Abraham, Biau and Cadre (2003), Kim (1994), Klemeli (2005),
Konakov (1973), Sager (1978), Samanta (1973). On the other hand, apparently
very little is known about the multivariate mode estimator M ( fn) where fn is the
log-concave density estimator for f on R? studied by Cule, Samworth and Stewart
(2010) and Cule and Samworth (2010). Further study of this estimator will very
likely require considerable development of new methods for study of the pointwise
and local properties of the log-concave density estimator ﬁ when d > 2.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for the mode of a log-concave density” (DOI:
10.1214/18-A0OS1770SUPP; .pdf). In the supplement, we provide additional
proofs and technical details that were omitted from the main paper.
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