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Abstract

We propose a likelihood ratio statistic for forming hypothesis tests and confidence
intervals for a nonparametrically estimated univariate regression function, based on
the shape restriction of concavity (alternatively, convexity). Dealing with the likeli-
hood ratio statistic requires studying an estimator satisfying a null hypothesis, that is,
studying a concave least-squares estimator satisfying a further equality constraint. We
study this null hypothesis least-squares estimator (NLSE) here, and use it to study our
likelihood ratio statistic. The NLSE is the solution to a convex program, and we find a
set of inequality and equality constraints that characterize the solution. We also study a
corresponding limiting version of the convex program based on observing a Brownian
motion with drift. The solution to the limit problem is a stochastic process. We study
the optimality conditions for the solution to the limit problem and find that they match
those we derived for the solution to the finite sample problem. This allows us to show
the limit stochastic process yields the limit distribution of the (finite sample) NLSE.
We conjecture that the likelihood ratio statistic is asymptotically pivotal, meaning that
it has a limit distribution with no nuisance parameters to be estimated, which makes
it a very effective tool for this difficult inference problem. We provide a partial proof
of this conjecture, and we also provide simulation evidence strongly supporting this
conjecture.
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1 Introduction

In nonparametric density, regression, or other function estimation, forming hypothesis
tests and confidence intervals is important but often challenging. For nonparametric
estimators to be effective, they are generally tuned so as to balance their bias and
variance (perhaps asymptotically). However, having non-negligible asymptotic bias
is problematic for doing inference, since the bias must then be assessed to do honest
and efficient inference. One approach is to ignore the bias (e.g., Chapter 5.7 of [47]),
although this is clearly problematic. Often the bootstrap [18] can be used for inference
in complicated problems, but it is frequently a poor estimate of bias and so requires
corrections or modifications. Such corrections have been implemented in a large vari-
ety of cases. For instance in forming confidence intervals for a density function, one
approach is to undersmooth a kernel density estimator and then use the bootstrap [25].
However the undersmoothed estimator used for the confidence interval is then dif-
ferent from that which would be optimal for pure estimation, and requires stronger
smoothness assumptions than would be required for just estimation. Importantly, the
inference is still dependent on a tuning parameter (the bandwidth), whose optimal
selection can be challenging, can lead to different inferences for different users, and
can add another layer of computational burden.

These issues motivate an alternative approach to nonparametric function estimation
and inference, which relies on assumptions based on shape constraints and which often
does not suffer from the above problems. Here we consider the regression setup,

Yn,izro(xn,i)“‘fn,iv i=1"‘-7n7 (1)

where Y, ; € R, we assume that the univariate predictor variables x,, ; are fixed, and

€n,i are independent and identically distributed (i.i.d.) with mean 0, and E eteg»i < 00
for some r > 0. We assume that the target of estimation, ro: R — R, is concave. (Con-
cave regression is equivalent to convex regression by taking —Y), ; as our responses;
we will sometimes use “concave/convex regression” to mean either concave regres-
sion or convex regression since they are equivalent.) As will be discussed in greater
detail below, concave/convex regression estimators are solutions to convex programs,
and so they have very different properties than many other nonparametric regression
estimators such as kernel-based ones. Concave/convex regression estimation arises in
a truly vast number of settings. It seems to have originally arisen in the econometrics
literature [28]. As noted by Hildreth [28], in classical economic theory

utility functions are usually assumed to be concave; marginal utility is often
assumed to be convex; and functions representing productivity, supply, and
demand curves are often assumed to be either concave or convex.

(The example worked through by Hildreth [28] is on production function estimation.)
Related examples in finance also exhibit convexity restrictions (Ait-Sahalia and Duarte
[1] study stock option pricing). Concavity/convexity also arises in operations research,
where the concavity/convexity often arises theoretically, and then conveniently makes
optimization of the estimated function very efficient [26,32,44,45]. See [37] and ref-
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Concave regression: value-constrained estimation and... 7

erences therein for further examples of uses of concavity restrictions. There have been
a variety of works that have considered concave/convex regression, in the literatures
of different fields, with most of the focus being on estimation [2,7,27,31,33,39,41].
Meyer [35,36] and Wang and Meyer [46] and consider spline-based approaches to
concave regression estimation, and study testing the hypothesis of linearity against
concavity/convexity, and testing the hypothesis of concavity/convexity against a gen-
eral smooth alternative. Mammen [34] finds the rates of convergence of the univariate
LSE, and [23,24] find its limit distribution. Algorithms for computing estimators in
concave regression settings (sometimes combined with other constraints) have been
studied by Dent [11], Dykstra [17], Fraser and Massam [20], Hudson [29], Meyer
[35,36] and Wu [48]. In [10], the authors study upper and lower bounds for the lengths
of confidence intervals (with a fixed coverage probability) for concave regression,
but we do not know of any practical implementation for the intervals they study. In
the Gaussian white noise model, Diimbgen [15] studies multiscale confidence bands
(rather than pointwise intervals) for a concave function. (Confidence bands can of
course be used for pointwise confidence intervals but will be unnecessarily long.)

The model for r(, based only on the assumption that 7 is concave, is nonparametric
and infinite dimensional. However, it is still possible to estimate r( directly via least-
squares, as in finite dimensional problems. We let

n

~ . 1 2
Tn = arg:mn ¢n(r) := argmin 3 Z (Y,“' — r(x,,,i)) 2)

r i=1

where the argmin is taken over all concave functions r: R — R. Perhaps surpris-
ingly, minimizing the least-squares objective function over the class of all functions
constrained only to be concave admits a solution that is uniquely specified at the data
points. It is possible for the solution to be not uniquely specified at some other points,
so we take 7, to be piecewise linear between the x, ;’s [28]. The limit distribution of
the estimator at a fixed point x has been obtained (under a second derivative assump-
tion and uniformity conditions on the design of the x,, ;’s) by Groeneboom et al. [24],
who show that

d(ro)n*”> @ (x0) — ro(x0)) —a U ?3)

where U is a universal limit distribution (meaning it does not depend on rg), and
d(rg) := (24/0*|rl (x0)])!/?, where 0 = Var(e, ;). (In fact, U = 7},1(0) where 7}
is described below in Theorem 6.) We use g’ = g1, g” = g@®, and g to refer to
the first, second, and ith derivatives of an appropriately differentiable function g.

One might attempt to directly use the limit result (3) as the basis for inference about
ro(xo). However, the limit distribution depends on r{ (xo), and so using (3) requires
somehow estimating r(’)’(xo), which leads to many of the problems described in the
first paragraph of this paper. We avoid this, rather pursuing a hypothesis test approach
based on a likelihood ratio statistic (LRS), and using that to develop a confidence
interval. (Here ‘likelihood ratio’ is a slight abuse of terminology, since it will be a
likelihood ratio only if the €, ; are Gaussian, which we do not assume; the LRS could
alternatively be referred to as a residual-sum-of-squares statistic.) We will consider
the hypothesis test
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8 C.R.Doss

Hy : ro(xo) = yo against Hj : ro(x0) # Yo 4)

for (x0, yo) € R? fixed. To form confidence intervals, we will invert the hypothesis
test: assume we reject Hy when 2log A, (yo) > dy for a statistic 21og A, (yo) (to be
discussed shortly) and some critical value dy, @ € (0, 1). Then the corresponding
confidence interval is

{y:2loghn(y) < do}. (&)

(Since y is univariate, the confidence interval can be computed by computing the test
on a grid of y values.)

The statistic 2log A, (yo) which we will study is based on a ratio statistic A, (yo)
which depends on a ‘null hypothesis statistic’ and on an ‘alternative hypothesis statis-
tic.” The null hypothesis statistic will depend on a least-squares estimator (LSE) of a
concave regression function, ?,?, that is further constrained so that?,?(xo) = yo where
yo is fixed: ?,? = argmin,. Z?:l Yni — r(xn,,-))2 where the argmin is over concave
functions r satisfying r(xo) = yo. We refer to this estimator as the ‘null hypothesis
least-squares estimator’ (NLSE). The ‘alternative hypothesis statistic’ depends on 7,
which we thus refer to as the ‘alternative hypothesis least-squares estimator’ (ALSE).
With these two estimators in hand, we define our statistic by

2log i, = 21og 1 (0) =2 (¢ (77) = 6, @) ®)

with ¢,, defined in (2).

One of the major benefits to using LRS’s is that their limit distribution often does
not depend on nuisance parameters. In regular parametric problems, two times the log
of the LRS is asymptotically sz, where k is the reduction in parameter dimension in
going from the alternative hypothesis to the null hypothesis. Notably, this chi-squared
distribution is universal, meaning it is the same limit distribution regardless of what
underlying parameter is the true one, so no nuisance parameters need to be estimated
to perform inference, which can make inference more simple and more efficient. (In
this case, one says that log likelihood ratios are (asymptotically) pivotal, or that they
satisfy the Wilks phenomenon.)

In our shape-constrained setting, LRS’s can be challenging to analyze theoretically.
However, such analysis has been successful in some cases. Banerjee and Wellner
[6] and Groeneboom and Jongbloed [22] study LRS’s based on monotonicity shape
constraints, and [13,14] consider an LRS based on the concavity shape constraint.
The estimators underlying both of these tests are maximum likelihood estimators, and
they do not require any tuning parameter selection. The LRS’s were shown to have
asymptotic distributions that are universal, not depending at all on the unknown true
function, so do not require any additional procedures for their use for inference. Also,
the assumptions needed for the LRS asymptotics to hold are the same as those for
estimation, rather than stronger ones as in some other nonparametric settings.

These positive results motivate interest in using the statistic 2log A, of (6) for
testing and forming confidence intervals for ro(xg), and suggest that it may have
a limit distribution that is universal and free of nuisance parameters. This would
allow us to avoid the difficult estimation of r((xo) and resulting tuning parameter
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Concave regression: value-constrained estimation and... 9

selection problem that would be required if we rely on (3) to do inference. We make
the following conjecture. To state the conjecture we need some assumptions on the
design variables (and on xg); the assumptions (Assumptions 1 and 2) are stated and
discussed in Sect. 4.1.

Conjecture 1 Assume the regression model (1) holds where Eetéii < oo for some
t > 0. Assume rq is concave, ro(xg) = Yo, ro is twice continuously differentiable in
a neighborhood of xo, and r{/(xo) < 0. Let Assumptions 1 and 2 hold. Then, with
2log An(yo) defined in (6),

210g 4n (y0) =4 0°D, )

where D is a universal random variable (not depending on ro or the distribution of
En,i)-

A partial proof of the conjecture is given in Sect. 4.1. See Theorem 5 there. The form
of the random variable D is given below in (84). Some discussion of the assumptions
is given in remarks after Theorem 4.

A theorem analogous to Conjecture 1 was proved by Banerjee and Wellner [6]
(see also [4]) in the context of the current status data model of survival analysis, by
Banerjee [5] in the context of monotone response models, and by Groeneboom and
Jongbloed [22] in the context of monotone density estimation. Those models are based
on the shape restriction of monotonicity. In the context of a shape restriction based on
concavity, Doss and Wellner [12—14] show a theorem analogous to Conjecture 1 for an
LRS for the mode of a log-concave density. The likelihood ratio in the latter problem,
based on a concavity assumption, involves remainder terms which are asymptotically
negligible but are quite challenging to theoretically analyze. In the current status
problem there are no such remainder terms, and in the monotone density problem
they can be analyzed using the so-called min—max formula (see e.g., Lemma 3.2 of
[22]), which does not have an analog for concavity-based problems. Thus it is quite
difficult in general to analyze LRS’s in concavity-based problems, and so proving
Conjecture 1 in full is a large undertaking beyond the scope of the present paper.
To study the asymptotics of 2log X, and prove Conjecture 1, one needs to study

the asymptotics of the constrained estimator 77,? Since 7V is the solution to a strictly

n
convex program, there are optimality conditions that characterize it (i.e., Karush—
Kuhn-Tucker type conditions). One key component in developing the asymptotics of
7Y is to understand the conditions that characterize 7., which we do in Theorem 1. We
also study a corresponding limit version of the problem, which is to find the constrained
concave least-squares estimator based on observing a Brownian motion with drift (i.e.,
observing the solution to a stochastic differential equation). We find conditions that
characterize the solution to this limit problem (the limit LSE) in Theorem 2 (on a
compact domain) and Theorem 3 (on all of R) and we see that the conditions are
analogous to those in the finite sample case. (Theorem 2 is used to prove Theorem 3.)
Showing that the convex program optimality conditions are the same for the finite
sample estimator and for the limit process is a crucial step in showing the limit process
is indeed the limit distribution of the finite sample estimator. Finding the characterizing
conditions, particularly in the limit problem, seems to be somewhat more challenging

for the constrained problems than for the unconstrained ones. The process arising in
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10 C.R.Doss

Theorem 3 is used in Theorem 4, which gives the limit distribution of ?,?(xo). Finally,
in Sect. 4.1, we use Theorem 4 to give a partial proof of of Conjecture 1. Specifically,
in Theorem 5 we show that under an assumption on a certain remainder term, the
conjectured limit statement (7) holds.

We further describe the structure of this paper, as follows. In Sect. 2 we consider
the regression model and study some basic properties of the (finite sample) NLSE and
ALSE, which includes presenting Theorem 1. In Sect. 3 we study the limiting version
of the problem and present Theorems 2 and 3. In Sect. 4 we present Theorem 4. In
Sect. 4.1 we present a partial proof of Conjecture 1. In Sect. 5, we provide simulations
giving strong evidence in favor of Conjecture 1, and showing that the corresponding
test and confidence interval have good finite sample performance. Section 6 has some
concluding remarks and discussion of related problems. Appendix A has results we
include for completeness and technical formulas.

2 Finite sample constrained concave regression

We begin with the regression setup 17,, i =TFo(Xni) +€nisi =1, , n. We assume

that €, ; are i.i.d. with mean O, Ee'€ i < oo for some ¢t > 0, we assume {xn ,} are
fixed and without loss of generality we assume that X,,,; < X2 < -+ < Xy.n. Our
model assumption is that 7p : R — R is a concave function. Our interest is in using
2 log A, from (6) to test for the value of 7 at a fixed point xq, and also in inverting those
tests to form corresponding confidence intervals. Thus, we will study the constrained
concave regression problem, where at a fixed point xo € R we assume 79(xo) = Yo
for a fixed value yy.
Let
={p: R— [—00,0) | ¢ is concave, closed, and proper} 8)

Here ¢ is proper if ¢(x) < oo for all x and ¢(x) > —oo for some x and ¢ is closed
if it is upper semi-continuous (as in [40, pages 24 and 50]). We follow the convention
that a concave function ¢ is defined on all of R by assigning ¢ the value —oo off its
effective domain dom(p) := {x : @(x) > —oo} (as in [40, page 40]). For fixed
(x0, y0) € R%, 1et CO := {r € C : r(xp) = yo}. We consider estimation of 7 via
minimization of the objective function r — 5 Zz—l (Y,, i—1(Xn, ,)) The constrained

LSE is the minimum of the above objective function over CO however, CO is not a
convex cone. Thus, to proceed further, we now introduce an augmented or auxiliary
data set. We will (a) translate the original data set so that the corresponding set of
possible regression functions forms a convex cone, and (b) potentially augment the
Xn.i by x0. In addition, in (a), without loss of generality, we will translate the data so
that the true regression function may be assumed to satisfy r((xo) = 0. We define the
auxiliary data set {(x, ;, Yn,i)}l'.lil, where ng will be either n or n + 1, as follows.

1. If xp is equal to one of the data points, say ;n,ko = xo9 where 1 < k0 < n, then
let x,; := X,; and let ng := n. Let ¥,,; 1= Y,; — yo — 7j(x0) (Xp,; — Xo) for

i=1,...,n
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2. If x is not equal to any data point, then let 1 < k% < 1 + 1 be such that Xpp0_1 <

X0 < X, 0, where we let X, 0 = —o0 and X, ,41 = oo here. Then for i =
L. k" — 1let x,; == %,; and Y, ; = Yu; — yo — 7 (x0)(Fni — x0), let
X, 40 1= X0, and for i = KO41,...,n4+1=:np,let x,; := Xp;_1 and ¥, ; :=
Yoic1—y0— }76()60)(;”‘,',1 — x0). Define Y, 10 = 0.

Thus the size of the augmented data set, ng, is either n or n + 1. In either case, define
I to be the subset of {1, ..., ng} corresponding to data indices, so / has cardinality n
and may or may not include kY. Thus, with these definitions Y. and x, ; satisfy the
regression relationship

Yui =ro(xn,i) +eu; for i el 9

where rg € C° := {r € C | r(xo) = 0}. We thus consider the objective function'

1
0n(r) = 3 3 (Yui = rn)’ (10)

iel

A priori, argmin,. . ¢, (r) isuniquely specified only at the data points x,, ; fori € I, and
argmin, .o ¢, (r) is only uniquely specified at the data points x,, ; fori =1, ..., ng;
thus we choose to restrict attention to solutions that are affine between the x,, ;. (The
actual solutions will be uniquely specified on most of their domain in practice, because
they will be piecewise linear with relatively few knot points.) Restricting attention to
piecewise affine solutions is the standard approach, and the choice does not affect the
asymptotic results, see e.g. [41]. For a concave function that is piecewise linear, we
can identify the function with its values at its bend points, so we define corresponding
subsets of R” and R by

C, = {(r ()7,,,1) oot (Xum)) ir e C} and C,? = {(ro (xn,l) R ) (xn,no)) 1rg € CO} .
(1D
For a function r we let eval,r := (r(}?n,]), cee r()?n,,,)) and eval,,r =
(r(xp,1)5 - - - 7(Xp,n)). For r, € C,, define the linear extrapolation ext(r,) € R
by ext(r,) := eval,,(r), where r is the function giving the linear interpolation of r,.
Then, slightly abusing notation (by giving ¢, a R"0-vector argument rather than a
function), we define the estimator vectors 7, and 70 by

7, € argmin ¢, (ext r) and Zg € argmin ¢, (r), (12)
reC, VEC,(I)

and let 7, and ?,? be the piecewise linear interpolation of Zn and 22 on [X,.1, Xn,nl-
We let 7y ; i= (%), i € I,and 70, :=70(x1),i = 1,...,ng.

Proposition 1 The estimatorsT,, andZ?l exist and are unique (foranyn > lorng > 1,
respectively).

I Note that (9) and (10) are potentially different from (1) and (2) in the introduction, but only by a minor
indexing modification.
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12 C.R.Doss

Proof Both statements follow from writing the optimization as a quadratic program
with linear inequality constraints giving the concavity restriction and one (linear)
equality constraint corresponding to 7 (xg) = 0 for the constrained estimator. O

The estimators 7, and?,? can be seen as projections of the data onto the convex cones
C, and CY, and so we begin by studying these cones. A convex subset K of a (possibly
infinite dimensional) real vector space is a convex cone if x € IC implies Ax € I if
A > 0. We say a convex cone K is (finitely) generated by or is spanned by a set of
elements ki, ..., k, € K if any k € K can be written as k = Zl'.”:l Mik; for some
Xi > 0. Define (y)_ := min(y, 0) for y € R.

Proposition2 1. A generating set for C, is given by +eval, 1, +eval, x, and
eval, (X, —x)_fori =2,...,n— 1.

2. A generating set for C,? is given by £ eval,,(x — xp), eval,,(x — x,,;)— fori =
2...., kO and evaly(x,; — x)_ fori = K+1,...,n0—1.

Proof First we show 1. Consider the subset of C that is piecewise affine with kinks only
possible at X;, ;, and where we restrict attention to [X), 1, X, ,]. Then for x € [X;,.1, Xpn.n]
we can write

r(x) =b+w (x - yn,l) + w> (En,Z - X)_ + e wp— (fn,n—l - )C)_ )

where b, wi € R, since r is piecewise affine, and w; > Ofori =2,...,n — 1 since r
is concave. Thus 1, x, and (X, ; — x)_ fori = 2,...,n — 1 generate the cone of
piecewise affine functions on [X), 1, X;,.,], and applying eval, to these functions yields
a generating set for Cy,.

Now we show 2. Any r that is piecewise affine with possible kinks at the x, ; can
be written as

rx)=b+wi (x —xn1) + w2 (xn2 —x)_+ -+ wpi (Xnng—1 —x)_, (13)

where b, w; € R,and w; > Ofori =2,...,n9— 1.
Since (x,,; —x)— = (x — Xx,;)— — (X — x,,;), we can rewrite (13) as

b+ i (x — x0) + W2 (x —xn2) 4+ 4 Do (x —x, 40) (14)
+ wroyg (xn,ko_,_] - X)_ + -t wpg—1 (xn,n()—l - x)_

where I;, w; € R, and w;, w; > 0. Thus enforcing r(xp) = 0 amounts precisely to
requiring b = 0in (14). Thus £ (x —xo), (x —xpi)—fori =2,..., kY, and (Xn,i—X)—
fori = k%41, ..., no— 1 span the cone of functions r € C° given by piecewise affine
functions with kinks only possible at x,, ; and dom r = [x,,1, X, 5, ]. Correspondingly,
applying eval,,, to the above set of functions gives the span of Cg. O

Next we study characterizations of the estimators. First, we state the result for the
unconstrained estimator. The characterizations are derived from the previous propo-
sition about the boundary elements of the cones we minimize over together with the
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following optimality conditions, as given in Corollary 2.1 of [21]. We use (-, -) to denote
the usual Euclidean inner product and, for a differentiable function f : R” — R, we
use V f(x) to denote the gradient vector at x.

Proposition 3 ([21, Corollary 2.1]) Let ¢ : R™ — R U {oo} be differentiable and
convex. Let z1, ...,zr € R™ and let IC be the convex cone generated by 7, . .., Zk.
Then x € K is the minimum of ¢ over K if and only if

(zi, Vo)) = 0 for 1<i <k, (15)
<Zi7 V¢(32)> =0 if @ >0, (16)
where the nonnegative numbers Q1, . . ., Qi satisfy X = Zf: 19z

Proposition 4 ([24, Lemma 2.6]) Define I?n,k = Zfi:l?n,i and Sy = Zf;l Ya.i
fork € I. Thenr, = argmin,c ¢,(r) if and only if Ry y = Sy.n and

. j—1 ~ ~ . .

j—l . » N = Zli:l Sn,k (xn,k+l - xn,k) jel, j=2

Z Ry k (xn,k-‘rl - xn,k) i1

k=1 = Zi;l Sn.k (Yn,kﬂ - 35,,,1() if Ty has a kink at X, ;.

We define vy, to always have a kink at X, .

Proof This is proved in [24]. The proof follows from the first part of Proposition 2
together with Proposition 3. O

The inequality in the characterization is reversed from the original lemma in [24], since
we are considering concave regression and [24] consider convex regression. Note that
(15) and (16) are equivalent to saying

A, Ve(X)) =0 (17)
( )

forall A € cone {{z; : 1 <i <k}U{—z; :i € I}} where I := {i Do > O} is the set
of inactive constraints and

cone {y; :i € L} := {Zaiyi Tap > O}.

i€l

The cone we are now interested in is C,? which, by Proposition 2, is generated by

at =% (x,, —xo)’;":l , (18)
ai = ((xn,j = i) Li=p) 12, fori =2,....k", and (19)
ai = ((xni — Xn,;) 11{1-5,-});?0:1 fori =k"+1,...,n9— 1. (20)

We now show an analog of the unconstrained characterization, Proposition 4, for the
constrained case. For ease of presentation, we assume without any loss of generality
that xo = 0.
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14 C.R.Doss

Theorem 1 Let xo = 0. For 70 € C?, define

k
nk—Z’"nj’ SnL,k::ZYn,.i» fork:l,...,ko—l,

j=1
no

no
R"k _Z?r?,j’ and Srlf,k 3=2Yn,1, fork=k"+1,...n0
j=k j=k

Thenzno is the unique element of argminrecg ¢, (r) given by Proposition 1 if and only

if

j—1 J—1
Z Rﬁ,k (Xn k1 = Xn k) < Z Sﬁ,k (Xn k41 — Xn k) for2<j< KO, 21
k=1 k=1

no no
Z R,If,k (Xnk = Xnk—1) < Z S,fk (%nk = Xnk—1) fork®+1<j<ng—1,
k:j+1 k:j+1

(22)
_ o
Z ( ) (Xn k1 = Xnp) = (1?5,;( - Sf,k) (Xnk — Xnk—1) - (23)
k=1 k=k0+1

where the inequalities in (21) and (22) are equalities if x, ; is a knot of?,?.

Proof Letay and a;,2 <i < ng — 1, be defined as in (18), (19), and (20). Compute
!/
Vng¢n (Zg) = (jr\y(l),] - Yn,l» ey (jfr(l)’ko - Yn,ko) ]l{n():n}a v 7?,(1)”0 - Yn,no) (24)

or V¢ (79) = ((?2] = Yn, )L 200 or no:n})jozl. By Propositions 2 and 3 we see
that 70 = argmin, .o ¢, (r) if and only if 79 €Y and
(Con V2 Vo (72)) =0, (25)
<((xn,j — 0 L(i> )12 - Vnobn (g;)) >0 fori=2,....k (26
and
<((x,,,,- —xn )i <)% - Vb (_n)) >0 fori=k'+1,....ng—1, (7)

with equalities in (26) and (27) if x,,; € SGFY). From (26), fori =2, ...,k — 1,k°,
we have

no
0< Z]l{j<i} (xn,j _xn,i) (?,(1)] - Yn,j) = Z (Xn,j _xn,i) (?,(1)] - Yn,j) , (28)

J=1 J=1
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and from (27) fori = KO+ 1,...,n9— 1, we have
no no
0= Z Lyj=iy(Xn.i — Xn,j) (?,(,),j - Yn,j) = Z (xn,i - xn,j) <?,(1)’j - Yn,j) )
Jj=1 j=i+1
(29)
and from (25)
no
0= 3" xu; (7 Yu)) (30)
J=1.j#KO
since x, yo = 0. Summing by parts, we see fori =2,..., kO that (28) equals

i—1i-1 i—1i—1

ZZ (xn,k - xn,k—i—l) <?r(1),j - Yn,j) = Z Z 1<k (xn,k - xn,k—H) (ﬁ‘j - Yn,j)

j=lk=j j=lk=1

i—1 i—1
0
= Z (Xnk — Xn.k+1) Z 1<k (i’n‘j - Yn,j)
k=1 j=1

i—1
DL L
= Z (xn,k — xn,k+1) (Rn,k — Sn,k) .
k=1

(3D
Similarly, from (29), for i = K+1,..., no — 1, we see that
0 j no no
Z Z (xn,k—l - xn.k) (7:2’] - Yn,j) = Z Z ]]-ksj(xn.k—l - xn,k)(?gqj - Yn,j)
j=i+1k=i+1 j=i+1k=it1
no no
= Z (Xnk—1 = Xn.k) Z ]lksj (;fl),j - Y"q.f)
k=i+1 j=i+l
no
= Z Conk—1 = Xn ) (R — SR,
k=i+1
(32)

To finish, we use the same calculations once more. From (30), since x,, ;o = 0, we see
that

KO—1 no
> Cong = xw0) (7 = Yar) = D2 Coupo =) (R = Yag) - G33)
Jj=1 Jj=k0+1

Identifying the left- and right-hand sides of (33) with the right-hand sides of (28) and
(29) (with i = kY in both cases), and using (31) and (32), we see

KO—1 no

pL L DR R
Z (xn,k - xn,k-H) (Rn,k - Sn,k) = Z (xn,k—l - xn,k) <Rn,k - Sn,k) .
k=1 k=k0+1
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This completes the proof. O

3 Limit process for constrained concave regression

Now we consider an asymptotic version of this problem. Let
dX(1) = —12¢%dt + dW (1) (34)

where W is a standard two-sided Brownian motion started from 0. This serves as a
canonical/limiting/white noise version of a concave regression problem (with canon-
ical regression function ro(t) = —12¢2, where the constant 12 is not important). As
has been seen in past work (e.g., Theorem 7 in Appendix A) and as will be seen below
in Theorem 4, the white noise problem is important because it yields the limit distri-
bution of (finite sample) estimators. On a compact interval [—c, c] one can define a
least-squares objective function

be(r) = %/ r(u)? du — / ru)dX (u), (35)

c C

asin [23]. Note that, symbolically replacing d X with g, (r —g)%/2 = r?/2—rg+g2/2;
we can drop the g2 /2 term (which is irrelevant when optimizing over r) which explains
why (35) is a ‘least-squares’ objective function. We can now consider minimizing ¢
over concave functions r satisfying r(0) = 0. See the introduction (pages 1622—1623)
of [23] for further explanation and derivation motivating the idea that (35) serves as a
limit version of the objective function (10), and that (34) serves as an approximation
to the (finite sample) observed data. For ¢ > 0 and k < 0, let

Cex :={r:[—c,cl - R; r concave, r(0) =0, r(£c) =k} . (36)

We add the extra constraints r (+c) = k to compactify the problem. These constraints
become irrelevant as ¢ — o0o. We start by showing existence and uniqueness of the
minimizer of (35).

Proposition5 Let k < 0 and ¢, be given by (35). For Lebesgue-almost every ¢ > 0,
argmin, ¢c,_, ¢c(r) exists and is unique with probability 1.

Proof Letr € C. k. Note that if M := maxr — oo, then by concavity of r, r > M /2
on some interval of length at least c¢/4 for M large enough. Then the first term in (35)
is of order M? whereas the second term is of order M, so the objective function value
goes to 0co. We can thus almost surely restrict attention to only functions bounded
above by some fixed value M.

Now consider the class

ckm = {r:[—c,c] = R, r concave, r(0) = 0, M > r, r(%c) > k}.
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Concave regression: value-constrained estimation and... 17

This class is closed under pointwise convergence because limits of concave functions
are concave and the limit of a uniformly bounded function is uniformly bounded. It
is thus a closed subset of a set of functions compact (by Tychonoff’s theorem) under
pointwise convergence, so is compact, and by the Lebesgue bounded convergence
theorem, ¢, is continuous with respect to pointwise convergence. Thus ¢, attains a
minimum on CZ,’, k.m- Wenow show that the minimum satisfies the constraints r (£¢) =
k. Assume, to the contrary, that 7(c) > k. Let (y)— := min(y, 0) for y € R. Let A =
n(c—§ —-)_ forsome 6, n > 0, where 6n = g :=r(c) —k, sothatr(c) + A(c) = k.
We will show that ¢.(r + A) < ¢.(r). Let )~((u) = X(u) — X(c). Then

—/AdX:—/Ad}?:—(XA)(c—s,cH/)?dA=/i{dA

since A(c —8) = 0 and )~((c) = 0. Here, we let g(a, b] := g(b) — g(a) for a function
g and a < b. The previous display equals

—n /C (W) — W(c))du + n/c (4143 — 46‘3) du. 37
c—48 c—§

There exists a sequence of §’s converging to 0 such that the first term in (37) is 0
because integrated Brownian motion started from O crosses O an infinite number of
times near 0, almost surely. The second term in (37) equals, to first order approximation

(as 8 \( 0),
—nk /C (u — c)du = n8%k/2 = gdk/2. (38)
c—38

On the other hand, the first order term in fcc_a((r + A2 —r)dr/2 is f r Ad\ which
equals, to first order,

r(c)/Ad,\ — —r(c)/ |AldA = %(C)ga < (—k/2)gs. (39)

Thus we see that there exists ¢ such that (39) plus (38) is negative, i.e. such that
¢c(r + A) — ¢-(r) < 0. Thus the minimum over Cs,k,M satisfies r(£c) = k, and so
¢ attains a minimum on Ce .

Uniqueness of the minimum follows from the strict convexity of ¢. on the convex
set Ce: forany w € (0, 1), r1, 12 € Ce i,

(I-w) [

$e(wri+(1=w)r2) = wee(r)+ (1 - w)pe(r2) — — 5 (r1 () —ra () du,

where the right side is strictly less than we.(r1) + (1 — w)p.(r2) if ffc(r] (u) —
r2(u))3du > 0, so that ¢, s strictly convex. This completes the proof. O

We now state and prove a characterization of the minimizer of (35). Unlike the
unconstrained case, we must explicitly deal with the knot set S0 (defined below) in the
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18 C.R.Doss

statement and the proof of the theorem, because the correct definitions of the processes
depends on knots 77, and tg (also defined below). This complicates definitions, because
SY is not necessarily a countable set. It is known to have Lebesgue measure zero
[23,43]. For our next theorems, we let

Theorem 2 Let X be given by (34). Fix ¢ > 0 and k < 0 and let7° € C. 1. Define S0
by

(3) = () = frer: (%) 0 =0}.
Fort € [—c, c], define
TR = inf (§0 N[0, c)) , TL :i=Ssup (3‘0 N (—c, 0]) ,

t TL
Xgr() :=f dX, Xp(@) :=/ dX, (40)
T t

R

t 7
Yr(t) :=/ Xrw)du, Y (1) :=/ X1 (u)du. 41
T t

R

Let Hg be the primitive of the primitive 0ﬁ70 such that Hg(c) = Ygr(c) and Hr(tg) =
Yr(tRr). Let Hy, be the primitive of the primitive of?O suchthat Hy (—c) = Yy (—c) and
Hy(tp) = Yr(t1). Then for Lebesgue-almost-every ¢ > 0, 70 = argminrecak ¢c(r)
if and only if the following three conditions hold:

L. (Hr — YR)(0) = (HL — Y)(0),

2. forc >t >0, (Hg —YR)(t) <0andfor —c <t <0, (HL —Yr)() <0,

3. and )
/ (HL—YL)d(?O) =0=/
[—c.0] [0

For completeness we give, in Lemma 5 in the appendix, integration by parts formulas,
which we will use in the proof without further reference. Recall also that, by Theorem
23.1 of [40], a finite, concave function on R has well-defined right and left derivatives
on all of R.

Proof Notice t; and tx are well defined and finite because 7°(0) = 0 and 7 (+c) =
k < 0, so7 cannot be affine.

Sufficiency Assume Conditions 1, 2, and 3 hold for 79. Since Hpy is twice differ-
entiable, if Hr(c) = Ygr(c), HR'(c) = Yg'(c), and Hr < Yg then there exists a
‘one-sided parabolic tangent’ [23] to Y at c. Because W is of infinite variation, for
Lebesgue almost all ¢ > 0, Yg cannot have such a one-sided parabolic tangent, so
we can thus assume that Hg'(¢c) = Fr(c) > Xgr(c) = Yg'(c). Note we can rule
out Fr(c) < Xg(c) because then on an interval [¢c — &, c], § > 0, we would have
Yr < Hpg. Similarly, we can assume —Hy'(—c¢) = Fp(—c¢) > Xp(—c) = =Y. (—o¢).

Note that for functions ¢ and r,

(Hg — Yr)d (?0)/ (42)

.l

g = = (g =P+ 2 —r) 2 2r(g 1)
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Concave regression: value-constrained estimation and... 19

Thus for any ¢ € C.x which is not Lebesgue-a.e. identical to 77,

$e(q) — b (?0) > /C (q —?0) (?Od,\ - dx)

—C

= _/0 (q —?0) d(Fr —XL)—l—/OC (q —'fo) d(Fr — XR),

—C

from (46). The previous display equals

- [((q ) - x0) (01— [ (- X0 (g —?0)}

—C

c
+((a=7) e =x0) 0.1 = [ (Fre-x01d (¢ -7°)
0
0 c
[ -x0d(a-7) - [ Fe-x0d (o -7) 3)
—c 0
since g, 70 € Ce.x,and, recalling —(Fp —X ) = (H,— Y1), (FR—Xg) = (HL—YL),
we see the previous display equals

- ((HL -7 (a —?0)’) (—c. 0]+ /( (e -7)
- ((HR ~ 70 (4 —?0)/> 0, ] + /(O’c](HR ~veyd (g -7)

and if both ¢’(£c) and (7% (£e¢) are finite, then by Condition 1 and since (Hy —
Yr)(—c) =0, (Hgr — Yg)(c) = 0, the previous display equals

f (Hp — Yp)dq' +/ (Hg — YR)dq' > 0.
(—c,0] 0,c]

The final inequality follows by Condition 2 and because ¢’ is nonincreasing (g is
concave), so that g’ defines a nonpositive measure.

We now show that we can take both ¢’ (&) and (7°)'(%c) to be finite, which will
complete the proof of sufficiency. Recall from the beginning of this sufficiency proof
that we may assume that Yz does not have a one-sided parabolic tangent at ¢, and thus
that Fr(c) > Xg(c). Now,

c 2 c
k(XR(c) = Fr(©) + /O (7) @du - /0 P dX ) (44)
equals [ (7)'(w)(Xg(u) — Fr(u))du. But if 7°)(u) — —oc as u /' c, then
fon 7)Y (u)(Xr(u) — Fr(u))du — ocoasn / c. A similar argument holds on [—c, 0]
to show that if (7°) (u) — oo as u \, —c, then fno(?o)/(u)(XL — F)(w)du — oo
as n \( —c. Comparison with e.g. the triangle function linearly interpolating between
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70(+e¢) = k and 7°(0) = 0, shows that ¢.(7°) < 0o and so (44) is also < co. Thus,
by contradiction, we see that (7°)’ (interpreted appropriately as the left or right deriva-
tive) is bounded above at —c and below at ¢, and so by concavity is bounded on all
of [—c, c]. Similarly, to see that ¢’ can be assumed finite, notice that if ¢’ (u) — —o0
asu J corq'(u) — ooasu N\ —c, then (43) would be infinite, so we would be
finished. This completes the proof of sufficiency.

Necessity Assume 70 = argmin,eca , Pc(r). We argue by perturbations of 79 to show
the characterization holds. For a perturbation A : [—c, c] — R, we will say that the
perturbation is ‘acceptable for small €’ if for all € > 0 small enough, 7" + €A € C..
If for all € > 0 small enough, 70 4 € A is concave (but may not satisfy the constraints
at £c), we say ‘A preserves concavity for small €.” If 70 + A € C.; or 70 + A is
concave we will say that A is ‘acceptable’ or ‘preserves concavity,” respectively (in
which case the € is generally explicitly given). We let Fg := Hg' and F := —H|'
(in analogy with Xg = Yg’, X; = —Y;'). Note: this means Hy (t) = fth Frdx and
Hg(1) = [, TtR Frdh. Recall that A is Lebesgue measure. For a perturbation A that is
acceptable for small €,

0< ii\rj(l)e—l (q&c (?0 + EA) — b (?0)) - /_ A (?de _ dX) (45)

0
=—f Ad(Fy - X1)

—C

+/ Ad(Fr - Xp),  (46)
0

since 70 minimizes ¢.. We now show a preliminary result. For ¢+ > 0 let A;(u) :=
(t —u)_ and fort < O let A;(u) := (u — t)—, where (y)— = min(y, 0). Now fix
t >0,¢e >0,and 7 € SO Assume T > 0; the case T < 0 is analogous. Assume
further that either 7°)'(t+) # (%) (x—) or (Y)[(r) # 0, where *)| (v) :=
limj~ o h ™! ((?O)/(r +h) — (?O)/(t—f—)) is the second derivative from above. In the
statement “(?O)Q’r(r) # 0, we allow the possibility (?O)L’r(t) is undefined. Notice
that there exists a sequence of points {7;} C §0, T; \\ TR, such that 7; satisfies the
conditions just described for 7, since 70 is linear on [Tz, Tr] (so has second derivative
that is O from below). Thus either 7 € SO or there are T € §O, T; \\ TR, all either
having discontinuous derivative or having nonzero second derivative from above. Now
for s > 0, define the concave function r, ; by

re.s(u) := min (?O(s) + <(?°) (s4) + e) u—s), POu) — eAs(u)>

=70 L (o501 (0) + <?°<s> - ((?0) () + e) = s)) L5, )

+ (’r‘o(u) — eAS(u)) L5, 00) ()
47
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Concave regression: value-constrained estimation and... 21

where the equality holds for some small § = 870 ; . > 0 which solves

(s — 8) =70s) — ((’r‘o)/(s+) +e) 5. (48)

By our assumptions on 7, we can check that there exist sequences s; N\, T and €; N\, 0
such that §; := s5; — 7 > 0 satisfy §; = O(¢;) as i — oo. If 70)' (z+) # )/ (z—)
then —A; preserves concavity for small € and we may take s; = 7 and §; = 0
for any ¢; > 0 small enough, so clearly §; = O(¢;). Similarly, if there exists a
sequence s; N\, T such that (7°)'(s;4+) # () (si—) then we may take §; = 0. If
(7%) exists but (?O)Z_(t) # 0 then there exists a sequence of points s; N\, T, at
which we assume without loss of generality at that 70 is differentiable, such that
7o) = 70%s;) — PO () (x — 57) < n(t — ;)% for some n < 0 (by concavity).
(Note: we can also assume without loss of generality, since 7° is differentiable at 7
and (7°)’ is monotonic, that (7°)'(s;) — (#°)(r).) Thus, for a sequence y; > 1, by
differentiability at s;,

1@ =502 =70 =700 — (0 =) () ) = o(r —s) assi Nz (49)

Thus, set €; := (—n)(¥;)(si — 7). By (49), ¢; \( 0, and with §; = s; — 7, we see
8; = O(€j) asi — oo, since y; > 1 and n < 0 s fixed.
Our first goal is to show

_ 70 =0 _ _ ~0
lim bc (”e,-) bc (r ) — lim ®c (r eAt) ®c (r )
i—00 € N0 €

(50)

Note that if 7 is an isolated knot then r.; = 70— €A, for € small enough, and

also that for € small enough, 70 — € A, is concave (thus for small €, — A, preserves
concavity although it is not an acceptable perturbation). If t is not an isolated knot
then 7° — € A, is not concave. However, r¢;.s; 18 indeed concave and by (50), we can
use ANZ- =70 — r¢;,s; in place of € A;. Now, notice that

Oc (Ve,- ]]-[s,-,oo)) — Pc (?Ol[s,-,oo)) Oc (/7:0 - EiAs,-) — Pc (?O)

1lim = lim
i—00 €; i—00 €j
= —/AT (?de _ dX), (51)

by the same calculation as in (45), since s; — 7. Here, foraset A, 14 (u)is lifu € A
and O otherwise. Thus, we will show

lim o (rsi ]l(—oo,s,-)) — ¢ (/”\01(—00,51'))

i—00 €;

=0, (52)

and then conclude that (50) holds. We assume without loss of generality that
70 (si—) = 7%/ (s;+) (since if this does not hold for an infinite subsequence of
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{s;}, then we can take the subsequence as our sequence, and then —Ay; preserves
concavity, §; = 0, and (52) is immediate). Now ¢ (r¢; L(—oo,s;)) — gbc(?ojl(_oo,si))
equals

Si / ’
(e (@ an)on) () o)
_ f <?O(sl~) — 0w + <<?0> (i) + E") - si)> e

The first term in (53) equals

Si / 2
%/ |:<?O(s,-)+<70> (s,»—><u—s,»)> +2¢ (P(s1)
+ (?0)/ (si—)(u — Si)) (u—s;) + € (u—s51)°

—-((ﬁ%s»-+7ﬂ(w—0(u-—SO)2

(53)

ol = 5) (F0s0) + 7050w = 5)) + o(u — s»z)} du

and since §; = O(¢;), the previous display is O(Eiz). Recalling A~,~ =79 Te;.s; 1S, 0n
[, s;], the integrand of the second term in (53), we see that the negative of the second
term in (53) equals

(x4:) @51 - f X () ((?0)/ (si—)du —d () (u)) . (54)

Recall: for a function g gnd a < b,welet g(a, b] := g(b) — g(a). Since A~,'(s,-) =0,
8i = O(e) as € \ 0, Ai(si — &) = 0(8;) = o(e;) (recall 70) (s;+) = °)'(s;—)),
and X is continuous, (54) is o(¢;). Thus both terms in (53) are o(¢;) and so we have
shown (52), so by (51), we have shown (50).

From now on we take t = tg. In the case where g ¢ SO but TR = lim;_ o T; With
T € S, the below arguments go through with T = t; and taking the limit of ;.

‘We now show Condition 1 holds. Recall A;(u) := (t —u)_ fort > 0and A;(u) :=
(u—t)_fort <0.Let A_(u) := —u. Now let

ceiAq
ATL (—C)

c

+eA_(u)+ Ai(”)m~

Ayi(u) == — (55)
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Note that A;; is an acceptable perturbation with Ay ;(+c) = 0 and A;;(0) = 0.
Furthermore, as in the proof of (50), we can show that

o< i S AL) — 0 ()

I—>00 €;

B ¢ B c c 0,
_/ ( —ATL(_C)ATL—kA—|—AIR—ATR(C)> (r da dx). (56)

—C

Let Ay denote the integrand on the right side of (56). By (46), the right side of (56)
equals — fi)c Ayd(Fp — Xp) + [y A1d(Fr — Xg) which equals

0
—((FL = Xp)AD(=c, 01+ | (FL — Xp)dA1 + ((Fr — Xg)A1)(0, c]

—C

—/0 (Fr — XRr)d Ay

and, because Aj(£c) = 0, A;(0) = 0, the previous display equals

0 c
(FL—Xp)dAy — /0 (Fx — Xg)dAj = (Hy — Y1)(0) — (Hg — Y2)(0)

—C

since by definition (Hy — Y7 )(—c), (Hr —YRg)(c), (Hr—YR)(tg),and (Hy —Y1)(7L)
are all 0. This shows that (H;, — Y;)(0) — (Hg — Yg)(0) > 0.

The perturbation A; ; is based about A_. Since A_ does not satisfy the side con-
straints at +=c, we modified A_ by adding two further perturbations, (constant multiples
of) Ay, and A, to yield Ay ;. The perturbation A; is approximately equal to —Ay,,
but modified so as to preserve concavity, and — Ay, is approximately equal to —A,. A
totally symmetric argument allows us to use a perturbation based around —A_ (u) = u
that is modified by adding (constant multiples of) A, and a perturbation that approx-
imates — Ay, . This shows that (H; — Y1)(0) — (Hg — Yg)(0) < 0, and allows us to
conclude that Condition 1 holds.

Now let
Ai(c)
Ag () .

Then Az ;(c) = 0 and Ay ;(t A Tgr) = 0 where a A b = min(a, b). Thus Ay ; is an
acceptable perturbation for all i, and, as above one can check that

0< lim ei—l (¢C (;:0 + Az,i) — ¢ (?0)) = lim ¢! <¢c (70 + eAz) — ¢ (?0)>

i—00 e\

Api(u) =€ A (u) + A; (u) (57)

where Ay := Ay — A, Ai(c)/ Agip (¢). Thus, from (45),

0 5/0 A2 d(Fg — dXg) = (Fg — Xg)A2)(t A Txs €] —/O (Fx — Xg)d .
(58)
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The term ((Fgr — XRr)A2)(t A TR, c] equals 0 because A; is 0 at both # A T and at c.
Since [(Fgr — Xg)d Az, = (Hg — YR)(tr, ] = 0, we see (58) equals

(Hgr — YR)(t,cl = —(Hg — YR)(®).

This shows Condition 2 holds for # > 0. The argument for ¢t < 0 is analogous.
Now let

‘&

% (©)

A = e A;
34,0 i + As, (C

~

Where7?R = Ligp,00) (70 —7%(zg)) is continuous, concave, and satlsﬁesr (‘L’R) =0.
As above, we can check that

11— 00

0= Tim & (g (7 + 430.1) — 9 (7°)) = / CAsed(Fg—Xp)  (59)
0
where Az = ??R At r (c)/ATR (c). Then (59) equals

(Fr — XRr)A34) (TR, C] —/ (Fr — Xp)dA3y = —/ (Fr — Xp)dAsy (60)

since A3y is 0 at T and c. Then, since (Hg — Yg) is O at ¢ and at ¢, (60) equals

~ [ (o= X i = - ((HR —Yp) (?0)) (k. ] +/(

TR, C]
_ / (Hr — Yiod (7°) (61)
(tRr»c]

Here we used that (7°)/(¢) is finite, which follows from the same argument used in
the proof of sufficiency since we have already shown that Condition 2 holds. Thus,
we have shown that f(rR C](H & — YR)d(#®) > 0. To show the reverse inequality, let

(Hr = Yp)d (7°)

72 (c)
A‘L’R (C)

Az_ = — —i—e,A,R

Notice that 7 + Asz_; is concave by checking its right and left derivatives at 7g:

72.(0)

() @t = () @b - a7 5 = (7) ort = (7) @)
Arg

= (?0 + A3—,i)/ (TR, (62)

since (70) (tr+) > —??R (¢)/ A, (c) by concavity. By (62), we see that T4+ A3y
is monotonic in a neighborhood of 7 and thus is monotonic everywhere. Thus A3_ ; is
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an acceptable perturbation for all i. Then A3_ ; is approximately equal to — A3 ;, and
replicating the arguments in displays (59)—(61) shows that [ (t.cl (Hr—Yr)d (7% <.
Thus, we can conclude f( r.c] (Hr—Yg)d#® = 0,and an analogous argument shows

f[f . IL)(H 1 — Y1)d(#%) = 0. We can extend the domain of integration to include
[0, Tr] or [71, O], respectively, since (Hg — Yg)(tg) = O and (Hy — Y1)(r1) =0
and 7°)” = 0on (17, Tr) by definition. This shows Condition 3 holds and completes
the proof of the necessity of Conditions 1, 2, and 3, and thus completes the proof. O

Forc™ <0 < ¢t let

+ ot

be(r) == %/ r(u)%zu—/ r(u)d X (u) (63)

[slightly modifying the definition given in (35)].

Corollary 1 Letc™ < 0 < ¢T, k* < 0, and M > 0 be random variables, and let ¢,
be given by (63). Let Cf’k = {r eCY: M =>r,r(ct) > ki}. Let 70 € C;”k and let

Yg, YL, Hg, Hy be as in Theorem 2, with ¢ replaced by cE. Assume further that
|70 (ct)| < oo, where (70)' refers to the right or left derivative, and assume that

(Hg —YR)' (") =0=(HL — Y1) (7). (64)

Then for M large enough, almost surely 7° is a minimizer of ¢ and is thus unique in
Coponle, ¢l

Proof The proof of Proposition 5 shows that, for M large enough, there is a minimizer
of ¢. over C; « and the minimizer is unique on [c¢™, c']. (The minimizer does not
necessarily satisfy?o(ci) = k¥, since ¢* are random.) The proof that 7 is indeed such
a minimizer follows by a slightly modified version of the sufficiency part of the proof
of Theorem 2. The equality (43) follows from (64) (rather than from 70>t = k).
Note also that we now assume directly that [79Y (¢T)| < oo (since ¢* are random,
we do not know that Y7, Yg do not have so-called ‘one-sided parabolic tangents’ at

c*, respectively). O

The previous theorem and corollary are used to prove the next theorem, which gives
characterizing conditions for a so-called “value-constrained invelope process” on all
of R. (The term “invelope process” originates in [23].) The process on R governs the
limit distribution of 70 (xo).

Theorem 3 Let 70 € C°. Define

(3) = () = frer: () =0},
Then define
TR = inf (§0 N[0, oo)) , T = sup <§0 N (—o0, 0]) ,
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and define X, X1, Xg, Y1, and YR as in (34), (40), and (41). Fort € R, let Hg(t) :=
szR fr’;;:()(v)dvdu, and Hy,(t) := ,TL furLW(v)dvdu. Assume

1. (Hr — YR)(0) = (HL — Y)(0),
2. fort >0, (HrR — YR)(@) <0andfort <0, (H, —Yr)(t) <0,

3. and / |
/;_OO’O](HL —-Y)d (?0) =0= /[O,oo)(HR —Yr)d (70> _ (65)

Then 7 is unique.
Note that H; , Hg have different definitions in Theorem 2 and in Theorem 3.

Proof We need several lemmas for the proof. The following lemma connects the H-
processes to the Gaussian processes about which we can make explicit statements and
computations.

Lemmal Lett, o € SO with 0 < 71 < 1 be such that 70 is affine on [11, 7o) and let

t € [t1, ©2]. Define, for any function g, Vg = g(v2) — g(t1), g = (g(11) + g(12))/2,
Vi=1—1,and T = (11 + 12) /2. Then

YRr(2)(t — 1) + YR(T1)(12 — 1)

HR(I) = V1
1 /VXg 4 =
-5 <V_‘r + W(XRVT — VYR> (t —1)(r2 — 1),

and so Hg(T) = Yg — %VXR Vt. Analogous formulas can be stated for the left-side
processes.

Proof The proof follows from the proofs of Lemma 2.3 of [23], and Lemma 8.9 of
[14]. O

The previous lemma is used to prove the next lemma, about the “knot” behavior of 7°.

Lemma2 Fixt > 0. Let t4(t) be the infimum of the points of touch of Yg and Hg in
[t, 00). Then for all € > O, there exists M, independent of t, such that P(t4(t) —t >
M) < €. An analogous statement can be made for the left-side processes, t < 0, and
the supremum of the points of touch of Y and H in (—oo, t].

Proof The result follows from Lemma 1, via the analysis used in the the proof of
Lemma 8.10 of [14] (see also Lemma 2.7 of [23]). O

The uniqueness of 7° follows from showing that if two different processes both satisfy
the characterizing conditions of the theorem then they are equal. One considers the
cases where the two processes share (sequences of) knots (converging to infinity) or
they do not. The following lemma handles the former case.

Lemma 3 Suppose Gr,1 and G2 both satisfy the conditions of Theorem 3 on Hg
and G 1,1 and G > satisfy the theorem conditions for Hy, (we do not assume a priori
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that they have the same value for Tg or Ty, respectively). Let ry : G/I’e =G 1.1 and

rp =G, =G, If (Gr;i — YRr)(sg) = 0and (Gr; —Yr)(s1) =0,i = 1,2,
where Yg i, Y1 ;i are defined by (41) based on the knots of ri, i = 1,2, thenr; = rp
on [sr, SRl

Proof This follows from Corollary 1. We let Y7, Yg, Hy and Hg be as defined in
Theorem 3, we assume Hr(sg) — Y7 (sg) = 0and Hy (sz) — Y. (sz) = 0, and we will
show that the conditions of Corollary 1 are satisfied by H; and Hg. This will then show
the statement of the lemma. Since Hg(tg) — Yr(tg) = 0 by definition, we see that Hg
is the primitive of the primitive of H} satisfying the constant conditions (at ¢* = sg
and at tg) used to define Hp in Corollary 1. Furthermore, by Condition 2 and because
(Hgr—Yg)(tg) = 0, we see that (Hg —Yg)'(tg) = 0. A similar argument can be made
for the left-side processes. Since H 1(3) is finite on R, the condition |H 1(3) (cb)| < 00
is automatically satisfied (for either the left or right third derivative). Therefore we
have shown that the conditions of Corollary 1 are satisfied. We apply this to Gg,1 and
Gpr. Let

M:= sup {ri(x),r2(0)}, k¥ :=min(r(sg), r2(s8)),
x€[sr,Sg]
and k= = min(r;(sz), r2(sz)).

Then r; € C2; fori = 1,2, and both the i = 1 and i = 2 processes satisfy the
conditions of Corollary 1 by the argument in the previous paragraph, so r; = r; on
[sz, sr] as desired. O

For the remainder of the proof of Theorem 3, one considers cases where on either
the left side, the right side, or both sides, there is no sequence of shared touch points
converging to infinity, and deriving a contradiction. The argument follows as in the
proof of Theorem 5.2 of [14].

This completes the proof of Theorem 3. O

Remark 1 If X is replaced by X, (1) := o W(r) — 4at3 for constants a, o > 0, then
the conclusion of Theorem 3 still holds; in this case, we denote the process 7° of the
theorem by 70 Tao

Remark 2 The knot definitions in Theorem 3 differ from those in Theorem 5.2 of [14],
in the context of a mode constraint. Condition (iii) of Theorem 5.2 of [14] (which is
analogous to Condition 3 of Theorem 2) is based on knots 'L’_?_ and 72, one (but almost
surely not both) of which may be 0. These knots are potentially distinct from the knots
77 and tg in that setup, where 77, Tg can never be 0. In the height-constrained problem
we consider in this paper, there is only one pair of knots, 77, Tz, and they may be 0;
if one is O then both are 0.

4 Asymptotics

We can now study the asymptotic behavior of"O To do so, we will make the following
assumptions on the design.
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Assumption 1 The design points x,; € [0, 1] satisfy ¢/n < xp.i41 — xpi < C/n,
i=1,....,n—1forsome0 <c¢ < C < 0.

Assumption 2 For0 < x < I,let F,(x) :=n~' 37_, 1{0,¢](xs,;). There exists § > 0
such that SUP | x—xo| <8 [Fp(x) — x| = 0(”1_1/5).

Theorem 4 Suppose that the regression model (9) holds where ry is concave with
ro(xo0) = Yo, supposethate€, 1, ..., €y arei.i.d. with ESi1’ < oo for somet > 0, that
ro is twice continuously differentiable in a neighborhood of xo, and that r{(xo) < 0.
Let Assumptions 1 and 2 hold. Let a = |r{/(xo)|/24, and 0% = Vare,,;. Let?,? =
argmin, ¢, (r) where the argmin is over concave functions r such that r(xp) = Y.
Then
n?/3 (?2 (xo + tn_l/s) —ro(xo) — r(/)(xo)tn_l/5> =y ?g’g(t)
in LP[—K, K] forall K > 0, where 70 is given in Theorem 3 (and Remark 1).

a,o

Remark3 We suspect asymptotic distributions and the Wilks phenomenon for
2log X, (yp) can be derived under more general conditions than Assumption 2, but this
assumption is used by Groeneboom et al. [24] (it is their Assumption 6.1) to derive
the limit distribution of 7, (xo), so we rely on it here too and leave generalizations for
future research.

Remark 4 We require a sub-Gaussian tail assumption on €, ; in Theorem 4. In [9], the
asymptotic distribution for a monotone regression function estimator is derived under
only second moment assumptions for the error variables. However, for deriving the
rates of convergence for concave regression least-squares estimators, Mammen [34,
Theorem 4] (and then [24]) assume sub-Gaussian tails on the error variables. Mammen
[34, page 749] states, “We do not believe that this strong condition is really necessary.”
However, in the present paper we have not attempted to weaken this assumption.

Proof of Theorem 4 We take xo = 0 for simplicity and take r¢(0) = 0 and r(/) 0 =0
by the translation discussed in Sect. 2. Let x,(r) := tn~'/> = tn™'/5 + xq be the
“global” parameter corresponding to the “local” parameter ¢ € R. Then let 7,, g be the
smallest nonnegative bend point of ?,?

Recall F,(x) :=n~"! Y71 10,x1(xn,i). Then define

X (1)

S R(V) = / Y@ dFy) Y, g(t) :=n*> / Su, R )du
[fn,RaU ™n,R

Xn (1)

Ron@)i= [ BdRw 0=t [ Ry i+ g (-0 )
[th, R V] T,

n,R

where Y is the function such that Y (x, ;) = Y, ; (and whose value is O elsewhere),
and where

Apg = 0¥/ / Y () = 70(u) d Fy ().
[Tn,R’OO)

Define also

R, 2(v) = / Pwydu, Hyg(t) == n*/s /
[tn,R-V] [

Tn,RXn ()]

I’Rn,R(M)dM + An,R (t - nl/STn,R>
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which we will show to be equivalent to R, g and to H,_ g, respectively. For brevity,
we will make definitions and arguments only for the right-side processes. Analogous
definitions and arguments can be made for the left-side processes.

By Theorem 1, one can check that

Hn,R(t) - Yn,R(t) < 0
for all > 0, with equality if 7 is a knot point of ?,? (see Lemma 8.18 of [ 14] for similar
calculations). Additionally, defining Y, ; and H,  in an analogous fashion as Y, g
and H, g, we can check that

Hy 1.(0) = Yy, (0) = Hp, r(0) — Y, (0). (66)

Next, we can check that

sup |Hy g (t) — Hy ()| = 0,(1) (67)

[t|<c

for any ¢ > 0, by Assumptio~n 2 [24, see page 1696]. One can define I-Nln, 1 and make
an analogous statement for H, ; and H, .
We can then conclude that

Hy,1.(0) — Yy 1.(0) = Hy g(0) — Yy, g(0) + 0,,(1), (68)
Hy g(1) — Yo r(t) +0,(1) <0, (69)
Hy (1) = Yo 1() +0,(1) <0 (70)

where the inequalities are equalities for knot points of ?,?

Let S, (1) i= n~" Y0y Yailgy, <) and let Y, (1) := [ (S, (v) — S, (x0))dv.
Then, for any ¢ > 0, we can then check that ¥, converges weakly to o fot W(s)ds —
at* = Y, + (t) in the space of continuous functions on [—c, c] with the uniform metric
([24, (6.12), page 1694]). A similarly structured argument shows that along certain
subsequences of {n}{°, Y, r converges to a process Yr 4 o = Yr (which may a priori
depend on the subsequence, but eventually is seen not to depend on the subsequence).
The convergence argument for Y, g requires more care than that for ¥, because the
definition of the former depends on the knot 7, r. Nonetheless it can be rigorously
carried out, in a fashion similar to that of the proofs of Lemmas 8.16 and 8.17 of [14].

Then the remainder of the proof follows as in the proof of Theorem 6.3 of [24] (see
also [34]) and of Theorem 5.8 of [14]. By Lemma 4 below, n I/S‘L’n,R = 0,(1), and this
allows us to also conclude that I:Im g and its first, second, and third derivatives are all
tight in appropriate metric spaces. Then, by Prohorov’s theorem, for any subsequence
we can find a subsubsequence of ﬁn, g that converges to a limit process, Hg. The
processes Hg and Yg can be shown to satisfy Hr(t) — Yr(t) < 0 for ¢+ > 0 and
f[o,oo)(HR — YR)d(Hg)® = 0by (69). Arguing analogously for left-side processes,
we can see that there are limit processes Hy, and Y, = Y 4. satisfying Hp (t) —
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Y1(1) < 0,and f__, o (Hr — Y1)d(Hr)® = 0 by (70), and by (68) that Hy (0) —
Y1 (0) = Hg(0) — Y (0). This shows conditions 1, 2, and 3 of Theorem 3 hold for the
processes Hy and Hg. Therefore, the limit processes Hy, and Hg are unique, so are
identical along all subsequences. Thatis, we can conclude that I:Im 1 and ﬁn, R converge
to the unique processes Hy and Hg given by Theorem 3. In particular, we have shown
that n?/579 (tn=1/3) = (H,.8)"(t) = (H,.1.)"(t) converges to (Hy)" = (Hg)" and so
(recalling that xo = 0 and r(0) = r’(0) = 0 by assumption) the proof is complete. O

Lemma 4 Let the assumptions and terminology of Theorem 4 hold, and let T, g be the
smallest nonnegative bend point of'f,?. Then n'/> Tu,R = Op(D).

Proof The proof is by a perturbation argument in the spirit of Theorem 4.3 (and
Lemma 4.4) of [3] and Proposition 7.3 of [14] (which in turn are inspired by Lemma 8
of [34]). If 0 is itself a knot of 772 then there is nothing to show (because 7, g = 0).
Thus we assume 0 is not a knot of 7. We will construct a ‘perturbation” A: R — R
such that (eval,, A, Vo9, 7)) = (eval,, A, 70 — Y, ) > 0 as in (17), where Y, :=
(Yn1s---, Yun) (recalling Y, o :=0if ng = n + 1). This implies

[ 4w (Fw - rw) a0 = [ aw@w -nwdrw @

using the notation developed in the proof of Theorem 4. The approach is to find a A

such that the quantity on the left side of (71) is a positive constant times —r}f r <0,

and the quantity on the right side of (71) is O, (n —4/5). The conclusion then follows.
Let 7,1, < 0 < 7, R be the largest negative and smallest positive knots of ?,?,
respectively. Assume 7, g < |7, |, without loss of generality.
Let

3
Tn, L
Ay (1) :=t11[rn.L,0)+< . ) 10,7, ¢]
Tn,R

which satisfies A1(0) = 0. A simple argument (see Lemma A.4 of [16]) shows that
even though A is discontinuous, the conclusion of (71) holds, meaning

[ 410 (700 = ) dfw = [ 2100w - nwydfw. @)

Further,
/Al(u)udu =0, (73)

which will later allow us to ignore a term in a Taylor expansion. (Note that in [3,14]
the perturbation must satisfy f A(x)dx = 0; in the present case it turns out we do not
need this to hold because of the constraint?g (0) = 0. On the other hand, we must have
A(0) = 0.) Now, the empirical process argument used in the proof of Theorem 4 of [34]
shows that the term on the right of (72)is Op(n —4/5). For the term on the left, we can
show that [ Ay ()70 (u) — ro(u)) dF, () = (1 +0,(1) [ Ayw) @0 W) — ro(u)) du
as in (67), by Assumption 2. Let D := ?,9 — ro. Since ?,? is linear on (7,1, Tn,R)
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and ?,?(O) = 0,?,?(u) = (?,?)/(O)u for u € [ty,1, Tn,r] and so by (73) and a Taylor
expansion of rg about O (recalling that A is Lebesgue measure),

/Aldez D(O)/AldA+D’(O)/uA1(u)du

—/Al(u)roéo)uz(l—i—op(l))du (74)
_ —/Al(u)roéo)uz(l+0,,(1))du, (75)

We compute that [ u?Ay(u)du = (—(ty.)* + (1.1t 8) /4 < —(Ta.)*/4 < 0.
Thus we can conclude that the quantity on the left of (72) equals —C, (7, R —Tn, D1+
0,(1)) for a constant Cy, > 0 (since r{(0) < 0 and |7, 7| > 7, g). Thus the proof is
complete. O

4.1 The likelihood ratio statistic

Here we present a partial proof of Conjecture 1. We will break 2 log 1, into two terms, a
“main” term and a “remainder” term. We focus on the main term, which drives the limit
distribution (according to simulations), and do not analyze the remainder term (which
Conjecture 1 and simulations would imply to be asymptotically negligible). To begin,
we need to discuss certain rescalings of the processes studied in the previous sections.
Fora,o > 0,let X4 5 () ;= o W(t) — 4at3 as in Remark 1, and, correspondingly, let

t
Yool) =0 / W (s)ds — ar* £ o (a/a)*3Y ((a/a)2/5z) , (76)
0

where the equality in distribution can be checked using the fact that W (a-)a~!/? 4

W(-) for any « > 0. Let H, , be the invelope process given by Theorem 6 based on
Y45, and let Hé?’(7 denote either of the (null hypothesis) invelope processes, Hg or
Hp, given by Theorem 3 based on Y, . By (76),

Hg,o (1) 4 o(a/ay Hy ((a/a)z/st) , and Hg’g(z) 4 a(a/a)3/5Hﬂ1 ((a/a)z/S;) )

Let 7y 0 (1) := (Hao)" (1) and 73 (1) == (H{ )" (1) (recall H," = Hg"). Then
we have

~ d . |
Fao () L 0361157 ((a/U)Z/S.) = ST /7). (77)
1V
d 1
70,0 L0l ((@f0)?) = —7 (/). (78)
1200
where we let y; := (a/o)3° /o and y» := (0/a)*/3. This allows us to relate the
rescaled processes 7y, o and?g’g (where a will later depend on g and o2 = Var(ep,;))

to the universal processes 7 and 7°. For our future use, we note the relationship
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32 —1

Ny, =o . (79)
We have
0<210g)\n:2<¢n(n> &n rn) Z (nl)z ( rn,iYn,i_Z?S,iYn,i)~
iel
(80)

Now by (16), (7, Ve (7)) = 0 and (70, Vb, (70)) = 0, so (80) equals

ST R ) 2R ) TR @) e

iel iel

Now we expect that away from the constraint, 7, ; and ?B’i are asymptotically equiva-
lent. In fact, we expect that (81) can be localized to a sum over indices corresponding
to O p(n_l/ %) neighborhoods of xq. To discuss this, we note that (81) can be written
asn [ (7)? =72 u)?) dF,(u) (recalling F, (x) := n=' Y7, 1jgxj(xn.;)). Then
we let x, (1) := xo + n~1/3¢, and can then see that 2log A, equals D, 5 + E; » where

xn(b)
Db :=n/ <rn(u) —7w) )an(u), and
xn( b)

Enpi=n [ (Fa? = 70w?) dF, ).
R\[x (=b),x, (D)]

We conjecture that E,, 5, is asymptotically negligible for large enough n and b. As was
discussed in the introduction, proving that E, ; is asymptotically negligible may be
quite challenging. A result of this sort was shown fully in [13,14] in the context of a
likelihood ratio statistic for the mode of a log-concave density. In some contexts where
the underlying shape constraint is one of monotonicity rather than convexity/concavity,
the corresponding problem seems to often be simpler [4,6,22]. It is beyond the scope
of the present paper to show E, j is negligible; here, we focus on the non-negligible
term D, 5.
Now, by Assumption 2, D, 5, is equal to [24, page 1695]

X (b) b
n / () = 7)) du + o(1) = n*P / o (n ()7 = 7 (xa (V) 2dv + o(1).
xn(=b) —b
(82)
Let a = |r (x0)]/24. Let S,(¢t) := n_lzf'zl Yn»il{xn_ist}’ and let Y,(t) :=
fxf)"(t) (S, (v) — S;(xg))dv. Then, for any ¢ > 0, we can then check that Y, con-

verges weakly to o fot W(s)ds — at* = 4.0 (t) in the space of continuous functions
on [—c, c] with the uniform metric (see the proof of Theorem 4). Then, by (the proofs
of) Theorem 7 and by Theorem 4 (recalling that ro(x¢) = 0 and r(’) (x0) = 0 by our
data translation), n2/7, (x, (-)) converges weakly to 7, » and n?/ S?Q(xn()) converges
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weakly to ?2,6. Thus, the right side of (82) converges in distribution to

2
b 2 b 1 s \2 s \2
~2 ~0 -~ ~0
e — |7 = rl—) -7 | — ds
/4; “o (“’”) /b(yl)/zz) ( (Vz) (Vz)

b/
= / " (Fw? ) du

=b/y2
b/
— 52 f " (?(u)z —AO(M)Z) du, (83)
—b/y2

as n — 00, by (77) and (78), and recalling that ylz)/z?’ = o2 by (79). Now if we let
b — oo then (83) converges to

o2 foo (?(u)2 —Ao(u)z) du =: D, (84)

which does not depend on rg, as desired. This shows that Conjecture 1 holds, assuming
that E,, ;, is appropriately negligible. We thus now state Conjecture 1 as a theorem under
the following assumption on the error term.

Assumption 3 For all small enough § > 0 there exists b5 > 0 such that |E,, ;5| < §K
where K = O (1) does not depend on §.

Theorem 5 Assume the regression model (1) holds where Ee“'%i < 00 for some
t > 0. Assume rq is concave, ro(xo) = Yo, ro is twice continuously differentiable in a
neighborhood of xo, and r(j (xo) < 0. Let Assumption 1 and 2 hold. Define 2 1og A, (y0)
as in (6). If Assumption 3 holds, then 21og hy(y0) —q 0?D = o2 [% F(u)* —
7 u)? du.

Proof For any § > 0, for a subsequence of {n};° |, there exists a subsubsequence

such that along the subsubsequence E, p; —4 SR where |R| < K almost surely,
bs/v2 ?(M)Z _

by Prohorov’s theorem and Assumption 3. Thus since D, 55 — 4 o2 f_ bs /v

?O(u)z du =: UZDI,S as n — oo by (83), we see that 2logi, —4 O'Z]D)bé + 6R
along the subsubsequence. Taking, say, § = 1, we see that 2log A, has a (tight)
limit, which we denote by o>ID, along the subsubsequence. Since K does not depend
on §, we can let § N\ 0 so R —, 0, and since then bs , oo we thus see that
0°D := 02Dy, +8R — o2 [*2 7w)?* =70 w)? du so D = [0 F(w)? —7°(u)* du.
Thus, along the subsubsequence 2log 1, —4 o2 ffooo?(u)z — 7%wu)? dus; since this
holds for an arbitrary subsequence, the convergence holds along the original sequence.
This completes the proof. O

5 Simulations

We now use simulation studies to assess our procedures. First, we give evidence
in Fig. 1 that Conjecture 1 holds. We simulated from three different true concave
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Table 1 Characteristics of the

o X0 ro(x0) 7(x0) rg (x0) d(ro)
true concave regression function
u'sed in 'the Monte Carlo 52 0 0 0 _2 1.64
simulations
cos(x) - % 878 479 —.878 1.94
—exp(x) 2 —7.39 —7.39 —7.39 1.27

regression functions, —x2, cos(x), and — exp(x). We used a fixed design setting, with

n = 1000 points uniformly spaced along an interval. For —x2 and cos(x) the intervals
were [—1, 1]. For —exp(x) the interval was [1, 3]. We used standard normal error
terms. Figure 1 gives empirical cdfs based on M = 5000 Monte Carlo replications
of the distribution of 21log A1poo for the three regression functions. The curves are
visually indistinguishable, giving evidence in support of Conjecture 1. The curve
labeled “limit” is based on simulating directly from the distribution of D. To do this,
we simulated the process X (1) = W() — 4¢3 and computed the limit process 7
from Theorem 6 and 70 from Theorem 2 based on the ‘data’ X. We then computed
D = fR(?z(t) — ™2(1))ds. The actual form of the limit is not fundamental to
Conjecture 1. However the simulation results reported in Fig. 1 appear to indeed show
that D has this form, since the “limit” curve is visually indistinguishable from the other
three curves described above. The final curve is the cdf of a chi-squared distribution
with 1 degree of freedom. This would be the limit of the likelihood ratio statistic if
this were a regular parametric problem, but is distinct from the limit of our likelihood
ratio statistic, in this nonparametric problem.

Thus, with Conjecture 1 in mind, we implemented our likelihood ratio test for the
hypothesis test (4), rejecting when 2log A, (yp) > dy, o € (0, 1), where d, is based
on the simulated limit distribution in Fig. 1. Specifically, we used the curve based on
—x? with a Gaussian error distribution as the limit distribution for 2 log 1. We tested
the level under the null hypothesis via Monte Carlo. Our simulations were based on
sample sizes of either n = 30, n = 100, or n = 1000, and M = 20,000 Monte
Carlo replications. We used the three ry’s of —x2, cos(x), and — exp(x) again on
the same intervals listed above. Two designs were used for each of the rg’s; a fixed
design, uniformly spaced, and a random uniform design (although the random design
is not covered by our theory). The reported results are for a standard normal error
distribution. Table 1 gives the xo used for each function’s hypothesis test, and ro(xop),
the true value (which was used for the null hypothesis). We also report smoothness
characteristics of ry at xo, which could in general affect inference procedures, including
the constant d(rg) = (24/(74|r6’(x0)|)1/5 with o = 1, from (3). Table 2 gives the
simulated levels from the Monte Carlo experiments. The third and fourth columns
give the Monte Carlo level of the test procedure for the two nominal levels of @ = .05
and o = .1, respectively, in the fixed design setting. The fifth and sixth columns give
the results in the random design settings. The results for cos(x) were generally the
worst, which is perhaps attributable to having x¢ closer to the edge of the covariate
design interval than in the scenarios for the other two regression functions. Shape
constrained estimators suffer near the covariate domain boundary. We do not present
simulation results for coverage of our confidence intervals, since by definition the
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Table 2 Monte Carlo level of the

=.05;f =.1;f =.05; =.1;
likelihood ratio test procedure ¢ ¢ ¢ ’ ¢ ’

for nominal levels o = .05, .1 n = 1000
—x2 L0466 0964 0579 112
cos(x) .0501 .106 .0680 131
—exp(x) .0464 .0964 .0469 .0957
n =100
—x2 0527 .108 0514 107
cos(x) .0670 125 .0650 126
—exp(x) .0451 .0990 .0447 .0979
n =730
—x2 .0591 116 .0578 110
cos(x) .0683 127 .0694 127
—exp(x) .0495 105 .0455 .0996

The column heading “f”” denotes fixed design, and “r” denotes random
design. Results are based on sample sizes of n = 30, 100, and 1000,
and M = 20,000 Monte Carlo replications

1.0

cdf
05
|

0.0
|

2logh,,

Fig.1 Empirical distributions of 2 log A, for three different true concave regression functions: —x2, cos(x),
and —e*, all with n = 1000, M = 5000 replications

probability our confidence intervals fail to cover the truth is exactly equal to the level
of the corresponding hypothesis test. We present in Fig. 2 a plot of our confidence
interval procedure on a single instance of simulated data.

6 Conclusions and related problems

There are several problems related to the concave regression problem discussed in this
paper. We mention two here: the problem of forming tests/CI’s for the value of of a
univariate log-concave density, and the problem of forming tests/CI’s for the value of
a concave/convex regression function with multivariate predictors.
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Fig. 2 Pointwise confidence interval (solid lines) at each x € (—.99,.99) via our log likelihood ratio
procedure. Gray dashed line is the true concave regression function ro(x) = x2; circular points are the

simulated data, where Y; = ro(x;) + €;, €; ”~d N(O, .12), i=1,..., 100; black dashed line is the ALSE

A likelihood ratio for the value of a log-concave density on R In the problem
of univariate log-concave density estimation, it is known that the limit distribution
of the (univariate) LSE for concave regression [24] and the (univariate) maximum
likelihood estimator for log-concave density estimation [3] have the same univer-
sal component (they differ in terms of problem-dependent constants). For studying a
height-constrained estimator in the log-concave density problem, the class of interest
does not immediately form a convex cone, but by translation of the log-densities one

can arrive at a convex cone. Consider now X Lyevos Xp S fo = ¢% on R where
@0 € C. Assume fo(xo) = e, or ¢og(xg) = yo. The nonparametric log likeli-
hood is f +— > 7, log f(X;). Following [42], we modify this by a Lagrange term
(which allows us to optimize over all concave ¢ without regard to the constraint
that | e?Ddz = 1). Optimizing over ¢ = log f, the unconstrained log-concave
MLE [38] is @, := argmax ¢ % Y o(Xi) — [ €#@dz. As in the concave regres-
sion problem, we let C% := {¢ € C | ¢(x¢) = 0}. We can then consider defining
90 = argmax cco + Y1_; 9(X;) + yo — [ €07 dz. We can combine @, and @) to
form a likelihood ratio statistic for testing Hy : ¢(x9) = yo against Hy : ¢(xp) # yo.
We expect that $0 will share features with 7 and that the likelihood ratio statistic
formed from @, and {52 will share features with the likelihood ratio statistic (6) dis-
cussed in this paper. We would expect that it will in fact have the same universal limit
distribution DD, independent of nuisance parameters.

A likelihood ratio for the value of a multivariate concave regression function Con-
sider the regression model

Y, =) +e, i=1,....n, (85)

where ¢; are mean 0 and now %; € R? with d > 1. We are again interested in
assuming 7o is concave and consider estimating it by least-squares, as in [31,33,41].
We could also consider a constrained estimator as in (12), and form a likelihood
ratio statistic for inference about 7y(xg) at a fixed point xg € R4, Unfortunately, in
the multidimensional case there is no easy analog for Proposition 2 describing the
generators of the set of concave functions [8,30]. Thus, it is unlikely that there are
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easy analogs of Proposition 4 and, in the constrained case, Theorem 1. In fact, while
[33.,41] give proofs of consistency of the estimators, pointwise limit distribution results
are still unknown. Again, this is in part because of the lack of simple generators for the
class of multivariate concave functions, so that there is no analog of Theorem 2 in the
constrained estimator case (or analog of the simpler process studied in [23,24] in the
unconstrained case). Thus, when d > 1, making progress in pointwise asymptotics
for the estimators and in studying a likelihood ratio statistic may require new tools or
a different approach.

A Appendix: Technical formulas and other results

Here is a statement of an integration by parts formulas for functions of bounded
variation. See, e.g., page 102 of [19] for the definition of bounded variation.

Lemma5 ([19]) Assume that F and G are of bounded variation on a set [a, b] where
—00 < a < b < oo. If at least one of F and G is continuous, then

/ FdG —I—/ GdF = F(b)G(b) — F(a)G(a).
(a,b] (a.b]

Theorem 6 ([23, Theorem 2.1]) Let o, a > 0. Let X (¢) = o W(t) — 4at> where W (1)
is standard two-sided Brownian motion starting from 0, and let Y be the integral
of X satisfying Y(0) = 0. Thus Y, ,(t) = afol W(s)ds — at* fort € R. Then,
with probability 1, there exists a uniquely defined random continuous function H, -
satisfying the following:

1. The function H, » satisfies H, o (t) < Y (¢t) forallt € R.

2. The function H, ; has a concave second derivative, T, o := Hl;’ o

3. The function Hy , satisfies [ (Hy o (1) — Yo o (0))dHS) (1) = 0.

Theorem 7 ([24, Theorem 6.3]) Suppose that the regression model (9) holds, that

2
€n.ls .- €npareiid with ESn' < oo for somet > 0, that ro € C, that ro (x0) <0,
and that r(] is continuous in a neighborhood of xo. Let Assumptions 1 and 2 hold. Let
a = |r}(x0)|/24 and o* := Var(e, ;). Then

n?/3 (’r} (xo + tnil/s) —ro(xo) — V(/)(xo)mfl/s) —d Ta,o(t)

in LP[—K, K] forall K > 0.
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