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Abstract
We propose a likelihood ratio statistic for forming hypothesis tests and confidence
intervals for a nonparametrically estimated univariate regression function, based on
the shape restriction of concavity (alternatively, convexity). Dealing with the likeli-
hood ratio statistic requires studying an estimator satisfying a null hypothesis, that is,
studying a concave least-squares estimator satisfying a further equality constraint. We
study this null hypothesis least-squares estimator (NLSE) here, and use it to study our
likelihood ratio statistic. The NLSE is the solution to a convex program, and we find a
set of inequality and equality constraints that characterize the solution.We also study a
corresponding limiting version of the convex program based on observing a Brownian
motion with drift. The solution to the limit problem is a stochastic process. We study
the optimality conditions for the solution to the limit problem and find that they match
those we derived for the solution to the finite sample problem. This allows us to show
the limit stochastic process yields the limit distribution of the (finite sample) NLSE.
We conjecture that the likelihood ratio statistic is asymptotically pivotal, meaning that
it has a limit distribution with no nuisance parameters to be estimated, which makes
it a very effective tool for this difficult inference problem. We provide a partial proof
of this conjecture, and we also provide simulation evidence strongly supporting this
conjecture.
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6 C. R. Doss

1 Introduction

In nonparametric density, regression, or other function estimation, forming hypothesis
tests and confidence intervals is important but often challenging. For nonparametric
estimators to be effective, they are generally tuned so as to balance their bias and
variance (perhaps asymptotically). However, having non-negligible asymptotic bias
is problematic for doing inference, since the bias must then be assessed to do honest
and efficient inference. One approach is to ignore the bias (e.g., Chapter 5.7 of [47]),
although this is clearly problematic. Often the bootstrap [18] can be used for inference
in complicated problems, but it is frequently a poor estimate of bias and so requires
corrections or modifications. Such corrections have been implemented in a large vari-
ety of cases. For instance in forming confidence intervals for a density function, one
approach is to undersmooth a kernel density estimator and then use the bootstrap [25].
However the undersmoothed estimator used for the confidence interval is then dif-
ferent from that which would be optimal for pure estimation, and requires stronger
smoothness assumptions than would be required for just estimation. Importantly, the
inference is still dependent on a tuning parameter (the bandwidth), whose optimal
selection can be challenging, can lead to different inferences for different users, and
can add another layer of computational burden.

These issues motivate an alternative approach to nonparametric function estimation
and inference, which relies on assumptions based on shape constraints andwhich often
does not suffer from the above problems. Here we consider the regression setup,

Yn,i = r0(xn,i ) + εn,i , i = 1, . . . , n, (1)

where Yn,i ∈ R, we assume that the univariate predictor variables xn,i are fixed, and

εn,i are independent and identically distributed (i.i.d.) with mean 0, and Eetε
2
n,i < ∞

for some t > 0.We assume that the target of estimation, r0 : R → R, is concave. (Con-
cave regression is equivalent to convex regression by taking −Yn,i as our responses;
we will sometimes use “concave/convex regression” to mean either concave regres-
sion or convex regression since they are equivalent.) As will be discussed in greater
detail below, concave/convex regression estimators are solutions to convex programs,
and so they have very different properties than many other nonparametric regression
estimators such as kernel-based ones. Concave/convex regression estimation arises in
a truly vast number of settings. It seems to have originally arisen in the econometrics
literature [28]. As noted by Hildreth [28], in classical economic theory

utility functions are usually assumed to be concave; marginal utility is often
assumed to be convex; and functions representing productivity, supply, and
demand curves are often assumed to be either concave or convex.

(The example worked through by Hildreth [28] is on production function estimation.)
Related examples in finance also exhibit convexity restrictions (Aït-Sahalia andDuarte
[1] study stock option pricing). Concavity/convexity also arises in operations research,
where the concavity/convexity often arises theoretically, and then conveniently makes
optimization of the estimated function very efficient [26,32,44,45]. See [37] and ref-
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Concave regression: value-constrained estimation and… 7

erences therein for further examples of uses of concavity restrictions. There have been
a variety of works that have considered concave/convex regression, in the literatures
of different fields, with most of the focus being on estimation [2,7,27,31,33,39,41].
Meyer [35,36] and Wang and Meyer [46] and consider spline-based approaches to
concave regression estimation, and study testing the hypothesis of linearity against
concavity/convexity, and testing the hypothesis of concavity/convexity against a gen-
eral smooth alternative. Mammen [34] finds the rates of convergence of the univariate
LSE, and [23,24] find its limit distribution. Algorithms for computing estimators in
concave regression settings (sometimes combined with other constraints) have been
studied by Dent [11], Dykstra [17], Fraser and Massam [20], Hudson [29], Meyer
[35,36] andWu [48]. In [10], the authors study upper and lower bounds for the lengths
of confidence intervals (with a fixed coverage probability) for concave regression,
but we do not know of any practical implementation for the intervals they study. In
the Gaussian white noise model, Dümbgen [15] studies multiscale confidence bands
(rather than pointwise intervals) for a concave function. (Confidence bands can of
course be used for pointwise confidence intervals but will be unnecessarily long.)

The model for r0, based only on the assumption that r0 is concave, is nonparametric
and infinite dimensional. However, it is still possible to estimate r0 directly via least-
squares, as in finite dimensional problems. We let

r̂n := argmin
r

φn(r) := argmin
r

1

2

n
∑

i=1

(

Yn,i − r(xn,i )
)2 (2)

where the argmin is taken over all concave functions r : R → R. Perhaps surpris-
ingly, minimizing the least-squares objective function over the class of all functions
constrained only to be concave admits a solution that is uniquely specified at the data
points. It is possible for the solution to be not uniquely specified at some other points,
so we take r̂n to be piecewise linear between the xn,i ’s [28]. The limit distribution of
the estimator at a fixed point x has been obtained (under a second derivative assump-
tion and uniformity conditions on the design of the xn,i ’s) by Groeneboom et al. [24],
who show that

d(r0)n
2/5 (̂rn(x0) − r0(x0)) →d U (3)

where U is a universal limit distribution (meaning it does not depend on r0), and
d(r0) := (24/σ 4|r ′′

0 (x0)|)1/5, where σ 2 = Var(εn,i ). (In fact, U ≡ r̂1,1(0) where r̂1,1
is described below in Theorem 6.) We use g′ ≡ g(1), g′′ ≡ g(2), and g(i) to refer to
the first, second, and i th derivatives of an appropriately differentiable function g.

One might attempt to directly use the limit result (3) as the basis for inference about
r0(x0). However, the limit distribution depends on r ′′

0 (x0), and so using (3) requires
somehow estimating r ′′

0 (x0), which leads to many of the problems described in the
first paragraph of this paper. We avoid this, rather pursuing a hypothesis test approach
based on a likelihood ratio statistic (LRS), and using that to develop a confidence
interval. (Here ‘likelihood ratio’ is a slight abuse of terminology, since it will be a
likelihood ratio only if the εn,i are Gaussian, which we do not assume; the LRS could
alternatively be referred to as a residual-sum-of-squares statistic.) We will consider
the hypothesis test
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8 C. R. Doss

H0 : r0(x0) = y0 against H1 : r0(x0) �= y0 (4)

for (x0, y0) ∈ R
2 fixed. To form confidence intervals, we will invert the hypothesis

test: assume we reject H0 when 2 log λn(y0) > dα for a statistic 2 log λn(y0) (to be
discussed shortly) and some critical value dα , α ∈ (0, 1). Then the corresponding
confidence interval is

{y : 2 log λn(y) ≤ dα} . (5)

(Since y is univariate, the confidence interval can be computed by computing the test
on a grid of y values.)

The statistic 2 log λn(y0) which we will study is based on a ratio statistic λn(y0)
which depends on a ‘null hypothesis statistic’ and on an ‘alternative hypothesis statis-
tic.’ The null hypothesis statistic will depend on a least-squares estimator (LSE) of a
concave regression function, r̂0n , that is further constrained so that r̂

0
n (x0) = y0 where

y0 is fixed: r̂0n := argminr
∑n

i=1(Yn,i − r(xn,i ))
2 where the argmin is over concave

functions r satisfying r(x0) = y0. We refer to this estimator as the ‘null hypothesis
least-squares estimator’ (NLSE). The ‘alternative hypothesis statistic’ depends on r̂n ,
which we thus refer to as the ‘alternative hypothesis least-squares estimator’ (ALSE).
With these two estimators in hand, we define our statistic by

2 log λn ≡ 2 log λn(y0) := 2
(

φn

(

r̂0n
)

− φn (̂rn)
)

(6)

with φn defined in (2).
One of the major benefits to using LRS’s is that their limit distribution often does

not depend on nuisance parameters. In regular parametric problems, two times the log
of the LRS is asymptotically χ2

k , where k is the reduction in parameter dimension in
going from the alternative hypothesis to the null hypothesis. Notably, this chi-squared
distribution is universal, meaning it is the same limit distribution regardless of what
underlying parameter is the true one, so no nuisance parameters need to be estimated
to perform inference, which can make inference more simple and more efficient. (In
this case, one says that log likelihood ratios are (asymptotically) pivotal, or that they
satisfy the Wilks phenomenon.)

In our shape-constrained setting, LRS’s can be challenging to analyze theoretically.
However, such analysis has been successful in some cases. Banerjee and Wellner
[6] and Groeneboom and Jongbloed [22] study LRS’s based on monotonicity shape
constraints, and [13,14] consider an LRS based on the concavity shape constraint.
The estimators underlying both of these tests are maximum likelihood estimators, and
they do not require any tuning parameter selection. The LRS’s were shown to have
asymptotic distributions that are universal, not depending at all on the unknown true
function, so do not require any additional procedures for their use for inference. Also,
the assumptions needed for the LRS asymptotics to hold are the same as those for
estimation, rather than stronger ones as in some other nonparametric settings.

These positive results motivate interest in using the statistic 2 log λn of (6) for
testing and forming confidence intervals for r0(x0), and suggest that it may have
a limit distribution that is universal and free of nuisance parameters. This would
allow us to avoid the difficult estimation of r ′′

0 (x0) and resulting tuning parameter
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Concave regression: value-constrained estimation and… 9

selection problem that would be required if we rely on (3) to do inference. We make
the following conjecture. To state the conjecture we need some assumptions on the
design variables (and on x0); the assumptions (Assumptions 1 and 2) are stated and
discussed in Sect. 4.1.

Conjecture 1 Assume the regression model (1) holds where Eetε
2
n,i < ∞ for some

t > 0. Assume r0 is concave, r0(x0) = y0, r0 is twice continuously differentiable in
a neighborhood of x0, and r ′′

0 (x0) < 0. Let Assumptions 1 and 2 hold. Then, with
2 log λn(y0) defined in (6),

2 log λn(y0) →d σ 2
D, (7)

where D is a universal random variable (not depending on r0 or the distribution of
εn,i ).

A partial proof of the conjecture is given in Sect. 4.1. See Theorem 5 there. The form
of the random variable D is given below in (84). Some discussion of the assumptions
is given in remarks after Theorem 4.

A theorem analogous to Conjecture 1 was proved by Banerjee and Wellner [6]
(see also [4]) in the context of the current status data model of survival analysis, by
Banerjee [5] in the context of monotone response models, and by Groeneboom and
Jongbloed [22] in the context of monotone density estimation. Thosemodels are based
on the shape restriction of monotonicity. In the context of a shape restriction based on
concavity, Doss andWellner [12–14] show a theorem analogous to Conjecture 1 for an
LRS for the mode of a log-concave density. The likelihood ratio in the latter problem,
based on a concavity assumption, involves remainder terms which are asymptotically
negligible but are quite challenging to theoretically analyze. In the current status
problem there are no such remainder terms, and in the monotone density problem
they can be analyzed using the so-called min–max formula (see e.g., Lemma 3.2 of
[22]), which does not have an analog for concavity-based problems. Thus it is quite
difficult in general to analyze LRS’s in concavity-based problems, and so proving
Conjecture 1 in full is a large undertaking beyond the scope of the present paper.
To study the asymptotics of 2 log λn and prove Conjecture 1, one needs to study
the asymptotics of the constrained estimator r̂0n . Since r̂

0
n is the solution to a strictly

convex program, there are optimality conditions that characterize it (i.e., Karush–
Kuhn–Tucker type conditions). One key component in developing the asymptotics of
r̂0n is to understand the conditions that characterize r̂0n , which we do in Theorem 1. We
also study a corresponding limit version of the problem,which is to find the constrained
concave least-squares estimator based on observing a Brownianmotion with drift (i.e.,
observing the solution to a stochastic differential equation). We find conditions that
characterize the solution to this limit problem (the limit LSE) in Theorem 2 (on a
compact domain) and Theorem 3 (on all of R) and we see that the conditions are
analogous to those in the finite sample case. (Theorem 2 is used to prove Theorem 3.)
Showing that the convex program optimality conditions are the same for the finite
sample estimator and for the limit process is a crucial step in showing the limit process
is indeed the limit distribution of the finite sample estimator. Finding the characterizing
conditions, particularly in the limit problem, seems to be somewhat more challenging
for the constrained problems than for the unconstrained ones. The process arising in
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10 C. R. Doss

Theorem 3 is used in Theorem 4, which gives the limit distribution of r̂0n (x0). Finally,
in Sect. 4.1, we use Theorem 4 to give a partial proof of of Conjecture 1. Specifically,
in Theorem 5 we show that under an assumption on a certain remainder term, the
conjectured limit statement (7) holds.

We further describe the structure of this paper, as follows. In Sect. 2 we consider
the regression model and study some basic properties of the (finite sample) NLSE and
ALSE, which includes presenting Theorem 1. In Sect. 3 we study the limiting version
of the problem and present Theorems 2 and 3. In Sect. 4 we present Theorem 4. In
Sect. 4.1 we present a partial proof of Conjecture 1. In Sect. 5, we provide simulations
giving strong evidence in favor of Conjecture 1, and showing that the corresponding
test and confidence interval have good finite sample performance. Section 6 has some
concluding remarks and discussion of related problems. Appendix A has results we
include for completeness and technical formulas.

2 Finite sample constrained concave regression

We begin with the regression setup ˜Yn,i = r̃0(̃xn,i ) + εn,i , i = 1, . . . , n. We assume

that εn,i are i.i.d. with mean 0, Eetε
2
n,i < ∞ for some t > 0, we assume

{

x̃n,i
}

are
fixed and without loss of generality we assume that x̃n,1 < x̃n,2 < · · · < x̃n,n . Our
model assumption is that r̃0 : R → R is a concave function. Our interest is in using
2 log λn from (6) to test for the value of r̃0 at a fixed point x0, and also in inverting those
tests to form corresponding confidence intervals. Thus, we will study the constrained
concave regression problem, where at a fixed point x0 ∈ R we assume r̃0(x0) = y0
for a fixed value y0.

Let
C := {ϕ : R → [−∞,∞) | ϕ is concave, closed, and proper} (8)

Here ϕ is proper if ϕ(x) < ∞ for all x and ϕ(x) > −∞ for some x and ϕ is closed
if it is upper semi-continuous (as in [40, pages 24 and 50]). We follow the convention
that a concave function ϕ is defined on all of R by assigning ϕ the value −∞ off its
effective domain dom(ϕ) := {x : ϕ(x) > −∞} (as in [40, page 40]). For fixed
(x0, y0) ∈ R

2, let C̃0 := {r ∈ C : r(x0) = y0}. We consider estimation of r̃0 via
minimization of the objective function r 	→ 1

2

∑n
i=1(

˜Yn,i −r (̃xn,i ))
2. The constrained

LSE is the minimum of the above objective function over C̃0; however, C̃0 is not a
convex cone. Thus, to proceed further, we now introduce an augmented or auxiliary
data set. We will (a) translate the original data set so that the corresponding set of
possible regression functions forms a convex cone, and (b) potentially augment the
x̃n,i by x0. In addition, in (a), without loss of generality, we will translate the data so
that the true regression function may be assumed to satisfy r ′

0(x0) = 0. We define the
auxiliary data set {(xn,i ,Yn,i )}n0i=1, where n0 will be either n or n + 1, as follows.

1. If x0 is equal to one of the data points, say x̃n,k0 = x0 where 1 ≤ k0 ≤ n, then
let xn,i := x̃n,i and let n0 := n. Let Yn,i := ˜Yn,i − y0 − r̃ ′

0(x0)(̃xn,i − x0) for
i = 1, . . . , n.
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Concave regression: value-constrained estimation and… 11

2. If x0 is not equal to any data point, then let 1 ≤ k0 ≤ n+ 1 be such that x̃n,k0−1 <

x0 < x̃n,k0 , where we let x̃n,0 = −∞ and x̃n,n+1 = ∞ here. Then for i =
1, . . . , k0 − 1 let xn,i := x̃n,i and Yn,i := ˜Yn,i − y0 − r̃ ′

0(x0)(̃xn,i − x0), let
xn,k0 := x0, and for i = k0 + 1, . . . , n + 1 =: n0, let xn,i := x̃n,i−1 and Yn,i :=
˜Yn,i−1 − y0 − r̃ ′

0(x0)(̃xn,i−1 − x0). Define Yn,k0 := 0.

Thus the size of the augmented data set, n0, is either n or n + 1. In either case, define
I to be the subset of {1, . . . , n0} corresponding to data indices, so I has cardinality n
and may or may not include k0. Thus, with these definitions Yn,i and xn,i satisfy the
regression relationship

Yn,i = r0(xn,i ) + εn,i for i ∈ I , (9)

where r0 ∈ C0 := {r ∈ C | r(x0) = 0}. We thus consider the objective function1

φn(r) = 1

2

∑

i∈I

(

Yn,i − r(xn,i )
)2

. (10)

Apriori, argminr∈C φn(r) is uniquely specifiedonly at the data points xn,i for i ∈ I , and
argminr∈C0 φn(r) is only uniquely specified at the data points xn,i for i = 1, . . . , n0;
thus we choose to restrict attention to solutions that are affine between the xn,i . (The
actual solutions will be uniquely specified onmost of their domain in practice, because
they will be piecewise linear with relatively few knot points.) Restricting attention to
piecewise affine solutions is the standard approach, and the choice does not affect the
asymptotic results, see e.g. [41]. For a concave function that is piecewise linear, we
can identify the function with its values at its bend points, so we define corresponding
subsets of Rn and R

n0 by

Cn := {(

r
(

x̃n,1
)

, . . . , r
(

x̃n,n
)) : r ∈ C} and C0

n :=
{

(

r0
(

xn,1
)

, . . . , r0
(

xn,n0

)) : r0 ∈ C0
}

.

(11)
For a function r we let evaln r := (

r (̃xn,1), . . . , r (̃xn,n)
)

and evaln0 r :=
(r(xn,1), . . . , r(xn,n0)). For rn ∈ Cn , define the linear extrapolation ext(rn) ∈ R

n0

by ext(rn) := evaln0(r), where r is the function giving the linear interpolation of rn .
Then, slightly abusing notation (by giving φn a R

n0 -vector argument rather than a
function), we define the estimator vectors r̂ n and r̂

0
n by

r̂ n ∈ argmin
r∈Cn

φn(ext r) and r̂0n ∈ argmin
r∈C0

n

φn(r), (12)

and let r̂n and r̂0n be the piecewise linear interpolation of r̂ n and r̂0n on [xn,1, xn,n0 ].
We let r̂n,i := r̂n (̃xn,i ), i ∈ I , and r̂0n,i := r̂0n (xn,i ), i = 1, . . . , n0.

Proposition 1 The estimators r̂n and r̂
0
n exist and are unique (for any n ≥ 1 or n0 ≥ 1,

respectively).

1 Note that (9) and (10) are potentially different from (1) and (2) in the introduction, but only by a minor
indexing modification.
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12 C. R. Doss

Proof Both statements follow from writing the optimization as a quadratic program
with linear inequality constraints giving the concavity restriction and one (linear)
equality constraint corresponding to r(x0) = 0 for the constrained estimator. ��
The estimators r̂n and r̂0n can be seen as projections of the data onto the convex cones
Cn and C0n , and so we begin by studying these cones. A convex subsetK of a (possibly
infinite dimensional) real vector space is a convex cone if x ∈ K implies λx ∈ K if
λ ≥ 0. We say a convex cone K is (finitely) generated by or is spanned by a set of
elements k1, . . . , km ∈ K if any k ∈ K can be written as k = ∑m

i=1 λi ki for some
λi ≥ 0. Define (y)− := min(y, 0) for y ∈ R.

Proposition 2 1. A generating set for Cn is given by ± evaln 1,± evaln x, and
evaln (̃xn,i − x)− for i = 2, . . . , n − 1.

2. A generating set for C0n is given by ± evaln0(x − x0), evaln0(x − xn,i )− for i =
2, . . . , k0, and evaln0(xn,i − x)− for i = k0 + 1, . . . , n0 − 1.

Proof First we show 1. Consider the subset of C that is piecewise affinewith kinks only
possible at x̃n,i , andwherewe restrict attention to [̃xn,1, x̃n,n]. Then for x ∈ [̃xn,1, x̃n,n]
we can write

r(x) = b + w1
(

x − x̃n,1
)+ w2

(

x̃n,2 − x
)

− + · · · + wn−1
(

x̃n,n−1 − x
)

− ,

where b, w1 ∈ R, since r is piecewise affine, and wi ≥ 0 for i = 2, . . . , n − 1 since r
is concave. Thus ±1, ±x , and (̃xn,i − x)− for i = 2, . . . , n − 1 generate the cone of
piecewise affine functions on [̃xn,1, x̃n,n], and applying evaln to these functions yields
a generating set for Cn .

Now we show 2. Any r that is piecewise affine with possible kinks at the xn,i can
be written as

r(x) = b + w1
(

x − xn,1
)+ w2

(

xn,2 − x
)

− + · · · + wn−1
(

xn,n0−1 − x
)

− , (13)

where b, w1 ∈ R, and wi ≥ 0 for i = 2, . . . , n0 − 1.
Since (xn,i − x)− = (x − xn,i )− − (x − xn,i ), we can rewrite (13) as

b̃ + w̃1(x − x0) + w̃2
(

x − xn,2
)

− + · · · + w̃k0
(

x − xn,k0
)

−
+ wk0+1

(

xn,k0+1 − x
)

− + · · · + wn0−1
(

xn,n0−1 − x
)

−
(14)

where b̃, w̃1 ∈ R, and wi , w̃i ≥ 0. Thus enforcing r(x0) = 0 amounts precisely to
requiring b̃ = 0 in (14). Thus±(x−x0), (x−xn,i )− for i = 2, . . . , k0, and (xn,i −x)−
for i = k0+1, . . . , n0−1 span the cone of functions r ∈ C0 given by piecewise affine
functions with kinks only possible at xn,i and dom r = [xn,1, xn,n0 ]. Correspondingly,
applying evaln0 to the above set of functions gives the span of C0n . ��

Next we study characterizations of the estimators. First, we state the result for the
unconstrained estimator. The characterizations are derived from the previous propo-
sition about the boundary elements of the cones we minimize over together with the
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Concave regression: value-constrained estimation and… 13

followingoptimality conditions, as given inCorollary 2.1 of [21].Weuse 〈·, ·〉 to denote
the usual Euclidean inner product and, for a differentiable function f : Rm → R, we
use ∇ f (x) to denote the gradient vector at x .

Proposition 3 ([21, Corollary 2.1]) Let φ : R
m → R ∪ {∞} be differentiable and

convex. Let z1, . . . , zk ∈ R
m and let K be the convex cone generated by z1, . . . , zk .

Then x̂ ∈ K is the minimum of φ over K if and only if

〈

zi ,∇φ(x̂)
〉 ≥ 0 for 1 ≤ i ≤ k, (15)

〈

zi ,∇φ(x̂)
〉 = 0 if α̂i > 0, (16)

where the nonnegative numbers α̂1, . . . , α̂k satisfy x̂ = ∑k
i=1 α̂i zi .

Proposition 4 ([24, Lemma 2.6]) Define ̂Rn,k := ∑k
i=1 r̂n,i and Sn,k := ∑k

i=1 Yn,i

for k ∈ I . Then r̂n = argminr∈Cn φn(r) if and only if ̂Rn,n = Sn,n and

j−1
∑

k=1

̂Rn,k
(

x̃n,k+1 − x̃n,k
)

⎧

⎨

⎩

≤ ∑ j−1
k=1 Sn,k

(

x̃n,k+1 − x̃n,k
)

j ∈ I , j ≥ 2

= ∑ j−1
k=1 Sn,k

(

x̃n,k+1 − x̃n,k
)

if r̂n has a kink at x̃n, j .

We define r̂n to always have a kink at x̃n,n.

Proof This is proved in [24]. The proof follows from the first part of Proposition 2
together with Proposition 3. ��
The inequality in the characterization is reversed from the original lemma in [24], since
we are considering concave regression and [24] consider convex regression. Note that
(15) and (16) are equivalent to saying

〈

Δ,∇φ(x̂)
〉 ≥ 0 (17)

for all Δ ∈ cone {{zi : 1 ≤ i ≤ k} ∪ {−zi : i ∈ I }} where I := {

i : α̂i > 0
}

is the set
of inactive constraints and

cone {yi : i ∈ I} :=
{

∑

i∈I
αi yi : αi ≥ 0

}

.

The cone we are now interested in is C0n which, by Proposition 2, is generated by

a± := ± (xn, j − x0
)n0
j=1 , (18)

ai := ((

xn, j − xn,i
)

1{i≥ j}
)n0
j=1 for i = 2, . . . , k0, and (19)

ai := ((

xn,i − xn, j
)

1{i≤ j}
)n0
j=1 for i = k0 + 1, . . . , n0 − 1. (20)

We now show an analog of the unconstrained characterization, Proposition 4, for the
constrained case. For ease of presentation, we assume without any loss of generality
that x0 = 0.
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14 C. R. Doss

Theorem 1 Let x0 = 0. For r̂0n ∈ C0n , define

̂RL
n,k :=

k
∑

j=1

r̂0n, j , SLn,k :=
k
∑

j=1

Yn, j , for k = 1, . . . , k0 − 1,

̂RR
n,k :=

n0
∑

j=k

r̂0n, j , and SR
n,k :=

n0
∑

j=k

Yn, j , for k = k0 + 1, . . . n0.

Then r̂0n is the unique element of argminr∈C0
n
φn(r) given by Proposition 1 if and only

if

j−1
∑

k=1

̂RL
n,k

(

xn,k+1 − xn,k
) ≤

j−1
∑

k=1

SLn,k
(

xn,k+1 − xn,k
)

for 2 ≤ j ≤ k0, (21)

n0
∑

k= j+1

̂RR
n,k

(

xn,k − xn,k−1
) ≤

n0
∑

k= j+1

SRn,k
(

xn,k − xn,k−1
)

for k0 + 1 ≤ j ≤ n0 − 1,

(22)

k0−1
∑

k=1

(

̂RL
n,k − SLn,k

)

(

xn,k+1 − xn,k
) =

n0
∑

k=k0+1

(

̂RR
n,k − SRn,k

)

(

xn,k − xn,k−1
)

, (23)

where the inequalities in (21) and (22) are equalities if xn, j is a knot of r̂0n .

Proof Let a± and ai , 2 ≤ i ≤ n0 − 1, be defined as in (18), (19), and (20). Compute

∇n0φn

(

r̂0n
)

:=
(

r̂0n,1 − Yn,1, . . . ,
(

r̂0n,k0 − Yn,k0

)

1{n0=n}, . . . , r̂0n,n0 − Yn,n0

)′
(24)

or ∇n0φn (̂r0n) =
(

(̂r0n, j − Yn, j )1{ j �=k0 or n0=n}
)n0

j=1
. By Propositions 2 and 3 we see

that r̂0n = argminr∈C0
n
φn(r) if and only if r̂0n ∈ C0n and

〈

(xn, j )
n0
j=1,∇n0φn

(

r̂0n
)〉

= 0, (25)
〈

(

(xn, j − xn,i )1{i> j}
)n0
j=1 ,∇n0φn

(

r̂0n
)〉

≥ 0 for i = 2, . . . , k0, (26)

and
〈

(

(xn,i − xn, j )1{i< j}
)n0
j=1 ,∇n0φn

(

r̂0n
)〉

≥ 0 for i = k0 + 1, . . . , n0 − 1, (27)

with equalities in (26) and (27) if xn,i ∈ S(̂r0n ). From (26), for i = 2, . . . , k0 − 1, k0,
we have

0 ≤
n0
∑

j=1

1{ j<i}
(

xn, j − xn,i
)

(

r̂0n, j − Yn, j

)

=
i−1
∑

j=1

(

xn, j − xn,i
)

(

r̂0n, j − Yn, j

)

, (28)
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Concave regression: value-constrained estimation and… 15

and from (27) for i = k0 + 1, . . . , n0 − 1, we have

0 ≤
n0
∑

j=1

1{ j>i}(xn,i − xn, j )
(

r̂0n, j − Yn, j

)

=
n0
∑

j=i+1

(

xn,i − xn, j
)

(

r̂0n, j − Yn, j

)

,

(29)
and from (25)

0 =
n0
∑

j=1, j �=k0

xn, j

(

r̂0n, j − Yn, j

)

(30)

since xn,k0 = 0. Summing by parts, we see for i = 2, . . . , k0 that (28) equals

i−1
∑

j=1

i−1
∑

k= j

(

xn,k − xn,k+1
)

(

r̂0n, j − Yn, j

)

=
i−1
∑

j=1

i−1
∑

k=1

1 j≤k
(

xn,k − xn,k+1
)

(

r̂0n, j − Yn, j

)

=
i−1
∑

k=1

(

xn,k − xn,k+1
)

i−1
∑

j=1

1 j≤k

(

r̂0n, j − Yn, j

)

=
i−1
∑

k=1

(

xn,k − xn,k+1
)

(

̂RL
n,k − SLn,k

)

.

(31)
Similarly, from (29), for i = k0 + 1, . . . , n0 − 1, we see that

n0
∑

j=i+1

j
∑

k=i+1

(xn,k−1 − xn,k)
(

r̂0n, j − Yn, j

)

=
n0
∑

j=i+1

n0
∑

k=i+1

1k≤ j (xn,k−1 − xn,k)(̂r
0
n, j − Yn, j )

=
n0
∑

k=i+1

(xn,k−1 − xn,k)

n0
∑

j=i+1

1k≤ j (̂r
0
n, j − Yn, j )

=
n0
∑

k=i+1

(xn,k−1 − xn,k)(̂R
R
n,k − SR

n,k).

(32)
To finish, we use the same calculations once more. From (30), since xn,k0 = 0, we see
that

k0−1
∑

j=1

(

xn, j − xn,k0
)

(

r̂0n, j − Yn, j

)

=
n0
∑

j=k0+1

(

xn,k0 − xn, j
)

(

r̂0n, j − Yn, j

)

. (33)

Identifying the left- and right-hand sides of (33) with the right-hand sides of (28) and
(29) (with i = k0 in both cases), and using (31) and (32), we see

k0−1
∑

k=1

(

xn,k − xn,k+1
)

(

̂RL
n,k − SLn,k

)

=
n0
∑

k=k0+1

(

xn,k−1 − xn,k
)

(

̂RR
n,k − SR

n,k

)

.
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16 C. R. Doss

This completes the proof. ��

3 Limit process for constrained concave regression

Now we consider an asymptotic version of this problem. Let

dX(t) = −12t2dt + dW (t) (34)

where W is a standard two-sided Brownian motion started from 0. This serves as a
canonical/limiting/white noise version of a concave regression problem (with canon-
ical regression function r0(t) = −12t2, where the constant 12 is not important). As
has been seen in past work (e.g., Theorem 7 in Appendix A) and as will be seen below
in Theorem 4, the white noise problem is important because it yields the limit distri-
bution of (finite sample) estimators. On a compact interval [−c, c] one can define a
least-squares objective function

φc(r) = 1

2

∫ c

−c
r(u)2 du −

∫ c

−c
r(u)dX(u), (35)

as in [23]. Note that, symbolically replacing dX with g, (r−g)2/2 = r2/2−rg+g2/2;
we can drop the g2/2 term (which is irrelevant when optimizing over r ) which explains
why (35) is a ‘least-squares’ objective function. We can now consider minimizing φc

over concave functions r satisfying r(0) = 0. See the introduction (pages 1622–1623)
of [23] for further explanation and derivation motivating the idea that (35) serves as a
limit version of the objective function (10), and that (34) serves as an approximation
to the (finite sample) observed data. For c > 0 and k < 0, let

Cc,k := {r : [−c, c] → R ; r concave, r(0) = 0, r(±c) = k} . (36)

We add the extra constraints r(±c) = k to compactify the problem. These constraints
become irrelevant as c → ∞. We start by showing existence and uniqueness of the
minimizer of (35).

Proposition 5 Let k < 0 and φc be given by (35). For Lebesgue-almost every c > 0,
argminr∈Cc,k φc(r) exists and is unique with probability 1.

Proof Let r ∈ Cc,k . Note that if M := max r → ∞, then by concavity of r , r > M/2
on some interval of length at least c/4 for M large enough. Then the first term in (35)
is of order M2 whereas the second term is of order M , so the objective function value
goes to ∞. We can thus almost surely restrict attention to only functions bounded
above by some fixed value M .

Now consider the class

C◦
c,k,M := {r : [−c, c] → R, r concave, r(0) = 0, M ≥ r , r(±c) ≥ k} .
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Concave regression: value-constrained estimation and… 17

This class is closed under pointwise convergence because limits of concave functions
are concave and the limit of a uniformly bounded function is uniformly bounded. It
is thus a closed subset of a set of functions compact (by Tychonoff’s theorem) under
pointwise convergence, so is compact, and by the Lebesgue bounded convergence
theorem, φc is continuous with respect to pointwise convergence. Thus φc attains a
minimum on C◦

c,k,M . We now show that the minimum satisfies the constraints r(±c) =
k. Assume, to the contrary, that r(c) > k. Let (y)− := min(y, 0) for y ∈ R. Let Δ =
η(c− δ − ·)− for some δ, η > 0, where δη = g := r(c) − k, so that r(c) + Δ(c) = k.
We will show that φc(r + Δ) < φc(r). Let X̃(u) := X(u) − X(c). Then

−
∫

ΔdX = −
∫

Δd X̃ = −(X̃Δ)(c − δ, c] +
∫

X̃dΔ =
∫

X̃dΔ

since Δ(c− δ) = 0 and X̃(c) = 0. Here, we let g(a, b] := g(b) − g(a) for a function
g and a < b. The previous display equals

−η

∫ c

c−δ

(W (u) − W (c))du + η

∫ c

c−δ

(

4u3 − 4c3
)

du. (37)

There exists a sequence of δ’s converging to 0 such that the first term in (37) is 0
because integrated Brownian motion started from 0 crosses 0 an infinite number of
times near 0, almost surely. The second term in (37) equals, to first order approximation
(as δ ↘ 0),

−ηk
∫ c

c−δ

(u − c)du = ηδ2k/2 = gδk/2. (38)

On the other hand, the first order term in
∫ c
c−δ

((r + Δ)2 − r2)dλ/2 is
∫

rΔdλ which
equals, to first order,

r(c)
∫

Δdλ = −r(c)
∫

|Δ|dλ = −r(c)

2
gδ < (−k/2)gδ. (39)

Thus we see that there exists δ such that (39) plus (38) is negative, i.e. such that
φc(r + Δ) − φc(r) < 0. Thus the minimum over C◦

c,k,M satisfies r(±c) = k, and so
φc attains a minimum on Cc,k .

Uniqueness of the minimum follows from the strict convexity of φc on the convex
set Cc,k : for any w ∈ (0, 1), r1, r2 ∈ Cc,k ,

φc(wr1+(1−w)r2) = wφc(r1)+(1−w)φc(r2)− w(1 − w)

2

∫ c

−c
(r1(u)−r2(u))2du,

where the right side is strictly less than wφc(r1) + (1 − w)φc(r2) if
∫ c
−c(r1(u) −

r2(u))2du > 0, so that φc is strictly convex. This completes the proof. ��
We now state and prove a characterization of the minimizer of (35). Unlike the

unconstrained case, we must explicitly deal with the knot set̂S0 (defined below) in the
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18 C. R. Doss

statement and the proof of the theorem, because the correct definitions of the processes
depends on knots τL and τR (also defined below). This complicates definitions, because
̂S0 is not necessarily a countable set. It is known to have Lebesgue measure zero
[23,43]. For our next theorems, we let

Theorem 2 Let X be given by (34). Fix c > 0 and k < 0 and let r̂0 ∈ Cc,k . Define ̂S0
by

(

̂S0
)c :=

(

̂S0
(

r̂0
))c :=

{

t ∈ R :
(

r̂0
)′′

(t) = 0

}

.

For t ∈ [−c, c], define

τR := inf
(

̂S0 ∩ [0, c)
)

, τL := sup
(

̂S0 ∩ (−c, 0]
)

,

XR(t) :=
∫ t

τR

dX , XL(t) :=
∫ τL

t
d X , (40)

YR(t) :=
∫ t

τR

XR(u)du, YL(t) :=
∫ τL

t
XL(u)du. (41)

Let HR be the primitive of the primitive of r̂0 such that HR(c) = YR(c) and HR(τR) =
YR(τR). Let HL be the primitive of the primitive of r̂0 such that HL(−c) = YL(−c) and
HL(τL) = YL(τL). Then for Lebesgue-almost-every c > 0, r̂0 = argminr∈Cc,k φc(r)
if and only if the following three conditions hold:

1. (HR − YR)(0) = (HL − YL)(0),
2. for c ≥ t ≥ 0, (HR − YR)(t) ≤ 0 and for −c ≤ t ≤ 0, (HL − YL)(t) ≤ 0,
3. and

∫

[−c,0]
(HL − YL) d

(

r̂0
)′ = 0 =

∫

[0,c]
(HR − YR) d

(

r̂0
)′

. (42)

For completeness we give, in Lemma 5 in the appendix, integration by parts formulas,
which we will use in the proof without further reference. Recall also that, by Theorem
23.1 of [40], a finite, concave function on R has well-defined right and left derivatives
on all of R.

Proof Notice τL and τR are well defined and finite because r̂0(0) = 0 and r̂0(±c) =
k < 0, so r̂0 cannot be affine.

Sufficiency Assume Conditions 1, 2, and 3 hold for r̂0. Since HR is twice differ-
entiable, if HR(c) = YR(c), HR

′(c) = YR
′(c), and HR ≤ YR then there exists a

‘one-sided parabolic tangent’ [23] to YR at c. Because W is of infinite variation, for
Lebesgue almost all c > 0, YR cannot have such a one-sided parabolic tangent, so
we can thus assume that HR

′(c) = FR(c) > XR(c) = YR
′(c). Note we can rule

out FR(c) < XR(c) because then on an interval [c − δ, c], δ > 0, we would have
YR < HR . Similarly, we can assume−HL

′(−c) = FL(−c) > XL(−c) = −YL ′(−c).
Note that for functions q and r ,

q2 − r2 = (q − r)2 + 2r(q − r) ≥ 2r(q − r).
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Concave regression: value-constrained estimation and… 19

Thus for any q ∈ Cc,k which is not Lebesgue-a.e. identical to r̂0,

φc(q) − φc

(

r̂0
)

>

∫ c

−c

(

q − r̂0
) (

r̂0dλ − dX
)

= −
∫ 0

−c

(

q − r̂0
)

d(FL − XL) +
∫ c

0

(

q − r̂0
)

d(FR − XR),

from (46). The previous display equals

−
[

((

q − r̂0
)

(FL − XL)
)

(−c, 0] −
∫ 0

−c
(FL − XL) d

(

q − r̂0
)

]

+
((

q − r̂0
)

(FR − XR)
)

(0, c] −
∫ c

0
(FR − XR) d

(

q − r̂0
)

=
∫ 0

−c
(FL − XL) d

(

q − r̂0
)

−
∫ c

0
(FR − XR) d

(

q − r̂0
)

(43)

sinceq, r̂0 ∈ Cc,k , and, recalling−(FL−XL) = (HL−YL)′, (FR−XR) = (HL−YL)′,
we see the previous display equals

−
(

(HL − YL)
(

q − r̂0
)′)

(−c, 0] +
∫

(−c,0]
(HL − YL) d

(

q − r̂0
)′

−
(

(HR − YR)
(

q − r̂0
)′)

(0, c] +
∫

(0,c]
(HR − YR) d

(

q − r̂0
)′

,

and if both q ′(±c) and (̂r0)′(±c) are finite, then by Condition 1 and since (HL −
YL)(−c) = 0, (HR − YR)(c) = 0, the previous display equals

∫

(−c,0]
(HL − YL)dq ′ +

∫

(0,c]
(HR − YR)dq ′ ≥ 0.

The final inequality follows by Condition 2 and because q ′ is nonincreasing (q is
concave), so that q ′ defines a nonpositive measure.

We now show that we can take both q ′(±c) and (̂r0)′(±c) to be finite, which will
complete the proof of sufficiency. Recall from the beginning of this sufficiency proof
that we may assume that YR does not have a one-sided parabolic tangent at c, and thus
that FR(c) > XR(c). Now,

k (XR(c) − FR(c)) +
∫ c

0

(

r̂0
)2

(u)du −
∫ c

0
r̂0(u)dX(u) (44)

equals
∫ c
0 (̂r0)′(u)(XR(u) − FR(u))du. But if (̂r0)′(u) → −∞ as u ↗ c, then

∫ η

0 (̂r0)′(u)(XR(u)− FR(u))du → ∞ as η ↗ c. A similar argument holds on [−c, 0]
to show that if (̂r0)′(u) → ∞ as u ↘ −c, then

∫ 0
η
(̂r0)′(u)(XL − FL)(u) du → ∞

as η ↘ −c. Comparison with e.g. the triangle function linearly interpolating between
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20 C. R. Doss

r̂0(±c) = k and r̂0(0) = 0, shows that φc (̂r0) < ∞ and so (44) is also < ∞. Thus,
by contradiction, we see that (̂r0)′ (interpreted appropriately as the left or right deriva-
tive) is bounded above at −c and below at c, and so by concavity is bounded on all
of [−c, c]. Similarly, to see that q ′ can be assumed finite, notice that if q ′(u) → −∞
as u ↗ c or q ′(u) → ∞ as u ↘ −c, then (43) would be infinite, so we would be
finished. This completes the proof of sufficiency.
Necessity Assume r̂0 = argminr∈Cc,k φc(r). We argue by perturbations of r̂0 to show
the characterization holds. For a perturbation Δ : [−c, c] → R, we will say that the
perturbation is ‘acceptable for small ε’ if for all ε > 0 small enough, r̂0 + εΔ ∈ Cc,k .
If for all ε > 0 small enough, r̂0 + εΔ is concave (but may not satisfy the constraints
at ±c), we say ‘Δ preserves concavity for small ε.’ If r̂0 + Δ ∈ Cc,k or r̂0 + Δ is
concave we will say that Δ is ‘acceptable’ or ‘preserves concavity,’ respectively (in
which case the ε is generally explicitly given). We let FR := HR

′ and FL := −HL
′

(in analogy with XR = YR
′, XL = −YL ′). Note: this means HL(t) = ∫ τL

t FLdλ and
HR(t) = ∫ t

τR
FRdλ. Recall that λ is Lebesgue measure. For a perturbation Δ that is

acceptable for small ε,

0 ≤ lim
ε↘0

ε−1
(

φc

(

r̂0 + εΔ
)

− φc

(

r̂0
))

=
∫ c

−c
Δ
(

r̂0dλ − dX
)

(45)

= −
∫ 0

−c
Δ d(FL − XL)

+
∫ c

0
Δ d(FR − XR), (46)

since r̂0 minimizes φc. We now show a preliminary result. For t ≥ 0 let Δt (u) :=
(t − u)− and for t < 0 let Δt (u) := (u − t)−, where (y)− = min(y, 0). Now fix
t ≥ 0, ε > 0, and τ ∈ ̂S0. Assume τ ≥ 0; the case τ ≤ 0 is analogous. Assume
further that either (̂r0)′(τ+) �= (̂r0)′(τ−) or (̂r0)′′+(τ ) �= 0, where (̂r0)′′+(τ ) :=
limh↘0 h−1

(

(̂r0)′(τ + h) − (̂r0)′(τ+)
)

is the second derivative from above. In the
statement “(̂r0)′′+(τ ) �= 0,” we allow the possibility (̂r0)′′+(τ ) is undefined. Notice
that there exists a sequence of points {τi } ⊂ ̂S0, τi ↘ τR , such that τi satisfies the
conditions just described for τ , since r̂0 is linear on [τL , τR] (so has second derivative
that is 0 from below). Thus either τR ∈ ̂S0 or there are τi ∈ ̂S0, τi ↘ τR , all either
having discontinuous derivative or having nonzero second derivative from above. Now
for s ≥ 0, define the concave function rε,s by

rε,s(u) := min

(

r̂0(s) +
(

(

r̂0
)′

(s+) + ε

)

(u − s), r̂0(u) − εΔs(u)

)

= r̂0(u)1(−∞,s−δ](u) +
(

r̂0(s) +
(

(

r̂0
)′

(s+) + ε

)

(u − s)

)

1(s−δ,s)(u)

+
(

r̂0(u) − εΔs(u)
)

1[s,∞)(u)

(47)
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where the equality holds for some small δ ≡ δ̂r0,s,ε ≥ 0 which solves

r̂0(s − δ) = r̂0(s) −
(

(

r̂0
)′

(s+) + ε

)

δ. (48)

By our assumptions on τ , we can check that there exist sequences si ↘ τ and εi ↘ 0
such that δi := si − τ ≥ 0 satisfy δi = O(εi ) as i → ∞. If (̂r0)′(τ+) �= (̂r0)′(τ−)

then −Δτ preserves concavity for small ε and we may take si = τ and δi = 0
for any εi > 0 small enough, so clearly δi = O(εi ). Similarly, if there exists a
sequence si ↘ τ such that (̂r0)′(si+) �= (̂r0)′(si−) then we may take δi = 0. If
(̂r0)′ exists but (̂r0)′′+(τ ) �= 0 then there exists a sequence of points si ↘ τ , at
which we assume without loss of generality at that r̂0 is differentiable, such that
r̂0(τ ) − r̂0(si ) − (̂r0)′(si )(τ − si ) ≤ η(τ − si )2 for some η < 0 (by concavity).
(Note: we can also assume without loss of generality, since r̂0 is differentiable at τ

and (̂r0)′ is monotonic, that (̂r0)′(si ) → (̂r0)′(τ ).) Thus, for a sequence γi ≥ 1, by
differentiability at si ,

η(τ − si )
2γi = r̂0(τ ) − r̂0(si ) − (τ − si )

(

r̂0
)′

(si ) = o(τ − si ) as si ↘ τ. (49)

Thus, set εi := (−η)(γi )(si − τ). By (49), εi ↘ 0, and with δi = si − τ , we see
δi = O(εi ) as i → ∞, since γi ≥ 1 and η < 0 is fixed.

Our first goal is to show

lim
i→∞

φc
(

rεi
)− φc

(

r̂0
)

εi
= lim

ε↘0

φc
(

r̂0 − εΔτ

)− φc
(

r̂0
)

ε
. (50)

Note that if τ is an isolated knot then rε,τ = r̂0 − εΔτ for ε small enough, and
also that for ε small enough, r̂0 − εΔτ is concave (thus for small ε, −Δτ preserves
concavity although it is not an acceptable perturbation). If τ is not an isolated knot
then r̂0 − εΔτ is not concave. However, rεi ,si is indeed concave and by (50), we can
use Δ̃i := r̂0 − rεi ,si in place of εΔτ . Now, notice that

lim
i→∞

φc
(

rεi1[si ,∞)

)− φc
(

r̂01[si ,∞)

)

εi
= lim

i→∞
φc
(

r̂0 − εiΔsi

)− φc
(

r̂0
)

εi

= −
∫

Δτ

(

r̂0dλ − dX
)

, (51)

by the same calculation as in (45), since si → τ . Here, for a set A, 1A(u) is 1 if u ∈ A
and 0 otherwise. Thus, we will show

lim
i→∞

φc
(

rεi1(−∞,si )
)− φc

(

r̂01(−∞,si )
)

εi
= 0, (52)

and then conclude that (50) holds. We assume without loss of generality that
(̂r0)′(si−) = (̂r0)′(si+) (since if this does not hold for an infinite subsequence of
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22 C. R. Doss

{si }, then we can take the subsequence as our sequence, and then −Δsi preserves
concavity, δi = 0, and (52) is immediate). Now φc(rεi1(−∞,si )) − φc (̂r01(−∞,si ))

equals

1

2

∫ si

τ

(

(

r̂0(si ) +
(

(

r̂0
)′

(si+) + εi

)

(u − si )

)2

−
(

r̂0
)2

(u)

)

du

−
∫ si

τ

(

r̂0(si ) − r̂0(u) +
(

(

r̂0
)′

(si+) + εi

)

(u − si )

)

dX(u).

(53)

The first term in (53) equals

1

2

∫ si

τ

[

(

r̂0(si ) +
(

r̂0
)′

(si−)(u − si )

)2

+ 2εi
(

r̂0(si )

+
(

r̂0
)′

(si−)(u − si )

)

(u − si ) + ε2i (u − si )
2

−
(

(

r̂0(si ) + r̂0(si−)(u − si )
)2

+ o(u − si )
(

r̂0(si ) + r̂0(si−)(u − si )
)

+ o(u − si )
2
)

]

du

and since δi = O(εi ), the previous display is O(ε2i ). Recalling Δ̃i = r̂0 − rεi ,si is, on
[τ, si ], the integrand of the second term in (53), we see that the negative of the second
term in (53) equals

(

XΔ̃i

)

(τ, si ] −
∫ si

τ

X(u)

(

(

r̂0
)′

(si−)du − d
(

r̂0
)

(u)

)

. (54)

Recall: for a function g and a < b, we let g(a, b] := g(b) − g(a). Since Δ̃i (si ) = 0,
δi = O(εi ) as εi ↘ 0, Δ̃i (si − δi ) = o(δi ) = o(εi ) (recall (̂r0)′(si+) = (̂r0)′(si−)),
and X is continuous, (54) is o(εi ). Thus both terms in (53) are o(εi ) and so we have
shown (52), so by (51), we have shown (50).

From now on we take τ = τR . In the case where τR /∈ ̂S0 but τR = limi→∞ τi with
τi ∈ ̂S0, the below arguments go through with τ = τi and taking the limit of τi .

We now show Condition 1 holds. RecallΔt (u) := (t −u)− for t ≥ 0 andΔt (u) :=
(u − t)− for t < 0. Let Δ−(u) := −u. Now let

Δ1,i (u) := − cεiΔτL

ΔτL (−c)
+ εiΔ−(u) + Δ̃i (u)

c

−Δsi (c)
. (55)
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Note that Δ1,i is an acceptable perturbation with Δ1,i (±c) = 0 and Δ1,i (0) = 0.
Furthermore, as in the proof of (50), we can show that

0 ≤ lim
i→∞

φc
(

r̂0 + Δ1,i
)− φc

(

r̂0
)

εi

=
∫ c

−c

(

− c

ΔτL (−c)
ΔτL + Δ− + ΔτR

c

ΔτR (c)

)

(

r̂0dλ − dX
)

. (56)

Let Δ1 denote the integrand on the right side of (56). By (46), the right side of (56)
equals − ∫ 0

−c Δ1 d(FL − XL) + ∫ c
0 Δ1 d(FR − XR) which equals

−((FL − XL)Δ1)(−c, 0] +
∫ 0

−c
(FL − XL) dΔ1 + ((FR − XR)Δ1)(0, c]

−
∫ c

0
(FR − XR) dΔ1

and, because Δ1(±c) = 0, Δ1(0) = 0, the previous display equals

∫ 0

−c
(FL − XL) dΔ1 −

∫ c

0
(FR − XR) dΔ1 = (HL − YL)(0) − (HR − YR)(0)

since by definition (HL−YL)(−c), (HR−YR)(c), (HR−YR)(τR), and (HL−YL)(τL)

are all 0. This shows that (HL − YL)(0) − (HR − YR)(0) ≥ 0.
The perturbation Δ1,i is based about Δ−. Since Δ− does not satisfy the side con-

straints at±c,wemodifiedΔ− by adding two further perturbations, (constantmultiples
of) ΔτL and Δi , to yield Δ1,i . The perturbation Δi is approximately equal to −Δsi ,
but modified so as to preserve concavity, and−Δsi is approximately equal to−ΔτR . A
totally symmetric argument allows us to use a perturbation based around−Δ−(u) = u
that is modified by adding (constant multiples of) ΔτR and a perturbation that approx-
imates −ΔτL . This shows that (HL − YL)(0) − (HR − YR)(0) ≤ 0, and allows us to
conclude that Condition 1 holds.

Now let

Δ2,i (u) := εiΔt (u) + Δ̃i (u)
Δt (c)

Δsi (c)
. (57)

Then Δ2,i (c) = 0 and Δ2,i (t ∧ τR) = 0 where a ∧ b = min(a, b). Thus Δ2,i is an
acceptable perturbation for all i , and, as above one can check that

0 ≤ lim
i→∞ ε−1

i

(

φc

(

r̂0 + Δ2,i

)

− φc

(

r̂0
))

= lim
ε↘0

ε−1
(

φc

(

r̂0 + εΔ2

)

− φc

(

r̂0
))

where Δ2 := Δt − ΔτRΔt (c)/ΔτR (c). Thus, from (45),

0 ≤
∫ c

0
Δ2 d(FR − dXR) = ((FR − XR)Δ2)(t ∧ τR, c] −

∫ c

0
(FR − XR) dΔ2.

(58)
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The term ((FR − XR)Δ2)(t ∧ τR, c] equals 0 because Δ2 is 0 at both t ∧ τR and at c.
Since

∫

(FR − XR)dΔτR = (HR − YR)(τR, c] = 0, we see (58) equals

(HR − YR)(t, c] = −(HR − YR)(t).

This shows Condition 2 holds for t ≥ 0. The argument for t ≤ 0 is analogous.
Now let

Δ3+,i := εi r̂
0
τR

+ Δ̃i
r̂0τR (c)

Δsi (c)

where r̂0τR := 1[τR ,∞)(̂r0 − r̂0(τR)) is continuous, concave, and satisfies r̂0τR (τR) = 0.
As above, we can check that

0 ≤ lim
i→∞ ε−1

i

(

φc

(

r̂0 + Δ3+,i

)

− φc

(

r̂0
))

=
∫ c

0
Δ3+ d(FR − XR) (59)

where Δ3+ := r̂0τR − ΔτR r̂
0
τR

(c)/ΔτR (c). Then (59) equals

((FR − XR)Δ3+)(τR, c] −
∫ c

τR

(FR − XR) dΔ3+ = −
∫ c

τR

(FR − XR) dΔ3+ (60)

since Δ3+ is 0 at τR and c. Then, since (HR − YR) is 0 at τR and at c, (60) equals

−
∫ c

τR

(FR − XR) dr̂0 = −
(

(HR − YR)
(

r̂0
)′)

(τR, c] +
∫

(τR ,c]
(HR − YR)d

(

r̂0
)′

=
∫

(τR ,c]
(HR − YR)d

(

r̂0
)′

(61)

Here we used that (̂r0)′(c) is finite, which follows from the same argument used in
the proof of sufficiency since we have already shown that Condition 2 holds. Thus,
we have shown that

∫

(τR ,c](HR − YR)d (̂r0)′ ≥ 0. To show the reverse inequality, let

Δ3−,i := −εi r̂
0
τR

+ εiΔτR

r̂0τR (c)

ΔτR (c)
.

Notice that r̂0 + Δ3−,i is concave by checking its right and left derivatives at τR :

(

r̂0
)′

(τR+) − εi

(

r̂0
)′

(τR+) − εi
r̂0τR (c)

ΔτR (c)
≤
(

r̂0
)′

(τR+) ≤
(

r̂0
)′

(τR−)

=
(

r̂0 + Δ3−,i

)′
(τR−), (62)

since (̂r0)′(τR+) ≥ −r̂0τR (c)/ΔτR (c) by concavity. By (62), we see that (̂r0 +Δ3−,i )
′

ismonotonic in a neighborhood of τR and thus ismonotonic everywhere. ThusΔ3−,i is
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an acceptable perturbation for all i . ThenΔ3−,i is approximately equal to−Δ3+,i , and
replicating the arguments in displays (59)–(61) shows that

∫

(τR ,c](HR−YR)d (̂r0)′ ≤ 0.

Thus, we can conclude
∫

(τR ,c](HR−YR)d (̂r0)′ = 0, and an analogous argument shows
∫

[−c,τL )
(HL − YL) d (̂r0)′ = 0. We can extend the domain of integration to include

[0, τR] or [τL , 0], respectively, since (HR − YR)(τR) = 0 and (HL − YL)(τL) = 0
and (̂r0)′′ ≡ 0 on (τL , τR) by definition. This shows Condition 3 holds and completes
the proof of the necessity of Conditions 1, 2, and 3, and thus completes the proof. ��
For c− < 0 < c+ let

φc(r) := 1

2

∫ c+

c−
r(u)2du −

∫ c+

c−
r(u)dX(u) (63)

[slightly modifying the definition given in (35)].

Corollary 1 Let c− < 0 < c+, k± < 0, and M > 0 be random variables, and let φc

be given by (63). Let C◦
c,k := {

r ∈ C0 : M ≥ r , r(c±) ≥ k±}. Let r̂0 ∈ C◦
c,k and let

YR,YL , HR, HL be as in Theorem 2, with ±c replaced by c±. Assume further that
|(̂r0)′(c±)| < ∞, where (̂r0)′ refers to the right or left derivative, and assume that

(HR − YR)′
(

c+) = 0 = (HL − YL)′
(

c−) . (64)

Then for M large enough, almost surely r̂0 is a minimizer of φc and is thus unique in
C◦
c,k on [c−, c+].

Proof The proof of Proposition 5 shows that, for M large enough, there is a minimizer
of φc over C◦

c,k and the minimizer is unique on [c−, c+]. (The minimizer does not

necessarily satisfy r̂0(c±) = k±, since c± are random.) The proof that r̂0 is indeed such
a minimizer follows by a slightly modified version of the sufficiency part of the proof
of Theorem 2. The equality (43) follows from (64) (rather than from r̂0(c±) = k±).
Note also that we now assume directly that |(̂r0)′(c+)| < ∞ (since c± are random,
we do not know that YL ,YR do not have so-called ‘one-sided parabolic tangents’ at
c±, respectively). ��
The previous theorem and corollary are used to prove the next theorem, which gives
characterizing conditions for a so-called “value-constrained invelope process” on all
of R. (The term “invelope process” originates in [23].) The process on R governs the
limit distribution of r̂0n (x0).

Theorem 3 Let r̂0 ∈ C0. Define
(

̂S0
)c :=

(

̂S0
(

r̂0
))c :=

{

t ∈ R :
(

r̂0c
)′′

(t) = 0

}

.

Then define

τR := inf
(

̂S0 ∩ [0,∞)
)

, τL := sup
(

̂S0 ∩ (−∞, 0]
)

,
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and define X, XL , XR,YL , and YR as in (34), (40), and (41). For t ∈ R, let HR(t) :=
∫ t
τR

∫ u
τR

r̂0(v)dvdu, and HL(t) := ∫ τL
t

∫ τL
u r̂0(v)dvdu. Assume

1. (HR − YR)(0) = (HL − YL)(0),
2. for t ≥ 0, (HR − YR)(t) ≤ 0 and for t ≤ 0, (HL − YL)(t) ≤ 0,
3. and

∫

(−∞,0]
(HL − YL) d

(

r̂0
)′ = 0 =

∫

[0,∞)

(HR − YR) d
(

r̂0
)′

. (65)

Then r̂0 is unique.

Note that HL , HR have different definitions in Theorem 2 and in Theorem 3.

Proof We need several lemmas for the proof. The following lemma connects the H -
processes to the Gaussian processes about which we can make explicit statements and
computations.

Lemma 1 Let τ1, τ2 ∈ ̂S0 with 0 < τ1 < τ2 be such that r̂0 is affine on [τ1, τ2] and let
t ∈ [τ1, τ2]. Define, for any function g, ∇g = g(τ2) − g(τ1), ḡ = (g(τ1) + g(τ2))/2,
∇τ = τ2 − τ1, and τ̄ = (τ1 + τ2)/2. Then

HR(t) = YR(τ2)(t − τ1) + YR(τ1)(τ2 − t)

∇τ

− 1

2

(∇XR

∇τ
+ 4

(∇τ)3
(X̄ R∇τ − ∇YR

)

(t − τ1)(τ2 − t),

and so HR(τ̄ ) = ȲR − 1
8∇XR∇τ. Analogous formulas can be stated for the left-side

processes.

Proof The proof follows from the proofs of Lemma 2.3 of [23], and Lemma 8.9 of
[14]. ��
The previous lemma is used to prove the next lemma, about the “knot” behavior of r̂0.

Lemma 2 Fix t > 0. Let τ+(t) be the infimum of the points of touch of YR and HR in
[t,∞). Then for all ε > 0, there exists M, independent of t , such that P(τ+(t) − t >

M) < ε. An analogous statement can be made for the left-side processes, t < 0, and
the supremum of the points of touch of YL and HL in (−∞, t].
Proof The result follows from Lemma 1, via the analysis used in the the proof of
Lemma 8.10 of [14] (see also Lemma 2.7 of [23]). ��
The uniqueness of r̂0 follows from showing that if two different processes both satisfy
the characterizing conditions of the theorem then they are equal. One considers the
cases where the two processes share (sequences of) knots (converging to infinity) or
they do not. The following lemma handles the former case.

Lemma 3 Suppose GR,1 and GR,2 both satisfy the conditions of Theorem 3 on HR

and GL,1 and GL,2 satisfy the theorem conditions for HL (we do not assume a priori
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that they have the same value for τR or τL , respectively). Let r1 := G ′′
R,1 ≡ G ′′

L,1 and
r2 := G ′′

R,2 ≡ G ′′
L,2. If (GR,i − YR,i )(sR) = 0 and (GL,i − YL,i )(sL) = 0, i = 1, 2,

where YR,i , YL,i are defined by (41) based on the knots of ri , i = 1, 2, then r1 = r2
on [sL , sR].
Proof This follows from Corollary 1. We let YL ,YR , HL and HR be as defined in
Theorem 3, we assume HR(sR)−YL(sR) = 0 and HL(sL)−YL(sL) = 0, and we will
show that the conditions of Corollary 1 are satisfied by HL and HR . This will then show
the statement of the lemma. Since HR(τR)−YR(τR) = 0 by definition, we see that HR

is the primitive of the primitive of H ′′
R satisfying the constant conditions (at c+ = sR

and at τR) used to define HR in Corollary 1. Furthermore, by Condition 2 and because
(HR−YR)(τR) = 0, we see that (HR−YR)′(τR) = 0. A similar argument can bemade
for the left-side processes. Since H (3)

R is finite on R, the condition |H (3)
R (c±)| < ∞

is automatically satisfied (for either the left or right third derivative). Therefore we
have shown that the conditions of Corollary 1 are satisfied. We apply this to GR,1 and
GR,2. Let

M := sup
x∈[sL ,sR ]

{r1(x), r2(x)} , k+ := min(r1(sR), r2(sR)),

and k− := min(r1(sL), r2(sL)).

Then ri ∈ C◦
c,k for i = 1, 2, and both the i = 1 and i = 2 processes satisfy the

conditions of Corollary 1 by the argument in the previous paragraph, so r1 = r2 on
[sL , sR] as desired. ��
For the remainder of the proof of Theorem 3, one considers cases where on either
the left side, the right side, or both sides, there is no sequence of shared touch points
converging to infinity, and deriving a contradiction. The argument follows as in the
proof of Theorem 5.2 of [14].

This completes the proof of Theorem 3. ��
Remark 1 If X is replaced by Xa,σ (t) := σW (t) − 4at3 for constants a, σ > 0, then
the conclusion of Theorem 3 still holds; in this case, we denote the process r̂0 of the
theorem by r̂0a,σ .

Remark 2 The knot definitions in Theorem 3 differ from those in Theorem 5.2 of [14],
in the context of a mode constraint. Condition (iii) of Theorem 5.2 of [14] (which is
analogous to Condition 3 of Theorem 2) is based on knots τ 0+ and τ 0−, one (but almost
surely not both) of which may be 0. These knots are potentially distinct from the knots
τL and τR in that setup, where τL , τR can never be 0. In the height-constrained problem
we consider in this paper, there is only one pair of knots, τL , τR , and they may be 0;
if one is 0 then both are 0.

4 Asymptotics

We can now study the asymptotic behavior of r̂0n . To do so, we will make the following
assumptions on the design.
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Assumption 1 The design points xn,i ∈ [0, 1] satisfy c/n ≤ xn,i+1 − xn,i ≤ C/n,
i = 1, . . . , n − 1 for some 0 < c < C < ∞.

Assumption 2 For 0 ≤ x ≤ 1, let Fn(x) := n−1∑n
i=1 1[0,x](xn,i ). There exists δ > 0

such that supx :|x−x0|≤δ |Fn(x) − x | = o(n−1/5).

Theorem 4 Suppose that the regression model (9) holds where r0 is concave with

r0(x0) = y0, suppose that εn,1, . . . , εn,n are i.i.d. with E
ε2n,1t < ∞ for some t > 0, that

r0 is twice continuously differentiable in a neighborhood of x0, and that r ′′
0 (x0) < 0.

Let Assumptions 1 and 2 hold. Let a = |r ′′
0 (x0)|/24, and σ 2 = Var εn,i . Let r̂0n =

argminr φn(r) where the argmin is over concave functions r such that r(x0) = y0.
Then

n2/5
(

r̂0n
(

x0 + tn−1/5
)

− r0(x0) − r ′
0(x0)tn

−1/5
)

→d r̂0a,σ (t)

in L p[−K , K ] for all K > 0, where r̂0a,σ is given in Theorem 3 (and Remark 1).

Remark 3 We suspect asymptotic distributions and the Wilks phenomenon for
2 log λn(y0) can be derived under more general conditions than Assumption 2, but this
assumption is used by Groeneboom et al. [24] (it is their Assumption 6.1) to derive
the limit distribution of r̂n(x0), so we rely on it here too and leave generalizations for
future research.

Remark 4 We require a sub-Gaussian tail assumption on εn,i in Theorem 4. In [9], the
asymptotic distribution for a monotone regression function estimator is derived under
only second moment assumptions for the error variables. However, for deriving the
rates of convergence for concave regression least-squares estimators, Mammen [34,
Theorem 4] (and then [24]) assume sub-Gaussian tails on the error variables.Mammen
[34, page 749] states, “We do not believe that this strong condition is really necessary.”
However, in the present paper we have not attempted to weaken this assumption.

Proof of Theorem 4 We take x0 = 0 for simplicity and take r0(0) = 0 and r ′
0(0) = 0

by the translation discussed in Sect. 2. Let xn(t) := tn−1/5 = tn−1/5 + x0 be the
“global” parameter corresponding to the “local” parameter t ∈ R. Then let τn,R be the
smallest nonnegative bend point of r̂0n .

Recall Fn(x) := n−1∑n
i=1 1[0,x](xn,i ). Then define

Sn,R(v) :=
∫

[τn,R ,v]
Y (u) dFn(u) Yn,R(t) := n4/5

∫ xn (t)

τn,R

Sn,R(u)du

Rn,R(v) :=
∫

[τn,R ,v]
r̂0n (u) dFn(u) Hn,R(t) := n4/5

∫ xn (t)

τn,R

Rn,R(u)du + An,R

(

t − n1/5τn,R

)

,

where Y is the function such that Y (xn,i ) = Yn,i (and whose value is 0 elsewhere),
and where

An,R := n3/5
∫

[τn,R ,∞)

Y (u) − r̂0n (u) dFn(u).

Define also

R̃n,R(v) :=
∫

[τn,R ,v]
r̂0n (u)du, H̃n,R(t) := n4/5

∫

[τn,R ,xn(t)]
R̃n,R(u)du + An,R

(

t − n1/5τn,R

)
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which we will show to be equivalent to Rn,R and to Hn,R , respectively. For brevity,
we will make definitions and arguments only for the right-side processes. Analogous
definitions and arguments can be made for the left-side processes.

By Theorem 1, one can check that

Hn,R(t) − Yn,R(t) ≤ 0

for all t ≥ 0, with equality if t is a knot point of r̂0n (see Lemma 8.18 of [14] for similar
calculations). Additionally, defining Yn,L and Hn,L in an analogous fashion as Yn,R

and Hn,R , we can check that

Hn,L(0) − Yn,L(0) = Hn,R(0) − Yn,R(0). (66)

Next, we can check that

sup
|t |≤c

∣

∣

∣Hn,R(t) − H̃n,R(t)
∣

∣

∣ = op(1) (67)

for any c > 0, by Assumption 2 [24, see page 1696]. One can define H̃n,L and make
an analogous statement for H̃n,L and Hn,L .

We can then conclude that

H̃n,L(0) − Yn,L(0) = H̃n,R(0) − Yn,R(0) + op(1), (68)

H̃n,R(t) − Yn,R(t) + op(1) ≤ 0, (69)

H̃n,L(t) − Yn,L(t) + op(1) ≤ 0 (70)

where the inequalities are equalities for knot points of r̂0n .

Let Sn(t) := n−1∑n
i=1 Yn,i1{xn,i≤t}, and let Yn(t) := ∫ xn(t)

x0
(Sn(v) − Sn(x0))dv.

Then, for any c > 0, we can then check that Yn converges weakly to σ
∫ t
0 W (s)ds −

at4 = Ya,σ (t) in the space of continuous functions on [−c, c]with the uniform metric
([24, (6.12), page 1694]). A similarly structured argument shows that along certain
subsequences of {n}∞1 , Yn,R converges to a process YR,a,σ ≡ YR (which may a priori
depend on the subsequence, but eventually is seen not to depend on the subsequence).
The convergence argument for Yn,R requires more care than that for Yn because the
definition of the former depends on the knot τn,R . Nonetheless it can be rigorously
carried out, in a fashion similar to that of the proofs of Lemmas 8.16 and 8.17 of [14].

Then the remainder of the proof follows as in the proof of Theorem 6.3 of [24] (see
also [34]) and of Theorem 5.8 of [14]. By Lemma 4 below, n1/5τn,R = Op(1), and this
allows us to also conclude that H̃n,R and its first, second, and third derivatives are all
tight in appropriate metric spaces. Then, by Prohorov’s theorem, for any subsequence
we can find a subsubsequence of H̃n,R that converges to a limit process, HR . The
processes HR and YR can be shown to satisfy HR(t) − YR(t) ≤ 0 for t ≥ 0 and
∫

[0,∞)
(HR − YR) d(HR)(3) = 0 by (69). Arguing analogously for left-side processes,

we can see that there are limit processes HL and YL ≡ YL,a,σ satisfying HL(t) −
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YL(t) ≤ 0, and
∫

(−∞,0](HL − YL)d(HL)(3) = 0 by (70), and by (68) that HL(0) −
YL(0) = HR(0)−YR(0). This shows conditions 1, 2, and 3 of Theorem 3 hold for the
processes HL and HR . Therefore, the limit processes HL and HR are unique, so are
identical along all subsequences. That is,we can conclude that H̃n,L and H̃n,R converge
to the unique processes HL and HR given by Theorem 3. In particular, we have shown
that n2/5̂r0n (tn−1/5) = (H̃n,R)′′(t) ≡ (H̃n,L)′′(t) converges to (HL)′′ ≡ (HR)′′ and so
(recalling that x0 = 0 and r(0) = r ′(0) = 0 by assumption) the proof is complete. ��
Lemma 4 Let the assumptions and terminology of Theorem 4 hold, and let τn,R be the
smallest nonnegative bend point of r̂0n . Then n1/5τn,R = Op(1).

Proof The proof is by a perturbation argument in the spirit of Theorem 4.3 (and
Lemma 4.4) of [3] and Proposition 7.3 of [14] (which in turn are inspired by Lemma 8
of [34]). If 0 is itself a knot of r̂0n then there is nothing to show (because τn,R = 0).
Thus we assume 0 is not a knot of r̂0n . We will construct a ‘perturbation’ Δ : R → R

such that
〈

evaln0 Δ,∇n0φn (̂r0n)
〉 = 〈

evaln0 Δ, r̂0n − Y n

〉 ≥ 0 as in (17), where Yn :=
(Yn,1, . . . ,Yn,n)

′ (recalling Yn,k0 := 0 if n0 = n + 1). This implies

∫

Δ(u)
(

r̂0n (u) − r0(u)
)

dFn(u) ≥
∫

Δ(u)(Y (u) − r0(u)) dFn(u) (71)

using the notation developed in the proof of Theorem 4. The approach is to find a Δ

such that the quantity on the left side of (71) is a positive constant times −τ 4n,R < 0,

and the quantity on the right side of (71) is Op(n−4/5). The conclusion then follows.
Let τn,L < 0 < τn,R be the largest negative and smallest positive knots of r̂0n ,

respectively. Assume τn,R ≤ |τn,L |, without loss of generality.
Let

Δ1(t) := t1[τn,L ,0) +
(

τn,L

τn,R

)3

t1[0,τn,R ]

which satisfies Δ1(0) = 0. A simple argument (see Lemma A.4 of [16]) shows that
even though Δ1 is discontinuous, the conclusion of (71) holds, meaning

∫

Δ1(u)
(

r̂0n (u) − r0(u)
)

dFn(u) ≥
∫

Δ1(u)(Y (u) − r0(u)) dFn(u). (72)

Further,
∫

Δ1(u)udu = 0, (73)

which will later allow us to ignore a term in a Taylor expansion. (Note that in [3,14]
the perturbation must satisfy

∫

Δ(x)dx = 0; in the present case it turns out we do not
need this to hold because of the constraint r̂0n (0) = 0. On the other hand, we must have
Δ(0) = 0.)Now, the empirical process argument used in the proof ofTheorem4of [34]
shows that the term on the right of (72) is Op(n−4/5). For the term on the left, we can
show that

∫

Δ1(u)(̂r0n (u) − r0(u)) dFn(u) = (1+ op(1))
∫

Δ1(u)(̂r0n (u) − r0(u)) du
as in (67), by Assumption 2. Let D := r̂0n − r0. Since r̂0n is linear on (τn,L , τn,R)
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and r̂0n (0) = 0, r̂0n (u) = (̂r0n )′(0)u for u ∈ [τn,L , τn,R] and so by (73) and a Taylor
expansion of r0 about 0 (recalling that λ is Lebesgue measure),

∫

Δ1Ddλ = D(0)
∫

Δ1dλ + D′(0)
∫

uΔ1(u)du

−
∫

Δ1(u)
r ′′
0 (0)

2
u2(1 + op(1))du (74)

= −
∫

Δ1(u)
r ′′
0 (0)

2
u2(1 + op(1))du, (75)

We compute that
∫

u2Δ1(u)du = (−(τn,L)4 + (τn,L)3τn,R)/4 ≤ −(τn,L)4/4 < 0.
Thuswecan conclude that the quantity on the left of (72) equals−Cr0(τn,R−τn,L)4(1+
op(1)) for a constant Cr0 > 0 (since r ′′

0 (0) < 0 and |τn,L | ≥ τn,R). Thus the proof is
complete. ��

4.1 The likelihood ratio statistic

Herewe present a partial proof of Conjecture 1.Wewill break 2 log λn into two terms, a
“main” term and a “remainder” term.We focus on themain term,which drives the limit
distribution (according to simulations), and do not analyze the remainder term (which
Conjecture 1 and simulations would imply to be asymptotically negligible). To begin,
we need to discuss certain rescalings of the processes studied in the previous sections.
For a, σ > 0, let Xa,σ (t) := σW (t)− 4at3 as in Remark 1, and, correspondingly, let

Ya,σ (t) := σ

∫ t

0
W (s)ds − at4

d= σ(σ/a)3/5Y
(

(a/σ)2/5t
)

, (76)

where the equality in distribution can be checked using the fact that W (α·)α−1/2 d=
W (·) for any α > 0. Let Ha,σ be the invelope process given by Theorem 6 based on
Ya,σ , and let H0

a,σ denote either of the (null hypothesis) invelope processes, HR or
HL , given by Theorem 3 based on Ya,σ . By (76),

Ha,σ (t)
d= σ(σ/a)3/5H1,1

(

(a/σ)2/5t
)

, and H0
a,σ (t)

d= σ(σ/a)3/5H0
1,1

(

(a/σ)2/5t
)

.

Let r̂a,σ (t) := (Ha,σ )′′(t) and r̂0a,σ (t) := (H0
a,σ )′′(t) (recall HL

′′ ≡ HR
′′). Then

we have

r̂a,σ (·) d= σ 4/5a1/5̂r
(

(a/σ)2/5·
)

=: 1

γ1γ
2
2

r̂ (·/γ2) , (77)

r̂0a,σ (·) d= σ 4/5a1/5̂r0
(

(a/σ)2/5·
)

=: 1

γ1γ
2
2

r̂0 (·/γ2) , (78)

where we let γ1 := (a/σ)3/5/σ and γ2 := (σ/a)2/5. This allows us to relate the
rescaled processes r̂a,σ and r̂0a,σ (where a will later depend on r0 and σ 2 = Var(εn,i ))
to the universal processes r̂ and r̂0. For our future use, we note the relationship
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γ1γ
3/2
2 = σ−1. (79)

We have

0 ≤ 2 log λn = 2
(

φn

(

r̂0n
)

− φn (̂rn)
)

= −
∑

i∈I
r̂2n,i −

(

r̂0n,i

)2 −
(

2̂rn,i Yn,i − 2̂r0n,i Yn,i

)

.

(80)
Now by (16), 〈̂rn,∇φn (̂rn)〉 = 0 and

〈

r̂0n ,∇φn (̂r0n )
〉 = 0, so (80) equals

−
∑

i∈I
r̂2n,i −

(

r̂0n,i

)2 − 2

(

r̂2n,i −
(

r̂0n,i

)2
)

=
∑

i∈I
r̂2n,i −

(

r̂0n,i

)2
. (81)

Now we expect that away from the constraint, r̂n,i and r̂0n,i are asymptotically equiva-
lent. In fact, we expect that (81) can be localized to a sum over indices corresponding
to Op(n−1/5) neighborhoods of x0. To discuss this, we note that (81) can be written
as n

∫

R

(

r̂n(u)2 − r̂0n (u)2
)

dFn(u) (recalling Fn(x) := n−1∑n
i=1 1[0,x](xn,i )). Then

we let xn(t) := x0 + n−1/5t , and can then see that 2 log λn equals Dn,b + En,b where

Dn,b := n
∫ xn(b)

xn(−b)

(

r̂n(u)2 − r̂0n (u)2
)

dFn(u), and

En,b := n
∫

R\[xn(−b),xn(b)]

(

r̂n(u)2 − r̂0n (u)2
)

dFn(u).

We conjecture that En,b is asymptotically negligible for large enough n and b. As was
discussed in the introduction, proving that En,b is asymptotically negligible may be
quite challenging. A result of this sort was shown fully in [13,14] in the context of a
likelihood ratio statistic for the mode of a log-concave density. In some contexts where
the underlying shape constraint is one ofmonotonicity rather than convexity/concavity,
the corresponding problem seems to often be simpler [4,6,22]. It is beyond the scope
of the present paper to show En,b is negligible; here, we focus on the non-negligible
term Dn,b.

Now, by Assumption 2, Dn,b is equal to [24, page 1695]

n
∫ xn(b)

xn(−b)
r̂n(u)2 − r̂0n (u)2 du + o(1) = n4/5

∫ b

−b
r̂n(xn(v))2 − r̂0n (xn(v))2dv + o(1).

(82)
Let a = |r ′′

0 (x0)|/24. Let Sn(t) := n−1∑n
i=1 Yn,i1{xn,i≤t}, and let Yn(t) :=

∫ xn(t)
x0

(Sn(v) − Sn(x0))dv. Then, for any c > 0, we can then check that Yn con-

verges weakly to σ
∫ t
0 W (s)ds − at4 = Ya,σ (t) in the space of continuous functions

on [−c, c] with the uniform metric (see the proof of Theorem 4). Then, by (the proofs
of) Theorem 7 and by Theorem 4 (recalling that r0(x0) = 0 and r ′

0(x0) = 0 by our
data translation), n2/5̂rn(xn(·)) converges weakly to r̂a,σ and n2/5̂r0n (xn(·)) converges
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weakly to r̂0a,σ . Thus, the right side of (82) converges in distribution to

∫ b

−b
r̂2a,σ −

(

r̂0a,σ

)2 =
∫ b

−b

(

1

γ1γ
2
2

)2 (

r̂

(

s

γ2

)2

− r̂0
(

s

γ2

)2
)

ds

= γ −2
1 γ −3

2

∫ b/γ2

−b/γ2

(

r̂(u)2 − r̂0(u)2
)

du

= σ 2
∫ b/γ2

−b/γ2

(

r̂(u)2 − r̂0(u)2
)

du, (83)

as n → ∞, by (77) and (78), and recalling that γ 2
1 γ 3

2 = σ−2 by (79). Now if we let
b → ∞ then (83) converges to

σ 2
∫ ∞

−∞

(

r̂(u)2 − r̂0(u)2
)

du =: D, (84)

which does not depend on r0, as desired. This shows that Conjecture 1 holds, assuming
that En,b is appropriately negligible.We thus nowstateConjecture 1 as a theoremunder
the following assumption on the error term.

Assumption 3 For all small enough δ > 0 there exists bδ > 0 such that |En,bδ | ≤ δK
where K = Op(1) does not depend on δ.

Theorem 5 Assume the regression model (1) holds where Eetε
2
n,i < ∞ for some

t > 0. Assume r0 is concave, r0(x0) = y0, r0 is twice continuously differentiable in a
neighborhood of x0, and r ′′

0 (x0) < 0. LetAssumption 1 and 2 hold. Define 2 log λn(y0)
as in (6). If Assumption 3 holds, then 2 log λn(y0) →d σ 2

D := σ 2
∫∞
−∞ r̂(u)2 −

r̂0(u)2 du.

Proof For any δ > 0, for a subsequence of {n}∞n=1, there exists a subsubsequence
such that along the subsubsequence En,bδ →d δR where |R| ≤ K almost surely,
by Prohorov’s theorem and Assumption 3. Thus since Dn,bδ →d σ 2

∫ bδ/γ2
−bδ/γ2

r̂(u)2 −
r̂0(u)2 du =: σ 2

Dbδ as n → ∞ by (83), we see that 2 log λn →d σ 2
Dbδ + δR

along the subsubsequence. Taking, say, δ = 1, we see that 2 log λn has a (tight)
limit, which we denote by σ 2

D, along the subsubsequence. Since K does not depend
on δ, we can let δ ↘ 0 so δR →p 0, and since then bδ ↗ ∞ we thus see that
σ 2

D := σ 2
Dbδ + δR → σ 2

∫∞
−∞ r̂(u)2 − r̂0(u)2 du so D = ∫∞

−∞ r̂(u)2 − r̂0(u)2 du.
Thus, along the subsubsequence 2 log λn →d σ 2

∫∞
−∞ r̂(u)2 − r̂0(u)2 du; since this

holds for an arbitrary subsequence, the convergence holds along the original sequence.
This completes the proof. ��

5 Simulations

We now use simulation studies to assess our procedures. First, we give evidence
in Fig. 1 that Conjecture 1 holds. We simulated from three different true concave
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Table 1 Characteristics of the
true concave regression function
used in the Monte Carlo
simulations

r0 x0 r0(x0) r ′
0(x0) r ′′

0 (x0) d(r0)

−x2 0 0 0 − 2 1.64

cos(x) − 1
2 .878 .479 − .878 1.94

− exp(x) 2 − 7.39 − 7.39 − 7.39 1.27

regression functions, −x2, cos(x), and − exp(x). We used a fixed design setting, with
n = 1000 points uniformly spaced along an interval. For −x2 and cos(x) the intervals
were [−1, 1]. For − exp(x) the interval was [1, 3]. We used standard normal error
terms. Figure 1 gives empirical cdfs based on M = 5000 Monte Carlo replications
of the distribution of 2 log λ1000 for the three regression functions. The curves are
visually indistinguishable, giving evidence in support of Conjecture 1. The curve
labeled “limit” is based on simulating directly from the distribution of D. To do this,
we simulated the process X(t) = W (t) − 4t3 and computed the limit process r̂
from Theorem 6 and r̂0 from Theorem 2 based on the ‘data’ X . We then computed
D = ∫

R
(̂r2(t) − (̂r0)2(t))dt . The actual form of the limit is not fundamental to

Conjecture 1. However the simulation results reported in Fig. 1 appear to indeed show
thatD has this form, since the “limit” curve is visually indistinguishable from the other
three curves described above. The final curve is the cdf of a chi-squared distribution
with 1 degree of freedom. This would be the limit of the likelihood ratio statistic if
this were a regular parametric problem, but is distinct from the limit of our likelihood
ratio statistic, in this nonparametric problem.

Thus, with Conjecture 1 in mind, we implemented our likelihood ratio test for the
hypothesis test (4), rejecting when 2 log λn(y0) > dα , α ∈ (0, 1), where dα is based
on the simulated limit distribution in Fig. 1. Specifically, we used the curve based on
−x2 with a Gaussian error distribution as the limit distribution for 2 log λ. We tested
the level under the null hypothesis via Monte Carlo. Our simulations were based on
sample sizes of either n = 30, n = 100, or n = 1000, and M = 20,000 Monte
Carlo replications. We used the three r0’s of −x2, cos(x), and − exp(x) again on
the same intervals listed above. Two designs were used for each of the r0’s; a fixed
design, uniformly spaced, and a random uniform design (although the random design
is not covered by our theory). The reported results are for a standard normal error
distribution. Table 1 gives the x0 used for each function’s hypothesis test, and r0(x0),
the true value (which was used for the null hypothesis). We also report smoothness
characteristics of r0 at x0,which could in general affect inference procedures, including
the constant d(r0) := (24/σ 4|r ′′

0 (x0)|)1/5 with σ = 1, from (3). Table 2 gives the
simulated levels from the Monte Carlo experiments. The third and fourth columns
give the Monte Carlo level of the test procedure for the two nominal levels of α = .05
and α = .1, respectively, in the fixed design setting. The fifth and sixth columns give
the results in the random design settings. The results for cos(x) were generally the
worst, which is perhaps attributable to having x0 closer to the edge of the covariate
design interval than in the scenarios for the other two regression functions. Shape
constrained estimators suffer near the covariate domain boundary. We do not present
simulation results for coverage of our confidence intervals, since by definition the
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Table 2 Monte Carlo level of the
likelihood ratio test procedure
for nominal levels α = .05, .1

r0 α = .05; f α = .1; f α = .05; r α = .1; r

n = 1000

−x2 .0466 .0964 .0579 .112

cos(x) .0501 .106 .0680 .131

− exp(x) .0464 .0964 .0469 .0957

n = 100

−x2 .0527 .108 .0514 .107

cos(x) .0670 .125 .0650 .126

− exp(x) .0451 .0990 .0447 .0979

n = 30

−x2 .0591 .116 .0578 .110

cos(x) .0683 .127 .0694 .127

− exp(x) .0495 .105 .0455 .0996

The column heading “f” denotes fixed design, and “r” denotes random
design. Results are based on sample sizes of n = 30, 100, and 1000,
and M = 20,000 Monte Carlo replications

0 1 2 3 4

2logλn

cd
f

0.
0

0.
5

1.
0

−x2
cos
−exp
limit
Fχ1

2

Fig. 1 Empirical distributions of 2 log λn for three different true concave regression functions:−x2, cos(x),
and −ex , all with n = 1000, M = 5000 replications

probability our confidence intervals fail to cover the truth is exactly equal to the level
of the corresponding hypothesis test. We present in Fig. 2 a plot of our confidence
interval procedure on a single instance of simulated data.

6 Conclusions and related problems

There are several problems related to the concave regression problem discussed in this
paper. We mention two here: the problem of forming tests/CI’s for the value of of a
univariate log-concave density, and the problem of forming tests/CI’s for the value of
a concave/convex regression function with multivariate predictors.
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−1.0 −0.5 0.0 0.5 1.0

−0
.2

0.
2

0.
6
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0

x

Y

Fig. 2 Pointwise confidence interval (solid lines) at each x ∈ (−.99, .99) via our log likelihood ratio
procedure. Gray dashed line is the true concave regression function r0(x) = x2; circular points are the

simulated data, where Yi = r0(xi ) + εi , εi
iid∼ N (0, .12), i = 1, . . . , 100; black dashed line is the ALSE

A likelihood ratio for the value of a log-concave density on R In the problem
of univariate log-concave density estimation, it is known that the limit distribution
of the (univariate) LSE for concave regression [24] and the (univariate) maximum
likelihood estimator for log-concave density estimation [3] have the same univer-
sal component (they differ in terms of problem-dependent constants). For studying a
height-constrained estimator in the log-concave density problem, the class of interest
does not immediately form a convex cone, but by translation of the log-densities one

can arrive at a convex cone. Consider now X̃1, . . . , X̃n
iid∼ f̃0 = eϕ̃0 on R where

ϕ̃0 ∈ C. Assume f̃0(x0) = ey0 , or ϕ̃0(x0) = y0. The nonparametric log likeli-
hood is f 	→ ∑n

i=1 log f (Xi ). Following [42], we modify this by a Lagrange term
(which allows us to optimize over all concave ϕ without regard to the constraint
that

∫

eϕ(z)dz = 1). Optimizing over ϕ = log f , the unconstrained log-concave
MLE [38] is ϕ̂n := argmaxϕ∈C 1

n

∑n
i=1 ϕ(X̃i ) − ∫

eϕ(z)dz. As in the concave regres-
sion problem, we let C0 := {ϕ ∈ C | ϕ(x0) = 0}. We can then consider defining
ϕ̂0
n := argmaxϕ∈C0

1
n

∑n
i=1 ϕ(X̃i )+ y0 − ∫ ey0+ϕ(z)dz. We can combine ϕ̂n and ϕ̂0

n to
form a likelihood ratio statistic for testing H0 : ϕ̃(x0) = y0 against H1 : ϕ̃(x0) �= y0.
We expect that ϕ̂0

n will share features with r̂0n and that the likelihood ratio statistic
formed from ϕ̂n and ϕ̂0

n will share features with the likelihood ratio statistic (6) dis-
cussed in this paper. We would expect that it will in fact have the same universal limit
distribution D, independent of nuisance parameters.

A likelihood ratio for the value of a multivariate concave regression function Con-
sider the regression model

Ỹi = r̃0(x̃i ) + εi , i = 1, . . . , n, (85)

where εi are mean 0 and now x̃i ∈ R
d with d > 1. We are again interested in

assuming r̃0 is concave and consider estimating it by least-squares, as in [31,33,41].
We could also consider a constrained estimator as in (12), and form a likelihood
ratio statistic for inference about r̃0(x0) at a fixed point x0 ∈ R

d . Unfortunately, in
the multidimensional case there is no easy analog for Proposition 2 describing the
generators of the set of concave functions [8,30]. Thus, it is unlikely that there are
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easy analogs of Proposition 4 and, in the constrained case, Theorem 1. In fact, while
[33,41] give proofs of consistency of the estimators, pointwise limit distribution results
are still unknown. Again, this is in part because of the lack of simple generators for the
class of multivariate concave functions, so that there is no analog of Theorem 2 in the
constrained estimator case (or analog of the simpler process studied in [23,24] in the
unconstrained case). Thus, when d > 1, making progress in pointwise asymptotics
for the estimators and in studying a likelihood ratio statistic may require new tools or
a different approach.

A Appendix: Technical formulas and other results

Here is a statement of an integration by parts formulas for functions of bounded
variation. See, e.g., page 102 of [19] for the definition of bounded variation.

Lemma 5 ([19]) Assume that F and G are of bounded variation on a set [a, b] where
−∞ < a < b < ∞. If at least one of F and G is continuous, then

∫

(a,b]
FdG +

∫

(a,b]
GdF = F(b)G(b) − F(a)G(a).

Theorem 6 ([23, Theorem 2.1]) Let σ, a > 0. Let X(t) = σW (t) − 4at3 where W (t)
is standard two-sided Brownian motion starting from 0, and let Y be the integral
of X satisfying Y (0) = 0. Thus Ya,σ (t) = σ

∫ t
0 W (s)ds − at4 for t ∈ R. Then,

with probability 1, there exists a uniquely defined random continuous function Ha,σ

satisfying the following:

1. The function Ha,σ satisfies Ha,σ (t) ≤ Y (t) for all t ∈ R.
2. The function Ha,σ has a concave second derivative, r̂a,σ := H ′′

a,σ .

3. The function Ha,σ satisfies
∫

R
(Ha,σ (t) − Ya,σ (t))dH (3)

a,σ (t) = 0.

Theorem 7 ([24, Theorem 6.3]) Suppose that the regression model (9) holds, that

εn,1, . . . , εn,n are i.i.d. with Eε2n,1t < ∞ for some t > 0, that r0 ∈ C, that r ′′
0 (x0) < 0,

and that r ′′
0 is continuous in a neighborhood of x0. Let Assumptions 1 and 2 hold. Let

a := |r ′′
0 (x0)|/24 and σ 2 := Var(εn,i ). Then

n2/5
(

r̂n
(

x0 + tn−1/5
)

− r0(x0) − r ′
0(x0)tn

−1/5
)

→d r̂a,σ (t)

in L p[−K , K ] for all K > 0.
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