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Robust Speaker Recognition Based on
Single-Channel and Multi-Channel

Speech Enhancement
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Abstract—Deep neural network (DNN) embeddings for speaker
recognition have recently attracted much attention. Compared
to i-vectors, they are more robust to noise and room reverbera-
tion as DNNs leverage large-scale training. This article addresses
the question of whether speech enhancement approaches are still
useful when DNN embeddings are used for speaker recognition.
We investigate single- and multi-channel speech enhancement for
text-independent speaker verification based on x-vectors in con-
ditions where strong diffuse noise and reverberation are both
present. Single-channel (monaural) speech enhancement is based
on complex spectral mapping and is applied to individual micro-
phones. We use masking-based minimum variance distortion-less
response (MVDR) beamformer and its rank-1 approximation for
multi-channel speech enhancement. We propose a novel method of
deriving time-frequency masks from the estimated complex spec-
trogram. In addition, we investigate gammatone frequency cepstral
coefficients (GFCCs) as robust speaker features. Systematic evalua-
tions and comparisons on the NIST SRE 2010 retransmitted corpus
show that both monaural and multi-channel speech enhancement
significantly outperform x-vector’s performance, and our covari-
ance matrix estimate is effective for the MVDR beamformer.

Index Terms—Robust speaker recognition, speech enhancement,
masking-based beamforming, x-vector, gammatone frequency
cepstral coefficient (GFCC).

I. INTRODUCTION

THE RAPID deployment of smart speaker devices such
as Amazon Echo and Google Home has propelled the

utilization of speaker recognition (SR) systems. It is useful for
these devices to authenticate the claimed identity of a user based
on previous enrollment speech data, a task known as speaker
verification. SR can be either text-dependent, where the speech
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content is known a priori, or text-independent. Robust SR is of
critical importance as background noise and room reverberation
can severely degrade the performance of such systems [12],
[17]. In this paper, we address the robustness in text-independent
speaker verification.
The main approach to robust SR is based on the i-vector frame-
work [5]. This approach includes a front-end processing where
acoustic features are projected into a low dimensional space
and a probabilistic linear discriminant analysis (PLDA) [16]
classifier as the back-end. Notable improvements on the front-
end include the replacement of the Gaussian mixture model
(GMM) component of i-vectors by DNNs [18] and the combina-
tion of acoustic features and bottleneck features extracted from
DNN [20], [21]. The back-end of SR also has been improved by
introduction of a signal-to-noise ratio (SNR) invariant version
of PLDA [19] and multi-condition training [17].
Recently, several studies have employed an end-to-end DNN
based SR system instead of i-vectors to directly discriminate
speakers and demonstrated their potential in different tasks [13],
[30]. Following this approach, Snyderet al.proposed the x-
vector representation, a fixed-dimensional DNN embedding, to
substitute the i-vector front-end [37]. Aside from reducing the
complexity of end-to-end DNNs and utilization of the algorithms
associated with the back-end like PLDA and length normaliza-
tion techniques, the x-vector approach significantly improves
the robustness against noise and reverberation by leveraging
data augmentation [25], [37]. With noise variability reduced by
DNN embeddings, is speech enhancement needed for further
increasing the robustness?
Speech enhancement has been used to increase the robust-
ness of SR systems. Depending on the number of available
microphones, speech enhancement can be either monaural or
multi-channel. As SR has traditionally been applied to telephone
speech, monaural speech enhancement has been mostly inves-
tigated. In [2], a DNN is trained for the ideal ratio mask (IRM)
estimation to attenuate background noise and subsequently en-
hanced speech is fed to an i-vector based SR system. The use of
deep autoencoders to perform speech enhancement for i-vectors
is presented in [27] and is later extended to x-vectors by Novotǹy
et al.[24]. Speech enhancement based on conditional generative
adversarial networks for speaker verification is investigated
in [22]. In [34], a loss function for speech enhancement was
proposed on the basis of speaker verification feedback. Joint
optimization of speech enhancement and end-to-end DNN based
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Fig. 1. Schematic diagram of the proposed robust speaker recognition framework.

SR [52] is another recent contributions that shows the usefulness
of speech enhancement.
Smart speakers use multiple microphones. By exploiting

spatial information afforded by a microphone array, one can
obtain a greater speech ehancement improvement in terms of
speech intelligibility and quality compared to using a single
microphone [10], [42]. In recent years multi-channel speech
enhancement has experienced major advances by incorporat-
ing DNN based time-frequency (T-F) masking into adaptive
beamforming, a widely utilized technique in this domain [14],
[49], [51]. Adaptive beamformers are based on second-order
statistics of speech and noise, and the more accurate estimation
of these statistics by DNN is the main reason behind the recent
progress. Mošneret al.recently studied the effects of multi-
channel speech enhancement on far-field speaker recognition
in reverberant environments [23]. In their study, a combination
of multi-channel weighted prediction error (WPE) [50] and
masking-based beamforming is used to enhance the quality of
reverberant speech signal before extracting features for the SR
system. Their analysis, however, is based on i-vectors, and the
effectiveness of multi-channel speech enhancement is unclear
for x-vector based SR.
In a preliminary study, we recently examined different

masking-based beamforming methods in conditions where tar-
get speech is corrupted by strong diffuse noise and room rever-
beration and evaluated their performance on the i-vector and x-
vector based SR [39]. In the present study, we further develop our
approach by providing in-depth comparisons between monaural
and multi-channel speech enhancement and their application to
robust SR. Moreover, we propose a new method to estimate the
speech and noise statistics for masking-based beamforming on
the basis of the recently introduced gated convolutional recurrent
network (GCRN) [40]. A diagram of the proposed framework is
shown in Fig. 1. For monaural speech enhancement, we employ
GCRN to perform complex spectral mapping to predict the
real and imaginary spectra of clean speech. We investigate the
enhancement capabilities of GCRN in different SNR conditions
for i-vector and x-vector based SR. Then the performance of
multi-channel speech enhancement is examined for i-vectors and
x-vectors, where we estimate the IRM and the phase sensitive
mask (PSM) from estimated spectra to compute the speech and
noise covariance matrices. The computed statistics are then used
to calculate steering vectors for MVDR and rank-1 approxi-
mated MVDR beamformers.

We also incorporate gammatone frequency cepstral coeffi-
cients (GFCCs) as speaker features for training i-vectors and
x-vectors and demonstrate their robustness over commonly used
mel-frequency cepstral coefficients (MFCCs) under noisy and
reverberant conditions.
The rest of the paper is organized as follows. In Section II, we
describe monaural speech enhancement and GCRN architecture.
Section III proposes a new masking-based beamformer based on
MVDR and rank-1 approximated MVDR. Section IV explains
GFCC feature extraction for i-vectors and x-vectors. We then
provide the experimental setup and the evaluation results in
Section V and VI, respectively. Concluding remarks are given
in Section VII.

II. MONAURALSPEECHENHANCEMENT

A noisy speech signal received by an individual microphone
can be expressed with the short-time Fourier transform (STFT):

y(t, f)=a(f)s(t, f)+n(t, f) (1)

wheres(t, f)is the STFT representation of speech signal at
frametand frequencyf,a(f)is the time-invariant acoustic
transfer function (ATF), andy(t, f)andn(t, f)represent the
STFT of noisy mixture and noise, respectively. In the case of
reverberation, we can decompose the ATF into two parts and
write Eq. (1) as:

y(t, f)=c(f)s(t, f)+h(t, f)+n(t, f) (2)

wherec(f)is the ATF from the speech source to the microphone,
c(f)s(t, f)represents the direct-path speech signal andh(t, f)
its reverberation. Monaural speech enhancement formulates
the estimation of clean speechc(f)s(t, f)from noisy mixture
y(t, f)as a supervised learning problem [41]. In supervised
speech enhancement, different training targets have been pro-
posed [42], [43], inspired by the T-F masking concept from
computational auditory scene analysis (CASA) [41]. As a widely
used training target, the IRM is defined as the ratio of the energy
of clean and noisy speech at each T-F unit:

IRM(t, f)=
|c(f)s(t, f)|2

|c(f)s(t, f)|2+|h(t, f)+n(t, f)|2
. (3)

Once the IRM is learned, clean speech can be estimated by
applying the estimated IRM to the STFT of the noisy mixture. It
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Fig. 2. Network architecture of GCRN for complex spectral mapping. Skip connections link encoders to the corresponding decoders. ‘Conv’ and ‘Deconv’ denote
convolution and deconvolution, respectively.

is worth noting that the IRM only enhances the magnitude spec-
trogram of the noisy mixture and leaves its phase unchanged.
While phase is important for speech quality [26], the lack of
structure in the phase spectrogram makes its direct estimation
intractable [47]. Recently, however, new training targets have
been proposed to utilize the spectrotemporal structure of real
and imaginary components of a speech signal in order to enhance
both magnitude and phase [9], [47]. In [40], Tanet al.proposed
GCRN to map real and imaginary components of a noisy mixture
to the corresponding components of clean speech.
GCRN is based on an encoder-decoder architecture that in-

cludes a recurrent neural network with long short-term memory
(LSTM) between the encoder and the decoder. Fig. 2 illustrates
GCRN network architecture [40]. The encoder comprises five
convolutional gated linear unit (GLU) blocks [4] and two LSTM
layers, followed by two distinct decoder modules each of which
has five deconvolutional GLU blocks and one linear layer to
predict the real and imaginary spectra of clean speech. The input
contains two parts representing real and imaginary components
of the noisy mixture. The number of kernels is progressively
doubled in the encoder and halved in the decoder to guarantee
that the output has the same T-F representation as the input. GLU
blocks are accompanied by a batch normalization layer and an
exponential linear unit activation function. The trainable param-
eters of the LSTM layers are reduced by using a group strategy
and a parameter-free representation rearrangement layer.

III. MULTI-CHANNELSPEECHENHANCEMENT

A. Rank-1 Approximated MVDR Beamformer

In this section, we extend the signal model introduced in
Section II to multiple microphones. Assuming there areM mi-
crophones forming a microphone array, Eq. (2) can be extended
to:

y(t, f)=c(f)s(t, f)+h(t, f)+n(t, f) (4)

wherec(f)∈CM denotes a steering vector that contains in-
formation about inter-microphone level and phase differences

of direct-path speech signal [10],y(t, f),h(t, f)andn(t, f)∈
CM respectively represent the STFT vectors of the noisy mix-
ture, speech reverberation and noise.
Beamforming applies a frequency-dependent linear spatial
filterw(f)∈CM to the noisy mixture to suppress noise and
reverberation. Adaptive beamformers such as MVDR are based
on input signal statistics, including the covariance matrix of the
noisy mixture defined as:

Φy(f)=E y(t, f)y(t, f)
H

= Φs(f)+Φh(f)+Φn(f)

ΦN(f)

(5)

whereE{.}is the expectation operator,Tis the total number
of frames used in the summation, and(.)H denotes conjugate
transpose.Φs(f)andΦN(f)are the covariance matrices of
clean speech and overall interference, respectively. The above
equation assumes that the components of Eq. (4) are uncorre-
lated.
In the MVDR beamformer, the optimalw(f)is found by
minimizing the variance of the beamformer’s output without
distorting the speech signal. Mathematically,w(f)is realized
by solving the constrained optimization below [8]:

argmin
w(f)

w(f)HΦN(f)w(f)

subject tow(f)Hc(f)=1 (6)

and the closed-form solution can be expressed as:

wopt(f)=
Φ−1N (f)c(f)

c(f)HΦ−1N (f)c(f)
. (7)

As Eq. (7) suggests, the accurate estimation of the steering
vector and the covariance matrix of interference is key to MVDR
beamforming. Recent studies employ deep learning based T-F
masking for estimation of the covariance matrices and report
substantial improvements in beamforming performance [14],
[15], [45]. In this approach, a T-F mask is used to weigh the
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mixture covariance matrix at each T-F unit, and hence the
speech or noise statistics are collected from speech-dominant
or noise-dominant T-F units [42]. Concretely, the covariance
matrices of speech and interference for the MVDR beamformer
are estimated as [42]:

ΦN(f)=
t(1−m(t, f))y(t, f)y(t, f)

H

t(1−m(t, f))
(8)

Φy(f)=
1

T
t

y(t, f)y(t, f)H (9)

Φs(f)=Φy(f)−ΦN(f) (10)

wherem(t, f)represents the T-F mask. A single mask is es-
timated from each microphone independently, thenm(t, f)is
derived by combining all T-F masks using median pooling [14].
The principal eigenvector of the estimated speech covariance

matrix is a valid estimate of the steering vector, asΦs(f)is a
rank-1 matrix by definition. However, in practice, the estimation
ofΦs(f)usually does not result in a rank-1 matrix, especially in
the presence of reverberation. To prevent the erroneous estima-
tion of the steering vector, we can obtain a rank-1 matrix from
the speech covariance matrix using low rank approximation [32],
[38], [46]:

Φs(f)=Φr1(f)+Φz(f) (11)

whereΦr1(f)is a rank-1 matrix andΦz(f)is the remainder ma-
trix. Serizelet al.[32] proposed several techniques for estimating
Φr1(f), namely, first column decomposition, eigenvalue de-
composition (EVD) and generalized eigenvalue decomposition
(GEVD). In GEVD, we jointly diagonalizeΦs(f)andΦN(f):

Φs(f) =Q(f)Λ(f)Q(f)
H

ΦN(f)=Q(f)IMQ(f)
H

(12)

where IM is anM ×M identity matrix andΛ(f)=
diag{λ1(f),...,λM(f)}, assuming that eigenvalues are sorted
in the descending order. Then, the covariance matrices in
Eq. (11) can be written as:

Φs(f)=Q(f)diag{λ1(f),...,λM(f)}Q(f)
H (13)

Φr1(f)=Q(f)diag{λ1(f),0,...,0}Q(f)
H (14)

Φz(f)=Q(f)diag{0,λ2(f),...,λM(f)}Q(f)
H (15)

Φz(f)can be interpreted as residual noise error and ignored.
Hence,Φs(f)simplifies to [46]:

Φr1(f)=
tr(Φs(f))

tr(q1(f)q1(f)H)
q1(f)q1(f)

H (16)

whereq1(f)is the first column ofQ(f)andtr(.)is the trace
operator. The steering vectorc(f)can be more accurately esti-
mated as the principal eigenvector ofΦr1(f)since the rank-1
assumption is guaranteed to be valid.

B. T-F Masking

The performance of masking-based beamformers depends on
accurate T-F mask estimation. The mask definition impacts the

estimation of the steering vector and the interference covariance
matrix. In [15], the T-F mask is regarded as the probability
obtained from a complex Gaussian mixture model. Other stud-
ies employ DNN to estimate the ideal binary mask [14], the
IRM [51] and the complex IRM [48] for the estimation of the
speech and interference covariance matrices.
As GCRN estimates both real and imaginary spectra of clean
speech we can construct different T-F masks without modifying
the network training target. In the case of the IRM, we define:

IRMi(t, f)=
|̂si(t, f)|

2

|̂si(t, f)|
2+|̂ni(t, f)|

2 (17)

whereŝi(t, f)is GCRN’s estimated spectrogram of clean speech
obtained from microphoneiand

n̂i(t, f)=yi(t, f)−ŝi(t, f) (18)

is the estimated interference. The IRM defined in Eq. (17) only
uses the magnitude information of GCRN’s estimated spectro-
gram. In [40] it is shown that GCRN can provide a phase estimate
of clean speech as well. Therefore we also use the PSM by
incorporating the phase information for estimating the T-F mask
as [6]:

PSMi(t, f)=Re
ŝi(t, f)

yi(t, f)
=
|̂si(t, f)|

|yi(t, f)|
cos(θi) (19)

whereθiis the phase difference between the noisy mixture
and GCRN’s estimated spectrogram of clean speech. To sim-
plifyPSMestimation, we truncate it to have a value between
0 and 1.

IV. ROBUSTSPEAKERFEATURES

MFCC is the most commonly used feature for speaker recog-
nition. Shaoet al., however, reported that GFCC performs better
than MFCC for speaker identification when input signal is
corrupted by background noise [31], [33], [53], [54]. GFCC
is based on the gammatone filterbank which is derived from
psychophysical observations of human cochlear filtering [41].
We investigate GFCC as an alternative speaker feature, on
the basis of a 64-channel gammatone filterbank whose center
frequencies range from 20 to 3700 Hz. Each filter response is
fully rectified and downsampled to 100 Hz along the time di-
mension, corresponding to a frame rate of 10 ms. The magnitude
of the downsampled signals is then loudness-compressed by a
cubic root operation. The resulting gammatone feature (GF)
matrix is a variant of the cochleagram [41], analogous to the
widely used spectrogram. Fig. 3 contrasts the representations of
the cochleagram and spectrogram of a clean speech utterance.
As shown in the figure, unlike the linear frequency resolution
of the spectrogram, there are more filters and finer frequency
resolutions at low frequencies compared to high frequencies on
the cochleagram.
The cochleagram responses of neighboring filters are cor-
related because of their bandwidth overlap. This correlation
is removed by applying discrete cosine transform to the GF
matrix. The extracted features are called gammatone frequency
cepstral coefficients [33], [53]. Rigorously speaking, GFCCs
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Fig. 3. The comparison of cochleagram and spectrogram for a clean speech
utterance. The frequency resolution at low and high frequencies in the cochlea-
gram is different, unlike the spectrogram.

are not cepstral coefficients as cepstral analysis requires a log
operation between the first and the second frequency analysis for
the deconvolution purpose [33]. The term cepstral coefficients
in GFCC merely refers to functional similarities in GFCC and
MFCC derivations.

V. EXPERIMENTALSETUP

A. Dataset

We evaluate our monaural and multi-channel systems on real
and simulated room impulse responses (RIRs). The real RIR
experiments are based on the recently-proposed NIST retrans-
mitted dataset [23], which includes 459 recordings uttered by
totally 150 female speakers with having either three or five
minute duration for each recording. In this dataset, a loud speaker
is employed to retransmit the utterances in a highly reverberant
environment.1Out of 14 available microphones, 6 are placed
for beamforming purposes. Their placement forms an ad-hoc
microphone array with large inter-microphone distance in the
range of 2.80 to 7.62 meters. The microphone placement is
depicted in Fig. 4 a. Note that the plane wave assumption does
not hold in this setup since the aperture of the array is the same
order of magnitude as the distance from the loud speaker to
microphones. This implies that conventional beamformers such
as delay-and-sum which are based on estimation of direction
of arrival, may not perform optimally. This hypothesis is con-
firmed in [23] by showing that conventional beamformers do not
perform better than a single microphone in speaker recognition
task. In contrast, the masking-based beamforming is shown to
be beneficial since it does not consider any prior knowledge such
as the array geometry or the plane wave assumption [15].
For the simulated RIRs experiments, we use the anechoic ver-

sion of the NIST retransmitted dataset and convolve it with RIRs

1The authors did not report reverberation time (T60), but it can be inferred by
listening.

Fig. 4. Illustration of the experimental setup with (a) real RIRs (from [23]), and
(b) simulated RIRs. The distance from a speaker to the array center is between
[0.75,2] m for simulated RIRs.

generated by the image method.2We follow the setup described
in [44] for sampling the parameters of the RIR simulation. An
illustration of this setup is depicted in Fig. 4 b corresponding
to a uniform linear microphone array with 6 microphones and
randomly generated rooms and speaker locations. The rever-
beration time (T60) and inter-microphone distance are selected
randomly in the range of 0.4 to 0.8 seconds and 0.02 to 0.09
meters, respectively.
We mix the real and simulated RIR datasets with diffuse
babble noise to emulate a challenging background noise without
directional information. To create the babble noise, 10 utter-
ances are randomly selected from the TIMIT dataset, and mixed
together. We repeat this procedure for all utterances, and then
concatenate all mixtures to generate 80-minute babble noise. The
babble noise is split into two halves for training and testing. To
make the babble noise diffuse, we use the algorithm in [11] that
generates sensor signals based on a predefined spatial coherence
constraint induced by the array geometry. The sampling rate for
all utterances is 8 kHz.

B. Speech Enhancement

We train an LSTM based recurrent neural network for IRM
estimation as a baseline to compare with GCRN. The frame
length and frame shift for both networks are set to 40 ms and
20 ms, respectively. The input feature for LSTM is 161 log

2[Online]. Available: https://github.com/ehabets/RIR-Generator
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magnitude spectrogram after global mean-variance normaliza-
tion. The LSTM network includes 4 hidden layers each with
600 units, and an output layer with 161 sigmoidal units. Mean
squared error is used as the cost function for both LSTM and
GCRN.
The AMSGrad optimizer [29] is used for training GCRN with

a learning rate of 0.0001. The two networks have comparable
numbers of training parameters with 9.77 and 10.50 million
for GCRN and LSTM, respectively. Both DNNs are trained
on a subset of NIST SRE 2008 [1] which includes three- or
five-minute telephone or interview conversations from female
speakers. The total duration of the training data is 140 hours.
The RIRs are convolved with the training dataset with T60
between 0.2 and 1 seconds using the simulation procedure
described in Section V-A. Then, we mix the training data with
the diffuse babble noise at SNRs ranging from 0 dB to 15 dB
with reverberant speech treated as the reference signal in SNR
calculation.

C. Speaker Recognition

We conduct our SR experiments using i-vectors [36] and
x-vectors [37], both are implemented in Kaldi [28]. To train
i-vectors and x-vectors, we select 86,629 utterances from the
PRISM dataset [7]. We augment the training data by adding two
replicas from reverberation and babble noise. The reverberation
replica is generated by convolving small and medium room
RIRs from the OpenSLR dataset with clean training utterances.
The babble noise replica is generated by randomly selecting
3–7 utterances from the MUSAN speech dataset [35] and then
mixed with clean speech training data with SNRs in the range
of 6–13 dB. It should be noted while the data augmentation
significantly improves x-vector performance [37], it is shown
that i-vectors might not benefit from data augmentation since
i-vectors are trained in an unsupervised fashion and adding noisy
data forces GMM to model noise variability instead of speaker
variability [24]. Therefore, only clean data is used for training
i-vectors. For x-vectors, we select 128,000 utterances randomly
from both replicas and add to the clean training dataset. Fur-
thermore, we remove those utterances that are shorter than 500
frames and those speakers that have fewer than 8 utterances.
Totally, 169,660 utterances are generated for x-vector training
and they include 5,565 speakers and 10,381 hours of data.
I-vectors based on MFCC use 23 mel-filters with triangular

overlapping windows in the range of 20 to 3700 Hz. Twenty-
dimensional MFCC features are calculated every 10 ms with
a window length of 20 ms. For i-vectors based on GFCC, we
follow the procedure described in Section IV for extracting
20-dimensional GFCC features. After feature extraction, delta
and acceleration features are added to create a 60-dimensional
feature. Cepstral mean normalization (CMN) is applied for a
sliding window of 3 s. The default energy-based voice activ-
ity detector (VAD) in Kaldi is applied. The i-vector extractor
is trained with 2048-component universal background model
(UBM) based on a full-covariance GMM. We use a portion of
the training data (15,600 utterances) for UBM training. Linear
discriminant analysis (LDA) is applied to i-vectors to reduce

TABLE I
MONAURALSPEAKERVERIFICATIONRESULTS(%EER) WITHMFCCAS THE
INPUTFEATURE.RESULTSAREOBTAINED BYAVERAGINGOVERALL

MICROPHONES.‘SIMU’REFERS TOSIMULATEDRIRS

the dimensionality from 600 to 200. Prior to PLDA scoring,
i-vectors are centered around a global mean followed by length
normalization.
For x-vectors based on MFCC, input features are
23-dimensional MFCC, with the 25-ms frame length and a
10-ms frame shift. To have a fair comparison, we use the lowest
23-order GFCC features for training x-vectors. Subsequently,
the same VAD and CMN with 3 s sliding window are applied.
Similar to the original Kaldi recipe [37], 512-dimensional em-
beddings are extracted from the affine component of the first
segment-level layer of x-vector’s DNN. The dimensionality of
x-vectors is reduced to 150 by LDA and they are subject to length
normalization before PLDA scoring.

VI. EXPERIMENTALRESULTS ANDCOMPARISONS

A. Speaker Verification Based on Single-Channel
Speech Enhancement

We report speaker verification results in terms of equal error-
rate (EER). The i-vector and x-vector system based on MFCC
score 2.5% and 1.88% EER for clean test data (anechoic and
noise free), respectively. With GFCC as the input feature, we
achieve 2.80% and 1.67% EER for i-vectors and x-vectors
respectively. Table I displays the average EER score over 6
microphones with simulated and real RIRs when MFCC is used.
The unprocessed utterances and the enhanced utterances by
LSTM or GCRN are reported in 4 different SNR conditions.
It can be observed that the i-vector method benefits from speech
enhancement in all scenarios. The benefit is the largest at the
least favorable SNR, where EER scores for the unprocessed ut-
terances are the highest. At the SNR of 0 dB, mean unprocessed
scores average to 19.43% in the simulated RIRs. This value is
decreased to 12.66% and 11.01% by using LSTM and GCRN,
respectively. We can see the same trend as the SNR increases
for both simulated and real RIRs. At higher SNRs, speech
enhancement still improves the i-vector performance, although
to smaller extents. With regard to the comparison between the
two speech enhancement systems, GCRN outperforms LSTM
in all conditions except for the real RIR at 15 dB SNR where
LSTM and GCRN perform comparably.
For x-vectors, we observe that they yield significantly better
EER scores in all conditions compared to i-vectors. Note that,
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TABLE II
MONAURALSPEAKERVERIFICATIONRESULTS(%EER) WITHGFCC

AS THEINPUTFEATURE.RESULTSAREOBTAINED BY
AVERAGINGOVERALLMICROPHONES

although the SNR range for x-vector training is 6–13 dB, the
x-vector system shows robustness in lower SNR conditions.
Another comparison of interest involves the performance of
x-vectors after speech enhancement. As shown in Table I,
enhancing noisy speech signal before extracting x-vectors is
effective, especially in low SNR conditions. However, unlike
i-vectors, speech enhancement causes a little degradation at
higher SNRs in simulated RIRs where reverberation is not as
challenging as real RIRs. A possible solution would be to apply
speech enhancement during x-vector training which can result
in EER reduction as reported in [24]. On the other hand, in the
real RIR conditions, speech enhancement improves EER results
at all SNR levels.
One could argue that increasing the amount of training data

by including more SNR levels may lessen the need for speech
enhancement, as x-vectors benefit from data augmentation.
However, generating noisy replicas in the x-vector requires each
speaker to be mixed with a number of SNR conditions in order
to exhibit SNR generalization. This can lead to a huge amount
of training data and be very time consuming for training. On the
other hand, generalization to unseen conditions is possible for
speech enhancement with a relatively small amount of training
data compared to the x-vector training [3], [40].
We present the performance of monaural speaker verification

based on GFCC features in Table II. The pattern of the results
in Table II is similar to that in Table I. However, GFCC features
show consistent improvements over MFCC features for both
noisy and enhanced utterances, consistent with the findings
in [33], [53]. The improvements are significant for both i-vectors
and x-vectors, especially at lower SNRs. As SNR increases,
however, i-vectors based on GFCC performs worse than those
based on MFCC in simulated RIRs after speech enhancement.
But for x-vectors, GFCCs uniformly outperform MFCCs.
We also utilize single-channel WPE as a preprocessor to

dereverberate the speech signal and report the results for real
RIRs in Table III. Results show that further EER reduction is
achieved when WPE is combined with speech enhancement.

B. Speaker Verification Based on Multi-Channel
Speech Enhancement

Table IV presents EER results using the MVDR and rank-1
approximated MVDR beamformers for i-vectors and x-vectors.

TABLE III
MONAURALSPEAKERVERIFICATIONRESULTS(%EER) USINGWPE
PREPROCESSINGWITHREALRIRS.RESULTSAREOBTAINED BY
AVERAGINGOVERALLMICROPHONES.‘SE’REFERS TO

SPEECHEHANCEMENTWITHGCRN

The results are for real RIRs, and both MFCC and GFCC are
evaluated. Three different masks are derived from LSTM and
GCRN: The estimated IRM obtained from LSTM (LSTM/IRM)
and the IRM and PSM estimated from GCRN. The estimated
masks computed from individual microphones are combined
using median pooling. Following [38], we use

Φs(f)=
tm(t, f)y(t, f)y(t, f)

H

tm(t, f)
(20)

to calculate the speech covariance matrix for rank-1 approx-
imated MVDR. We find in our initial experiments that this
derivation of the speech covariance matrix improves the results
slightly compared to the derivation by Eq. (10).
From the table, we observe that the rank-1 approximation of
the speech covariance matrix leads to a consistent improvement.
Comparing the average improvements of the rank-1 approxi-
mated MVDR based on LSTM over the MVDR beamformer for
the i-vector, we observe an absolute EER reduction of 5.23%
with MFCC and 4.22% with GFCC. For x-vectors, rank-1 ap-
proximation leads to 4.72% and 2.88% absolute EER reduction
with MFCC and GFCC features, respectively.
With the MVDR beamformer, our proposed approach for
calculating covariance matrices based on GCRN outperforms
that based on LSTM in all conditions for both i-vectors and
x-vectors. Using GCRN/IRM with i-vectors, for example, the
average improvements over LSTM/IRM are 3.11% and 2.39%
EER reduction with MFCC and GFCC features, respectively.
For the rank-1 approximated MVDR beamformer, the use
of GCRN brings an improvement over LSTM. GCRN/IRM
and GCRN/PSM achieve lower EER scores compared to
LSTM/IRM with both MFCC and GFCC features. Moreover, the
PSM appears to be a more effective training target than the IRM
for estimating covariance matrices as GCRN/PSM outperforms
GCRN/IRM in all conditions. This is, however, reversed for the
MVDR beamformer without rank-1 approximation, i.e. the IRM
is a more effective training target in this case.
Table IV shows that, like the single-channel case, the use of
GFCC improves speaker verification results uniformly over the
use of MFCC. This is true regardless of DNN model, T-F mask,
beamforming technique, SNR level, and speaker recognizer.
The performance of multi-channel speaker verification for
simulated RIRs is presented in Table V. Similar trends to
real RIRs are observed for both MFCC and GFCC features.
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TABLE IV
MULTI-CHANNELSPEAKERVERIFICATIONRESULTS(%EER) BASED ONMFCCANDGFCC WITHREALRIRS

TABLE V
MULTI-CHANNELSPEAKERVERIFICATIONRESULTS(%EER) BASED ONMFCCANDGFCC WITHSIMULATEDRIRS

Fig. 5. EER results for single- and multi-channel speech enhancement for x-vectors based on MFCC features with (a) simulated RIRs and (b) real RIRs. For
noisy and monaural GCRN, the height of a bar and the whisker denote the average EER and the standard deviation of all microphones, respectively.

Analogous to single-channel experiments, GFCC performance
is worse than MFCC for i-vectors as SNR increases.
To gain an insight into the effect of multi-channel speech

enhancement, Fig. 5 contrasts the EER score of the rank-1
approximated MVDR beamformer based on GCRN/IRM with

the unprocessed audio of each microphone and monaurally
enhanced speech signal obtained by GCRN. One can clearly
observe that greater error reduction is achieved by using the
rank-1 approximated MVDR beamformer compared to monau-
ral speech enhancement, especially at lower SNRs. Unlike
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TABLE VI
MULTI-CHANNELSPEAKERVERIFICATIONRESULTS(%EER) USINGWPE
PREPROCESSINGWITHREALRIRS.‘BF’REFERS TORANK-1 APPROXIMATED

MVDR BEAMFORMINGWITHGCRN BASEDMASKING

TABLE VII
MULTI-CHANNELEER COMPARISONEVALUATED ONNIST RETRANSMITTED

DATA S E TWITHREALRIRS

monaural speech enhancement which causes some degradation
on x-vector performance in the simulated RIRs at higher SNRs,
multi-channel speech enhancement improves speaker verifica-
tion performance of the x-vector systems uniformly.
Table VI shows the application of multi-channel WPE for

preprocessing with and without rank-1 approximated MVDR
beamforming for real RIRs. Comparing this table and Table IV,
it can be seen that the combination of WPE and beamform-
ing improves the performance significantly, especially at lower
SNRs.
Finally, we compare our multi-channel SR system to the

system introduced in [23]. To match the setup in [23], this
comparison uses the real RIR corpus without adding babble
noise. We report the results in Table VII. FW_GEV refers
to the masking-based generalized eigenvalue beamformer [14]
that is trained on reverberant data. The training procedure for
i-vectors and PLDA used in [23] is similar to our procedure.
For i-vectors, our system based on MVDR rank-1 GCRN/PSM
and MFCC features yields 1.88% lower EER than [23]. We
improve EER scores further by using x-vectors, which is not
used in [23]. It is also worth noting that rank-1 approximated
MVDR with the PSM has better EER scores compared to WPE,
indicating the beamformer’s ability to effectively dereverberate.
Even better EER scores are achieved when WPE is combined
with masking-based beamformers. The best EER is achieved
by MVDR rank-1 GCRN/IRM using x-vectors and GFCC
features.

VII. CONCLUSIONS

In this paper, we have investigated the effectiveness of
speech enhancement methods for speaker recognition in adverse
acoustic conditions where the target speech is corrupted by
strong diffuse noise and room reverberation. Convolutional
recurrent networks are used to perform monaural speech en-
hancement, and they learn to map from the real and imaginary
spectrograms of noisy speech to the corresponding spectro-
grams of clean speech. Our experimental results demonstrate
that complex spectral mapping with GCRN combined with
GFCC features significantly reduces speaker verification errors
of both i-vector and x-vector systems. Our experiments show
that multi-channel speech enhancement consistently improves
the x-vector performance. Two variants of the masking-based
MVDR beamformer have been investigated for multi-channel
speech enhancement. The results demonstrate that rank-1 ap-
proximation leads a greater error reduction, likely due to more
accurate steering vector estimation.
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