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Deep Learning Based Target Cancellation for
Speech Dereverberation
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Abstract—This article investigates deep learning based single-
and multi-channel speech dereverberation. For single-channel pro-
cessing, we extend magnitude-domain masking and mapping based
dereverberation to complex-domain mapping, where deep neural
networks (DNNs) are trained to predict the real and imaginary (RI)
components of the direct-path signal from reverberant (and noisy)
ones. For multi-channel processing, we first compute a minimum
variance distortionless response (MVDR) beamformer to cancel
the direct-path signal, and then feed the RI components of the
cancelled signal, which is expected to be a filtered version of non-
target signals, as additional features to perform dereverberation.
Trained on a large dataset of simulated room impulse responses,
our models show excellent speech dereverberation and recognition
performance on the test set of the REVERB challenge, consistently
better than single- and multi-channel weighted prediction error
(WPE) algorithms.

Index Terms—Complex spectral mapping, phase estimation,
microphone array processing, speech dereverberation, deep
learning.

I. INTRODUCTION

ROOM reverberation is pervasive in modern hands-free
speech communication, such as teleconferencing and

smart speakers. In a reverberant enclosure, speech signals prop-
agate in the air and are inevitably reflected by the walls, ceiling,
floor, and any objects in the room. As a result, the signal captured
by a distant microphone is a summation of an infinite number
of delayed and decayed copies of original source signals. Room
reverberation is known to be detrimental to automatic speech
recognition (ASR) systems, and severely degrades speech qual-
ity and intelligibility. Speech dereverberation is a challenging
task, as reverberation is a convolutive interference, unlike back-
ground noise which is additive, and it is difficult to distinguish
the direct-path signal from its reverberated versions, especially
when room reverberation is strong or environmental noise is also
present [1].
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For single-channel dereverberation, one conventional ap-
proach estimates the power spectral density (PSD) of late rever-
beration to compute a Wiener-like filter based on, for example,
an exponentially decaying model computed using an estimated
reverberation time [2] and a relative convolutive transfer func-
tion model [3]. The weighted prediction error (WPE) algorithm
[4], [5] is probably the most widely used algorithm for speech
dereverberation. It uses variance-normalized delayed linear pre-
diction to predict late reverberation from past observations, and
subtracts the predicted reverberation to estimate target speech. It
iteratively estimates the time-varying PSD of target speech and
the linear filter, and is unsupervised in nature. Many ASR stud-
ies report that WPE suppresses reverberation with low speech
distortions, and consistently improves ASR performance even
for multi-conditionally trained ASR backends [6].

When multiple microphones are available, spatial information
can be leveraged to filter out signals not arriving from the
estimated target direction. Single-channel WPE can be extended
to multi-channel WPE [4] by simply concatenating the obser-
vations across multiple microphones when performing linear
prediction. Another popular approach for multi-channel speech
dereverberation is the so-called suppression approach [7], [8],
which decomposes a multi-channel Wiener filter into a product
of a time-invariant or time-varying MVDR beamformer and a
monaural Wiener post-filter. This approach requires accurate
estimation of spatial covariance matrices and PSDs. It can utilize
the phase produced by linear beamforming, which is expected to
be better than the mixture phase, since MVDR beamforming is
distortionless. However, the phase improvement is dependent
on linear beamforming, which is less effective when room
reverberation is strong or when the number of microphones is
small. In addition, the Wiener post-filter is a real-valued mask,
and would inevitably introduce phase inconsistency problems
[9], [10], when directly applied to the beamformed signal for
enhancement.

Different from conventional algorithms, supervised learning
based approaches train a DNN to predict the magnitudes or
real-valued masks of the direct-path signal from reverberant
observations [11]–[15]. Such data-driven approaches typically
lead to good magnitude (or PSD) estimation compared with
conventional algorithms [1], thanks to the non-linear modeling
power of DNN. However, the DNN operates in the magnitude
domain, and mixture phase is typically utilized for signal re-
synthesis. Phase estimation is hence a promising direction for
further improvement. Another direction in dereverberation uses
DNN estimated speech magnitudes as the PSD estimate for WPE
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[16]–[19]. This approach can leverage the spectral structure in
speech for linear prediction, and most importantly eliminates the
iterative process, making WPE suitable for online processing. In
offline scenarios, although ASR improvement is observed on the
eight-channel task of the REVERB challenge, it leads to slightly
worse performance on the single-channel task [16].

In this context, our study extends magnitude-domain mask-
ing and mapping based speech dereverberation to the complex
domain, where a DNN is trained to predict the RI components of
direct sound from reverberant ones. Although previous studies
perform single-channel complex masking or mapping for speech
denoising [20]–[22], their results in reverberant conditions are
mixed [23] and how to extend to multi-channel processing is
unclear.

Our study approaches multi-channel dereverberation from
the angle of target cancellation, where a key assumption is
that the target speaker is a directional source, and is typically
non-moving within a short utterance. This suggests that we can
point a null beam to cancel the target speaker, and the remaining
signal would only contain a filtered version of reverberation.
This filtered reverberation can be utilized as extra features for
DNN to perform multi-channel complex spectral mapping based
dereverberation. It should be noted that similar ideas of target
cancellation were explored in binaural speech segregation [24]
and multi-channel dereverberation [25], [8]. Their purposes are,
however, different (e.g., on the PSD estimation of late reverber-
ation), and they do not address phase estimation.

Our study makes four main contributions. First, we extend
deep learning based magnitude-domain single-channel speech
dereverberation to the complex domain for phase estimation.
The phase estimation method follows the complex spectral
mapping idea in [21], [22], while our study addresses direct
sound vs. reverberation and noise, rather than speech vs. noise in
anechoic conditions. Second, we introduce for complex spectral
mapping a magnitude-domain loss function, which dramatically
improves speech quality measures in reverberant conditions.
Third, we propose a novel target cancellation strategy to utilize
spatial information to improve the estimation of direct sound.
Fourth, we investigate the effectiveness of DNN based phase
estimation for beamforming and post-filtering, while the DNN
in previous deep learning based multi-channel enhancement
operates in the magnitude domain. We emphasize that the pro-
posed algorithms are designed in a way such that the resulting
models, once trained, can be directly applied to arrays with
an arbitrary number of microphones arranged in an unknown
geometry.

The rest of this paper is organized as follows. We introduce
the physical model in Section II. The proposed algorithms
are detailed in Section III, followed by experimental setup in
Section IV. Evaluation and comparison results are presented in
Section V. Conclusions are made in Section VI.

II. PHYSICAL MODEL AND OBJECTIVES

Given a P -microphone time-domain signal y[n] = [y1[n]
, . . . , yP [n]]

T ∈ RP×1 recorded in a reverberant and noisy en-
closure, the physical model in the short-time Fourier transform

(STFT) domain is formulated as:

Y (t, f) = c (f ; q)Sq (t, f) +H (t, f) +N (t, f)

= S (t, f) + V (t, f) (1)

where Sq(t, f) ∈ C are the complex STFT values of the direct-
path signal of the target speaker captured by a reference mi-
crophone q at time t and frequency f , c(f ; q) ∈ CP×1 is the
relative transfer function with the qth element being one, and
c(f ; q)Sq(t, f), H(t, f), N(t, f) and Y (t, f) ∈ CP×1 respec-
tively represent the STFT vectors of the direct-path signal,
reverberation, reverberant noise and received mixture at a T-F
unit.

We propose multiple deep learning algorithms to enhance the
mixture Yq capture at the reference microphone q to recover Sq,
by exploiting single- and multi-channel information contained
in Y . In this study, N(t, f) is assumed to be a quasi-stationary
air-conditioning noise, as our focus is on dereverberation; the
proposed algorithms can be straightforwardly applied to deal
with more noises. The target speaker is assumed to be still
within an utterance. Our study also assumes offline scenarios:
we normalize the time-domain sample variance of each input
multi-channel signal y to one before any processing. This nor-
malization would be important for mapping-based enhancement
to deal with random gains in input signals.

In the remainder of this paper, we refer to S(t, f) =
c(f ; q)Sq(t, f) as the target component we aim to extract, and
V (t, f) = H(t, f) +N(t, f) as the non-target component to
remove.

III. PROPOSED ALGORITHMS

There are two DNNs in our system. The first DNN performs
single-channel dereverberation by predicting the RI components
of the direct-path signal from a mixture. Dereverberation results
are utilized to compute an MVDR beamformer. The second
DNN utilizes the RI components of beamformed speech as
additional features to further improve the estimation of the RI
components of the direct-path signal. Fig. 1 illustrates the overall
system.

A. Single-Channel Complex Spectral Mapping

Following recent studies [21], [22], we train a DNN to directly
predict the RI components of the direct sound from reverberant
and noisy ones. One key difference is that [21] and [22] deal
with speech vs. noise, while our study addresses direct sound
vs. reverberation and noise. We use the following loss function

LRI = ‖R̂p − Real(Sp)‖1 + ‖Îp − Imag(Sp) ‖1, (2)

where p ∈ {1, . . . , P} indexes microphones, R̂p and Îp are the
estimated RI components obtained by using linear activation in
the output layer, and Real(·) and Imag(·) respectively extract
the RI components. The enhanced speech at microphone p is ob-
tained as Ŝ(k)

p = R̂
(k)
p + jÎ

(k)
p , where the superscript k ∈ {1, 2}

denotes the output from the kth DNN, as shown in Fig. 1.
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Fig. 1. Illustration of overall system for single- and multi-channel speech dereverberation (or enhancement). There are two DNNs, one for single-channel and

the other for multi-channel dereverberation and denoising. The superscript in Ŝ
(1)
1 , . . . , Ŝ

(1)
P and Ŝ

(2)
q denotes the DNN used for processing.

Following recent studies that combine LRI with a magnitude-
domain loss [21], [26], we design the following loss function

LRI+Mag = LRI +

∥
∥
∥
∥

√

R̂2
p + Î2p − |Sp|

∥
∥
∥
∥
1

(3)

Different from [21], [26], our study does not compress the
estimated magnitudes or complex spectra using logarithmic or
power compression. This way, the DNN is always trained to
estimate a complex spectrum that has consistent magnitude and
phase structures, and therefore would likely produce a consistent
estimated STFT spectrum at run time [10].

Our experiments show that including a loss on magnitude
leads to large improvements in objective measures of speech
quality, along with a small degradation on time-domain signal-
to-noise ratio (SNR) based measures, compared with only using
LRI.

B. Multi-Channel Complex Spectral Mapping

We propose a target cancellation approach to exploit spatial
information for dereverberation. The motivation is that given
an oracle MVDR beamformer w(f ; q), the beamformed signal
is distortion-less, meaning that Sq(t, f) = w(f ; q)HS(t, f).
Therefore, the difference between the mixture and the beam-
formed signal at reference microphone q, computed as

Yq (t, f)−BFq (t, f) = Yq (t, f)−w(f ; q)HY (t, f)

= Sq (t, f) + Vq (t, f)−
(

w(f ; q)HS (t, f)

+ w(f ; q)HV (t, f)
)

= Vq (t, f)−w(f ; q)HV (t, f) (4)

would only contain a filtered version of non-target signals, i.e.,
Vq(t, f)−w(f ; q)HV (t, f). Intuitively, the more microphones
there are and the more accurate the beamformer is, the weaker the
beamformed non-target speech w(f ; q)HV (t, f) would be, and
the closerVq(t, f)−w(f ; q)HV (t, f) is to the actual non-target
speech Vq(t, f) we aim to remove at microphone q. This makes

Yq −̂BF q a highly discriminative feature for dereverberation,
and hence motivates us to use it as an extra input for DNN to

predict Sq via complex spectral mapping. Without this feature,
the DNN may struggle at distinguishing direct-path signal from
its reverberated versions, as the latter is a summation of the
delayed and decayed copies of the former.

We apply the single-channel complex spectral mapping model
to each microphone signal and directly use the estimated speech
Ŝ(1) to robustly compute an MVDR beamformer for cancelling
target speech. Our study considers time-invariant MVDR (TI-
MVDR) beamforming, as the target speaker is assumed still
within each utterance, and reverberation and the considered
noise are largely diffuse. The covariance matrices are computed
as

Φ̂(s) (f) =
1

T

∑

t

Ŝ (t,f) Ŝ(t,f)H

Φ̂(v) (f) =
1

T

∑

t

V̂ (t,f) V̂ (t,f)H (5)

where V̂ (t, f) = Y (t, f)− Ŝ(t, f). The motivation is that the
estimated complex spectra are expected to have cleaner phase
than the mixture phase. In contrast, mask-weighted ways of
computing covariance matrices (see Eq. (10) for example) [27]–
[31] are fundamentally limited when there are insufficient T-F
units dominated by the direct-path signal, such as when room
reverberation or environmental noise is very strong.

The relative transfer function is then computed in the follow-
ing way

r̂ (f) = P
{

Φ̂(s) (f)
}

(6)

ĉ (f ; q) =
r̂ (f)

r̂q (f)
(7)

where P{·} extracts the principal eigenvector. The motivation
is that Φ̂(s)(f) would be close to a rank-one matrix if accurately
estimated. Its principal eigenvector is therefore a reasonable
estimate of the steering vector [32]. We then use Eq. (7) to
obtain an estimated transfer function relative to a reference
microphone q. We emphasize that, without using Eq. (7), a
different complex gain would be introduced at each frequency,
leading to distortions in the beamformed signal.
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A TI-MVDR beamformer is then computed as

ŵ (f ; q) =
Φ̂(v)(f)−1ĉ (f ; q)

ĉ(f ; q)HΦ̂(v)(f)−1ĉ (f ; q)
(8)

The beamformed signal is obtained using

̂BF q (t, f) = ŵ(f ; q)HY (t, f) (9)

For multi-channel dereverberation, we feed the RI compo-
nents of Yq −̂BF q , in addition to the RI components of Yq , to
a DNN to estimate the RI components of the direct-path signal
Sq (see Fig. 1).

We point out that this strategy is in spirit similar to the classic
generalized sidelobe canceller (GSC) [32], which contains three
components: a delay-and-sum (DAS) beamformer computed to
enhance the target signal, a blocking matrix used to block the
target signal, and an adaptive noise canceller designed to cancel
the sidelobes produced by the DAS beamformer based on the
blocked signal. The key difference here is that we compute an
MVDR beamformer to block the target signal, and use deep
learning to cancel the non-target signal in Yq based on Yq −
̂BF q .

From the spatial feature perspective, popular for deep learning
based multi-channel speech enhancement [33]–[36] and speaker
separation [37], the RI components of̂BF q or Yq −̂BF q can
be considered as complex-domain spatial features, which can be
utilized by the DNN to extract a target speech signal with specific
spectral structure and arriving from a particular direction. Such
features are more general than those previously proposed for
improving magnitude estimation, such as plain interchannel
phase differences (IPD) [38], cosine and sine IPD [39], and target
direction compensated IPD and the magnitudes of beamformed
mixtures [37].

IV. EXPERIMENTAL SETUP

Our models for dereverberation are trained on reverberant and
noisy data created by using simulated room impulse responses
(RIRs) and recorded noises. We first measure the performance
on a relatively matched simulated test set, and then evaluate the
trained models directly on the test set of the REVERB challenge
[40] to show their generalization ability. This section describes
the datasets and the setup for model training, and several baseline
systems for comparison purposes.

A. Datasets and Evaluation Setup

Following the REVERB challenge [40], our training data
for dereverberation is generated using the WSJCAM0 corpus.
Different from REVERB, which only uses 24 measured eight-
channel RIRs to generate its training data, we use a much larger
set of RIRs (in total 39,305 eight-channel RIRs for training)
generated by an RIR generator1 to simulate room reverberation.
See Algorithm 1 for the detailed simulation procedure. For each
utterance, we randomly generate a room with different room
characteristics, speaker and microphone locations, microphone

1[Online]. Available: https://github.com/ehabets/RIR-Generator.

Algorithm 1: Data Spatialization Process (Simulated RIRs).
Input: WSJCAM0;
Output: spatialized reverberant (and noisy) WSJCAM0;
REP[train] = 5; REP[validation] = 4; REP[test] = 3;
For dataset in {train, validation, test} set of
WSJCAM0 do

For each anechoic speech signal s in dataset do
Repeat REP[dataset] times do

- Sample room length rx and width ry from
[5,10] m;
- Sample room height rz from [3, 4] m;
- Sample mic array height az from [1, 2] m;
- Sample array displacement nx and ny from
[−0.5, 0.5] m;
- Place array center at 〈 rx2 + nx,

ry
2

+ ny, az〉 m;
- Sample array radius ar from [0.03, 0.1] m;
- Sample angle of first mic angle ϑ from [0, π

4 ];
For p = 1 : P (= 8) do
- Place mic p at 〈 rx2 + nx + ar cos (ϑ +
(p− 1)π4 ),

ry
2 + ny + ar sin (ϑ + (p− 1)π4 ),

az〉 m;
End
- Sample target speaker locations in the 0− 360◦

plane:
〈sx, sy, sz(= az)〉

such that the distance from target speaker to
array center is in between [0.75, 2.5] m, and
target speaker is at least 0.5 m from each wall;
- Sample T60 from [0.2, 1.3] s;
- Generate multi-channel impulse responses
using RIR generator and convolve them with s;
If dataset in {train, validation} do
- Sample a P -channel noise signal n from the
training noise of REVERB corpus;
Else
- Sample a P -channel noise signal n from the
testing noise of REVERB corpus;
End
- Concatenate channels of reverberated s and n
respectively, scale them to an SNR randomly
sampled from [5, 25] dB, and add them to obtain
reverberant and noisy mixture;

End
End

End

array characteristics, and noise levels. Our study considers eight-
channel circular arrays with radius ranging from 3 to 10 cm.
The target speaker is placed on the same plane as the array, at a
distance randomly drawn from 0.75 to 2.5 m. The reverberation
time (T60) is randomly sampled between 0.2 and 1.3 s. We use
the training and test noise (mostly diffuse quasi-stationary fan
noise) in REVERB to simulate noisy reverberant mixtures in
our training and test sets, respectively. The SNR between the
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direct sound and reverberant noise of each mixture is randomly
drawn between 5 and 25 dB. The average direct-to-reverberation
energy ratio2 (DRR) is −3.7 dB with 4.4 dB standard deviation.
There are 39, 305 (7,861× 5,∼80 h), 2,968 (742× 4,∼6 h), and
3,264 (1,088 × 3,∼7 h) eight-channel utterances in the training,
validation and test set, respectively. Note that the training and the
test speakers are different. We denote this test set as Test Set I. At
run time, we randomly choose a subset of microphones for each
test mixture for evaluation. This setup therefore covers a wide
range of microphone geometry. We use the direct-path signal at
a reference microphone (i.e., the signal corresponding to Sq) as
the reference for metric computation, and the first microphone is
always considered as the reference. For P -channel processing,
we randomly select P − 1 microphones from the non-reference
microphones and always report the performance on the reference
microphone. This way, we can directly compare single- and
multi-channel processing as they are both evaluated using the
same reference signals.

We apply the trained models, without re-training, to the test
set of the REVERB corpus, which contains simulated as well
as recorded reverberant and noisy mixtures. We first evaluate
the enhancement performance of the trained models on the
simulated test set (denoted as Test Set II), where six measured
eight-channel RIRs are used to simulate 2,176 reverberant and
noisy mixtures. The six RIRs are measured in small-, medium-
and large-size rooms, where the T60s are 0.25, 0.5 and 0.7 s
respectively, and the speaker to microphone distance is around
0.5 m in the near-field case and 2.0 m in the far-field case.
Recorded environmental noise is added at an SNR of 20 dB.
In the REVERB challenge setup, only the sample at nd, which
is the index corresponding to the highest value in the measured
RIR, is used to compute the direct-path signal (i.e., reference
signal) for metric computation. However, due to measurement
inaccuracy, this may not be realistic, since the samples in a
small window around nd are typically considered as in the
direct-path RIR [41]. A short segment of an example RIR from
REVERB is shown in Fig. 3(a), where T60 is around 0.7 s.
If we only use the sample at nd to simulate the direct-path
signal, the resulting DRR would be unrealistically low, as the
samples around the peak exhibit non-negligible energy; as a
result, the reverberation generated by the surrounding samples
would be difficult to remove. These surrounding samples should
be considered when computing the direct-path signal, as they
are in a measured RIR. Also, the sound source may not be
a point source strictly and for a 16 kHz sampling rate, one
discrete sample can have around 340/16, 000 m measurement
error, where 340 (m/s) is the sound speed in the air. Further-
more, simulated direct-path RIRs are usually computed based
on low-pass filtering, and they will be similar to a Sinc function
even for a point source [42]. In Fig. 3(b) we show an example
direct-path RIR simulated using the RIR generator by setting the
T60 parameter to zero. In our study, we hence use the samples
in the range [nd − 0.0025× 16, 000, nd + 0.0025× 16, 000]
(i.e., a 5-ms window surrounding the peak) of the measured
RIRs to compute the direct-path signal for metric computation.

2DRR is computed as the energy ratio between the time-domain RIRs of
direct-path signal and its reverberation.

This strategy aligns with the setup in the ACE challenge [41].
We then evaluate the dereverberation models on the ASR task of
REVERB (denoted as REVERB ASR). The test utterances are
real recordings with T60 (reverberation time) around 0.7 s and
the speaker to microphone distances approximately 1 m in the
near-field case and 2.5 m in the far-field case. Both Test Set II and
REVERB ASR use an eight-microphone circular array with a 20
cm diameter, and the target speaker is non-moving within each
utterance. We follow a plug-and-play approach for ASR, where
enhanced signals are directly fed into a multi-conditionally
trained ASR backend for decoding. The backend is built based
on the official REVERB corpus using the Kaldi script3. It is
composed of a GMM-HMM system, a time-delay DNN (TDNN)
trained with lattice-free maximum mutual information based on
online-extracted i-vectors and MFCCs, and a tri-gram language
model. Note that the window length and hop size for ASR are
respectively 25 and 10 ms, following the default setup in Kaldi.
During testing, we first obtain enhanced time-domain signals
using our frontend and then feed them to the ASR backend
for decoding, meaning that our frontend does not leverage any
knowledge of the backend. We emphasize that the purpose of
Test Set II and REVERB ASR is to show the generalization
ability of our dereverberation models, which are trained based
on simulated training data, as well as to compare the proposed
algorithms with unsupervised methods such as WPE, not to
obtain state-of-the-art performance using dereverberation fron-
tends trained on the REVERB training data.

The two DNNs in Fig. 1 are trained sequentially. We first
train the single-channel model using the first channel of all the
multi-channel signals (in total 7,861 × 5 utterances). Designat-
ing the first microphone as the reference, we use the trained
model to obtain a beamformed signal based on a random subset
of microphones. The beamforming result is then combined
with the mixture signal to train the second network. This way,
the second DNN can deal with beamforming results produced
by using up to eight microphones. Fig. 2 illustrates the DNN
architecture. We use two-layer recurrent neural networks with
bi-directional long short-term memory (BLSTM) having an
encoder-decoder structure similar to U-Net, skip connections,
and dense blocks as the learning machines for masking and
mapping. The motivation for this DNN design is that BLSTM
can model long-term temporal information, U-Net can maintain
fine-grained local information as is suggested in image semantic
segmentation [43], and DenseNet encourages feature reuse and
improves the discriminative capability of the network [44]–[46].
In our experiments, this network architecture shows consis-
tent improvements over the standard BLSTM and a recently

3[Online]. Available: https://github.com/kaldi-asr/kaldi/tree/master/egs/
reverb/s5 (commit 61637e6c8ab01d3b4c54a50d9b20781a0aa12a59). Different
from the Kaldi script, our study (1) performs sentence-level cepstral mean
normalization on the input features of TDNN; (2) reduces the initial batch size
of TDNN training by changing the trainer.num-chunk-per-minibatch flag from
256,128,64 to 128,64; (3) increases the number of TDNN training epochs from
10 to 20; (4) uses wsj/s5/local/wer_output_filter and wsj/s5/local/wer_hyp_filter
to filter out tokens such as NOISE and SPOKEN_NOISE when utilizing
local/score.sh to compute WER; and (5) enforces the same word insertion
penalty (WIP) for near- and far-field conditions, and uses the averaged WER
on the near- and far-field conditions of the validation set to select the best WIP.
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Fig. 2. Network architecture for predicting the RI components of Sq from the

RI components of Yq and Yq − B̂F q . Note that for single-channel processing,
the network only takes in single-channel information as its inputs. The tensor
shape after each block is in format: featureMaps × timeSteps × frequencyChan-
nels. Each Conv2D, Deconv2D, Conv2D+ELU+IN, and Deconv2D+ELU+IN
block is specified in format: kernelSizeTime × kernelSizeFreq, (stridesTime,
stridesFreq), (paddingsTime, paddingsFreq), featureMaps. Each DenseBlock(g)
contains five Conv2+ELU+IN blocks with growth rate g.

Fig. 3. RIR illustration. (a) Example RIR segment from REVERB
(RIR_SimRoom3_far_AnglB.wav); (b) Example direct-path RIR simulated using
RIR generator.

proposed convolutional recurrent neural network [22]. The en-
coder contains one two-dimensional (2D) convolution, and six
convolutional blocks, each with 2D convolution, exponential
linear units (ELUs) and instance normalization (IN) [47], for
down-sampling. The decoder includes six convolutional blocks,
each with 2D deconvolution, ELUs and IN, and one 2D deconvo-
lution, for up-sampling. Each BLSTM layer has 512 units in each
direction. The frontend processing uses 32 ms window length

and 8 ms frame shift for STFT. The sampling rate is 16 kHz. A
square-root Hann window is used as the analysis window.

Our main evaluation metrics are scale-invariant SDR (SI-
SDR) [48] and PESQ, where the former is a time-domain
metric that closely reflects the quality of estimated phase, and
the latter strongly correlates with the accuracy of estimated
magnitudes. We also consider scale-dependent SDR (SD-SDR)
[48] for evaluating the single-channel models. Following RE-
VERB, we also use cepstral distance (CD), log likelihood ratio
(LLR), frequency-weighted segmental SNR (fwSegSNR), and
speech-to-reverberation modulation energy ratio (SRMR) as the
evaluation metrics. Note that the computation of SRMR does
not require clean references. Word error rate (WER) is used to
evaluate ASR performance.

B. Baseline Systems for Comparison

This section describes the single- and multi-channel baselines
considered in our study.
� Single-Channel Baselines: The first four baselines for dere-

verberation perform single-channel magnitude-domain
masking and mapping based magnitude spectrum approx-
imation (MSA) and phase-sensitive spectrum approxima-
tion (PSA) [1], which are popular approaches in single-
channel speech enhancement. We summarize the baselines
in Table I. All of them use the same network architecture
in Fig. 2, and the key difference is in the number of input
and output feature maps depending on the input features
and training targets, output non-linearities and loss func-
tions. T b

a(·) = max(min(·, b), a) in LMSA−Masking and
LPSA−Masking truncates the estimated mask to the range
[a, b]. α in LMSA−Masking is set to 10.0, and β and γ in
LPSA−Masking respectively set to 1.0 and 0.0 in our study.

� TI-MVDR: To show the effectiveness of using estimated
complex spectra for covariance matrix computation, we
apply the single-channel models to enhance each micro-
phone signal following the last column of Table I, and
then compute the covariance matrices based on Eq. (5)
for TI-MVDR. This method is denoted aŝBF q .
Additionally, we use mask-weighted ways [28], [27] of
computing covariance matrices for TI-MVDR, based on
the estimated masks produced by the models trained with
LMSA−Masking and LPSA−Masking

Φ̂(d) (f) =
1

T

∑

t

η(d) (t, f)Y (t, f) Y (t, f)H , (10)

where d ∈ {s, v}.
When using LMSA−Masking, η(d) is computed as

η(d) = median

⎛

⎝

Tα
0

(

M̂
(d)
1

)

Tα
0

(

M̂
(s)
1

)

+ Tα
0

(

M̂
(v)
1

) , . . . ,

Tα
0

(

M̂
(d)
P

)

Tα
0

(

M̂
(s)
P

)

+ Tα
0

(

M̂
(v)
P

)

⎞

⎠ , (11)
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TABLE I
SUMMARY OF VARIOUS SINGLE-CHANNEL MODELS FOR SPEECH DEREVERBERATION

where M̂
(d)
p denotes the estimated magnitude mask at

microphone p.
When using LPSA−Masking, η(d) is computed as

η(d) = median
(

T β
γ

(

Q̂
(d)
1

)

, . . . , T β
γ

(

Q̂
(d)
P

))

, (12)

where Q̂
(d)
p denotes the estimated phase-sensitive mask at

microphone p.
We also square the mask before median pooling, as the
outer product is in the energy domain, while in Eq. (12) and
(11) the mask is in the magnitude domain. η(d) is computed
as

η(d) = median

⎛

⎜
⎝

Tα
0

(

M̂
(d)
1

)2

Tα
0

(

M̂
(s)
1

)2

+ Tα
0

(
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(v)
1

)2 , . . . ,

Tα
0

(

M̂
(d)
P

)2

Tα
0

(

M̂
(s)
P

)2

+ Tα
0

(

M̂
(v)
P

)2

⎞

⎟
⎠ (13)

for LPSA−Masking and as

η(d) = median

(

T β
γ

(

Q̂
(d)
1

)2

, . . . , T β
γ

(

Q̂
(d)
P

)2
)

(14)

for LPSA−Masking. Note that α, β and γ are respectively
set to 10.0, 1.0 and 0.0 in our study.

� Post-filtering (no re-training): After obtaining ̂BF q , we

apply the single-channel models tôBF q for post-filtering.

The phase in ̂BF q is used as the estimated phase for
magnitude-domain masking and mapping based models.
We emphasize that ̂BF q is still very reverberant and is
expected to contain low speech distortion. It is therefore
reasonable to feed̂BF q into a single-channel model trained
on unprocessed mixtures for further enhancement. In this
method, only one DNN is trained (i.e., the single-channel
model), but it is run twice at run time. This method is
denoted aŝBF q + Post-filtering (no re-training).

� Post-filtering (re-training): AŝBF q may contain distortion
unseen by the single-channel models, which are trained on
unprocessed mixtures. We train a complex spectral map-
ping based post-filter, which predicts the RI components of
Sq based on̂BF q . Similar to the proposed system shown
in Fig. 1, this method uses two DNNs, while the input to
the second DNN iŝBF q rather than Yq and Yq −̂BF q . We

denote this method aŝBF q + Post-filtering (re-training).
� Single- and Multi-Channel WPE: We follow the script

for REVERB in the Kaldi toolkit, which is based on the
open-source nara-wpe toolkit [49], to build our offline
WPE baselines, where the window size is 32 ms and
hop size is 8 ms, the prediction delay is set to 3, the
iteration number set to 5, and the order of the regressive
model set to 40 for single-channel processing and 10 for
multi-channel processing. Note that these hyperparameters
are the recommended ones in [16] and [6].

V. EVALUATION RESULTS

We first report the dereverberation performance of the trained
models on Test Set I, and then report their generalization ability
on Test Set II and REVERB ASR.

A. Dereverberation Performance on Test Set I

In Table II, we compare the performance of single-channel
magnitude-domain masking and mapping based MSA and PSA,
and complex spectral mapping over unprocessed speech and
oracle magnitude-domain masks such as the spectral magnitude
mask [50] and phase-sensitive mask [51]. Note that the unpro-
cessed SI-SDR is closely related to DRR, an important factor
characterizing the difficulty of dereverberation along with T60.
Comparing LMSA−Masking, LMSA−Mapping, LPSA−Masking and
LPSA−Mapping and LRI, we observe that LRI leads to much bet-
ter SI-SDR than MSA and PSA (6.2 vs. 0.8, 0.7, 2.3 and 1.6 dB),
while MSA obtains the best PESQ (2.91 and 2.92 vs. 2.55, 2.56
and 2.80). This is likely because PESQ is closely related to the
quality of estimated magnitudes, while time-domain measures
such as SI-SDR needs the estimated magnitudes to compensate
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TABLE II
AVERAGE SI-SDR (dB), PESQ AND SD-SDR (dB) OF DIFFERENT METHODS

ON SINGLE-CHANNEL DEREVERBERATION (TEST SET I). ORACLE MASKING

RESULTS ARE MARKED IN GRAY

TABLE III
AVERAGE SI-SDR (dB) AND PESQ OF DIFFERENT METHODS FOR TI-MVDR

AND POST-FILTERING USING EIGHT MICROPHONES (TEST SET I)

for the error of phase estimation. Compared with LRI, LRI+Mag

substantially improves PESQ from 2.80 to 3.07, slightly degrad-
ing SI-SDR from 6.2 to 5.9 dB. In addition, LRI+Mag obtains
better PESQ than MSA (3.07 vs. 2.91 and 2.92), indicating the
effectiveness of phase processing. We observe that SD-SDR
results are consistent with SI-SDR. In the following experiments,
we use LRI+Mag as the loss function to train the two DNNs in
Fig. 1, as it yields a very strong SI-SDR and the highest PESQ.

In Table III, we compare the performance of TI-MVDR
and post-filtering based on the statistics computed using the
single-channel models in Table II. Among all the alternative
ways of computing the statistics for TI-MVDR, using the LRI

and LRI+Mag models with Eq. (5) obtains the highest SI-SDR
(5.8 and 5.6 dB), and the PESQ scores (2.34 and 2.34) are better
than using MSA and PSA models with Eq. (5) (2.27, 2.26, 2.31
and 2.31) while worse than using MSA and PSA models with
Eq. (10) (2.44, 2.45, 2.44 and 2.44). Applying post-filtering to
̂BF q computed using the LRI and LRI+Mag models and Eq.
(5) shows the highest SI-SDR scores (9.6 and 9.4 dB), and

TABLE IV
AVERAGE SI-SDR (dB) AND PESQ OF DIFFERENT METHODS ON

MULTI-CHANNEL DEREVERBERATION (TEST SET I)

LRI+Mag leads to significantly better PESQ over LRI (3.23
vs. 3.10). These results suggest the effectiveness of complex
spectral mapping based beamforming and post-filtering. In the
following experiments, we compute ̂BF q using Eq. (5) and
LRI+Mag if not specified, as this combination obtains the highest
PESQ and a very competitive SI-SDR.

In Table IV, we show the results of Ŝ(2)
q , obtained by combin-

ing Yq and Yq −̂BF q for dereverberation (see Fig. 1). Consis-

tently better performance is obtained over Ŝ(1)
q , confirming the

effectiveness of multi-channel processing (e.g., 11.2 vs. 5.9 dB
in SI-SDR and 3.44 vs. 3.07 in PESQ in the eight-microphone
case). Ŝ(2)

q also obtains better performance than̂BF q + Post-
filtering (no re-training), especially when the number of mi-
crophones is greater than two, for instance 11.2 vs. 9.4 dB in
SI-SDR and 3.44 vs. 3.23 in PESQ in the eight-channel case.
It is also slightly better than̂BF q + Post-filtering (re-training).

These results demonstrate the gains of combining Yq −̂BF q

with Yq for dereverberation. In the two-channel case, it obtains

results slightly better than̂BF q +Post-filtering (no re-training),

likely because ̂BF q is not accurate enough in such a case.

As a result, the quality of Yq −̂BF q is not as good as when
more microphones are available, and the trained DNN would
focus on dealing with features computed from more than two
microphones.

B. Generalization on Test Set II and REVERB ASR

In Table V, we directly evaluate the performance of the
trained dereverberation models on Test Set II. Our models obtain
dramatically better performance than WPE, and WPE + Beam-
formIt which applies weighted DAS (WDAS) beamforming on
the output of WPE, and WPE + DNN-Based MVDR. Note that
the first two baselines are available in Kaldi, and the third base-
line applies DNN based TI-MVDR beamforming after WPE,
where we use the single-channel model trained with LRI+Mag

and Eq. (5) to compute the statistics for MVDR, based on the
signals processed after WPE. These comparisons show that
the trained DNN models exhibit good generalization to novel
reverberant and noisy conditions, and array configurations.
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TABLE V
AVERAGE LLR, CD, FWSEGSNR, PESQ, AND SRMR OF DIFFERENT APPROACHES ON TEST SET II

TABLE VI
AVERAGE WER (%) OF DIFFERENT METHODS ON REAL DATA

OF REVERB ASR

In Table VI, we report the ASR performance of the
trained dereverberation models on the REVERB real data. The
proposed approach obtains clear WER improvements over WPE,
WPE + BeamformIt and WPE + DNN-Based MVDR (9.27%
vs. 13.82% in the single-channel case, 8.12% vs. 13.23%,
13.37% and 15.59% in the two-channel case, and 6.14% vs.
11.48%, 8.43% and 8.93% in the eight-channel case). We ob-
serve large improvement by using Ŝ

(2)
q , which can also be

thought of as a variant of post-filtering, over̂BF q . These results
suggest that the trained dereverberation models can suppress
reverberation with low speech distortion. We observe that the
WPE + DNN-Based MVDR obtains better WER than ̂BF q ,
suggesting that WPE works as a frontend for DNN based beam-
forming, but worse WER than WPE + BeamformIt possibly
because of the effects of reverberation.

VI. CONCLUSION

We have proposed a complex spectral mapping approach for
speech dereverberation, where we predict the RI components
of direct sound from the RI components of the mixture. We
have extended this approach to address multi-channel dere-
verberation, by incorporating the RI components of cancelled
speech for model training. Our single-channel and multi-channel
dereverberation models show clear improvements over magni-
tude spectrum and phase-sensitive spectrum based models, and
single- and multi-channel WPE. The trained models exhibit
strong generalization to novel and representative reverberant
environments and array configurations. Future research shall
consider adaptive covariance matrix estimation, extensions to
more noises, and online processing.
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