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1 Introduction

This paper investigates the interaction between Teichmiiller theory and al-
gebraic geometry mediated by Hodge theory and periods. Its main goal is to
present several remarkable, newly discovered subvarieties of low—dimensional
moduli spaces via a unified approach based on Euclidean quadrilaterals.

Totally geodesics subvarieties. Let M, denote the moduli space of
Riemann surfaces X of genus g. If we also record n unordered marked
points on X, we obtain the moduli space M ,,.

A subvariety V' of moduli space is totally geodesic if it contains every
Teichmiiller geodesic that is tangent to it. It is primitive if it does not arise
from a lower—dimensional moduli space via a covering construction.

The first family of primitive, totally geodesic varieties of dimension one in
M, was discovered by Veech in the 1980s [V2]. These rare and remarkable
Teichmiiller curves are related to Jacobians with real multiplication and
polygonal billiard tables with optimal dynamical properties. A second family
was discovered shortly thereafter [Wa]. To date only a handful of families
of Teichmiiller curves are known.

The first known primitive, totally geodesic variety of dimension bigger
than one is the recently discovered flex surface FF C M3 [MMW]. The
surface F' is closely related to a new type of SLa(R)—invariant subvariety QG
in the moduli space of holomorphic 1-forms QMy, called the gothic locus.
These examples arise from an unexpected interplay between Teichmiiller
theory and the algebraic geometry of cubic curves in the plane and space
curves of genus four.

The Veech and Ward examples are naturally associated to triangles with
inner angles proportional to (1,1,n) and (1,2,n), with n > 1. In this paper
we show the flex surface and the gothic locus belong to a suite of examples
that are naturally associated, in a similar way, to six types of quadrilaterals.
This suite yields:

1. Six examples of SLs(R)-invariant 4-folds in QM,, for various g;

2. Three examples of primitive, totally geodesic surfaces in M, ,, for
various (g,n);

3. Two distinct series of Teichmiiller curves in My; and

4. Two families of quadrilateral billiard tables with optimal dynamical
properties.



Our goal is to provide a unified treatment of these examples, and explain
their connection to dihedral curves X — P!,

’ (a1,a2,a3,a4) ‘ (m,n) ‘ Stratum for QG ‘ Foppn C Mgy

(1,1,1,7) | (5,3) QM (6)
(1,1,1,9) (6,3) QOM,(23) M3
(1,1,2,8) (6,4) QM 4(3?)
(1,1,2,12) (8,4) QM5 (2%) M; 4
(1,2,2,11) | (8,5) QM;g(10)
(1,2,2,15) | (10,5) QM (2°) My

Table 1. Six types of quadrilaterals and their associated varieties.

Six types of quadrilaterals. It is convenient to index our six examples by
quadruples of integers a = (a1, a2, as,aq), each of which describes a family
of quadrilaterals and two families of holomorphic 1-forms: the cyclic forms,
and their saturation under the action of SLa(R). We require that the integers
(a1, asz,as, aq) are positive and relatively prime, that > a; = 2m is even, and
that a; # m for all .

The quadrilaterals of type (a1, a9, as,ayq) are those with internal angles
ma;/m. The angles can appear in any order around the quadrilateral.
Cyclic forms. A cyclic form (X,w) of type (a1, a2, as,as) is specified by
a quadruple of distinct points (b1,...,bs) in C. This data determines a
compact Riemann surface X, defined by the equation

4
y" =@ - ), (1.1)
1

and the corresponding holomorphic 1-form is simply w = dz/y. Equation
(1.1) presents X as a cyclic branched covering of P!, and w is an eigenform
for the deck group Z/m C Aut(X) generated by r(x,y) = (z, (ny); in fact
w = (o lw,
where (,,, = exp(2mi/m).
The set of all forms of type a = (ay, as,as,as) is a 2—dimensional alge-



braic subvariety QZ, C QM,, where

4
29—-2= Zai — ged(aq, m).
i=1

Note that |dx/y| defines a flat metric on P! with a conical singularity of
angle 2ma; /m at each branch point b;. In particular, when the branch points
are real, (P!, |dz/y|) is isometric to the double of a quadrilateral of type a.

We will focus on quadrilaterals where

l=a1<ay<az3 <2

Such a quadrilateral type is uniquely determined by the pair of integers

(m,n) = <; > ai, a1 +az+ a3> . (1.2)

We also require that (a1, a2,a3) = (1,1,1) if m is odd. These conditions
insure that the divisor of a cyclic form w is a multiple of the special fiber
X* C X over by.

Invariant subvarieties. We define the saturation of the space of cyclic

forms by:
QG, = SLa(R) - QZ, C QM.

This is the smallest closed, invariant set of forms containing the cyclic ones.
Our first result describes this space and its properties.

Theorem 1.1 For each of the siz values of a = (ai1,as,as,aq) listed in
Table 1, the saturation of the cyclic forms gives a primitive, irreducible,
4—dimensional invariant subvariety QG, C QM,.

To be more explicit, in §3 we will define the variety of dihedral forms
QD 5, and in §5 we will show:

Theorem 1.2 In all siz cases, the dihedral forms of type (m,n) form a
Zariski open subset of QG,,.

Here (m,n) is related to (a1, ag, as, aq) by equation (1.2) (see Table 1). Thus
one could alternatively define this new invariant locus by:

OG, = QD . (1.3)



Algebraic correspondences. The remarkable feature of the six cases
listed in Table 1 is that, while the action of SLa(R) destroys the cyclic
symmetry of forms in QZ,, it merely deforms the correspondence T'(z) =
r*lz as an algebraic cycle in X x X. The relation

T = (G + G e

persists under deformation, and gives rise to a natural action of the dihedral
group Da,, on a degree two extension ¥ — X.

Linearity in period coordinates. The main step in the proof of these
theorems is to show that QD,, ,, is locally defined by real linear equations
in period coordinates (§5).

This is accomplished by combining an upper bound on the linear span
of the space of dihedral forms (§3) with a lower bound on the dimension
of QD,, , as an algebraic variety (§4). Along the way we obtain explicit
formulas for dihedral forms. We also use the rigidity theorems of [EMM]
to show that QG, is an analytic variety; this could be avoided if we took
equation (1.3) as its definition.

Totally geodesic curves and surfaces. Next we examine varieties that
arise only for special values of (m,n), and state two results proved in §6.

When m = 2n, the locus Q2D,,, maps into a closed, 2-dimensional
subvariety F, , of a moduli space of lower dimension, indicated in the last
column of Table 1. This map is constructed by sending each dihedral form
to a quadratic differential (A,q) = (X,w?)/r"™/2, and then recording the
quotient surface A and the poles of ¢.

Theorem 1.3 The subvarieties
Fg3 C My3, Fga C Mis and Fips C Moy

are primitive, irreducible, totally geodesic surfaces in their respective moduli
spaces.

When m = 6, the dense subvariety QD,,, C QG, is locally defined
over QQ in period coordinates, and we can define finer SLo(R)-invariant loci
inside QD,;, ,, by imposing the condition that (X, w) is an eigenform for real
multiplication. As a result we obtain (§7):

Theorem 1.4 The 3-folds G1119 and G118 in My each contain a dense set
of primitive Teichmiiller curves.



'\"(~
A
ARy
i
X<V
oA
(X
A

X

(A
e
e a!
NASE
N/

= e vAv
< K

Figure 2. The quadrilaterals Q1119(a,b) and Q1128(a,b). A closed billiard
trajectory is shown in each.

Here GG, denotes the projection of QG, to M,.

Billiards. Finally we consider the quadrilaterals of type (1,1,1,9) and
(1,1,2,8), shown in Figure 2. We say billiards in a polygon has optimal
dynamics if every trajectory is either periodic or uniformly distributed (cf.
[V2], [D]). In §8 we will show:

Theorem 1.5 Billiards in the quadrilateral Q1119(1,v/3y) has optimal dy-
namics, and the associated cyclic 1-form generates a primitive Teichmiiller
curve in My, provided y > 0 is irrational and

v+ Be+Dy+c=0

for some c € Q. The same is true for Q1128(1,y), provided y>+(2¢c+1)y-+c =
0.

These quadrilaterals give explicit Teichmiiller curves in G119 and Gyiss.
The cases ¢ = —1/4 and ¢ = —1 are shown at the left and right, respectively,
in Figure 2.

In both cases, if y is rational, then the corresponding quadrilateral
still has optimal dynamics, but the associated cyclic 1-form has periods in
Q(v/—3); it is pulled back from the hexagonal torus, and the corresponding
Teichmiiller curve is not primitive.

The conditions on y above come from the fact that the two Galois con-
jugate eigenforms for real multiplication must be orthogonal, with respect



to the Hermitian form on periods giving the area of the quadrilateral ). See
§8.

Relation to known examples. As mentioned above, the suite of examples
just described includes the flex locus and the gothic locus of [MMW]; these
are given by Fg3 and (2Gg 3 respectively. It also presents, from a different
perspective, the family of Teichmiiller curves lying in G119 described above.
The isosceles billiard table Q1119(1,1) is essential the same as the Ward
triangle with angles proportional to (1,2,9).

All the remaining examples of SLy(R)-invariant subvarieties, totally
geodesic surfaces, primitive Teichmiiller curves and optimal billiard tables
described above are new.

Additional examples of quadrilateral billiard tables with optimal dynam-
ics are given in [BM, §7]. That paper exhibits a single optimal quadrilateral
table of type a = (a1, az, a3, ayq), for each type of the form

a = (2,2,n,3n—4), with n>5 and n odd; and
a = (1,2,2,4n —5), withn > 7, and n=1,3,7 or 9mod 5.

Theorem 1.5, on the other hand, gives infinitely many optimal quadrilateral
tables of 2 fixed types, namely (1,1,1,9) and (1,1,2,8).

The dihedral approach also gives a new perspective on the Teichmiiller
curves in Mo, M3 and My constructed using real multiplication and Prym
varieties in [Mcl1] and [Mc3][; see §7.

Listing quadrilaterals. A conceptual approach to the list of quadrilaterals
in Table 1 will be described in §4. In brief we consider, for n = 3,4 and 5,
all m such that n + ged(m,n) < m < 2n, and then eliminate from this list
those QG , that arise from strata. The crucial bound m < 2n insures that
dim QD,, , = 4.

Triangles and pentagons. Our methods can be applied to polygons with
any number of sides. In the case of triangles, we recover the Veech and Ward
examples with (a1, a2,a3) = (1,1,m — 2) and (1,2, m — 3); see Appendix
A. Equation (A.6) gives the first explicit algebraic formula for the Ward
examples. The (3,5, 7) lattice triangle gives a Teichmiiller curve in Gy1,1,7;
see §5. A complete list of lattice triangles is still unknown; see [Ho] for a
summary of current knowledge.

In the case of pentagons, our methods lead to one new example, described
in Appendix B.

Theorem 1.6 The cyclic forms of type a = (1,1,2,2,12) generate a prim-
itive, 6—dimensional SLo(R) invariant subvariety of QMy.



We emphasize that we have only studied a restricted class of polygons,
so our surveys are far from complete, even for triangles.

Notes and references. Mirzakhani conjectured that the only invariant
subvarieties of QMg of rank two or more, in the sense of [Wr2], are those
coming from strata of 1-forms or quadratic differentials [ANW, Conj. 1.3].

The six examples QG listed in Table 1 are the first known counterexam-
ples to this conjecture (see §5). It would be interesting to find more varieties
of this type (Theorem 1.6 gives one more).

We would like to acknowledge helpful conversations with Mirzakhani in
the early stages of this project, which contributed to the discovery of the
first example in Table 1. Further computer experiments and theoretical
arguments led us to conjecture the existence of the other five examples.

Notation. We let H"(A) and H"(A, B) denote absolute and relative co-
homology with complex coefficients; when coefficients are in K, we write
H™(A; K) and H"(A, B; K). We use exponential notation for repeated in-
dices; e.g. QM4 (23) = QM4(2,2,2) in Table 1.

2 Cyclic forms

In this section we define the variety of cyclic forms 27, associated to a
general polygon type a = (aq,...,ay), compute its dimension and prove it
is locally linear in period coordinates. The latter argument is a model for
the proof of linearity of £2D,, ,,, which will be carried out in §§3, 4 and 5.

Recall that a variety V is unirational if there exists a dominant rational
map u : P4 — V for some d. The main result of this section is:

Theorem 2.1 The locus 07, C QM is a unirational variety of dimension
N — 2, locally defined by complex linear equations in period coordinates.

The defining equations for 07, are given in Theorem 2.5 below. In the
course of the proof we will also show that the projection of 27, to absolute
periods H!(X) has fibers of dimension

ela)={1 <i <N : mla;}|. (2.1)

See Theorem 2.3. For example, when N = 4 the projection always is locally
injective.

Strata and period coordinates. We begin by recalling some background
material. Let M, denote the moduli space of nonzero holomorphic 1-
forms (X,w) with X € M,. The zero set of a form will be denoted by
Z(w)C X.



The space QM breaks up into strata QMg (p1, ..., pn), indexed by par-
titions of 2g — 2, consisting of those forms (X,w) whose n zeros have mul-
tiplicities pi,...,pn. The bundle of topological pairs (X, Z(w)) is locally
trivial over each stratum. Thus on a small (orbifold) neighborhood U of
(X,w) in its stratum, we can define period coordinates

p:U— H'(X, Z(w))

sending (X',w’) € U to the cohomology class [w']. These maps are holomor-
phic local homeomorphisms (see e.g. [Y, §6]).

Next we proceed to the definition of the space of cyclic forms Q7.
The general case is consistent with definition given by equation (1.1) in
the Introduction.

Polygon types. A polygon type is a sequence of positive integers a =

(a1,...,an), such that
N

D ai=(N-2)m (2.2)
1

for some integer m > 0, and ged(aq, .. .,an, m) = 1. We also require a; # m
for all 2. One can think of a as specifying the shape of a Euclidean N-gon
with internal angles 0; = ma;/m. We allow 6; > 27 but we do not allow
0; = .
Cyclic triples and cyclic forms. Fix a polygon type a, and let (,, =
exp(2mi/m). A cyclic triple (X,w,r) of type a is a holomorphic 1-form
(X,w) € QM,, together with an automorphism r € Aut(X) of order m,
such that:

1. X/r has genus 0;
2. We have r*w = (;,'w; and

3. The divisor of the pluricanonical form (P!, ¢) = (X,w™)/r can be

written as
N
€)= Z(ai —m)by, (2.3)
1
where by, ..., by are distinct points in P?.

In this case (X, w) itself is a cyclic form of type a. The set of all such forms
will be denoted by QZ, C QM,.

Equation (2.3) implies that |w| = ||/ gives a metric on P! with cone
angles 2ma;/m at the points b;, in the spirit of [Th].



The zeros of a cyclic form. Let X; C X denote the fiber over b; of the
natural projection 7 : X — X/r = P!, It is easy to check that |X;| = f; =
ged(ai, m), and that the divisor of a cyclic form is given by

(w) = Z €in‘

where e; f; = a; — ged(a;, m). In particular, the genus g of X satisfies

N

29 —2= Zai — ged(a;, m), (2.4)
i=1

and 27, is contained in a single stratum of QM. Note that w has no zeros
on X; if a; divides m.
The variety of cyclic triples. It is useful to introduce the space QZ, of
all cyclic triples (X,w,r) of type a. Since r € Aut(X) and the latter group
is finite, the forgetful map QZ, — QZ, is finite-to-one. There is a natural
action of C* on both spaces, by rescaling w, and we denote their quotients
by PﬁZa and P Z, respectively.

Let by_1 =0, let by = oo, and let U € CV~2 be the open set of nonzero
sequences b = (by,...,by_2) such that b; # b; for 1 <i < j < N —2. Let

p:U — QZ,
be the map that sends b to the cyclic triple (X,w,r), where X is defined by

N-1

vt = [T,

1

and where
dx

w = ? and r(x,y) = (z,{my).

Note that w is holomorphic, because [ |w|> =m [p [dz/y|* < co. We can
now show:

Theorem 2.2 The locus QZ, is a unirational variety of dimension N — 2.

Proof. Let //\\/lJo,N and My n denote the moduli spaces of N ordered and
unordered points on P! respectively. We then have a commutative diagram

v—r .0z,

|

MO,N P PQZ, —— Mo, N,




where u(b) = [b1,...,by—_2,0,00] and where ¢(X,w,r) is the support of the
divisor of the pluricanonical form (P!, ¢) = (X,w™)/r. Up to a change of
coordinates on P!, the divisor of ¢ can always be written in the form (2.3)
with by_1 =0 and by = oo, so the map p is surjective. On the other hand,
the composition gop : Mgy — My n just forgets the ordering of the points,
so it is finite. It follows that p is finite. By similar reasoning, using the fact
that a; # m for all ¢, the map p: U — OZ, is surjective and finite. Since U
is birational to PV =2, and the map (NZZa — QZ, is surjective and finite, this
shows that 17, is a unirational variety of dimension N — 2. |

Eigenspaces. Given a cyclic triple (X, w,r), let
E(X,w,r) = Ker(r* — (' 1) ¢ HY(X, Z(w)) (2.5)

denote the eigenspace for r containing [w]. Next we show that this eigenspace
and the algebraic variety 27, have the same dimension.

Theorem 2.3 For any cyclic triple of type (a1,...,an), we have:
dim E(X,w,r) =N — 2.

The projection of E(X,w,r) to H'(X) has fibers of dimension €(a).

Proof. This type of character calculation is well-known; for an early vari-
ant, see [ChW]. ‘

The 1-dimensional characters of Z/m = (r) are given by x,(r) = (i,
J € Z/m. We say x; is primitive if ged(m, j) = 1.

Given h € Z/m, let x(h) = Tr(h|H*(X)) and let Fix(h) denote the set
of fixed—points of h € Z/m acting on X. Recall that these fixed points occur
only on the fibers X; of 7 : X — P! over b;. Let Fix;(h) = | Fix(h|X;)| and
let fz = |Xz‘ = FiXi(T‘O) = gcd(ai, m)

By the Lefschetz trace formula, we have

N
x(r¥) =2 — |Fix(r")| =2 = > Fixi(r"),
i=1

except for k = 0 we have, using equation (2.4),

N N
x(r%) =29 =2+ Z(ai —fi)=2+(N-2)m— ZFixi(ro).
1 1

10



Since the representation of Z/m is defined over @Q, all primitive representa-
tions occur in H'(X) with the same multiplicity

1 -
1= {x1,x) = 2] Z;ja(h)x(h)-

Since the function Fix;(h) on Z/m has period f;, we have (x1,Fix;) = 0
unless f; = m, in which case (x1,Fix;) = 1; and of course (x1,2) = 0. The
number of ¢ such that f; = m is given by €(a), and hence

m={x1,x) = (N —2) — €(a).
On the other hand, using the exact sequence of Z/m-modules
C— H(Z(w)) » HY (X, Z(w)) — HY(X) — 0,

and the fact that H(Z(w)) = @ a;>f; CIZ/ fi], we conclude that each prim-
itive representation of Z/m occurs with multiplicity €(a) in H°(Z(w)), and
hence with multiplicity N—2 in H'(X, Z(w)). In particular, dim E(X,w,r) =
N — 2, and the projection of E(X,w,r) to H'(X) has fibers of dimension
e(a). [ |

Linearity in period coordinates. Let V' C 2M, be an irreducible sub-
variety of a stratum. Suppose for each form in V' we have a subspace in
relative cohomology, defined over a number field, such that

(W] € S(X,w) C H'(X, Z(w)).
By a variant of the proof of [MMW, Theorem 5.1], we have:

Theorem 2.4 If d = dim(V) > dim S(X,w) at all points of V, then V is
locally linear in period coordinates. More precisely, V locally coincides with
a finite union of d—dimensional subspaces of the form

JS(Xi, Z(wi) € HY(X, Z(w)).

The same is true for the closure of V in its stratum.

(Here the forms (Xj;,w;) and (X,w) are in a common period chart.)
As a special case, we can now prove:

11



Theorem 2.5 The locus 27, locally coincides, in period coordinates, with
a finite union of subspaces of the form

OE(Xi,wi,ri) C H'(X, Z(w)).
1

(The union is over a finite collection of cyclic triples of type a.)

Proof. Let V = QZ,. For each form in QZ,, let S(X,w) = E(X,w,r)
for some r such that (X,w,r) is a cyclic triple of type a. Then dim(V) =
dim S(X,w) = N—2 by Theorems 2.2 and 2.3, so we can apply the preceding
result. |

Proof of Theorem 2.1. Combine Theorems 2.2 and 2.5. [ ]

3 Dihedral forms
We now turn to the study of the space of dihedral forms
QDy, , C QM,.

This space is defined for any pair of integers (m,n) with m > 3 and 0 <
n < 6, subject to the condition that n = 3 when m is odd.
Our main goal, achieved in §5, is to show that QD,, , is 4-dimensional
and locally linear in period coordinates, for suitable values of m and n.
In this section we will also define the notion of a dihedral triple (X,w,T),
where
TCcXxX

is an algebraic correspondence compatible with w. FEvery dihedral form
(X,w) comes from a dihedral triple, and T determines an action of Da,, on
a degree two extension Y — X. The integer n describes the topological type
of this action.

We will see that T induces an operator

T : H(X, Z(w)) = HY(X, Z(w)),
defined over Z, and that [w] belongs to the eigenspace
D(X,w,T) = Ker(T* — 7,,I), where 7y = G + (20 (3.1)

The main result of this section is:

12



Theorem 3.1 Let (X,w,T) be a dihedral triple of type (m,n) with m # n.
Then
dim D(X,w,T) = 4,

and the projection of D(X,w,T) to H*(X) is injective.
Corollary 3.2 We have dimQD,, , < 4.

In §5 we will show that when equality holds, the variety 2D, ,, is invariant
under the action of SLa(R).

Remarks. One can think of T as a deformation of the correspondence
z = ()

associated to a cyclic triple (X,w, 7). It determines a self-adjoint endomor-
phism of the Jacobian of X with w as an eigenform. In particular, along
the dihedral locus Jac(X) belongs to a proper Shimura subvariety of A,
generalizing the Hilbert modular surfaces that appear in [Mcl] and [Mc3].
When m = n, X has genus g = 1 and QD,, ,, = QM is two-dimensional.

Dihedral groups. We begin with some definitions leading up to the general
idea of a dihedral triple (X,w,T"). We then impose additional conditions to
define the locus of dihedral forms QD,, ,,.

Fix m > 1. The dihedral group of order 2m is defined by:

Doy = {r, f - 7™ = f* = (rf)? = id).

Let Z/m C Da,, denote the normal subgroup generated by r. Then Day,
acts on Z/m by
r-x=x4+1 and f -z=—uz,

yielding inclusions
Doy, C S, = Sym(Z/m). (3.2)

We refer to elements of Ds,, of the form r® as rotations, and to those
of the form fr® as reflections. The conjugacy class of a rotation is given
by [r]] = {r%,r~"}. When m is odd, the reflections form a single conjugacy
class in Do,,; while when m is even, there are two such conjugacy classes,
1] and [rf].

We emphasize that when m is even, the symmetry between f and rf in
Dy, is broken by the map to Sp,; the permutation associated to f has two
fixed points, while that associated to rf has none.

Dihedral correspondences. Let X be a compact Riemann surface, and
let T C X x X be an irreducible algebraic curve. Assume that T that

13



determines a symmetric correspondence of degree (2,2). Let Y — T be the
normalization of the (generally singular) curve T, and let

&Y —-X

be the composition of the normalizing map with projection to the first factor
of X x X. Since deg(§) = 2, there is a unique involution s; € Aut(Y')
satisfying £ o s1 = £. Since T is symmetric, there is also a unique involution
s9 € Aut(Y) obtained by interchanging the two factors of X x X.

We say (X, T) is a dihedral correspondence of type m if the product s1s2
has order m in Aut(Y').

This condition implies we have a canonical inclusion

Doy — Aut(Y) (3.3)

sending f to s1 and fr to sy. The correspondence T is simply the image of
the graph of r: we have

T ={(),&(ry)) : yeY}C X x X. (3.4)

In fact, the action of Ds,, on Y packages the same data as the pair
(X, T); the latter can be recovered by setting X =Y/ f, defining £ : ¥ — X
to be the quotient map, and using equation (3.4) to define 7'

Dihedral triples. Let (X,w) € Q2M, be a holomorphic 1-form and let
T C X x X be a dihedral correspondence of type m. Then T induces an
endomorphism of Jac(X) and hence a map

T*: Q(X) = Q(X).

The fact that T is symmetric implies that T™ is self-adjoint; equivalently,
that [T] € End(Jac(X)) is invariant under the Rosati involution (cf. [GH,
Ch. 2.5], [BL, §5]).

We say (X,w,T) is a dihedral triple of type m if:

1. T"w = 7w, and
2. We have Y/D,,, = P!

(Recall 7, = G + Gb)-
The Galois cover Y/Pl. For a more complete picture, it is useful to
introduce the degree 2m rational map

7:Y = Y/Dy,, =P

14



We have a unique rational map 7 : X — P!, of degree m, making the
diagram

Dy, ~ Y (3.5)
\
7 X=Y/f
e
[Pl
commute. Letting (b1,...,b,11) denote the critical values of 7, the branched

covering Y/P! determines a surjective monodromy map

p: 7T1(P1 — {bl, .. .,bp+1}) — ng, (36)

well-defined up to conjugacy. Conversely, p determines the commutative
diagram above.

The dihedral locus 2D, 5 . We now turn to the definition of the locus
of dihedral forms of type (m,n). In view of applications to general polygons,
we will work in a slightly broader setting.

A dihedral type is a triple of integers (m,n,p) such that: p > 2 is even,
m >3,and 1 <n < p—1. When m is odd we require n = p/2. Our primary
interest is in the case p = 6.

Fix a dihedral type (m,n,p), and consider a commutative diagram of the
form (3.5) determined by a representation p as in (3.6). We say 7 : X — P!
is a dihedral cover of type (m,n) if the branch points (by,...,bp+1) can be
ordered so that conjugacy class of the monodromy on a peripheral loop ~;
about b; satisfies

[f] fori=1,...,n;
p(vi)] =4 [rf] fori=n+1,...,p; and (3.7)
[r"] fori=p+1.

Note that the branch point b,; is distinguished by the fact that its mon-
odromy is a rotation, rather than a reflection. We refer to the preimages X*
and Y of by41 on X and Y as the special fibers of m and 7 respectively.

Canonical divisor. We say a dihedral triple (X,w,T) has type (m,n,p)
if the covering 7 : X — P! has this type, and the divisor of w satisfies

(w)=v-X* (3.8)
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for some integer v > 0. The space of all forms arising from dihedral triples
of this type will be denoted by QD ;, ;.

We emphasize that equation (3.8) is a geometric condition on the rational
map 7 : X — Pl It is this condition that makes the study of the space
of dihedral forms QD,, ,, more subtle than the study of the space of cyclic
forms QZ,; the latter are described using only topological conditions on .
For example the dimension of 2D, , depends in a subtle way on the value
of n; see Theorem 4.1.

Alternative definition of 2D, ,, ,. One can specify a dihedral form of
type (m,n,p) without reference to T'. It suffices to give an action of Dy,
on Y, check that the induced map 7 : X = Y/f — P! is a dihedral cover of
type (m,n,p), show (w) = v - X*, and verify that

(r+r H*w) = Tm - w.

Then (X,w,T) is a dihedral triple for T defined by (3.4).

The dihedral locus 22D, ,,. As we will see below, dihedral forms of type
(m,n,p) are related to polygons with N sides, where p = 2N — 2. Since we
are primarily interested in quadrilaterals, we adopt the shorthand

QD = QD ng-

Numerical invariants. It is useful to factor the map 7 : Y — P! through
the hyperelliptic curve C' = Y/(r), which is a degree two cover of P! branched
over (by,...,b,). One can easily show, using Riemann-Hurwitz, that the
genera of these curves satisfy

29(Y) =2 = m(p—2)—2gcd(m,n),
29(X)—2 = m(p—2)/2—ged(m,n) —n, and (3.9)
29(C)—-2 = p—4.

Let X; denote the fiber of X over b;. Then we also have

Do, = 2)/2 fori=1,...,n, and

2 (Do ff = 22 fori=1mand
|7 f\Dam/ f| =m/2 fori=n+1,....p

when m is even; and |X;| = (m +1)/2 for i = 1,...,p when m is odd. For

the special fiber we have

| X*| = ged(m, n)
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in both cases. In particular, the dihedral forms lie in a single stratum: we
have

Dy mp C QMg (vY), (3.11)
where g = g(X), u = ged(m,n) and v = (29 — 2)/u.
Cyclic forms and dihedral forms. There is a close relationship between
dihedral forms and certain cyclic forms.

To describe this connection, let us say a cyclic type a = (ay,...,ay) and
a dihedral type (m,n,p) correspond to one another if

1 = a1 <---<an-1 <2,
= (N-2) '3 Va,
" ( DD (3.12)
n = a+---+an_1, and
p = 2N —2.

Clearly a determines (m,n,p) and vice-versa. These conditions are consis-
tent with equation (1.2); for examples of corresponding pairs with N = 4,
see Table 1.

When a and (m,n,p) correspond as above, a dihedral form of type
(m,n,p) can potentially degenerate to a cyclic form of type a, without chang-
ing the genus of X. We will see that such degenerations actually occur in
Theorem 4.2.

Here is an explanation of the conditions above., For simplicity assume m
is even. Let (X,w,r) be a cyclic triple of type (a1, ...,ayn), with associated
rational map m : X — P! = X/r branched over (b1,...,bx). We wish to
arrange that (1) the divisor of w is supported on the special fiber X* over
by; and that (2) the map 7 can be deformed such that each branch point
bi, i < N, with cyclic monodromy, breaks up into a pair of points b}, b/ with
dihedral monodromy. The deformed map then has a total of 2N —1 =p+1
branch points, as required for a dihedral map of type (m,n,p).

Condition (1) is equivalent to the condition that a;|m for all i < N,
while condition (2) implies, by Riemann-Hurwitz, that a; = 1 or 2. The
case a; = 1 arises when b; splits into a pair of points with monodromy (f)
and (rf), while a; = 2 arises when the new points both have monodromy
(f). Consequently the total number of points with monodromy (f) is given
by n = Ziv ~a;. The monodromy around the final point by remains r%V,
which lies in the conjugacy class (r") C Da,, since n + Ay = Omodm.
This explains the formula for n and the constraints on (a;) in the system
of equations (3.12), and the two different occurrence of n in equation (3.7)
defining the monodromy of a dihedral cover.
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Cohomology and dihedral forms. We now turn to the proof of Theorem
3.1.

Let (X,w,T) be a dihedral triple of type (m,n,p). Thinking of T" as a
multivalued map, it is easy to see that T(X*) = X*. Thus T induces an
automorphism of the relative cohomology group H!(X, X*). On the level
of forms, it is given by

T (o) = &(r*EFa). (3.13)

Let
D(X,w,T) = Ker(T* — 7,,,) C H'(X, X*),

and let

(3.14)

( ) 1 if m divides n, and
e(m,n) =
0 otherwise.

We will prove Theorem 3.1 in the following more general form:

Theorem 3.3 For any dihedral triple of type (m,n,p), we have
dim D(X,w,T) =p — 2.

The projection from D(X,w,T) to H'(X) has fibers of dimension 2¢(m,n).

Representations of Ds,,. The proof rests on a description of the action
of Do, on HY(Y).

Let us first recall the characters of the irreducible representations of Z/m
and Da,,. As in §2, the former will be denoted by x;, where x;(r) = (h;
and we say x; is primitive if ged(j,m) = 1.

Each 1-dimensional representation of Z/m induces a 2-dimensional rep-
resentation of Ds,, whose character x; vanishes on reflections and satisfies
Xj (rt) = C% + Cn_fj on rotations. This induced representation is irreducible
unless i = 0 or m/2. We also have X; = X, so the number of 2-dimensional
irreducible representations of Da,, is [(m —1)/2]. In addition there are two
1-dimensional characters when m is odd, and four when m is even; they all
satisfy x(r) = £1.

A representation of Do, is primitive if it is irreducible and it is in-
duced from a primitive representation of Z/m. The characters of these 2—
dimensional representations are given by X; with ged(i,m) =1 and m > 3.

We are now in a position to prove:

Proposition 3.4 FEach primitive representation of Doy, occurs in H'(Y)
with multiplicity 2g(C) — 2e(m,n).
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Proof. The argument is similar to proof of Theorem 2.5 on cyclic covers.
For each g € Doy, let xy(9) = Tr(g|H'(Y)), and let Fix(g) denote the set
of fixed—points of g acting on Y. By the Lefschetz trace formula, we have

Xy (r') = 2 — | Fix(r')],
where we have adopted the convention that
| Fix(r?)| = x(Y) = 2| X*| - 2mg(C).

For i # 0 in Z/m, the fixed points of 7¢ (if any) lie on the special fiber Y*,
and hence ‘
| Fix(r')| = [Y*] = 2[X7|

when i is a multiple of ged(m,n) = | X*|; otherwise, | Fix(r*)| = 0.
Now consider the character x; of a typical primitive representation of
Do,,. By Frobenius reciprocity, its multiplicity in yy is given by

_ 1 o y
no= (0 X) Do = (v Xg)zgm = — > (2= | Fix(r)]) ¢
=0

Since C,]ﬁ is a primitive mth root of unity, we obtain

1 g
=9 _ = 21X*|CH.
p=2g(C) - § | X*|¢a

ged(m,n)i

The sum above is zero unless m|n, in which case it contributes —2 to the
value of p. In the latter case €(m,n) = 1, and the theorem follows. [ |

Proposition 3.5 Fach primitive representation of Da,, occurs in H(Y*)
with multiplicity 2e(m,n).

Proof. Note that Dy, acts transitively on Y*. If |[Y*| = 2m, then H°(Y*)
gives the regular representation of Ds,,, and hence each primitive represen-
tation occurs with multiplicity equal to its dimension, which is 2 = 2¢(m, n).
Otherwise the action of Dy, on Y* factors through a smaller dihedral group,
so the primitive representations occur with multiplicity e(m,n) = 0. |
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Corollary 3.6 Each primitive representation of Day, occurs in H'(Y,Y™)
with multiplicity 2g(C').

Proof. Apply the preceding two results to the exact sequence of Z[Day,]
modules
C— H'Y*) - H (Y, Y*) - H'Y(Y) — 0.

Eigenspaces and multiplicities. To complete the proof of Theorem 3.3,
we note that » + 1/r is in the center of Z[Day,], and thus it acts by scalar
multiplication on any irreducible Z[Ds,,]-module V. This scalar is given by
+2 if dim(V) = 1, and by
Aj = G+ G

if dim(V') = 2 and V' has character x;. In the latter case the f-invariant
subspace satisfies dim V/ = 1. Consequently, if W is any finite-dimensional
representation of Ds,,, defined over QQ, and each primitive representation of
Doy, occurs in W with multiplicity wu, then

dimKer(r + 771 —7,) = p

as well.

Proof of Theorem 3.3. Applying the preceding reasoning with W =
HY(Y,Y*) and W/ = H'(X, X*), we find that

dim D(X,w,T) = dimKer(r + 1/r — 7,,)Y =2¢(C) =p —2
by Corollary 3.6. Similarly, for W = H'(X) we find
dimKer(r 4+ 1/r — 7,,) = 2¢(C) — 2¢(m, n)

by Proposition 3.4, and the theorem follows. |

Proof of Theorem 3.1. Specialize the preceding result to the case p = 6,
and observe that the condition m # n implies e(m,n) = 0 and Z(w) = X*,
since g(X) > 2. [ |

Notes. The endomorphism 7" € Jac(X) determined by a dihedral triple
(X,w,T) is of Hecke type in the sense of [El] and [Wrl]. For a different
perspective on dihedral covers of P!, see [CLP].
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4 Equations for dihedral forms

In this section we return to our main topic, the case p = 6, and calculate
the dimension of the variety

QDm,n = QDm,n,G C QMg.

Here 2g — 2 = 2m — n — ged(m,n), and as in §3, we assume that m > 3,
0 <n<6,and n=3if m is odd.
The main result of this section is:

Theorem 4.1 Forn > 3, the space of dihedral forms Q1D,, ,, is a nonempty,
wrreducible, unirational variety. For m < 2g — 2, its dimension is given by

dim(QDy, ) = 3+ |2n/m]. (4.1)
Forn <3, QD,, , is empty.

Here |q| is the largest integer < gq.
Whenever (m,n) corresponds to a quadrilateral type a = (a1, as, as, as)
via equation (1.2), we also show:

Theorem 4.2 The closure of Q0D,, ,, in QM contains the corresponding
variety of cyclic forms QZ,.

(This result holds for (m,n) = (3,3) and (4,4) as well, provided we take
a=(1,1,1) and (1,1, 2) respectively.)

Throughout this section, we use C(Z) to denote the field of rational
functions on a compact Riemann surface Z.

Polynomials. To prove Theorem 4.1, we start by giving explicit algebraic
equations for all dihedral triples of type (m,n).

Let C[xz]) denote the space of polynomials in x of degree k or less. We
define, for each dihedral type (m,n), a subvariety

Py C Clz]n x Clz]|2n/m| (4.2)
as follows: for m odd, we have n = 3, and we let
Pyn= {(p7 q) : D = p? — 4¢™ is separable of degree 6} : (4.3)
while for m even, we have a factorization

D =p* —4¢™ = (p — 2¢™?)(p + 2¢™/?) = (d153)(d253) (4.4)
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where di and do are square free, and we let

d = dyds is separable of degree 6
Ppn=1</q): . (4.5)
and deg(di1) =n
Note that equation (4.2) means that for all (p, ¢) in Py, y, we have
deg(p) <n and deg(q) < |2n/m]. (4.6)

Consequently deg(D) < 2n and deg(s1) = 0, i.e. s1 is a nonzero constant.

Equations for Y. Each pair of polynomials (p,q) € P, determines a
branched covering space 7 : Y — P! with Galois group Ds,,. The compact
Riemann surface Y is defined by the polynomial equation

y?™ = p(x)y™ + q(z)™ =0, (4.7)

the branched covering is given by 7(y,x) = x, and the action of Dg,, on Y
is given by

r(@,y) = (z,¢my) and f(z,y) = (z,q/y).
This action is faithful, and the quotient Y/ Da,, is the projective line P. with
coordinate x.

Equations for X. As in §3 we then have a quotient map
&Y ->X=Y/f,

and a degree m map 7 : X — P!, such that # = 7o £.
Recall that the Chebyshev polynomial 7T, of degree m is characterized
by the equation
Tp((x+271)/2) = (2™ +27™)/2.

(The map T, : P! — P! is itself a dihedral covering; see Appendix A).
Rewriting (4.7) as

m

q
ym_‘_yim:p:

and setting v = (y + ¢q/y)/2, we find that the Riemann surface X =Y/ f is
defined by the polynomial equation

2¢™? Tpn(q~?u) = p. (4.8)

The left hand side is a polynomial in g because T;,,(—z) = (—=1)™T'(x). The
dihedral map 7 : X — P. is given by 7(z,u) = x.
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The correspondence T'. As remarked in §3, the Ds,,-action on Y deter-
mines a dihedral correspondence

TcXxX

by taking the image of the graph of rin Y x Y.

Equations for C. Setting z = 3" in (4.7), it is immediate that a defining
equation for the genus two curve C' = Y/r is given by

22 —pz+qm =0, (4.9)

a quadratic equation in z with discriminant D = p? —4¢™. This explains the
occurrence of D and its factorization in the definition of P, ,. Indeed, the
odd order zeros of D are the finite branch points (b, ..., bs) of the dihedral
map 7 : X — P!, while the special fiber X* lies over by = co. When m is
even, the discriminant factors as D = (p — 2¢™/?)(p + 2¢™/?), and we will
see (in the course of the proof of Proposition 4.11) that the zeros of the first
factor with odd multiplicity gives branch points with monodromy [f]; thus
we must have n = deg(dy) to get a dihedral cover of type (m,n).

Equations for forms. Each (p,q) € P, also determines a holomorphic
1-form v € Q(Y'), defined by

dx
2y™ — p(x) (410
Let & : Q(Y) — Q(X) denote the pushforward map, and let
(X,w) = (Y,v)/f = (Y/f, &) € QM. (4.11)
The form w is given explicitly by
W= d (4.12)

D20, 1 (¢~ /?u)

where U,,_1 is the Chebyshev polynomial of the second kind, of degree m—1;

it satisfies . .
_1 ™ — T

Summing up, for each (p,q) € Py, we obtain a triple (X,w,T) where

(X,w) € QM  and T' C X x X. The main step in the proof of Theorem 4.1

is to show:
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Theorem 4.3 For all (p,q) € Ppn, the associated triple (X,w,T) is di-
hedral of type (m,n), and every dihedral triple of type (m,n) arises in this
way.

In particular, we have a surjective algebraic map
Py — QD .

The unirationality of 2D, , stated in Theorem 4.1 then follows from unira-
tionality of Py, ,, (Proposition 4.15) when n > 3, and the fact that P, ,, = 0
for n < 3 implies the same for the space of dihedral forms (Proposition 4.16).

Dimension. Now assume n > 3. To compute the dimension of QD,, ,,, we

introduce the variety
Vinn C Moz (4.13)

which records the positions of the critical values (b1, ...,b7) of the dihedral
maps 7 : X — P! associated to forms in QD,,,. (In the case m = n,
b; = oo is actually not a critical value; it is defined as the image of X*.)
Using Theorem 4.3, we describe V,,, ,, explicitly and prove:

Theorem 4.4 For any dihedral type (m,n) with n > 3, the associated mod-
uli space of critical values satisfies

dim(Vin) = 24 [2n/m].
The proof of Theorem 4.1 is then completed by:

Theorem 4.5 If, in addition, m < 2g — 2, then the dimensions of 2D, ,
and Vi, n are related by

dim(QDyy, ) = dim(Vy ) + 1.
The bound
m = deg(m) < 29 — 2 = deg(Kx)

is used to relate m to the canonical linear system on X.

Outline of this section. To establish the results above, we will proceed
in three steps.

I. First, we will show that (a) the triple (X,w,T') associated to (p,q) €
Py, n, is dihedral of type (m,n), and (b) all dihedral triples arise in this
way.
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II. Then, we will check that P, ,, and hence QD,, ,, is unirational for
n > 3 and empty for n < 3.

III. Finally, we will compute the dimension of QD .
Step I(a): From polynomials to forms. Our first goal is to prove:

Proposition 4.6 For every (p,q) € Pp,pn, the associated triple (X,w,T) is
dihedral of type (m,n).

Fix (p,q) € Ppnn. We begin the proof with following useful fact.

Proposition 4.7 We have ged(p,q) =1 in Clx].

Proof. We just need to show p and ¢ have no common zeros. For m odd,
the definition of P, , requires that D = p? — 4¢™ has only simple zeros,
so we are done. Now suppose m > 4 is even, and ¢(x¢) = p(xg) = 0. By
the definition of P, ,, the polynomial dls% = p — 2¢™/? has simple roots
(i.e. s1 is constant), so both p and d; have a simple roots at zp. But then
dgs% = p+ 2¢™/2 also has a simple root at zg, so dy also has a simple root
there, contradicting our requirement d;ds is separable. |

Divisors on C. Let C/PL be the curve defined by equation (4.9), namely
22 — p(z)z 4+ q(x)™ = 0. The rational function z € C(C) presents C as a 2-
fold covering branched over the zeros of D = p? —4¢™ with odd multiplicity,
i.e. the zeros of d = dida. We have deg(d) = 6 by the definition of P, ,;
thus C' is irreducible, of genus 2, and its fiber Cy, over x = co consists of
two distinct points.

Proposition 4.8 The rational function z € C(C') has polar divisor (z)eo =
nP +n'P', where n’ <n and Co, = {P, P'}.

Proof. By the degree bounds (4.6), we have deg(p) < n and deg(q¢™) < 2n;
thus deg(D) < 2n, where D = p? — 4¢™ is the discriminant of (4.9). By the
quadratic formula, z = (p & v/D)/2; since p,q and D are polynomials in z,
we must have (z)oo = aP + bP’ for some a,b with n > a > b. Now observe
that @ = n whenever deg(p) = n or deg(D) = 2n. This is automatic when
m is odd, because deg(D) = 2n = 6 by the definition of P, ,. In the even
case, use the fact that deg(d;) = deg(p — 2¢"/?) = n. |
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Proposition 4.9 FEvery zero of z outside of Coo has order divisible by m.

Proof. Let Q € C — Cy be a zero of z projecting to R € PL, and let Q'
be its image under the hyperelliptic involution. Since ged(p,q) = 1, and
q(R) = 0, we have p(R) # 0 and hence D(R) # 0. Thus Q # Q'. We also
have

ord(z, Q) + ord(z, Q) = ord(¢", R).

Since ged(p,q) = 1 by Proposition 4.7, p(R) = 2(Q) + 2(Q’) = 2(Q’) # 0,
and hence ord(z, Q) = mord(q, R). [ |

Proposition 4.10 The curves Y and T are irreducible.

Proof. Let us first recall the following fact about curves of genus two: if
w € C(C) and (w) + 2Cx > 0, then w € C[z]. (For the proof, note that
every quadratic polynomial w = w(z) satisfies (w) + 2Cs > 0, the space
of quadratic polynomials is 3-dimensional, and h°(2C.) = 3 by Riemann-
Roch.)

Now let us turn to irreducibility of Y. It suffices to show there is no
w € C(C) such that w* = 2z and k > 1, for then the polynomial y™ = z
defining Y is irreducible over C(C).

Suppose to the contrary we have w* = z. Then k divides n, since
ord(z, P) = —n by Proposition 4.8. The same Proposition shows that (z) 4+
nCys > 0, and hence

(w) 4+ (n/k)Cs > 0.

Since n <5 and k > 2, we have n/k < 2, and hence w € C[z] by our initial

remarks, contradicting the fact that z = w* generates C(C) over C(z).
The curve T is also irreducible since it is the image of Y under a mor-

phism to X x X. |

Monodromy of Y/}P’i. Next we analyze the monodromy of the map 7 :
Y — P.L; equivalently, we describe the set of fixed points Fix(g) C Y for
various g € Day,.

Let (by,...,bs) denote the zeros of the separable polynomial d(z) van-
ishing at the odd order zeros of D = p? — 4¢™; and let by = co. As we have

Seelnl:

The map C — PL is a degree two covering, branched over (b1, . .., bg).
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Proposition 4.9 implies:

The map Y — C' is unramified outside Coo = {P, P'}.
Since C =Y/r, we find:

The set Fix(r¥) C Y lies over by for 0 < k < m.

Note that the reflections in Do, acting on Y cover the hyperelliptic involu-
tion on C'. Consequently, their fixed points map to Weierstrass points of C'.
This shows:

The set Fix(f) UFix(rf) C Y lies over (by,...,bg) on PL.

Now suppose m is even, so we have the factorization
D =p* —4q" = (p—2¢"*)(p+ 2¢"?) = (d157)(da53)

(equation (4.4)). Recall that d = dydy is separable and deg(d;) = n by the
definition of P, ,. Thus we can order the zeros of d(x) so that (b1,...,by)
are zeros of d;. We claim:

When m is even, Fix(f) lies over (bi,...,by,) and Fix(rf) lies
over (bp+1,...,bg).

Indeed, at a fixed point of f we have y?> = ¢, which together with the defining
equation (4.7) for Y gives
0=q" —pg™?+q" = ¢ (24" — p) = —=¢"*(drs}). (4.14)

We also have D = d = 0. Since ged(p,q) = 1, this implies that ¢ # 0 and
hence d; = 0. Similar reasoning applies to Fix(rf).
We can now show:

Proposition 4.11 The map © : X — PL is dihedral of type (m,n) with
special fiber X* = X .

Proof. It suffices to show that Y itself has the required monodromy over
(b1,...,b7). Let g; = p(i) € Day, denote monodromy of Y for a peripheral
loop around b;, as in §3. For i # 7, the map Y — P! is ramified over b;,
since C' is; thus [g;] # id. Since Y — C' = Y/r is ramified only over b7, [g]
is a reflection. Our observations above then show:

[gi] = [f] for 1 <i<n,and [g)]| =[rf]forn+1<i<6.

It remains only to show that [g7] = [r"]. This follows readily from the fact
that 4™ = z and z has a pole of order n at P € C, (Proposition 4.8). 1
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The dihedral form. We can now show the form (X,w) determined by
(p,q) € Py, via equation (4.11) is dihedral of type (m,n).

Let
dx

2 pa)
be a 1-form with (n) = P+ P’ = C* = Cw, and let 7 denote its pullback

to Y. Consider the meromorphic forms v and w on Y and X defined by
v =y -1 as in equation (4.10), and w = & (v) as in equation (4.11).

n € QC)

Proposition 4.12 The divisor of w is a non-negative multiple of X*, and
T (w) = Tmw.

Proof. We first check that w # 0. To see this, note that v and f*(v) are
r—eigenforms on Y with eigenvalues (,, and (.} respectively. Since (,, is a
primitive mth root of unity, with m > 3, we have (,, # ¢! and hence these
eigenforms are linearly independent. This shows that

§w)=v+ [ v) #0,
and hence w # 0.

Now it is routine to check that

_ 2m — ged(m,n)

(i = v

ged(m, n)

By Proposition 4.8 the divisor (z) + nC* is effective, so the same is true of
the divisor (y) +n/ged(m,n) - Y*. It follows that

V) =@+ zv-Y,

where

2m —ged(m,n) —n  2g(X)—2
ged(m, n) X~

In particular, v € Q(Y') and hence w € Q(X). Since the degree two map
¢:Y — X is unramified over X*, we have (w) > v - X*. But v- X* has the
degree of a canonical divisor on X, so equality must hold.

Finally, we compute T*(w) using equation (3.13): we have

T*(w) = &€ (W) = &r* (v + £ (1) = &(Gnr + G (V) = Tw, (4.15)

as required for a dihedral form. |
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Proof of Proposition 4.6. Combine Propositions 4.11 and 4.12. |

Remark: Hyperelliptic quotients. When m is even, Ds,, contains three
subgroups of index two, namely Hy = (r), Hy = (r?,rf) and Hy = (r?, f).
Thus the map Y — PL can be factored through three different hyperelliptic
curves, namely C; = Y/H; for i = 0,1,2. We have Cy = C, while C; is
defined by the equation 21-2 = d;(x) for i = 1,2. The analysis of the fixed
points of f and rf acting on Y can be reduced to a study of the Weierstrass
points of C7 and Cb.

Step I(b): From forms to polynomials. Our next task is to show:

Proposition 4.13 Every dihedral triple (X,w,T) of type (m,n) arises from
a pair of polynomials (p,q) € P p.

The key point in the argument is to use the existence of the 1-form w,
vanishing only on X*, to produce a polynomial equation of the form (4.7)
for Y, with deg(p) and deg(q) relatively small.

Notation and normalizations. To set the stage for the proof, we begin
by elaborating several properties of dihedral forms.

Let (X,w,T) be an arbitrary dihedral triple of type (m,n), let Y be
the normalization of T, let 7 : X — PL be the associated rational map
with dihedral monodromy, and set C = Y/r. Let C(z) = C(PL) denote the
function field of the target of .

After changing coordinates on PL, we can assume that the special fibers
all lie over the point x = co. We will consider the special fibers X*, Y* and
C*, as well as the fixed—point set Fix(f) C Y, as divisors with multiplicity
one at each point.

Forms on Y. Let
w=_¢"(w) eQY).

For the proof of Proposition 4.13, we will begin by constructing an r—
invariant form 1 € Q(Y') whose divisor is supported on Y*. Then, we will
write

G=vtf),

for a suitable r—eigenform v € Q(Y); and finally, we will show that
y=v/neC)

satisfies an equation of the form (4.7).
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Recall from §3 that (w) = v - X*, where

Yy 2m —n —ged(m,n)  |x(X)|
B ged(m, n) X

Since the critical points of £ : Y — X coincide with Fix(f), we have
(w) =Fix(f) +v- Y™ (4.16)

Let n € Q(C) be a form with (n) = C*, and let 77 be its pullback to Y.
Since Y — C is branched to order m/gcd(m,n) at each point in Y*, and
unbranched otherwise, we have

2m — ged(m, n)

() = Y (4.17)

ged(m,n)

Next we construct an r-eigenform v associated to w. From the definition
of a dihedral triple, we have

T w="Tpw
Similarly, we have (r + r~1)*@ = 7,,,0.
Proposition 4.14 The 1-form

*~ =1
v = M € Q(Y) (4.18)

is a Gn-eigenform for r with £ (v) =w and (v) > v - Y™,
Proof. Since (r + 7~ 1)*G = ({m + (1)@, we have

_ Cm‘; - (T_l)*w

=Gt

implying that r*(v) = (uv. From fr = r~!f, we compute that

)

F) +v=2,

hence &,(v) = w. The claim about the divisor of v follows from the fact that
v is a linear combination of w and 7*(w), both of which vanish to order v on
Y* =r(Y™). [ |
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Eigenfunctions for r. Now form the rational function
y=v/n € CY). (4.19)

Combining (v) > v - Y™ (Proposition 4.14) with (4.17), we have that

(y) + Y* >0 and deg(y)eo < 2n. (4.20)

ged(m,n)

Since r fixes 77, and v is a primitive r-eigenform, y is a primitive r-eigenfunction.
In particular, y generates C(Y')/C(x), i.e.

C(z,y) =C(Y). (4.21)

To see this, observe that by Galois theory we can write C(y, z) = C(Y) for
some subgroup H C Ds,,. Since y is a primitive r—eigenfunction, we have
H N (r) = {id}, and thus either H is trivial or H = (r’f) for some i. But
C(y, x) is r-invariant, so rHr~! = H; hence H is trivial and equation (4.21)
follows.

The defining equation for Y. Let

p=y"+ f"(y") and q=yf"(y) (4.22)

in C(Y'). The rational functions p,q are Dy,,-invariant; hence they lie in
C(x). In fact, from (4.20), we see that p, g are polynomials and

p,q € Clz], and deg(p) < n,deg(q) < 2n/m. (4.23)
We claim the defining equation for Y is given by
v = pla)y™ + g(x)™ =0,

in agreement with (4.7). To see this, note that y has degree 2m = [C(Y) :
C(x)] over C(x) by (4.21), and y satisfies the claimed equation by (4.22). In
view of equation (4.22), the action of Dy, on Y is given by f(x,y) = (z,q/y)

and r(z,y) = (2, (my)-

Equations for v and w. Similarly, the form v in Q(Y) is given by
dx

y - —_—

2y™ — p(x)

up to scale, in agreement with (4.10). To see this, just observe that (dz/(2z—
p(z))) = C*, and hence the expression above is proportional to v = yn (see
equation (4.19)).
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By the same token, the form (X,w) agrees with the form defined by

equation (4.11) up to scale, since w = &,(v) by Proposition 4.14.
Proof of Proposition 4.13. The above discussion shows that from an
arbitrary dihedral triple (X,w,T) of type (m,n), we can construct polyno-
mials (p,q) as above so that (Y,v) and (X,w) are defined by the desired
equations (4.7), (4.10) and (4.11) up to scale. But it is straightforward to
check the set of forms in M, coming from P, , is closed under scalar
multiplication. Thus it remains only to show that (p,q) € Py, . Note that
the degrees of p and q are correct by (4.23).

The argument is very similar to the discussion of the monodromy of
Y/PL in Step I(a). Let D = p? — 4¢™ be the discriminant of the definition
equation 22 — pz + ¢™ = 0 for C. Write D = s?d where d has simple zeros.
Since C' has genus two (by equation (3.9)), we have deg(d) = 6. When m is
odd, this shows (p, q) € Py, as desired (see equation (4.3)).

In the even case, simply write D = (d;s?)(d2s3) as in (4.4), and observe
that deg(d;) = n because the covering 7 : X — P! has type n fibers with
monodromy [f] (compare equation (4.14)). |

Proof of Theorem 4.3. Combine Propositions 4.6 and 4.13. |

Step II: Unirationality. Now that we have a surjective map from P, ,
with QD,, ,,, unirationality (and irreducibility) of the latter variety follows
from:

Proposition 4.15 For n > 3, the space Pp,, 1s a nonempty, unirational
variety.

Proof. For m odd, P, is nonempty because (333, 1) € Py, and is ra-
tional because it is defined by open conditions on the vector space C[z], x

Clx] [2n/m]-
For m even, consider the variety
P,g%n C Clx]6—n X Clz]n-3 x C[z]|2n/m
defined by
P, = {(dg, s9,q) : da(das? — 4¢™/?) is separable of degree 6} . (4.29)
Note that for the product on the left to have degree 6, we must have

deg(dy) =6 —n and  deg(dasi — 4¢™/?) = n; (4.25)
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m/2 The space P! _ is nonempty, since it contains

in fact d; = dos3 — 4q .
(dg, ™73, ¢) whenever dy is separable of degree 6 — n and c is a generic
constant. It is also a rational variety, since it is defined by a single open
condition on Clz]e—pn X C[z]y—3 X C[x] |21/

To show Py, 5, is unirational, it suffices to show that the map P}, ,, = P
defined by (dg, s2,q) — (p,q), with p = das3 — 2¢™/2, is surjective. But this
is clear: for every (p,q) € Pp,n, we can compute an appropriate (da, sz)
from the unique factorization of p + 2¢™/? in C[z]. |

Proposition 4.16 For n < 2, the space QD,, ,, is empty.

Proof. If n < 2 then m is even, and the space Pr’mn defined above is empty
because there are no polynomials with deg(s2) = n—3 < 0. Hence Py, , = 0,
and therefore QD,, , = () by Proposition 4.13. [ |

We are now ready to prove that the closure of QD,, , in QM contains
an associated variety of cyclic forms.

Proof of Theorem 4.2. For (p,q) € Py, ,, the associated Riemann surface
X =Y/ f is defined by equation (4.8) which is of the form

(2u)™ + O(q) = p.
By equation (4.12), the 1-form w is given by

dx
(2u)™ +O(q)

w =

First suppose m is odd. In this case, a = (1,1,1,2m — 3). We take
the limit as ¢ — 0 in P, ,, which we can do since P, , is open and dense
in Clz], x C[z]|25,/m - In this limit, we obtain the defining equations for a
generic form in 7,.

Now suppose m is even. Then the quadrilateral type associated to (m,n)
is a = (177,273 2m — n). Taking the limit ¢ — 0 in P, ,,, we obtain the
equation for X

(2u)™ = p = dys3

where deg(dy) < 6 — n and deg(ss) < n — 3. The form w = dz/(2u)™ ! is
generic form in QZ,. |
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Step III: Dimension of the variety of dihedral forms. Throughout
this step we assume n > 3. Recall that V, , C Mg 7 is the moduli space of
branch point configurations (by,...,b7) that arise from the dihedral maps
attached to forms in QD,, ,, (see equation (4.13)). We will show that

dim(Vip ) = 24 [2n/m|
and, provided m < 2g — 2, we have
dim(QDyy, ) = dim(Vy ) +1 =34 [2n/m].

These statements are Theorems 4.4 and 4.5 respectively.

Sums of polynomial powers. We will use the following lemma to deter-
mine the dimension of V;, ,,.

Lemma 4.17 Fiz a nonzero polynomial v € Clx] and integers a,b > 2.
Then the map ¢ : Clz]g x Clz]e — Clx] given by

Y(p,q) = rp” +¢"

is generically an immersion, provided deg(r) > 0 when a =b=2 ord=0.

Proof. The derivative of ¢ is given by
b = arp”'p+bg""q.

To show 9 is an immersion at (p, q), it suffices to show that when 1/1 =0,
we also have p = ¢ = 0. We may assume that p and ¢ have degrees d and e
respectively, and ged(rp, q) = 1, since these conditions are generic.

Suppose, to the contrary, that ¢» = 0 but at least one of p and ¢ is
nonzero. Then both are nonzero, and the fact that ged(pr,q) = 1 implies p
is a multiple of ¢®~! and ¢ is a multiple of rp®~!. From this we find

d > deg(p) = (b—1)deg(q) = (b —1)e = (b— 1) deg(q)
> (b—1)((a—1)deg(p) +deg(r)) > (b— 1)(a — 1)d + deg(r) > d,
where we have used the fact that a,b > 2. Thus the last inequality is
an equality. For equality to hold, we must have a = b = 2 or d = 0;

and moreover, we must have deg(r) = 0. But these cases are excluded by
hypothesis. |
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Proof of Theorem 4.4. We wish to show dim(V,,, ) = 2+ |2n/m].

First suppose that m is odd. Then n = 3, and there is a rational map
Clz]e — Moz sending a polynomial d(x) to the configuration consisting of
its zeros along with co. The fibers of this map are orbits of C* x Aut(C) on
C[x]¢, where Aut(C) acts by precomposition and C* acts by postcomposition
by scaling.

The variety V;, , corresponds to the image of

¥: Clzln x Clz]|2n/m) — Clz]s

4.26
Y(p,q) =p* +q™ (4:26)

To see this, we use Theorem 4.3 together with the fact that P, , is open
and dense in Clz], X C[z]|2n/m) When m is odd. By Lemma 4.17, ¢ is
generically an immersion, so its image has dimension (n+1)+([2n/m|+1) =
5+ |2n/m| and codimension 2 — |2n/m|. Since the image of v is invariant
under C* x Aut(C), V;,, ,, also has codimension 2 — |2n/m] in Mg 7, hence

dim(Vy ) = dim(Mo7) — 2+ [2n/m] =2+ |2n/m ]

as desired.

Now suppose that m is even. For this case we will use the variety Pr’n’n
defined in equation (4.24). There is a rational map C|z],, x C[z]s—n, — Moz
sending a pair (dy,dz) to the configuration of zeros for d = d;dy along with
oo. The fibers of this map are Aut(C) x C* x C*-orbits in C[z],, x Clz]¢_p,
(Aut(C) acts diagonally, and C* x C* acts by scaling each component).

By Theorem 4.3 together with the parameterization of P,Q%n — Ppp in

the proof of Proposition 4.15, the variety V,, , corresponds to the image of

¢: Py, — Clz]n x Clz]e—p

(4.27)
¢(d, 82, q) = (d2s3 — 4™/, dy).

Fix a separable dy € C[z]g_,, with deg(dz) = 6 — n. (Equations (4.24) and
(4.25) imply that any dz appearing as the first coordinate of a point in Py, ,,
has this type.) Applying Lemma 4.17 to the map (s2,q) — das3 — 4¢™/2,
we conclude that the fiber of P, , over dy € Clz]_p, has dimension n —
1 + [2n/m], and codimension 2 — [2n/m]| in C[z],. Hence ¢(F,,,) has
codimension 2 — |2n/m] in Clz], x Clz]¢—n. Since ¥(P},,,) is invariant
under Aut(C) x C* x C*, the variety V;, ,, also has codimension 2 — |2n/m |
in My 7. Hence V;, 5, itself has dimension 2 4 [2n/m|. |
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An incidence correspondence. To relate the dimensions of 2D,, ,, and
Vin,n, we form the incidence correspondence

QD! C QDpn X Vi

consisting of triples (X,w, B) where (X,w) € QD,,, and an associated
dihedral map 7: X — P! has critical configuration B € Vinn-

Proposition 4.18 Fach fiber of QDvln,n — Vinn 15 a finite union of lines.

Proof. Each critical configuration B € My 7 determines 7: X — P! and
X* up to finitely many choices, and (X, X*) determines w up to scale. Hence
each fiber of QD;, ,, — Vi, is a finite union of lines. |

Proposition 4.19 If m < 2g — 2, the fibers of QD;mn — QD , are finite.

Proof. Let (X,w,T) be a dihedral triple of type (m,n), with associated
dihedral map m: X — P., normalized so that X* = 771(c0). Let B denote
the set of critical values of w. Our hypothesis implies that 7 is branched
along X*, and hence (X,w, B) € QDy, ,. The condition m < 2g — 2 insures
that (zw) is a holomorphic 1-form on X, since the poles of z and the zeros of
w are both evenly spread along X*. Thus 7 comes from the linear subsystem
of the canonical system on X spanned by (2w) and (w).

To complete the proof, we will show that 7 is determined by the Jacobian
endomorphism induced by T'. Fixing (X,w) € QD,, p, there are countably
many endomorphisms of Jac(X), hence countably many choices for = and
B. Since QDy, , — QD ,, is algebraic with countable fibers, its fibers are
in fact finite.

We now prove our claim that T determines 7. First, we note that the
eigenspace

W = ker(T* - Tm)|Q(X)

is two—dimensional. Indeed, since T' is holomorphic, the eigenspaces for T
are compatible with the Hodge structure. More precisely, the projection of
D(X,w,T) to H'(X) is the direct sum of W and its complex conjugate.
Using Theorem 3.1, we have that dim(D(X,w,T)) = 4, and hence dim W =
2. (Note that (m,n) # (3,3) since m < 2g — 2.)

It is clear that the two—dimensional space W contains w. We claim
zw € W as well. To see this, note that the coordinate x on Y is Doy,,-
invariant; hence multiplication by x commutes with (r +r~1)* and thus

T* (zw) = T (2W).
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Thus the space W, which is determined by 7™, gives a 1-dimensional linear
system on X which agrees with the map 7. |

Proof of Theorem 4.5. By Proposition 4.19, we have
dim(QDy, ,) = dim(Vipn) + 1

for all (m,n), and dim(Q2D, ) = dim(QDy,, ,,) provided m < 2g — 2. Thus
dim(QD,,, ) = dim(V;y, ,,) + 1 under the same condition on m. [

Proof of Theorem 4.1. With steps I, II and III in place, we can now
complete the proof of our main result. Indeed, for n > 3, the variety 2D,, ,,
is nonempty, irreducible and unirational by Theorem 4.3 and Proposition
4.15, and dim(QD,, ) = 3+ [2n/3] provided m < 2g — 2, by Theorems 4.4
and 4.5; while QD,, , = 0) for n < 3, by Proposition 4.16. [ |

Remarks. We conclude with some comments on general dihedral covers,
degrees, divisors and other topics around the discussion above.

1. Relation to the canonical map. We emphasize that when m < 2¢(X)—
2 (a bound that holds in most cases of interest, including the six ex-
amples given in Table 1), the dihedral map 7 : X — P. comes from
the canonical linear system |Kx|. That is, we can factor this map as

a composition
X Pt 5 pl
of the canonical embedding and a linear projection. (For a more com-

plete discussion of the interplay between the canonical embedding and
the dihedral map in the case (m,n) = (6, 3), see [MMW, §4].)

2. Superabundance. On the other hand, when m > 2g — 2, the formula
dim(QDy, ) = 34|2n/m] can fail. For instance, when (m,n) = (4,5),
we have

3+ [2n/m] =5>4>dimQD,,,

by Theorem 3.1 (and in fact dimQD,,,, = 4). The preceding argu-
ments do not apply because we need 7 to come from a subcanonical
linear series in the proof of Proposition 4.19.

3. General dihedral extensions. We note that every regular Dsy,,-cover
7:Y — Pl can be presented algebraically

y?" = p(x)y™ + q(x)" =0 (4.28)
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for some p, g € Clz]. One of the central points of the discussion above
is that when Y is associated to a dihedral form, the polynomials p and
g can be chosen to have small degree.

4. The divisorial equation. Finally, for a more geometric perspective on
the space QD,, ,, we remark that whenever C is defined by 22 —pz+
¢™ = 0 with (p,q) € P, n, the divisor of z satisfies

k
(2)=m (Z Qi> —nP+ (n—mk)P’
1

for some @1, ...,Qk € C. Here k = deg(q) < [2n/m|. Thus we obtain
a close relationship between dihedral forms and the subvarieties of the
moduli space My 1 defined by:

there exist (); € C such that
Dpnk = {(C’, P): ! } )

[P + (mk — n)P'] = m[2} Qi]

Here [D] € Pic(C') denotes the linear equivalence class of a divisor.
Since dim Pic(C) = 2, we have Dy, 1 = Mo for k > 2, while for
k < 2 one expects Dy, , . to have codimension 2 — k, consistent with
our calculation of dim QD,, ,,.

We have chosen to take a more algebraic approach to 2D, ,, to avoid
technical issues, such as the reducibility of D, ,, 1.

5 The variety generated by a quadrilateral

In this section we prove Theorems 1.1 and 1.2: we show that the 6 values of
(m,n) in Table 1 give new SLa(R)—invariant subvarieties

QD C OM,,

and that these varieties are generated by quadrilaterals. We also explain
how the table was derived, and describe properties of particular examples.

Statement of results. Let (m,n) be a dihedral type. By the character
calculation in §3, we have dim QD,, , < 4 (see Corollary 3.2). The main
results of this section concern the case of equality. We will show:
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Theorem 5.1 Suppose dim(2D,,,,,) = 4. Then the closure of QD in
its stratum locally coincides, in period coordinates, with a finite union of
subspaces of the form

OD(Xi,wi,E-) C HY(X, Z(w)).
1

(Here the dihedral triples on the left also have type (m,n).)

Corollary 5.2 In this case @mm is an SLo(R)—invariant subvariety of
QM,.

Proof. Any closed set in {2M, that is locally defined by real linear equations
is SLa(R) invariant (see [MMW, §5]). [ |

Theorem 5.3 When dimQD,, , = 4, the closure of the dihedral locus is
generated by cyclic forms: we have

Dy = SIa(R) - QZ, = QG
where a = (a1, a2, a3,a4) and (m,n) are related by equation (1.2).

In fact G, can be generated by a single quadrilateral (see the closing
remarks of this section).

The proof of Theorem 5.1 is self-contained and similar to the proof
of linearity of the space of cyclic forms (Theorem 2.5), while the proof of
Theorem 5.3 depends on the analysis of SLa(R) orbits in [EMM].

The six exceptional quadrilaterals. We can now explain the derivation
of Table 1. The main point is that Theorem 4.1 gives:

n+ged(m,n) <m <2n = dimQD,,, =4. (5.1)
In particular Theorem 4.1 implies:
We have dim QD,, , = 4 for all siz (m,n) listed in Table 1.

There are only two other dihedral types satisfying the inequalities in (5.1):
namely (m,n) = (4,3) and (6,5). But these correspond to previously
known invariant varieties: they arise from the strata of quadratic differ-
entials QM 3(3, —13) and QMa1(5, —1) respectively by a double covering
construction. The other six are genuinely new. In fact we will show:
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Theorem 5.4 For the sixz values of (m,n) in Table 1, the locus

0Dy C OM,

s a primitive invariant variety that does not arise from a stratum of holo-
morphic 1-forms or quadratic differentials.

In this context primitive means a generic form in D, ,, is not the pullback
of a form on a Riemann surface of lower genus.

Proof of Theorems 1.1 and 1.2. By Theorem 5.3 we have QG, = @m,n
for the six cases in Table 1; thus the desired statements follow from Theorem
5.4. |

It remains to prove Theorems 5.1, 5.3 and 5.4.

Proof of Theorem 5.1. The argument follows the same lines as the
proof of Theorem 2.5 for cyclic forms. Let V = QD,,,,. For each dihedral
form (X,w) € V, choose T such that (X,w,T) is a dihedral triple, and set
S(X,w) =D(X,w,T) = Ker(T™* — 7,,I). Then dim S(X,w) = dimV =4 by
Theorem 3.1, so the conclusion follows from Theorem 2.4. |

Proof of Theorem 5.3. We have QG, = SL2(R) - QZ, by definition, and
0z, C @m,n by Theorem 4.2; hence QG, C ﬁm,n by Corollary 5.2.

The variety QD is irreducible and 4-dimensional, so to show equality
holds it suffices to show that QG, is an analytic variety with dim QG, > 4.

Since €27, is invariant under multiplication by C*, we also have QG, =
GLJ (R) - QZ,. By [EMM], the GLj (R)-orbit closure of any point in QZ,
is equal to one of countably many irreducible analytic subvarieties of QM,,
each locally defined by real linear equations in period coordinates. Since
these countably many varieties cover 2Z,, which is irreducible, {17, is con-
tained in exactly one of them. Thus G, itself must be an orbit closure. In
particular, QG, is a real-analytic variety, locally defined over R in period
coordinates. On the other hand, by Theorem 2.5, the variety 17, locally
contains an open subset of a 2-dimensional subspace F, defined in period
coordinates by E = E(X,w,r) = Ker(r*—(,,}). Since QG,, is locally defined
by real linear equations, and dim(E + E) = 4, we have dim QG, > 4 and
the proof is complete. |

Proof of Theorem 5.4. Let (m,n) be one of the six dihedral types given

in Table 1. Then dimD,,,, = 4 by Theorem 4.1, so by Theorem 5.1 its
closure is indeed a 4-dimensional invariant subvariety of QM,. It remains
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to show this locus is (A) primitive, and (B) it does not arise from a stratum
of holomorphic 1-forms or quadratic differentials.

(A). We have six values of (m,n) to consider. For each, consider a generic
dihedral triple (X,w,T') of type (m,n). We must show there does not exist
a form (Z,n) of lower genus and a surjective holomorphic map f: X — Z
such that w = f*(n).

If this is the case, then [w] € H!(X) lies in a copy of the 2g(Z)-
dimensional subspace H'(Z) defined over Q. Note that [w] itself is a generic
point in the 4-dimensional subspace Ker(T* — 7,,), which is defined over
K = Q(7,). Thus

29(Z) = dim H'(Z) > 4deg(K/Q).

In particular, when m = 5,8 or 10, K is quadratic over Q, so g(Z) > 4.
But g(X) < 6, so there is no surjective map f : X — Z and hence (X,w) is
primitive.

In the remaining two cases, (m,n) = (6, 3) and (6,4) the only possibility
is g(Z) = 2. We will see below that the (6, 3) case is the gothic locus, so its
primitivity was already proved in [MMW, Lemma 6.2].

The final case, (m,n) = (6,4), corresponds to a = (1, 1,2,8) and can be
completed as follows. Consider a generic cyclic form (X,w) of type a. It
suffices to show that (X, w) is primitive. If not, it is pulled back from a form
(Z,mn) of genus two via amap f : X — Z. We cannot have deg(f) = 3, since
this would force f to be unramified and hence we would have |Z(w)| > 3,
contrary to the fact that w has just two zeros. Hence deg(f) = 2, and
therefore we have an involution J € Aut(X) satisfying J*w = w. Since
r*w = (gw, J is not in the cyclic group (r) C Aut(X).

If the commutator s = [J,r] € Aut(X) is trivial, then J descends to
give a nontrivial symmetry of the quotient space (X, |w|)/r, a sphere with
four cone points of type (1, 1,2,8)/6. But generically this cone manifold has
trivial isometry group, so no such J exists and (X,w) is primitive.

Finally, if s is nontrivial, then [s, r| is trivial since both s and r fix Z(w)
pointwise, and the same reasoning applies with J replaced by s. |

(B). In the six cases of interest, the inclusion of QD,,,, into its ambient
stratum is proper because dim QMg(v") > 2g > 4 for all strata listed in
Table 1. Thus QG, does not arise from a stratum of holomorphic 1-forms.

Similarly, if Q2D,,, comes from a stratum of quadratic differentials, it
must be defined over Q and we only have the cases (6,3) and (6,4) to
consider. Since a generic form (X,w) in either locus is primitive, the only
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quadratic differential it covers is (4,q) = (X,w?)/J, where J = r™/? =
r3. The form (A,q) lies in the stratum QM 3(—13,1%) when n = 3 and
QM32(—12,6) when n = 4. But these strata have dimensions 6 and 5
respectively, so they cannot account for the 4-dimensional variety Q.D,, ;.

|

Remark. To check the dimension calculation in part (B), note that there
are g(A) conditions for a divisor of degree 4g(A)—4 to come from a quadratic
differential on A. More generally, dim QM ,,(=1",p1,...,ps) = 29 — 2 +
n+ s; see [KZ, eq. (2)], [V1, eq. (0.9)]).

Particular examples. We now turn to particular cases of the general
discussion above.

1. The variety Q2G1.1,1,9 C QM (23) is the gothic locus, denoted QG in
[MMW]. To see this, note that each form (X,w) € QGj 1,19 comes
equipped with an involution J = 73 € Aut(X) and a degree three map
p: X — B =Y/(f,r?) which satisfy the conditions for (X,w) to be a
gothic form, as defined in [MMW, §1]. Thus QG119 is contained in

QG, and equality holds because both varieties are closed, irreducible
and of dimension four.

2. The forms (X,w) in QG4 128 C QM 4(3?) have the interesting property
that their zero set Z(w) = {Py, P2} gives a divisor [P, — P5] of order
3 in Jac(X). Indeed, 3(P, — P,) = (¢), where ¢ : X — Y/{r?, f) = P!
is the natural quotient map.

3. Although it is not covered by Theorem 4.1, when a = (1,2,2,3) and
(m,n) = (4,5) we also have dim QD,, ,, = 4, so Theorems 5.1 and 5.3
apply. Indeed, for these values of a and (m,n) we have

QG = QD = AMs(2).

Given a form (X,w) of genus two with a unique zero P, the desired
degree four dihedral map 7 : X — P! can be obtained from a degree
two hyperelliptic map f : X — P! by setting 7(2) = (f(2) — f(P))2.

In this sense, the loci QG, are generalizations of the stratum QM3(2).

4. The branch points (b, . .., by) of the dihedral maps associated to forms
in 2Dy, , give an interesting hypersurface V,,,, in Mgp7. For exam-
ple, the proof of Theorem 4.4 shows that V5 3 consists of those points
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(b1,...,be) that arise as the zeros of a sum of sextic polynomials of
the form

c(x) = a(z)* + b(z)°,
together with the point by = oc.

5. The Teichmiiller curve associated to the (3,5, 7) triangle lies in G11,1,7.
To see this, note that the cyclic form w = dx/y on the curve X defined
by y® = (23 —1)* lies in QZ,. This form is equal to the unfolding of the
(3,5, 7)-triangle, as can be seen by considering the cyclic, degree 15
map z3: X — PL. For a proof that this form generates a Teichmiiller
curve, and its connection to the Eg-diagram, see [Vo| and [Lei].

General properties. We conclude with some remarks that apply to all six
loci G, given in Table 1. For any a from this list:

1. The locus G, lies in a single stratum QM (v"). This is easy to see
when |Z(w)| = 1 and when /2 fixes Z(w) pointwise. The only re-
maining case is a = (1,1, 2,8), which can be handled using the torsion
property mentioned above.

2. The locus G, has rank two, by Theorems 3.1 and 5.1.

Here the rank of an irreducible invariant variety V' C QM is one-half
the dimension of its projection to H'(X) in period coordinates (see
[Wr2]). The previously known examples of higher rank V" all come from
strata; this is not the case for QG,, by Theorem 5.4. It is known that
for each fixed g, there exist only finitely many invariant subvarieties
of QM of rank two or more [EFW, Theorem 1.3].

3. There exists a planar quadrilateral of type a whose associated form
generates 0G,. Indeed, by [EMM], every form in QZ, whose SLa(R)
orbit is not dense in 2G, lies in one of countably many proper subva-
rieties of Q2Z,. A generic quadrilateral will avoid these.

4. By passing to the closure of 2G|, in a suitable compactification of QM
(e.g. the one appearing in [Mcb, §4]), one obtains further interesting ex-
amples of SLy(R)-invariant varieties of rank one and dimension three.

6 Totally geodesic surfaces

In this section we prove Theorem 1.3 on the existence of a totally geodesic
surface in M1 3, M1 4 and Ms 1, and make remarks on each of the three
examples.
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Quadratic differentials. Let (m,n) be a dihedral type with m even. Then
for every dihedral triple (X,w,T'), we have a natural involution J € Aut(X)
satisfying

J(w) = —w.

This involution is defined using the action of Ds,, on Y constructed in §3, by
observing that the map /2 € Aut(Y') commutes with f, and so it descends
to an involution J on X =Y/ f.

Letting r = g(X/J) and s = |Fix(J) — Z(w)|, we then have a natural
subvariety

QFm,n C QMT,S

consisting of all quadratic differential of the form
(A4,q) = (X,w)/J

arising from dihedral triples of type (m,n). The original form can be recov-
ered from (A, ¢) by taking the Riemann surface of /g, so

dim QF},,, = dimQD,, ,, = 4.

Let F,, denote the closure of its projection to M, ,. The following is a
restatement of Theorem 1.3.

Theorem 6.1 Let (m,n) be a dihedral type with m = 2n > 6. Then F, , C
M, s is a primitive, totally geodesic surface.

Proof. Since n = 3,4 or 5, there are only three cases to consider, and they
all appear in Table 1. In all cases the locus QG, = @m,n C OM, is a
primitive, 4-dimensional, SLo(R) invariant variety, so the same is true for
the closure of QF, .

We begin by showing that the natural map @m,n — Fpn has fibers of
dimension at least two. This is the central point in the proof.

Since the monodromy about b, for a dihedral form of type (m,n)
(with m = 2n and p = 6) is [r"] = [J], the quotient A = X/J and the set of
poles P of (A, ¢q) do not depend on the location of the special critical value
bp+1. On the other hand, as by, varies while keeping (b1, ...,b,) fixed, the
zeros of ¢ move, since they are the fiber over b,;1; so we obtain a two-
dimensional family of quadratic differentials in Q(A, P). The corresponding
double covers give a two-dimensional family of 1-forms (X,w) € QM,.
Since the monodromy of the map X — P! remains constant as bp+1 varies,

44



and the special fiber X* over b, 1 supports the zeros of w = /g, this two—
dimensional family lies in 2D, ,, by the definition of a dihedral form. Thus
the fibers of the composed map Q2D,, , = QF},, — Fi, n are at least two—
dimensional, and hence dim F,, ,, < 2.

On the other hand, F}, ,, is the image of an invariant variety of quadratic
differentials of dimension 4, so dim(F}, ) > 2. We conclude that F,, , is a
complex surface and that it contains a pencil of complex geodesics through
each point. Consequently F}, ,, is totally geodesic, and it is primitive because
QG is primitive. |

For a more detailed treatment of the case (6, 3), see [MMW, §5].
We conclude with some remarks on each of these three surfaces.

Plane cubics and Fg 3. As we have seen at the end of §5, the closure
of D 3 gives the gothic locus QG C QM,. Consequently Fg 3 coincides
with the flex locus F' C My 3. A quite different description of this locus, in
terms of classical algebraic geometry and plane cubics, is given in [MMW,
Theorem 3.1].

Space curves and Fg4. Similarly, the surface g4 C My can be de-
scribed in terms of pencils of quadrics in P3. The base locus of such a pencil
is a quartic curve A =2 X/.J of genus one, and the dihedral map 7 : X — P!
factors through a degree four map py, : A — P! obtained by projection from
a suitable line L C P3.

Real multiplication and Fig5. Finally, the surface Fios C Mg is
closely related to a remarkable construction that associates a point P € X
to each eigenform (X,w) for real multiplication by the ring of integers in
Q(+/5) on the Jacobian of a Riemann surface of genus 2. The surface Fig 3
consists of the pairs (X, P) that arise in this way. For more details, see [KM]
and [Ap].

7 Teichmuller curves

In this section we prove Theorem 1.4: we show the 3—fold G, C My is
abundantly populated by primitive Teichmiiller curves for a = (1,1,1,9)
and a = (1,1,2,8). Explicit examples, coming from billiards, are presented
in §8. The proof is based on eigenforms for real multiplication, as in the
construction of Weierstrass curves in [Mcl].

Real multiplication. Let K C R be a real quadratic field, with Galois
involution 2 — 2/, and let A be a polarized Abelian variety with dim(A) = 2.

45



We say A admits real multiplication by K if we have an inclusion
K CEnd(4)®Q

whose image consists of self-adjoint operators. We say w € Q(A) is an
eigenform for real multiplication by K if K -w C C-w. This is equivalent
to the requirement that

R*(w) =X w and Q(\) =K,

for some self-adjoint endomorphism R € End(A).

Let Op = Z[(D + v/D)/2] be the real quadratic order of discriminant
D. When we wish to attend to the integral structure, we say A admits real
multiplication by Op if

KﬁEnd(A) ~0p.
In this case K = Q(v/D).

Density. Eigenvectors for real multiplication are ubiquitous, even for a
fixed field K. We will use the following fact to prove density of Teichmiiller
curves.

Proposition 7.1 Let J = (PI (I)) be the standard symplectic form on Q*,
and let X be a real quadratic number. Let Ey C C* be the union of the \—
eigenspaces of all self-adjoint operators R € My(Q). Then E) is dense in
C4.

(Self-adjoint means JR = R'.J.)

Proof. The matrix R = (‘3 2) is self-adjoint for any A € GL2(Q). It
is easy to choose A so that the eigenvalues of R are A and A\~'. Then
S = Ker(R — M) is a 2-dimensional symplectic subspace of R*. Now recall
that Sp,(Q) is dense in Sp,(R), and the latter group acts transitively on the
set of 2-dimensional symplectic subspaces. Thus given any z € C*, we can
perturb it slightly so that Re(z),Im(z) € ¢S for some g € Sp,(Q). But ¢S
is the A-eigenspace for gRg~! € My(Q), so z € E\. Therefore E) is dense

in C*. [ |

Note that the density of Sp,(Q) in Sp,(R) is a special case of weak approx-
imation for algebraic groups.

The quotient torus of a 1-form. Next we relate 1-forms and Abelian
varieties. Let us say a subspace S C H'(X) is compatible with the Hodge
structure if

§ =505
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where % = SN H%(X).
Any form (X,w) € QM determines a canonical quotient torus

p:Jac(X) — Ay,
characterized by the property that, under pullback on cohomology,
HY(A,) c HY(X)

is the smallest subspace containing |w]|, defined over Q and compatible with
the Hodge structure on H'(X); and

HY(A,,7) = H' (A,) N H'(X, 7).
In particular, we have w € Q(A4,) C Q(X). The torus A, inherits a polar-

ization from Jac(X) making it into an Abelian variety.

The dihedral case. Now suppose a = (a1, az, as,as) and (m,n) are related
by (1.2) as usual, and that dimQD,, ,, = 4. Then QG, = QD,, , and QG,
is locally linear in period coordinates (§5).

Let ¢(m) denote the Euler ¢—function and recall that 7, = (m + G0t

Proposition 7.2 For any (X,w) € QG,, we have dim(A,) < ¢(m).

Proof. Since dim(A,) achieves its maximum at a very generic point, it
suffices to prove this when (X,w) € QD,, . In this case we have an algebraic
correspondence T C X x X such that [w] € Sy = Ker(T* — 7,,1) € H'(X).
Let S € HY(X) be the smallest subspace defined over Q and containing
So. Since deg(7,/Q) = ¢(m)/2 and dim(Sy) < 4 by Theorem 3.1, we
have dim(S) < 2¢(m). Since T is compatible with the Hodge structure on
HY(X), so is S. Therefore H'(A,) C S, which implies that dim(A,) =
(1/2) dim H'(Ay) < ¢(m) as desired. |

Dihedral eigenforms. For the remainder of this section, let us also assume
that m = 3,4 or 6. Then ¢(m) =2, 7, = 0,1 or —1, and we have

dimA, <2

for all (X,w) € QG,, by the result above.
For each non-square discriminant D > 0, let

0Gap = (X,w) € QG : dim(A,) = 2 and w is an eigenform .
for real multiplication by Op on A,
The projection of QG, p to M, will be denoted by G, p.
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Proposition 7.3 The locus G, p is a closed algebraic subvariety of QMy,
and each of its components has dimension at least two.

Proof. Let QG!, denote the smooth points of QG,. By Theorem 5.1, QG,
locally has the form |Jj D(X;,w;,T;) in period coordinates, so at a non-
smooth point [w] belongs the intersection of two 4-dimensional subspaces,
and hence dim(A,) = 1. Thus QG, p is a subset of QG and at these points
s = 1. Moreover T} : H'(X) — H'(X) is represented by an endomorphism
T € Jac(X), and

HY(A,) = Ker(T* — 7,,]) ¢ H(X),

provided dim(A,) = 2. Now recall that every eigenvalue of T™* is an integer
between —2 and 2. Thus, if we define

(X, w) = Jac(X) / Ker [ @ -k,

|k|<2, k£Tm
we obtain an analytic map
a: QG — QA

such that a(X,w) = (Aw,w) whenever dim(A,) = 2. Here Ay is the moduli
space of two—dimensional Abelian varieties with the same polarization as
A, for a generic form in QG,.

Using the algebraic parameterization of the space of dihedral triples given
by Theorem 4.3, it is easy to see that « agrees with an algebraic function on
the Zariski open set QD,, , NQG,,. Hence « itself is algebraic. On the other
hand, QG p is simply the preimage under « of the locus of eigenforms for
real multiplication by Op. The latter is an algebraic variety of codimension
two in Ay that can be described in terms of Hilbert modular surfaces (cf.
[vG, Ch. 9]). Thus QG p is also algebraic variety, and each of its irreducible
components has dimension > 2 since dim QG, = 4. To see that QG p is
closed in QM use the fact that the ring of endomorphisms Op C End(A,)
is determined uniquely by the associated eigenform (A, w). |

Theorem 7.4 The locus QG p is a finite union of closed GL3 (R) orbits.

Proof. Let Op = Z[A] C R. Given (X,w) € QG4 p we can find, by the
definitions and the discussion above, an operator T on H'(X, Z(w)) and an
R € End(A,) such that

T*w] = Tp[w] and R'w = Aw.
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These conditions give a 2-dimensional space S(X,w) C HY(X, Z(w)), de-
fined over Q()), containing [w]. Since dim G, p > 2 by Proposition 7.3,
Theorem 2.4 implies that Q0G, p is two-dimensional and locally defined
by real linear equations in period coordinates. Hence QG, p is GLj (R)-
invariant (cf. [MMW, §5])). Each orbit gives an irreducible component of
QG p, so their total number is finite. [ |

Corollary 7.5 The variety Go.p is a finite union of Teichmailler curves.

Corollary 7.6 The stabilizer SL(X,w) of any form in QG p is a lattice in
SLa(R).

Proposition 7.7 Figenforms for real multiplication are dense in QG,. In
fact for each real quadratic field K, the countable union of SLa(R)-orbits

zk = U 9Cup
D:Q(VD)=K

is dense in QG,.

Proof. It suffices to prove that the closure of Zx contains those forms
(X,w) € Dy, C NG,

with dim H'(A,) = 4, since such forms are dense in QG,.

Let (X,w,T) be a dihedral triple associated to such a form. Then the
natural projection from relative to absolute cohomology gives an isomor-
phism

D(X,w,T)= H'(A,) c HY(X) (7.1)
by Theorem 3.1, and QD,, , meets the space at the left in an open neigh-
borhood of [w] in period coordinates.

Let K = Q(\), and note that the symplectic space H'(A4,Q) is iso-
morphic to (Q*,J). By Proposition 7.1, there exists a self-adjoint endo-
morphism R of H!(A,Q), and a cohomology class [n] near [w], such that
R([n]) = A[n]. Using the isomorphism (7.1), we can lift this class to a 1-
form (W, n) near (X,w) in QD,, ,,. Clearly R preserves the Hodge structure
on

S=C-[n® C-[n c H'(A) = H'(A,).
But R acts by the scalar X on S+ = 5, so it preserves the Hodge structure
on H'(A,). Hence R makes 7 into an eigenform for real multiplication by
K on A,. Since (W,7n) can be chosen arbitrarily close to (X,w), density
follows. |
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Corollary 7.8 The Teichmiiller curves Go p are dense in Gy.

Proposition 7.9 Fora=(1,1,1,9) or(1,1,2,8), every component of G4 p
1s a primitive Teichmiiller curve.

(In these cases m = 6.)

Proof. Recall that a generic form in QG, is primitive by Theorem 1.1.
Thus an imprimitive form must satisfy an additional rational condition in
relative period coordinates. But the only subspace of H'(A) defined over
Q and containing the class of an eigenform for real multiplication is H*'(A)
itself. |

Proof of Theorem 1.4. Combine Corollary 7.8 and Proposition 7.9. 1

Remark. When a = (1,2,2,3), the locus G, p coincides with the Weier-
strass curve Wp C My defined in [Mcl]. For a = (1,1,1,5) and a =
(1,2,2,7), we recover the Teichmiiller curves in M3 and M, constructed
using Prym varieties in [Mc3].

8 Billiards

In this section we prove Theorem 1.5 on optimal billiards. That is, we will
show that suitable (a,b), the quadrilaterals shown in Figure 2 give cyclic
forms that generate Teichmiiller curves.

Figure 3. An unfolded quadrilateral of type (1,1,1,9).
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Unfolding. For concreteness let us treat the case of quadrilaterals of type
(1,1,1,9). Let ¥4 be an oriented topological surface of genus 4. We begin
by defining, for each (s,t) in a suitable open set U C C2, a holomorphic
1-form

@(S,t) = (X,w) € 071119,

and a linear map

¢:C* — HY(Xy),
defined over Q((3), such that the cohomology class of w is given by

[w] = ¢(s,t) € H'(X) = H' (%) (8.1)

with respect to a compatible marking of X by X,.

The form ¢(s,t) = (X,w) will be constructed geometrically. First, con-
sider the case where we have a pair of real numbers a,b > 0 such that
(s,t) = (Gza,(5'b). Construct the triangle in the complex plane with ver-
tices (0, t, s), and attach the three equilateral triangles to its sides, by adding
new vertices at —a, —ib and u. The result is a 6-sided polygon P(s,t) C C
(see Figure 3). Now note that the form dz% on C is invariant under z — (g2.
Thus, by gluing together the free edges of each equilateral triangle using
a rotation by 60°, we obtain a copy of the projective line equipped with a
meromorphic section £ of KIgl:

(P',€) = (P(s,1),d2°%)/ ~ .

There is then a natural Z/6 branched covering space m : X — P!, itself
equipped with a holomorphic 1-form w € Q(X), such that 7*(¢) = wb, and
we let

D(s,t) = (X,w).

It is easy to see that the quadrilateral with vertices (—a, 0, —ib, u) is the
same as the quadrilateral @ = Qi119(a,b) in Figure 2, and the quotient
P(s,t)/ ~ is its double. Thus (X,w) is simply the 1-form that results by
unfolding @. In particular, we have (X,w) € QZ1119.

Complexified quadrilaterals. Next observe that the construction of
(X,w) makes sense whenever the polygon P(s,t) is embedded in C. More-
over, the relative periods of w are complex linear functions of (s,¢). Thus
we can find a small open neighborhood U of (3R X Cl_QlR—i— C C? such that
® extends to a holomorphic map

d:U — Qlelg.
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Using the triangles shown in Figure 3, we obtain compatible triangu-
lations of the corresponding surfaces X as (s,t) varies in U. The bundle
of such surfaces over U is thus topologically trivial, and hence we can con-
sistently mark these surfaces by 4. Since 0, s and ¢ are identified under
gluing, the numbers (s,t) € C? are simply two of relative periods given by
Jow for suitable C' € Hy(X, Z(w);Z). As can be seen from Figure 3, linear
combinations of s and ¢ over Q((3) determine all the absolute periods of
w. Hence the map ¢ : U — H'(X4) defined by equation (8.1) extends to a
linear map on C2, defined over Q((3).

The area form. Recall that H'(X,) carries a natural Hermitian inner
product of signature (4,4), defined at the level of closed 1-forms by

<a,5>—;/2 alp.

It is straightforward to compute the pullback of this form to C? by ¢. By
linearity, it suffices to compute the corresponding quadratic form on the
image of U.

Proposition 8.1 Suppose (X,w) = ®(s,t). Then we have

/XMQ—;(s t>M<j>
=% ) (0)

Proof. This is a straightforward calculation. The area of an equilateral
triangle with unit sides is v/3/4, and the area of the triangle with vertices
(0,s,t) is Im(st)/2. Therefore

where

area(P(s,t)) =

st — st 3
¥

T (Isf* + [¢17 +[s = #*)

and we have [ |w|? = 6area P(s,t) since m : X — P! has degree 6. [ |
Eigenforms. Now let K = Q(v/d) be a real quadratic field, and let L =

K(¢3). The group Gal(L/Q) is isomorphic to (Z/2)?, with generators z — %
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and z — 2/, the latter chosen so that ((3)’ = (3. Since ¢ is defined over
Q(¢3), it restricts to a map

¢:L* — H (S, L)

compatible with the action of Gal(L/Q((3)). Let [@/] denote the Galois
conjugate of a class [a] € H'(X, L), and similarly for [&/].

Proposition 8.2 Suppose (X,w) = ®(s,t), and [ wAW = 0. Then (X,w)
generates a primitive Teichmiller curve in My, and its stabilizer SL(X,w)
is a lattice in SLa(R).

A similar result appears in [Mc2, Cor. 9.10].

Proof. Let S be the span of w and @ in H'(X), and let S’ be its Galois
conjugate, spanned by w’ and @. We claim S’ ¢ S*. Indeed, (w,w’) = 0
by assumption, and (w,w’) = 0 since these forms lie in different eigenspaces
of 7 € Aut(X). Since S @ S’ is the smallest subspace of H'(X) containing
[w] and invariant under Gal(L/Q), in the notation of §7 we have S @ S’ =
H1(A,) and hence dim(4,) = 2. Let R be the unique self-adjoint operator
on H'(A,) acting by scalar multiplication by 4+v/d on S and —v/d on S'.
Then R is defined over Q and respects the Hodge structure on H'(A,), so
it determines an inclusion

K C End(A,).

This shows that (X,w) € QG, p for some order Op C K; thus (X,w)
generates a primitive Teichmiiller curve by Proposition 7.9, and hence its
stabilizer is a lattice in SLa(R). [ |

Corollary 8.3 If, in addition, a = (515 and b = (12t are both positive, then
billiards in Q1119(a,b) has optimal dynamics.

Proof. This is a well-known consequence of the fact that SL(X, w) is lattice;
see e.g. [V2, Prop. 2.11], [MT, Thm. 5.10] and [D]. [ |

Proof of Theorem 1.5. Let (a,b) = (1,v/3y) where y > 0 is a quadratic
irrational satisfying y? + (3¢ + 1)y +c¢ = 0 for some ¢ € Q. Let L = Q((3,¥).
Then the unfolding of the quadrilateral Q1119(a,b) is given by the form
(X,w) = ¢(s,t), where

(s.t) = ((3, V3R y) = (G, 2+ G 1) y) € L2,
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We then compute, using the bilinear form from Proposition 8.1, that

; t
;/ wAW = (5 t) M (g’ E’) = 3\/5(1+y+y'+3yy').

X
Since yy' = ¢ and y +y' = —(3¢+ 1), this gives [, w AW = 0, and the proof
is completed by Proposition 8.2.

The corresponding result for Q11258(a,b) follows from a similar calcula-
tion, with (s,t) = ((za, (1 + (5 1)b) and

wealt )
-1 4/3 i 0

Remarks.

1. The forms (X,w) that generate Teichmiiller curves by Proposition 8.2
are actually eigenforms for complex multiplication by L on A,.

2. In fact, eigenforms for complex multiplication are dense in 27, when
a=(1,1,1,9) or (1,1,2,8). To see this, note that if (w,w’) = 0, and
k= fw A @, then

(w+ sw' 0+ s'w)y =0

for all s € L satisfying sk’ +35k = 0. The set of such s includes k& itself,
and is invariant under multiplication by Q(v/—3d), so it is dense in C.
To complete the proof, use the irreducibility of 27, and its linearity
in period coordinates (§2).

3. The fact that det(M) > 0 can be used to show that for all (X,w) €
QZ1119, we have an isogeny Jac(X) — J(X) x A where dim A = 2,
A is independent of X, and w € Q(A). See the case (n,d) = (3,6) of
[Mc4, Thm 8.3].

4. Let Q1218(a,b) denote the variant of Q1198(a,b) where the sharpest
angles are opposite one another. As before, a and b are the lengths
of the edges incident to the obtuse vertex of . Then Q1215(1,y) is a
lattice polygon whenever y > 0 is an irrational satisfying y? + (2¢ +
2)y+c = 0 for some ¢ € Q. The calculation is very similar to the 1128
case.
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5. Hooper’s optimal triangle T' [Ho], of type (1,4,7), is closely related to
the quadrilaterals of type a = (1,2,2,7), which arise in our discussion
when (m,n) = (6,5). Indeed, a symmetric quadrilateral of type a can
be cut along its diagonal to yield two copies of T'. These quadrilaterals
do not appear in our Table 1 because the locus QG is not primitive;
in fact it is a Prym stratum in QM4(6). The primitive Teichmiiller
curves associated to this Prym stratum, including the one generated
by T, were first described in [Mc3].

6. There are infinitely many quadrilaterals of type (1,2,2,3) (with the
angles in any cyclic order) that generate primitive Teichmiiller curves
V C M. These cyclic forms give rise to orbifold points of order 2 on
V; they are classified in [Mu].

Similarly, the optimal quadrilaterals of types (1,1,1,9) and (1,1,2,8)
give rise to orbifold points of order 3 on the associated Teichmiiller
curves V C Mgy.

On the other hand, many Teichmiiller curves (such as the Weierstrass
curves of the form Wyp C My) have no orbifold points [Mu], so they
cannot be generated by cyclic forms.

A Triangles revisited

The Veech and Ward triangles, discovered in [V2] and [Wa], give two infinite
series of triangles that generate Teichmiiller curves.

In this section we show that these series of triangles fit into the same
pattern as the exceptional quadrilaterals discussed in the body of this paper.
That is, they arise naturally when one considers dihedral covers of P! of type
(m,n,p) with p = 4 instead of p = 6.

To make this connection precise, we will use the results of §3 to sketch
a new proof of:

Theorem A.1 (Veech, Ward) Leta = (1,1,q) or(1,2,2q—1) withq > 1.

Then the cyclic forms of this type generate a closed, 2—dimensional SLa(R)—
mvariant subvariety

OG, = SLy(R) - QZ, C OM,,

and the projection of QG, to My is a Teichmiiller curve.
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As a corollary, the billiards in a triangle of type (1,1,q) or (1,2,q) has
optimal dynamics.

Along the way we will obtain the first explicit algebraic formula, equa-
tion (A.6), for the Teichmiiller curves generated by Ward triangles. The
connection between dihedral groups and the Veech and Ward examples is
also discussed, from a different point of view, in [Loch] and [BM]. A related
construction, using the action of Ds,, on an elliptic curve instead of on @,
appears in [Me].

Forms with zeros at infinity. To begin, we note that if Z is a compact
Riemann surface defined by a polynomial equation of the form

P(x) = Q(y),

then the poles of z and y occur on the same set Z* C Z. Moreover, if P
and () have distinct critical values in C, then the divisor of the 1-form

dy dx
w = = A.l
P~ QW) —
is a multiple of Z*. If the critical values are not distinct, but the zeros of
P'(z) and Q'(z) are simple, then a form with (w) = v - Z* is given by

_ R(z)dy
Plx)

(A.2)

where zeros of R(z) coincide with the critical points of P(z) that map to
critical values of Q(y).

The case p = 2. We now turn to dihedral covers. Let

C(z):;<z+i),

so that C(e®) = cosf. Recall that the Chebyshev polynomial Ty,(y) is
uniquely determined by the condition that

Tn(C(2)) = C(z™).

The simplest dihedral cover comes from the action of Ds,, on Y = P!,
given by
r(z) =(mz and f(z) =1/z. (A.3)

In this case X = Y/f and Y/Dsy,, have genus zero, and the quotient maps
£:Y - X and 7: Y — Y/Da,y,, in suitable coordinates, are given simply
by £(z) = C(z) and 7(z) = C(2™). Since we also have

m(2) = Tn(C(2)) = Tm(£(2)),
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the induced dihedral map on X is given by
T : X 2P — PL

This cover has type (m,n,p) = (m,1,2); it is branched over the three points
(b1,b2,b3) = (—1,1, 00) with monodromy [rf], [f] and [r] respectively. Since
there is an essentially unique action of Dy, on P!, the Chebyshev polynomial
gives the unique dihedral cover of type (m,1,2). (However there are no
dihedral forms when p = 2, since g(X) = 0.)

The case p = 4. The Veech and Ward example arise from dihedral covers
with p = 4. These covers are obtained by pulling back the canonical dihedral
cover with p = 2 under a suitable polynomial map P : P! — P!,

The Veech examples. Let us begin with the Veech examples, which are
associated to triangles of type (1,1, m — 2). Given m > 3, let

V={teC : t{t* —1)#0}.
Consider the family of Riemann surfaces X; and Y;, defined for t € V' by

22 -1 = t™I,(ty) and (A.4)
2 —1 = t7T",(C(2) =t7™C(z™) (A.5)

respectively. Then Dy, acts on Y; via (A.3), and the quotient map & :
Y; — X, is given by y = t!C(z). The induced degree m map m; : Xy —
P! = Y;/Da,, is given by m(z,y) = z. It is easily verified that X; has genus
g=|(m—1)/2|. Let

dy

Wt = ? S Q(Xt)

Proposition A.2 We have (X¢,wt) € QDy, 04 for allt € V.

Proof. The equation for X; has the form P(x) = Q;(y), where P(x) = 22—1
and

Qi(y) = ™" T (ty)

is a monic polynomial of degree m in y. The critical values of P and Q; are
{—1} and {£t7™} respectively, so P and @ have no common critical values
for t € V. Thus (w;) = v - X/, since it is an instance of equation (A.1).
Note that the equation z = Q;(y) presents IF’%/ as a dihedral cover of P}
of type (m,1,2). Thus for t € V, P(x) = Q(y) defines a dihedral cover
7 X; — PL of type (m,2,4). Indeed, its five branch points are given by
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{b1,by} = P~1(t~™), with monodromy [f]; by {b3,bs} = P~1(—t~™), with
monodromy [rf]; and by bs = oo, with monodromy [r?] (since deg(P) = 2).
To check that w; is an eigenform for T = r + 71 acting on Jac(Y'), we
observe that the change of variables y = t "1C/(z) gives
dz
=+ -
wi S(2)
where S(z) = (2 — 271)/2. Hence the identity S(az) + S(a"'z2) = (a +
a~1)S(z) implies that T*w; = (¢ + ) )wi [ |

Proof of Theorem A.1, Veech case. Observe that equation (A.4) defines
X as a hyperelliptic curve. Since the cross—ratios of the zeros of Q; (together
with co when m is odd) vary with ¢, the image QV of the map

C'xV—= QDm,274

given by (s,t) — (X¢, swe) is two-dimensional. By Theorem 3.3, QV is linear
in period coordinates, and hence its closure is SLo(R)-invariant.

Now observe that as ¢ — oo, the polynomial Q:(y) converges to y™.
Hence (X, w;) converges to the form ws = dx/y on the curve X, defined
by y™ = P(z) = 2?> — 1 = (x — 1)(x + 1). Since the zeros of P are simple,
(X oo, Woo) is a cyclic form of type a = (1,1, m—2), and such a form is unique
up to a scalar multiple. |

The Ward examples. We now turn to the Ward examples, which are
associated to triangles of type (1,2, m — 3) with m even.

Given an even integer m > 4, consider the family of Riemann surfaces
X, defined by

23— 22 = t7™(Thu(ty) + 1), (A.6)

and let m; : X; — P! be given by m(x,y) = x. Equation (A.6) has the form
P(z) = Qi(y), where the critical values of P and @ are {0,—4/27} and
{0,2t7™} respectively. Let V' C C* denote the set of ¢ such that 2t~ #
—4/27, so that z = 0 is the only common critical value of P and @);. Then
for all t € V, X; has genus g = m/2, and the form

_ xdy
- P'(2)

Wt

satisfies (w;) = v+ X}, as it is an instance of equation (A.2).

Proposition A.3 We have (X¢,wt) € QD34 for allt € V.
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Proof. The map 7 : X — P! is the pullback of the dihedral map = =
Q¢(y), which has critical values (0,2t""™,00). Thus m; has branch points
with monodromy [f] at the three points {b1, by, b3} = P~1(2¢t=™). There is
also potential branching at the points {bs,t}} = {1,0} = P~1(0). Indeed,
there is branching with monodromy [rf] at the simple zero by = 1 of P(z),
but there is no branching at the double zero b, = 0, since [rf] has order 2.
Finally the monodromy about bs = oo is [r?], since deg(P) = 3. Thus
is a dihedral map of type (m,n,p) = (m,3,4), and the form w; is dihedral
because its divisor is a multiple of X} and (r 4+ 1/r)*w = 7w (by the same
reasoning as in the Veech case). |

Proof of Theorem A.1, Ward case. When the nonzero critical values
of P(x) and Q¢(y) collide, the curve X; acquires a node and thus X; — oo
in M. It follows that the map V' — M, given by ¢ — X; is non-constant,
so its image is one dimensional. Consequently, the subvariety V' of QD,, 3 4
arising from forms of the type (X¢, swy), (s,t) € C* x V is irreducible and 2
dimensional. By Theorem 3.3, V is linear in period coordinates, and hence
its closure is SLa(R)-invariant.

As in the Veech examples, the polynomial Q¢(y) converges to y™ as
t — oo. Hence (X;,w;) converges to the form ws = xdy/P’'(z) on the
curve Xo, defined by y™ = P(z) = x?(x — 1). This is a cyclic of type
a = (1,2, m — 3); indeed, if we make the change of variables u = z(z — 1) /v,
then we have

"t = $m72($ . 1)m71’

and
o — xdy  rdr wxydr  dr
O P(x) mym™! ma(z—1) m-u

There is a unique cyclic form of this type, up to scale, and the theorem
follows. n

Remark: the case p > 6. Most dihedral covers with p > 6 are not directly
related to the dihedral action of Dy, on P!. For example, the dihedral cover
7:Y — P! with p = 6 defined by equation (4.7) is a pullback of the cover
x = C(y™) if and only if the polynomial ¢(x) is a square.

B Pentagons

In this section turn from quadrilaterals to pentagons and prove Theorem 1.6.
Namely, we show that the cyclic forms of type a = (1,1,2,2,12) generate
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a primitive, SLy(R)—invariant variety QG, C QMy of dimension 6. The
corresponding dihedral forms have type (m,n,p) = (6,6,8) by equation
(3.12).

A typical pentagon of type a is shown in Figure 4. Note that the
‘boundary’ makes a complete turn at its internal vertex, where the angle
is 127/6 = 2m. When the length of the internal edge shrinks to zero, this
pentagon degenerates to a quadrilateral of type (1, 1,2, 8); this type already
appears in Table 1.

Figure 4. A pentagon of type (1,1,2,2,12).

The main step in the proof of Theorem 1.6 is to extend the results of §4
to show:

Theorem B.1 For (m,n,p) = (6,6,8), the locus QDp, n, C QM4 (1°) is
an irreducible, unirational variety of dimension 6. Its closure contains the
variety 7, where a = (1,1,2,2,12).

Assuming this for now, we can deduce:

Corollary B.2 The closure of the dihedral locus is generated by pentagons:
we have

ODpnp = SLa(R) - 12, = QG
when a = (1,1,2,2,12) and (m,n,p) = (6,6,8).

Proof. The proof follows the same lines as the proof of Theorem 5.4 in §5,
using the fact that

dim D(X,w,T) = dim QDy, 5, = 2dim QZ,

by Theorem 3.3, the result above, and Theorem 2.2. The first equality
implies that QD,, 5, p is SLa(R)—-invariant, so it contains 2G,, and the second
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implies that it equals QG,: since the latter is locally defined by real linear
equations in period coordinates [EMM], its dimension is at least twice that
of QZ,. |

Proof of Theorem 1.6. The locus QG, C QM is SLa(R)—invariant by
construction, it is 6-dimensional by the two results above, and it is primitive
because its closure contains the cyclic forms of type (1,1, 2, 8); a generic form
of this type was shown to be primitive in the proof of Theorem 5.4. |

Sketch of the proof of Theorem B.1. The proof of this result follows
closely the quadrilateral case N = 4, which was treated in §4. We simply
extend the argument to cover the case N = 5 and (m,n,p) = (6,6,8).
(Recall p = 2N —2.)

In fact, most of the argument goes through for general N > 3. The
main modification needed in the definitions concerns the space of pairs of
polynomials Py, ,,,: the condition deg(didz) = 6 in equation (4.5) need to
be replaced by

deg(dida) = 2¢(C) + 2 = p,

and similarly for deg(D) in equation (4.3). The proofs of Theorem 4.2,
Proposition 4.15 and Theorem 4.4 can then be adapted to show we have
0Z, C @m,n, that QD,,,, is unirational, and that
. p—2

dim Vi, pp = 5 + [2n/m]. (B.1)
Here Vipnp C Mopi1 is the space of configurations B C P! that arise as
the critical values of a dihedral covers 7 : X — P! of type (m,n, p).

It remains to show that, for m < 2¢(X) — 2, we have:

dim QDynp = g + [2n/m)]. (B.2)
We will show this equation holds under the assumption that
N =¢e(m,n) + 4. (B.3)

(Recall e(m,n) =1 if m|n and 0 otherwise.) First note that condition (B.3)
implies, by Theorem 3.3, that any dihedral triple (X,w,T) of type (m,n,p)
satisfies

dim Ker((T™" — 7,,)|Q( X)) = 2.
It follows that the associated dihedral map 7 : X — P! is given by m(z) =
W'(x)/w(zx), where (w,w’) form a basis for Ker(T* — 7,,) (see the proof of
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Proposition 4.19). This implies that a given form (X,w) € QDy, p is as-
sociated to at most finitely many B € V,, , ,. Taking into account the fact
that scaling w does not change B, we obtain equation (B.2).

Since the condition (B.3) holds for (m,n,p) = (6, 6), equation (B.2) gives

dim QD6,6,8 = 6. |
Remarks.
1. The pentagon variety (0G, is defined over QQ since m = 6, and it

has rank two by Theorem 3.3. Thus the construction in §7 applies,
to yield a dense set of 4-dimensional, SLo(R)-invariant subvarieties
QGa’ D C QGa.

The intersection of the pentagon variety with the stratum QM (12, 22)
yields a new invariant variety of rank two and dimension five. To see
this variety is nonempty, observe that the dihedral map 7 : X — P!
associated to a point in D¢ s is unbranched over b,,; = bg. By
holding (by,...,bs) fixed and letting by collide with one of the other
points, one can make the zeros of w collide as well.

The proof of Theorem B.1 also shows that the locus 2D, g8 C QM;3(15)
has dimension six. In this case, however, the space of dihedral forms
is already known: it is obtained from QM 4(—1%,22) via a covering
construction.

. The six-dimensional locus 2Dg¢ s, on the other hand, is a proper

subvariety of seven—dimensional locus arising from double covers of
differentials in QMa2(—12%,23), so it does not come from a stratum of
one forms or quadratic differentials.

We expect that equation (B.2) holds for most values of (m,n,p) with
m < [x(X)].
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