DEEPBINDIFF: Learning Program-Wide Code
Representations for Binary Diffing

Yue Duan*, Xuezixiang Lif, Jinghan Wang’, and Heng Yin'

*Cornell University fUC Riverside

yd375@cornell.edu, {x1i287, jwang131}@ucr.edu, heng@cs.ucr.edu

Abstract—Binary diffing analysis quantitatively measures the
differences between two given binaries and produces fine-grained
basic block level matching. It has been widely used to enable
different kinds of critical security analysis. However, all existing
program analysis and machine learning based techniques suffer
from low accuracy, poor scalability, coarse granularity, or require
extensive labeled training data to function. In this paper, we pro-
pose an unsupervised program-wide code representation learning
technique to solve the problem. We rely on both the code semantic
information and the program-wide control flow information to
generate basic block embeddings. Furthermore, we propose a k-
hop greedy matching algorithm to find the optimal diffing results
using the generated block embeddings. We implement a prototype
called DEEPBINDIFF and evaluate its effectiveness and efficiency
with a large number of binaries. The results show that our tool
outperforms the state-of-the-art binary diffing tools by a large
margin for both cross-version and cross-optimization-level diffing.
A case study for OpenSSL using real-world vulnerabilities further
demonstrates the usefulness of our system.

I. INTRODUCTION

Binary Code Differential Analysis, a.k.a, binary diffing,
is a fundamental analysis capability, which aims to quanti-
tatively measure the similarity between two given binaries and
produce the fine-grained basic block level matching. Given
two input binaries, it precisely characterizes the program-
wide differences by generating the optimal matching among
basic blocks with quantitative similarity scores. It not only
presents precise, fine-grained and quantitative results about the
differences at a whole binary scale but also explicitly reveals
how code evolves across different versions or optimization
levels. Because of the precision and fine-granularity, it has
enabled many critical security usages in various scenarios
when program-wide analysis is required, such as changed
parts locating [[L], malware analysis [28], [45], security patch
analysis [S3], [38]], binary wide plagiarism detection [40] and
patch-based exploit generation [I1]. As a result, binary diffing

*This work was conducted while Yue Duan was a PhD student at UC
Riverside, advised by Prof. Heng Yin.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24311
www.ndss-symposium.org

has been an active research focus. In general, existing works
can be put into two categories.

Traditional Approaches. BinDiff [10], which is the de facto
commercial binary diffing tool, performs many-to-many graph
isomorphism detection [35] on callgraph and control-flow
graph (CFG), and leverages heuristics (e.g., function name,
graph edge MD index) to match functions and basic blocks.
Other static analysis based techniques perform matching on
the generated control and data flow graphs [25], [30], [49],
[27] or decompose the graphs into fragments [20], [L7], [L18],
[40] for similarity detection. Most of these approaches consider
only the syntax of instructions rather than the semantics, which
can be critical during analysis, especially when dealing with
different compiler optimization techniques. Moreover, graph
matching algorithms such as Hungarian algorithm [35] are
expensive and cannot guarantee optimal matching.

Another line of research utilizes dynamic analysis. These
techniques carry out the analysis by directly executing the
given code [26], [53], performing dynamic slicing [44] or
tainting [43l] on the given binaries, and checking the semantic
level equivalence based on the information collected during
the execution. In general, these techniques excel at extract-
ing semantics of the code and have good resilience against
compiler optimizations and code obfuscation but usually suffer
from poor scalability and incomplete code coverage, due to the
nature of the dynamic analysis.

Learning-based Approaches. Recent works have leveraged
the advance of machine learning to tackle the binary diff-
ing problem. Various techniques [29]], [54]], [58]], [23]] have
been proposed to leverage graph representation learning tech-
niques [[16], [42]], [37] and incorporate code information into
embeddings (i.e., high dimensional numerical vectors). Then
they use these embeddings for similarity detection. Inner-
Eye [58] and Asm2Vec [23] further rely on NLP techniques
to automatically extract semantic information and generate
embeddings for diffing. These approaches embrace two major
advantages over the traditional static and dynamic approaches:
1) higher accuracy as they incorporate unique features of
the code into the analysis by using either manual engineered
features [29], [54]] or deep learning based automatic meth-
ods [23]], [58]]; 2) better scalability since they avoid heavy
graph matching algorithm or dynamic execution. What’s more,
the learning process can be significantly accelerated by GPUs.

Limitations. Despite the advantages, we identify three major
limitations of the existing learning-based approaches.

First, no existing learning-based technique can perform
efficient program-wide binary diffing at a fine-grained basic
block level. Most of the current techniques conduct diffing at
a granularity of functions [29], [54], [36], [23], [39]. Inner-
Eye [58]] is the only learning-based technique that achieves
basic block level granularity. Nevertheless, it is not scalable
enough for program-wide binary diffing due to its design.
Each calculation of basic block similarity has to go through a
complex neural network (with a total of 3,700,440 parameters
in the current implementation), which significantly affects the
performance. To evaluate the scalability, we use pre-trained
models from the authors [7] and measure the performance. The
results show that it takes an average of 0.6ms for InnerEye to
process one pair of blocks. Note that a binary diffing could
easily involve millions of basic block distance calculations.
Therefore, it takes hours for InnerEye to finish diffing between
two small binaries unless a powerful GPU is used. As afore-
mentioned, fine-grained binary diffing is an essential analysis,
upon which many critical security analyses can be built. Hence,
a fine-grained and efficient diffing tool is strongly desired.

Second, none of the learning-based techniques considers
both program-wide dependency information and basic block
semantic information during analysis. The program-wide de-
pendency information, which can be extracted from the inter-
procedural control flow graph (ICFG), provides the contextual
information of a basic block. It is particularly useful in
binary diffing as one binary could contain multiple very sim-
ilar functions, and the program-wide contextual information
can be vital to differentiate these functions as well as the
blocks within them. Basic block semantic information, on
the other hand, characterizes the uniqueness of each basic
block. InnerEye [S8]] extracts basic block semantic information
with NLP techniques [42] but only considers local control
dependency information within a small code component by
adopting the Longest Common Subsequence. Asm2Vec [23]]
generates random walks only within functions to learn token
and function embeddings.

Third, most of the existing learning-based techniques [55]],
[36], 58], [39] are built on top of supervised learning. Thus,
the performance is heavily dependent on the quality of training
data. To begin with, we argue that a large, representative
and balanced training dataset can be very hard to collect,
because of the extreme diversity of the binary programs.
Also, supervised learning could suffer from the overfitting
problem [22]. Moreover, state-of-the-art supervised learning
technique InnerEye [38] considers a whole instruction (opcode
+ operands) as a word, therefore, may lead to serious out-
of-vocabulary (OOV) problem. To show this, we follow the
same preprocessing step described in the paper and evaluate
the pre-trained model using the same dataset CoreUltils v8.29.
The results show that the pre-trained model could only achieve
an average of 78.37% instruction coverage for the binaries in
CoreUtils v8.29. In other words, 21.63% of the instruction
cannot be modeled, as compared to only 3.7% reported in the
paper. This is due to the fact that we use GCC compiler while
clang was used in the InnerEye paper. Nonetheless, it shows
that the InnerEye model could easily become much less useful
when facing even a small change in the test setting.

Our Approach. To this end, we propose an unsupervised
deep neural network based program-wide code representation
learning technique for binary diffing. In particular, our tech-
nique first learns basic block embeddings via unsupervised
deep learning. Each learned embedding represents a specific
basic block by carrying both the semantic information of the
basic block and the contextual information from the ICFG.
These embeddings are then used to efficiently and accurately
calculate the similarities among basic blocks.

To achieve this goal, we modify state-of-the-art NLP
technique Word2Vec [42] to extract semantic information for
tokens (opcode and operands), and further assemble basic
block level feature vectors. Hence, these feature vectors con-
tain the semantic information for blocks. Modeling opcode
and operand separately also eliminates the OOV problem.
Then, we model the basic block embedding generation as a
network representation learning problem and feed the feature
vectors into Text-associated DeepWalk algorithm (TADW) [56]
to generate basic block embeddings that contain program-wide
control flow contextual information. Consequently, these basic
block embeddings contain both the program-wide contextual
information and the semantics from the basic blocks. Finally,
we present a k-hop greedy matching algorithm to match basic
blocks to cope with compiler optimizations including function
inlining and basic block reordering.

We implement a prototype DEEPBINDIFF, and conduct
an extensive evaluation with representative datasets containing
113 C binaries and 10 C++ binaries. The evaluation shows
that our tool soundly outperforms state-of-the-art techniques
BinDiff and Asm2Vec, for both cross-version and cross-
optimization-level diffing. Furthermore, we conduct a case
study using real-world vulnerabilities in OpenSSL [9] and
show that our tool has unique advantages when analyzing
vulnerabilities.

Contributions. The contributions of this paper are as follows:

e We propose a novel unsupervised program-wide code
representation learning technique for binary diffing.
Our technique relies on both the code semantic in-
formation and the program-wide control-flow graph
contextual information to generate high quality basic
block embeddings. Then we propose a k-hop greedy
matching algorithm to obtain the optimal results.

e We implement a prototype DEEPBINDIFF. It first
extracts semantic information by leveraging NLP tech-
niques. Then, it performs TADW algorithm to generate
basic block embeddings that contain both the semantic
and the program-wide dependency information.

e An extensive evaluation shows that DEEPBINDIFF
could outperform state-of-the-art binary diffing tools
for both cross-version and cross-optimization-level
diffing. A case study further demonstrates the useful-
ness of DEEPBINDIFF with real-world vulnerabilities.

To facilitate further research, we have made the source code
and dataset publicly availableﬂ

Uhttps://github.com/deepbindiff/DeepBinDiff

https://github.com/deepbindiff/DeepBinDiff

II. PROBLEM STATEMENT
A. Problem Definition

Given two binary programs, binary diffing precisely mea-
sures the similarity and characterizes the differences between
the two binaries at a fine-grained basic block level. We
formally define binary diffing problem as follows:

Definition 1. Given two binary programs p; = (B, F1) and
p2 = (Ba, E5), binary diffing aims to find the optimal basic
block matching that maximizes the similarity between p; and
p2:
k
SIM (pl,p2) = sim(m;), where:

max
mi,ma,...,mi €M (p1,p2) P

e By ={by, by ..., by} and By = {b},b,,....b,,} are
two sets containing all the basic blocks in p; and ps;

e FEach element e in E C B x B corresponds to control
flow dependency between two basic blocks;

e Each element m; in M (p;,p2) represents a matching
pair between b; and bj;

e sim(m;) defines the quantitative similarity score be-
tween two matching basic blocks.

Therefore, the problem can be transformed into two sub-
tasks: 1) discover sim(m;) that quantitatively measures the
similarity between two basic blocks; 2) find the optimal
matching between two sets of basic blocks M (pl, p2).

B. Assumptions

We list the following assumptions on the given inputs:

e Only stripped binaries, no source or symbol informa-
tion is given. COTS binaries are often stripped and
malicious binaries do not carry symbols for obvious
reasons.

e Binaries are not packed, but can be transformed with
different compiler optimization techniques, which can
lead to distinctive binaries even with the same source
code input. For packed malware binaries, we assume
they are first unpacked before they are presented to
our tool.

e Two input binaries are for the same architecture. So
far DEEPBINDIFF supports x86 binaries since they
are the most prevalent in real world. DEEPBINDIFF
could be extended to handle cross-architecture diffing
via analysis on an Intermediate Representation (IR)
level. We leave it as future work.

III. APPROACH OVERVIEW

Figure delineates the system architecture of DEEP-
BINDIFF. Red squares represent generated intermediate data
during analysis. As shown, the system takes as input two
binaries and outputs the basic block level diffing results. The
system solves the two tasks mentioned in Section by
using two major techniques. First, to calculate sim(m;) that
quantitatively measures basic block similarity, DEEPBINDIFF

embraces an unsupervised learning approach to generate em-
beddings and utilizes them to efficiently calculate the similarity
scores between basic blocks. Second, our system uses a k-
hop greedy matching algorithm to generate the matching

M(plap2)~

The whole system consists of three major components: 1)
pre-processing; 2) embedding generation and 3) code diffing.
Pre-processing, which can be further divided into two sub-
components: CFG generation and feature vector generation, is
responsible for generating two pieces of information: inter-
procedural control-flow graphs (ICFGs) and feature vectors
for basic blocks. Once generated, the two results are sent to
embedding generation component that utilizes TADW tech-
nique [48] to learn the graph embeddings for each basic block.
DEEPBINDIFF then makes use of the generated basic block
embeddings and performs a k-hop greedy matching algorithm
for code diffing at basic block level.

IV. PRE-PROCESSING

Pre-processing analyzes binaries and produces inputs for
embedding generation. More specifically, it produces inter-
procedural CFGs for binaries and applies a token embedding
generation model to generate embeddings for each token
(opcode and operands). These generated token embeddings are
further transformed into basic block level feature vectors.

A. CFG Generation

By combining the call graph with the control-flow graphs
of each function, DEEPBINDIFF leverages IDA pro [3] to ex-
tract basic block information, and generates an inter-procedural
CFG (ICFG) that provides program-wide contextual informa-
tion. This information is particularly useful when differentiat-
ing semantically similar basic blocks in dissimilar contexts.

B. Feature Vector Generation

Besides the control dependency information carried by
ICFGs, DEEPBINDIFF also takes into account the semantic
information by generating feature vector for each basic block.
The whole process consists of two subtasks: token embedding
generation and feature vector generation. More specifically, we
first train a token embedding model derived from Word2Vec
algorithm [42], and then use this model to generate token
(opcode or operand) embeddings. And eventually we gener-
ate feature vectors for basic blocks from token embeddings.
Figure [2] shows the four major steps for the feature vector
generation process.

Random Walks. When distilling semantics of each token,
we would like to make use of the instructions around it as
its context. Therefore, we need to serialize ICFGs to extract
control flow dependency information. As depicted in Step 1
in Figure 2] we generate random walks in ICFGs so that each
walk contains one possible execution path of the binary. To
ensure the completeness of basic block coverage, we configure
the walking engine so that every basic block is guaranteed to
be contained by at least 2 random walks. Further, each random
walk is set to have a length of 5 basic blocks to carry enough
control flow information. Then, we put random walks together
to generate a complete instruction sequence for training.

Input Pre-processing

Embedding
Generation

Code Diffing Output

CFG generation —»

inter-procedural CFG

graph merging

L]

TADW
algorithm

initial matching

diffing results

0.071,-0.014,0.005, ...
token embedding

=
=

0.015,0.006, - 0.022, ... 0.053,0.16, 0.032, ...
0.12,0.44,-0.009, ...

model —1(0.052,-0.006,0.04, ...\ —(0.411,-0.2206, 0.4, ... ~1.8¢-06,0.092, 0.06, ..
0.15,0.13,-0.0043, ... 0.55,0.656,0.33, ...
token basic block
. feature vectors)
embeddings embeddings

A

k-hop greedy
matching

0.335,-0.93,0.1189, ...

0.055,0.004,-0.07, ...
0.07,-0.314, 0.305, ...

__________;____________

__________;____________

» | =

Fig. 1: Overview of DEEPBINDIFF.

Normalization. Before sending the instruction sequence to
train our Word2Vec model, the serialized codes may still
contain some differences due to various compilation choices.
To refine the code, DEEPBINDIFF adopts a normalization
process shown as Step 2 in Figure 2] Our system conducts
the normalization using the following rules : 1) all numeric
constant values are replaced with string ‘im’; 2) all general
registers are renamed according to their lengths; 3) pointers
are replaced with string ‘ptr’. Notice that we do not follow
InnerEye [58] where all the string literals are replaced with
<STR>, because the string literals can be useful to distinguish
different basic blocks.

Model Training. DEEPBINDIFF considers the generated ran-
dom walks as sentence for our modified version of Word2Vec
algorithm [42] and learns the token embeddings by training
a token embedding model to the normalized random walks.
Note that model training is only a one-time effort.

A word embedding is simply a vector, which is learned
from the given articles to capture the contextual semantic
meaning of the word. There exist multiple methods to generate
vector representations of words including the most popular
Continuous Bag-of-Words model (CBOW) and Skip-Gram
model proposed by Mikolov et al. [42]]. Here we utilize the
CBOW model which predicates target from its context.

Given a sequence of training words w1, wa, ..., W¢, the ob-
jective of the model is to maximize the average log probability
J(w) as shown in Equation

log p(wy4j|wy) (1)
—e<j<e

1z
J(w):fz

where c is the sliding window for context and p(w; j|w;)
is the softmax function defined as Equation [2]

exp(vITUt V)
Zwi eCy eXp(UZ:t Uwi)

p(wk S C’t|wt) = (2)

where v,, vy, and v, are the vector representations
of w;, wy and w;. To further improve the efficiency of the

computation, Word2Vec adopts the hierarchical softmax as a
computationally efficient approximation [42].

To train the token embedding generation model, we modify
the Word2Vec CBOW model which uses words around a target
word as context. In our case, we consider each token (opcode
or operand) as word, normalized random walks on top of
ICFGs to be sentences and instructions around each token as
its context. For example, step 3 in Figure [2] shows that the
current token is cmp (shown in red), so we use one instruction
before and another instruction after (shown in green) in the
random walk as the context. If the target instruction is at the
block boundary (e.g., first instruction in the block), then only
one adjacent instruction will be considered as its context.

Feature Vector Generation. Feature vectors for basic blocks
are then generated based on the token embeddings. Since
each basic block could contain multiple instructions and each
instruction in turn involves one opcode and potentially multiple
operands, we calculate the average of the operand embeddings,
concatenate with the opcode embedding to generate instruction
embedding, and further sum up the instructions within the
block to formulate the block feature vector.

Additionally, because of different compilers and optimiza-
tions, instructions may not be of equal importance in terms
of diffing. For instance, GCC v5.4 compiler uses 3 mov
instructions to set up a printf call under OO optimization but
uses only 1 mov instruction with O3 optimization. In this
case, mov instruction is less important than call instruction
during matching. To tackle this problem, DEEPBINDIFF adopts
a weighting strategy to adjust the weights of opcodes based
on the opcodes importance with TF-IDF model [50]. The
calculated weight indicates how important one instruction is
to the block that contains it in all the blocks within two input
binaries.

Particularly, for an instruction ¢n; containing an opcode p;
and a set of k (could be zero) operands Set;,, we model the
instruction embedding as the concatenation of two terms: 1)
opcode embedding embed,,, multiplies by its TF-IDF weight
weight,,; 2) the average of operand embeddings embedy, .
Therefore, for a block b = {ini,ins,..,in;} containing j
instructions, its feature vector F'V}, is the sum of its instruction

embeddings, as depicted in Equation [3]

J A

1
= bedy, gty || 75— bed:, 3
b ;(em edp, xweight,, Sety, *;em eds,) (3)

Our token embedding generation model shares some simi-
larity with Asm2Vec [23]], which also uses instructions around
a target token as context. Nonetheless, our model has a fun-
damentally different design goal. DEEPBINDIFF learns token
embeddings via program-wide random walks while Asm2Vec
is trying to learn function and token embeddings at the same
time and only within the function. Therefore, we choose to
modify Word2Vec CBOW model while Asm2Vec leverages
the PV-DM model.

V. EMBEDDING GENERATION

Based on the ICFGs and feature vectors generated in the
prior steps, basic block embeddings are generated so that sim-
ilar basic blocks can be associated with similar embeddings.
To do so, DEEPBINDIFF first merges the two ICFGs into one
graph and then models the problem as a network representation
learning problem to generate basic block embeddings using
Text-associated DeepWalk algorithm (TADW) [56].

Since the most important building basic block for this
component is the TADW algorithm, we first describe the
algorithm in detail and present how basic block embeddings
are generated. Then, we justify the need of graph merging and
report how DEEPBINDIFF accomplishes it.

A. TADW algorithm

Text-associated DeepWalk [56] is an unsupervised graph
embedding learning technique. As the name suggests, it is an
improvement over the DeepWalk algorithm [48]].

DeepWalk algorithm is an online graph embedding learning
algorithm that considers a set of short truncated random walks
as a corpus in language modeling problem, and the graph
vertices as its own vocabulary. The embeddings are then
learned using random walks on the vertices in the graph.
Accordingly, vertices that share similar neighbours will have
similar embeddings. It excels at learning the contextual infor-
mation from a graph. Nevertheless, it does not consider the
node features during analysis.

As aresult, Yang at el. [56] propose an improved algorithm
called Text-associated DeepWalk (TADW), which is able to
incorporate features of vertices into the network representation
learning process. They prove that DeepWalk is equivalent to
factorizing a matrix M € RI"I*I?l where each entry M;; is
logarithm of the average probability that vertex v; randomly
walks to vertex v; in fixed steps. This discovery further leads
to TADW algorithm depicted in Figure [3] It shows that it is
possible to factorize the matrix M into the product of three
matrices: W € RF>¥IVl. H € RFXf and a text feature T €
RI*IYl_ Then, W is concatenated with HT to produce 2k-
dimensional representations of vertices (embeddings).

B. Graph Merging

Since we have two ICFGs (one for each binary), the most
intuitive way is to run TADW twice for the two graphs.
However, this method has two drawbacks. First, it is less effi-
cient to perform matrix factorization twice. Second, generating
embeddings separately can miss some important indicators for
similarity detection.

For example, Figure 4| shows two ICFGs and each has a
basic block that calls fread and another basic block that has
a reference to string ‘hello’. Ideally, these two pairs of nodes
(‘a’ and ‘1’, ‘d’ and ‘3’) are likely to match. However, in
practice, the feature vectors of these basic blocks may not
look very similar as one basic block could contain multiple
instructions while the call or the string reference is just one
of them. Besides, the two pairs also have different contextual
information (node ‘a’ has no incoming edge but ‘1’ does). As
a result, TADW may not generate similar embeddings for the
two pairs of nodes.

We propose graph merging to alleviate this problem. That
is, the two ICFGs are merged and TADW runs only once on the
merged graph. Particularly, DEEPBINDIFF extracts the string
references and detects external library calls and system calls.
Then, it creates virtual nodes for strings and library functions,
and draws edges from the callsites to these virtual nodes.
Hence, two graphs are merged into one on terminal virtual
nodes. By doing so, node ‘a’ and ‘1’ have at least one common
neighbor, which boosts the similarity between them. Further,
neighbors of node ‘a’ and ‘1’ also have higher similarity since
they share similar neighbors. Moreover, since we only merge
the graphs on terminal nodes, the original graph structures stay
unchanged.

C. Basic Block Embeddings

With the merged graph, DEEPBINDIFF leverages TADW
algorithm to generate basic block embeddings. More specif-
ically, DEEPBINDIFF feeds the merged graph and the basic
block feature vectors into TADW for multiple iterations of
optimization. The algorithm factorizes the matrix M into three
matrices by minimizing the loss function depicted in Equa-
tion] using Alternating Least Squares (ALS) algorithm [34].
It stops when the loss converges or after a fixed n iterations.

A

. T 2 2 2
wmin | — WTHT|[} + S (W + 1HIF) @

On that account, each generated basic block embedding
contains not only the semantic information about the basic
block itself, but also the information from the ICFG structure.

VI. CODE DIFFING

DEEPBINDIFF then performs code diffing. The goal is to
find a basic block level matching solution that maximizes
the similarity for the two input binaries. One spontaneous
choice is to perform linear assignment based on basic block
embeddings to produce an optimal matching. This method

2X is a harmonic factor to balance two components

Step 4

Step 1 Step 2 Step 3
Input - Random Walks Normalization » Model Training ‘ Feature Vc-ector
: : : : Generation
| 4 movzx ecx, byte ptr [rdx] ' movzx regs, ptr | 1/ ibe:0.015,0.006,-0.22
[8d, [' | ifi | [ibe:0.015,0.006,-0.22, ..
: ?gv (;x408;2; : ':'i‘g" L‘:g“' reg4 : ’ Softmax Classifier ‘ : im :0.071, - 0.014, 0.005, ...
| | 8, regs | || ptr:0.022,0.065,0.04,...
! 4 :g; lr::;. Idx ! :g; :238, E:g ! ! regd:0.15,0.13,-0.043, ..
| Q movzx esi, byte ptr [rax] | Tovzx reg;l, p:r | | token embeddings
: lea edi, dword ptr [rsi - 0x30]: c;: :231' ?.mr : ’ Hidden Layer ‘ :
| Q cmp dit, 9 1| jbe im ' | |
: Jbe Ox4077as | “mov reg8, im | o (0.053,0.16,0.032,...
I @ mov rld4, -1 | cmp regl, im I I [0.12,0.44,-0.009,...]
(- cmp sil, 0x24 | Jne 1im . | Current Instruction |
| jne 0x408033 | ;:p ir:gl' m | | (0411,-0.2206,04,...
: ap réb, 9 : : |lea|reg4| ptr regll im |J'be| im | : 0.55,0.656,0.33, ...
: g ja 0x4088e7 : : Context Target Context : feature vectors
! | | I
Fig. 2: Basic Block Feature Vector Generation.
M K graph merging. Starting from the virtual nodes, the algorithm
e . Y calls Computelnitial Set() in Ln.2 to extract direct neighbors
! - of the virtual nodes and finds best matching pairs among the
=) M — W x [H) = T neighbors based on embeddings. For example, node ‘a’ and
‘1’ in Figure 4] will become one of the pairs in initial set.
) Starting from there, the algorithm loops and ex-
Fig. 3: TADW plores the neighbors of the already matched pairs in
GetK HopNeighbors() in Ln.7-8 by exploring the merged
chelle ref hello’ ref: ‘hello’ ref: ‘hello’ ICFG. It then sorts the similarities between neighbor ba-
rea' N e1° a(y . sic blocks and picks the pair that bears highest simi-
) I larity with a predefined threshold ¢ of 0.6 by calling
b c 2 ¢ ‘hello’ FindMaxUnmatched() in Ln.9. This process is repeated
— dQ). until all k-hop neighbors of matched pairs are explored and
d 3 callfread ~ "ee” callfread matched. Note that after the loop, there may still exist un-
callfread call fread o matched basic blocks due to unreachable code (dead code)

Fig. 4: Graph Merging

suffers from two major limitations. First, linear assignment can
be inefficient as binaries could contain enormous amount of
blocks. Second, although embeddings include some contextual
information, linear assignment itself does not consider any
graph information. Thus, it is still likely to make mistakes
when matching very similar basic blocks. A possible improve-
ment is to conduct linear assignment at two levels. Rather
than matching basic blocks directly, we could match functions
first by generating function level embeddings. Then, basic
blocks within the matched functions can be further matched
using basic block embeddings. This approach, however, can
be severely thwarted by compiler optimizations that alter the
function boundary such as function inlining.

A. k-Hop Greedy Matching

To address this problem, we introduce a k-hop greedy
matching algorithm. The high-level idea is to benefit from the
ICFG contextual information and find matching basic blocks
based on the similarity calculated from basic block embeddings
within the k-hop neighbors of already matched ones.

As presented in Algorithm [T} the initial matching set
Setinitiqr are computed by using the virtual nodes during the

or low similarity within k-hop neighbors. Our method then
performs linear assignment using Hungarian algorithm [35]
and finds the optimal matching among them in Ln.16. Please
note that we only use the Hungarian algorithm occasionally for
small numbers of unmatched basic blocks, hence, its impact
on accuracy and efficiency is very minimal. Finally, it returns
Setmatcheq as the matching result, Set; as insertion basic
blocks and Set as deletion basic blocks. [’| We set k to 4. More
details about parameter selection is presented in Section

VII. EVALUATION

In this section, we evaluate DEEPBINDIFF with respect
to its effectiveness and efficiency for two different diffing sce-
narios: cross-version and cross-optimization-level. To our best
knowledge, this is the first research work that comprehensively
examines the effectiveness of program-wide binary diffing
tools under the cross-version setting. Furthermore, we conduct
a case study to demonstrate the usefulness of DEEPBINDIFF
in real-world vulnerability analysis.

A. Experimental Setup, Datasets & Baseline Techniques

Our experiments are performed on a moderate desktop
computer running Ubuntu 18.04LTS operating system with

3Insertions and deletions can happen when diffing between two different
versions of the binary.

Algorithm 1 k-Hop Greedy Matching Algorithm

o Setyirtualnodes < {virtual nodes from merged graphs}
: Setinitiar < ComputelnitialSet(Setyirtuainodes)
: Setmatched — Setinitial; Setcurrpairs — Setinitial

(nodey, nodes) <+ Seteyrrpairs-pop()
Nbnode, < GetKHopNeighbors(node;)

1

2

3

4:

5: while Set .y pairs '= empty do

6

7

8 Nbnode, < GetKHopNeighbors(nodes)

9: newPair < FindMaxUnmatched(nb,ode; > Mnodes)
10: if newPair != null then

11: Setmatched < S€tmatehed U newPair

12: Setcurrpairs — SetcurTPairs U newPair

13: end if

14: end while
15: Setunreached < {basic blocks that are not yet matched}
16: {Sety,, Set;, Sety} < LinearAssign(Setynreached)
17: Setmatche‘d <~ Setmatched U Setm
output Set,,qtched, Set;, Setq as the diffing result

Intel Core i7 CPU, 16GB memory and no GPU. The fea-
ture vector generation and basic block embedding generation
components in DEEPBINDIFF are expected to be significantly
faster if GPUs are utilized since they are built upon deep
learning models.

Datasets. To thoroughly evaluate the effectiveness of DEEP-
BINDIFF, we utilize three popular binary sets - Coreutils [2],
Diffutils [3]] and Findutils [4] with a total of 113 binaries.
Multiple different versions of the binaries (5 versions for
Coreutils, 4 versions for Diffutils and 3 versions of Findutils)
are collected with wide time spans between the oldest and
newest versions (13, 15, and 7 years respectively). This setting
ensures that each version has enough distinctions so that binary
diffing results among them are meaningful and representative.

We then compile them using GCC v5.4 with 4 different
compiler optimization levels (00, O1, O2 and O3) in order
to produce binaries equipped with different optimization tech-
niques. This dataset is to show the effectiveness of DEEPBIN-
DIFF in terms of cross-optimization-level diffing. We randomly
select half of the binaries in our dataset for token embedding
model training.

To demonstrate the effectiveness with C++ programs, we
also collect 2 popular open-source C++ projects LSHBOX [8]]
and indicators [6], which contain plenty of virtual functions,
from GitHub. The two projects include 4 and 6 binaries respec-
tively. In LSHBOX, the 4 binaries are psdlsh, rbslsh, rhplsh and
thlsh. And in indicators, there exist 6 binaries - blockprogress-
bar, multithreadedbar, progressbarsetprogress, progressbartick,
progressspinner and timemeter. For each project, we select 3
major versions and compile them with the default optimization
levels for testing.

Finally, we leverage two different real-world vulnerabilities
in a popular crypto library OpenSSL [9] for a case study to
demonstrate the usefulness of DEEPBINDIFF in practice.

Baseline Techniques. With the aforementioned datasets, we
compare DEEPBINDIFF with two state-of-the-art baseline
techniques (Asm2Vec [23] and BinDiff [10]). Note that

Asm2Vec is designed only for function level similarity detec-
tion. We leverage its algorithm to generate embeddings, and
use the same k-hop greedy matching algorithm to perform
diffing. Therefore, we denote it as ASM2VEC+k-HOP. Also,
to demonstrate the usefulness of the contextual information, we
modify DEEPBINDIFF to exclude contextual information and
only include semantics information for embedding generation,
shown as DEEPBINDIFF-CTX.

As mentioned in Section [, another state-of-the-art tech-
nique InnerEye [58]] has scalability issue for binary diffing.
Hence, we only compare it with DEEPBINDIFF using a set of
small binaries in Coreutils. Note that we also apply the same
k-hop greedy matching algorithm in InnerEye, and denote it
as INNEREYE+k-HoOP.

B. Ground Truth Collection

For the purpose of evaluation, we rely on source code level
matching and debug symbol information to conservatively
collect ground truth that indicates how basic blocks from two
binaries should match.

Particularly, for two input binaries, we first extract source
file names from the binaries and use Myers algorithm [46] to
perform text based matching for the source code in order to get
the line number matching. To ensure the soundness of our ex-
tracted ground truth, 1) we only collect identical lines of source
code as matching but ignore the modified ones; 2) our ground
truth collection conservatively removes the code statements
that lead to multiple basic blocks. Therefore, although our
source code matching is by no means complete, it is guaranteed
to be sound. Once we have the line number mapping between
the two binaries, we extract debug information to understand
the mapping between line numbers and program addresses.
Eventually, the ground truth is collected by examining the basic
blocks of the two binaries containing program addresses that
map to the matched line numbers.

Example. To collect the ground truth for basic block matching
between v5.93 and v8.30 of Coreutils binary chown, we first
extract the names of the source files and perform text-based
matching between the corresponding source files. By matching
the source files chown . ¢ in the two versions, we know Ln.288
in v5.93 should be matched to Ln.273 in v8.30. Together with
the debug information extracted, a matching between address
0x401c£f8 in v5.93 and address 0x4023fc in v8.30 can
be established. Finally, we generate basic blocks for the two
binaries. By checking the basic block addresses, we know basic
block 3 in v5.93 should be matched to basic block 13 in v8.30.

C. Effectiveness

With the datasets and ground truth information, we evalu-
ate the effectiveness of DEEPBINDIFF by performing diffing
between binaries across different versions and optimization
levels, and comparing the results with the baseline techniques.

Evaluation Metrics. We use precision and recall metrics to
measure the effectiveness of the diffing results produced by
diffing tools. The matching result M from DEEPBINDIFF can
be presented as a set of basic block matching pairs with
a length of x as Equation [5} Similarly, the ground truth

information G for the two binaries can be presented as a set of
basic block matching pairs with a length of y as Equation [6]

’

M = {(mq,m}), (ma,my), ..., (Mg, my)})

G = 1{(g1.91), (92: 9, - (95 9,)} (6)

We then introduce two subsets, M, and M,, which rep-
resent correct matching and unknown matching respectively.
Correct match M, = M N G is the intersection of our result
M and ground truth G. It gives us the correct basic block
matching pairs. Unknown matching result M, represents the
basic block matching pairs in which no basic block ever
appears in ground truth. Thus, we have no idea whether these
matching pairs are correct. This could happen because of
the conservativeness of our ground truth collection process.
Consequently, M — M, — M, portrays the matching pairs
in M that are not in M. nor in M, therefore, all pairs in
M — M,, — M, are confirmed to be incorrect matching pairs.

Once M and G are formally presented, the precision metric
presented in Equation [/| gives the percentage of correct match-
ing pairs among all the known pairs (correct and incorrect).

IM NG
IM G+ [[M — M, — M|

(M

Precision =

The recall metric shown in Equation [§] is produced by
dividing the size of intersection of M and G with the size
of GG. This metric shows the percentage of ground truth pairs
that are confirmed to be correctly matched.

M NGl

Recall =
1G]

®)

Cross-version Diffing. In this experiment, we benchmark the
performance of DEEPBINDIFF, BinDiff, DEEPBINDIFF-CTX
and ASM2VEC+k-HoP using different versions of binaries
(with the default O1 optimization level) in Coreutils, Diffutils
and Findutils. We report the average recall and precision results
for each tool under different experimental settings in Table

As shown, DEEPBINDIFF outperforms DEEPBINDIFF-
CTX, ASM2VEC+k-HOP and BinDiff across all versions of
the three datasets in terms of recall, especially when the two
diffed versions have a large gap. For example, for Coretuils
diffing between v5.93 and v8.30, DEEPBINDIFF improves the
recall by 11.4%, 10% and 36.9% over DEEPBINDIFF-CTX,
ASM2VEC+k-HoP and BinDiff. Also, we can observe that
ASM2VEC+k-HoP and DEEPBINDIFF-CTX, which carry the
semantic information for tokens, has better recall than the de-
facto commercial tool BinDiff. This result shows that including
semantic information during analysis can indeed improve the
effectiveness. Moreover, the performance difference between
DEEPBINDIFF-CTX and DEEPBINDIFF shows that contextual
information can help boost the quality of diffing results by a
large margin.

Notice that although DEEPBINDIFF outperforms BinDiff
in terms of precision for most binaries, BinDiff can produce

higher precision in certain cases, such as the diffing between
v5.93 and v8.30. We investigate the details and see that BinDiff
has a very conservative matching strategy. It usually only
matches the basic blocks with very high similarity score and
leaves the other basic blocks unmatched. Therefore, BinDiff
generates much shorter matching list than DEEPBINDIFF
that uses k-hop greedy matching to maximize the matching.
Nonetheless, DEEPBINDIFF can achieve a higher average
precision by a large margin.

Figure [5|and [6] further present the Cumulative Distribution
Function (CDF) figures of the Fl-scores for three diffing
techniques on Coreutils binaries in both cross-version binary
diffing and cross-optimization-level diffing settings. Again,
from the CDF figures we can see that DEEPBINDIFF-CTX,
ASM2VEC+k-HOP and BinDiff have somewhat similar F1-
scores, while DEEPBINDIFF performs much better. In a nut-
shell, DEEPBINDIFF can exceed three baseline techniques by
large margins with respect to cross-version binary diffing.

1.0 — DeepBinDiff

——— DeepBinDiff-Ctx

—— Asm2Vec+K-Hop
BinDiff

Zam 1.0 — DeepBinDIff
=~ DeepBinDiff-Ctx f
—— Asm2Vec+K-Hop

BinDiff

4
®

14
Y
o
Y

14
&
o
>

Percentage
Percentage

o
N
o
N

0.0 vZ

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fl-score Fl-score

(a) v5.93 compared with v8.30 (b) v6.4 compared with v8.30

0.0]

1.0 — DeepBInDIff

—— DeepBinDiff-Ctx
—— Asm2Vec+K-Hop
BinDiff

1.0] — DeepBinDiff
—— DeepBinDiff-Ctx /

—— Asm2Vec+K-Hop

{ 0.8
BinDiff /

<4
®

Percentage
o o
Y >

Percentage

o
N

0.0]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Fl-score Fl-score

(c) v7.6 compared with v8.30 (d) v8.1 compared with v8.30

Fig. 5: Cross-version Diffing F1-score CDF

Cross-optimization-level Diffing. We then conduct experi-
ments to measure the effectiveness for cross-optimization-level
setting. Particularly, each binary is compiled and diffed three
times (OO0 vs O3, O1 vs O3, 02 vs O3) and average recall and
precision results are reported in Table

As shown, DEEPBINDIFF outperforms DEEPBINDIFF-
CTtX, ASM2VEC+k-HoP and BinDiff for most of the set-
tings with respect to recall as well as precision. There exist
only two exception for recall. In Diffutils v3.1 Ol vs O3,
DEEPBINDIFE-CTX has a recall rate of 0.826, while DEEP-
BINDIFF obtains a similar recall of 0.825. And in Diffutils
v3.6 O1 vs O3, ASM2VEC+k-HOP has a slightly better recall
than DEEPBINDIFF. This is because there are only 4 binaries
in Difftuils and most of them are small. In this special case,
program-wide structural information becomes less useful. As
a result, DEEPBINDIFF-CTX and DEEPBINDIFF also share

TABLE I: Cross-version Binary Diffing Results

Recall Precision
BinDiff | ASM2VEc+k-Hop | DEEPBINDIFF-CTX | DEEPBINDIFF | BinDiff | ASM2VEC+k-HoP | DEEPBINDIFF-CTX | DEEPBINDIFF
v5.93 - v8.30 0.506 0.635 0.622 0.693 0.775 0.613 0.611 0.761
v6.4 - v8.30 0.572 0.654 0.656 0.748 0.784 0.643 0.645 0.805
Coreutils v7.6 - v8.30 0.748 0.771 0.752 0.867 0.771 0.746 0.751 0.904
v8.1 - v8.30 0.756 0.785 0.788 0.872 0.821 0.765 0.755 0.903
Average 0.646 0.711 0.705 0.795 0.788 0.692 0.691 0.843
v2.8 - v3.6 0.354 0.741 0.733 0.778 0.662 0.742 0.752 0.783
Diffutil v3.1-v3.6 0.905 0.933 0.915 0.961 0.949 0.931 0.932 0.949
uts V34 -v36 | 0925 0.955 0.947 0.972 0.964 0.94 0.935 0.941
Average 0.728 0.876 0.865 0.904 0.858 0.871 0.873 0.891
v4.2.33 - v4.6.0 0.511 0.688 0.673 0.725 0.631 0.704 0.711 0.748
Findutils v4.4.1 - v4.6.0 0.736 0.813 0.821 0.911 0.898 0.877 0.855 0.885
Average 0.624 0.751 0.747 0.818 0.765 0.791 0.783 0.817
1.0 1.0| — DeepBinDiff 1.0| — DeepBinDiff 1.0 1.0| — DeepBinDIff
—— DeepBinDiff-Ctx —— DeepBinDiff-Ctx —— DeepBinDiff-Ctx
08 0.8| — Asm2Vec+K-Hop 0.8| — Asm2Vec+K-Hop 08 0.8 — Asm2Vec+K-Hop
BinDiff BinDiff BinDiff
%0.6 %o.a %o 6| %o.e %0.6
g 0.4 g 0.4 g 0.4 g 0.4 g 0.4
~—— DeepBinDiff ~— DeepBinDiff
0.2 —— DeepBinDiff-Ctx 0.2 0.2 0.2 —— DeepBinDiff-Ctx 0.2
—— Asm2Vec+K-Hop —— Asm2Vec+K-Hop
0.0| BinDiff 0.0] 0.0l 0.0l BinDiff 0.0|
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fl-score Fl-score Fl-score Fl-score Fl-score
(a) v5.9300 vs v5.9303 (b) v5.9301 vs v5.9303 (c) v5.9302 vs v5.9303 (d) v6.400 vs v6.403 (e) v6.401 vs v6.403
1.0| — DeepBinDIff 1.0 1.0| — DeepBinDiff 1.0 — DeepBinDiff 1.0
~—— DeepBinDiff-Ctx —— DeepBinDiff-Ctx ~—— DeepBinDiff-Ctx
0.8 — Asm2Vec+K-Hop 0.8 0.8| — Asm2Vec+K-Hop 0.8| — Asm2Vec+K-Hop 0.8
BinDiff BinDiff BinDiff
%u.s %0,6 %"u 6| %u.a %u.e
g 0.4 g 0.4 g 0.4 g 0.4 g 0.4
—— DeepBinDiff —— DeepBinDiff
0.2 0.2] —— DeepBinDiff-Ctx 0.2 0.2 0.2 —— DeepBinDiff-Ctx
~—— Asm2Vec+K-Hop —— Asm2Vec+K-Hop
0.0] < 0.0 [F BinDiff 0.0| 0.0| 0.0| BinDiff
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 08 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fl-score Fl-score Fl-score Fl-score Fl-score
(f) v6.402 vs v6.403 (g) v7.600 vs v7.603 (h) v7.601 vs v7.603 (1) v7.602 vs v7.603 (j) v8.100 vs v8.103
1.0| — DeepBinDiff 1.0| — DeepBinDiff 1.0 1.0 — DeepBinDiff 1.0 — DeepBinDiff
—— DeepBinDiff-Ctx ~—— DeepBinDiff-Ctx —— DeepBinDiff-Ctx —— DeepBinDiff-Ctx
0.8 — Asm2Vec+K-Hop 0.8| — Asm2Vec+K-Hop 08 0.8 — Asm2Vec+K-Hop 0.8 — Asm2Vec+K-Hop
~— BinDiff ~— BinDiff ~—— BinDiff ~—— BinDiff
%0.6 %o.a §u 6| %0.6 %
g 0.4 g 0.4 g 0.4 g 0.4 g
~—— DeepBinDiff
0.2 0.2 0.2 —— DeepBinDiff-Ctx 0.2
—— Asm2Vec+K-Hop ~
0.0| 0.0] 0.0| —— BinDiff 0.0| =/
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Fl-score Fl-score Fl-score Fl-score Fl-score

(k) v8.101 vs v8.103

similar recall rates for these binaries. Still, DEEPBINDIFF Z:

could outperform the baseline techniques for all other settings, 07

even for Diffutils. For precision, because of the conserva- g o6

tiveness of BinDiff, it could achieve slightly better in some zos

cases. However, DEEPBINDIFF still outperforms BinDiff for gz;‘

most binaries as shown in average results. Also, the evaluation I

shows that cross-optimization-level binary diffing is more 01

difficult than cross-version diffing since the recall and precision 0

rates are lower, because the compiler optimization techniques % § g E ; § g 5 § g § § § é é % § g é § § g S g % % %
8SdS2SS3RE38R3E

(1) v8.102 vs v8.103

(m) v8.3000 vs v8.3003

(n) v8.3001 vs v8.3003 (0) v8.3002 vs v8.3003

Fig. 6: Cross-optimization-level Diffing F1-score CDF

could greatly transform the binaries.

Binary Size vs. Accuracy. We further examine the relationship
between binary size and accuracy to see how the effectiveness
of our tool could be affected by the binary size. Intuitively, a

larger binary tends to have more basic blocks, and therefore,
resulting in a more complicated ICFG. Although a very

Binary Size (bytes)

Fig. 7: Binary Size vs. Accuracy

complicated ICFG may reduce our chance of matching the
correct basic blocks within a fix k hops, our algorithm should

TABLE II: Cross-optimization-level Binary Diffing Results

Recall Precision
BinDiff ASM2VEC+k-HoP DEEPBINDIFF-CTX DEEPBINDIFF BinDiff ASM2VEC+k-Hop DEEPBINDIFF-CTX DEEPBINDIFF
v593 00-03 | 0.176 0.155 0.163 0.311 0.291 0211 0.235 0.315
v593 01 -03 | 0571 0.545 0.497 0.666 0.638 0.544 0515 0.681
V593 02-03 | 0.837 0911 0912 0.975 0.944 0.850 0313 0.955
V6.4 00- 03 | 0.166 0.201 0.221 0.391 0.262 0.235 0.218 0.301
v6.4 O1 - O3 0.576 0.579 0.599 0.703 0.646 0.563 0.579 0.709
V64 02-03 | 0838 0.893 0.871 0.949 0.947 0.851 0.852 0.953
V6 00-03 | 0.156 0225 0213 0.391 0.331 0.291 0.277 0.40
Coreutils V6Ol - 03 | 0484 0.618 0.653 0.672 0.674 0.599 0.633 0.761
V6 02-03 | 0.840 0.903 0911 0.946 0.942 0.861 0.855 0.941
v8100-03 | 0.166 0.169 0.155 0.305 0.334 0.291 0.287 0.351
v8.1 01 - O3 0.480 0.625 0.602 0.679 0.677 0.612 0.621 0.721
v8.1 02 -03 0.835 0.871 0.881 0.915 0.942 0.828 0.833 0912
v83000- 03 | 0.35 0.144 0.151 0.292 0.285 0275 0.261 0.315
v83001 - 03 | 0.508 0.521 0.506 0.602 0.620 0.493 0471 0.665
V83002 -03 | 0842 0.875 0.856 0.956 0.954 0.843 0.853 0.908
Average | 0.507 0.549 0.546 0.65 0.632 0.557 0.553 0.659
v2800- 03 | 0236 0.321 0.327 0.421 0454 0392 0.381 0.575
V2801 -03 | 0467 0.781 0.745 0.833 0.713 0.751 0.765 0.831
V28 02-03 | 0863 0.955 0.961 0.981 0.953 0.939 0.927 0.971
v3100-03 | 0.125 0211 0.208 0.379 0.251 0217 0.239 0.314
v3.1 01 - 03 0.633 0.819 0.826 0.825 0.655 0.652 0.641 0.771
V3102-03 | 03898 0.905 0.901 0.939 0.966 0.921 0.936 0.967
Diffutils V34 00-03 | 0171 0.199 0.187 0.355 0.271 0.233 0.249 0.336
V34 01-03 | 0577 0.711 0.737 0.761 0.708 0.681 0.697 0.715
V34 02-03 | 0903 0.907 0.901 0.933 0.953 0.941 0.956 0.967
V3.6 00-03 | 0.159 0.228 0.232 0.373 0.247 0215 0.227 0.292
v3.6 O1 - O3 0.735 0.881 0.871 0.871 0.815 0.817 0.831 0.861
V36 02-03 | 0919 0.952 0.957 0.962 0.964 0.925 0.921 0.949
Average | 0.557 0.656 0.654 0.719 0.663 0.64 0.648 0.712
V4233 00-03 | 0.144 0.192 0217 0.314 0.225 0211 0.207 0.249
v4.233 O1 - O3 0.633 0.687 0.696 0.791 0.768 0.621 0.633 0.787
V4233 02-03 | 0933 0.951 0.945 0.981 0.968 0.936 0.927 0.985
V441 00-03 | 0084 0.142 0.137 0.295 0.133 0.135 0.145 0.242
Findutils |_Y#4101-03 | 0677 0.711 0.696 0.83 0.731 0.692 0.678 0.885
V41 02-03 | 0839 0017 0.901 0.945 0.964 0.952 0.961 0.962
VA6 00-03 | 0075 0.151 0.139 0.292 0.132 0.172 0.185 0.315
v4.6 O1 - O3 0.563 0.645 0.627 0.761 0.633 0.727 0.705 0.806
VA6 02-03 | 0958 0.935 0.923 0.957 0.932 0914 0.921 0.957
Average | 0.545 0.592 0.587 0.685 0.609 0.596 0.598 0.688
be able to extract more useful contextual information from the 10 19| threshols-o4
ICFG. To evaluate this, we use all the O1 and O3 binaries in 08 0g — treshola=06
— reshold=0.

our dataset to perform diffing, and record the results.

Figure [7| shows the relationship between binary size and
accuracy. As shown in the figure, DEEPBINDIFF can perform
quite stably regardless of the binary size. For example, DEEP-
BINDIFF can achieve an average F1-score of 0.7 for binaries
with sizes of 60KB, and it can still achieve an average score
of 0.65 for binaries that are larger than 400KB.

D. Parameter Selection

Parameter selection, which contains hyperparameters in
embedding generation and parameters in k-hop greedy match-
ing, is of great importance to the effectiveness of our system.
Hyperparameters such as the number of latent dimensions,
the number of walks started per vertex, and the harmonic
factor A\ have been extensively discussed in DeepWalk [48]
and TADW [56]. Therefore, we simply use the default values.

For k-hop greedy matching, we need to tune two important
parameters: the number of hops k and the threshold ¢ for
filtering matched pairs in FindMaxUnmatched(). In par-
ticular, we choose different values for these parameters and
use DEEPBINDIFF to perform binary diffing for 95 binaries
in CoreUtils version 6.4 and version 8.30 to understand the
impact.

Number of Hops. To see how the effectiveness of DEEPBIN-
DIFF can be affected by the number of hops during matching,

10

Percentage
°©
o

Percentage
°
>

14
IS
o
=

o
N
o
N

14
o
o
°

0.0 0.2 0.4 0.6

Fl-score

0.8 1.0 0.0 0.2 0.4 0.6

F1-Score

(b) threshold selection

0.8 1.0

(a) k selection

Fig. 8: Parameter Selection

we choose k to be 2, 3, 4 and 5 (with a fixed threshold=0.6),
and check the matching results respectively. The Fl1-score
CDF is displayed in Figure Results show that the average
Fl-score steadily increases when a bigger k is chosen, and
becomes the highest when k=4. This means that when we
enlarge the search space up to 4 hops for matching basic block
pairs, the chance of finding the right match increases. However,
if we try to search within very large space (too many hops),
DEEPBINDIFF may incorrectly match unrelated but somehow
similar basic blocks. Also, more runtime overhead can be
introduced.

Threshold. We then evaluate how threshold, which is to
guarantee that every pair of matching blocks should be similar
enough to certain degree, could affect the matching results. It

is distinctly useful when dealing with basic block deletions as
it ensures that DEEPBINDIFF will not match two basic blocks
that are dissimilar but share the same context. Figure [Sb|illus-
trates the Fl-score CDF when choosing different threshold.
More specifically, we set threshold to be 0.4, 0.5, 0.6 and
0.7 (with a fixed k=4). As we can observe, the average F1-
score reaches the highest when threshold=0.6, but starts to
decline when choosing 0.7. This indicates that there exist some
matched basic block pairs that are transformed by compilers
and become less similar to each other. DEEPBINDIFF is able
to tolerate these cases by selecting a proper threshold.

E. Efficiency

We then evaluate the efficiency of DEEPBINDIFF, which
can be split into four: training time, preprocessing time,
embedding generation time and matching time.

Training Time. Training is a one-time effort. We train our
token embedding generation model with the binaries in our
dataset. We stop the training for each binary when loss
converges or it hits 10000 steps. In total, It takes about 16
hours to finish the whole training process. ASM2VEC+k-HOP
also needs to train its model, while BinDiff does not need
any training time. Note that the training process could be
significantly accelerated if GPUs are used.

Preprocessing Time. DEEPBINDIFF takes only an average of
8.2s to finish the graph generation on one binary using IDA
pro. Then, it applies the pre-trained model to generate token
embeddings and calculates the feature vectors for each basic
block. These two steps take less than 100ms for one binary.

Embedding Generation. The most heavy part of DEEPBIN-
DIFF is the embedding generation, which utilizes TADW to
factorize a matrix. On average, it takes 591s to finish one
binary diffing. One way to accelerate the process is to use
a more efficient algorithm instead of the ALS algorithm used
in TADW. For example, CCD++ [57] is demonstrated to be 40
times faster than ALS.

Matching Time. %k-hop greedy matching algorithm is efficient
in that it limits the search space by searching only within the
k-hop neighbors for the two matched basic blocks. On average,
it takes about 42s to finish the matching on average.

Binary Size vs. Runtime. The runtime overhead of DEEP-
BINDIFF has a high positive correlation to binary size. This
is due the to fact that the two most time-consuming steps in
DEEPBINDIFF, namely embedding generation and matching,
are all directly bounded by the sizes of the ICFG, which are
largely decided by the binary sizes.

Figure [9] delineates how the binary size can affect the
runtime overhead in DEEPBINDIFF. As we can see, the
relationship between binary size and runtime overhead is
somewhat linear. For example, it takes less than 100s for
diffing two binaries with sizes around 60kb. And for binaries
with sizes of 400kb, DEEPBINDIFF needs about 1000s to
finish. Therefore, considering the linear relationship, we can
draw a conclusion that DEEPBINDIFF scales reasonably well
with respect to the runtime overhead. Note that the embedding
generation component, which is responsible for the majority

11

1200

1000 A [T

600

400

Runtime (seconds)

200

Binary Size (bytes)

Fig. 9: Binary Size vs. Runtime

of runtime overhead, can be significantly accelerated if GPUs
are used.

F. Comparison with INNEREYE+k-HOP

InnerEye [S8] is a recent research work that also leverages
deep learning technique to perform binary code similarity
comparison. To evaluate the performance improvement of
DEEPBINDIFF, we compare our system with INNEREYE+k-
Hop, which is an InnerEye variant that incorporates k-hop
greedy matching algorithm for optimal basic block matching.
We directly leverage the instruction embedding model and
similarity calculation model provided by InnerEye authors [7].
As discussed in Section [InnerEye has serious scalability
issues for whole program binary diffing. Hence, we only select
10 small binaries listed in Table [[T] for testing.

More specifically, we use the tools to perform both cross-
version and cross-optimization-level diffing for the selected
binaries. The results show that DEEPBINDIFF can outperform
INNEREYE+k-HOP in all settings for both recall and precision.
For example, our system can achieve an average recall rate of
0.553 for cross-version diffing, while INNEREYE+k-HOP can
only reach an average recall rate of 0.384. We further compare
the two tools from an efficiency perspective. On average, it
takes INNEREYE+k-HOP 1953 seconds to finish one binary
diffing, whereas DEEPBINDIFF only needs an average time of
62 seconds to finish the diffing.

We carefully investigate the results and observe two major
reasons. First, as mentioned in Section |l INNEREYE+k-HOP
suffers from a serious out-of-vocabulary (OOV) problem. In
our experiment, it can only model 85.15% of the instructions
correctly, and will simply assign O to the embeddings of the
unmodeled instructions. Therefore, semantic information of a
large number of instructions is missing. Second, the pre-trained
model provided by the authors is trained specifically to handle
similarity detection between X86 and ARM basic blocks. It is
not suitable to perform cross-version and cross-optimization-
level binary diffing.

In a nutshell, the scalability issue and OOV problem render
InnerEye unsuitable for common binary diffing scenarios. The
usage of supervised learning also makes it hard to have
balanced and representative dataset and generate a well-trained
model for different test settings.

G. C++ Programs Testing

As aforementioned, DEEPBINDIFF relies on IDA Pro for
inter-procedural CFG generation. However, C++ programs

TABLE III: Effectiveness Comparison with INNEREYE+k-HOP

Cross-version (Coreutils v5.93 - v.830) Cross-optimization-level (Coreutils v5.9301 - v5.9303)
Recall Precision Recall Precision
INNEREYE+k-HoOP DEEPBINDIFF INNEREYE+k-HOP | DEEPBINDIFF | INNEREYE+k-HOP DEEPBINDIFF INNEREYE+k-HOP DEEPBINDIFF
env 0.360 0.479 0.375 0.667 0.266 0.626 0.271 0.631
false 0.397 0.477 0.403 0.600 0.275 0.605 0.281 0.652
hostid 0.371 0.533 0.382 0.692 0.282 0.639 0.288 0.701
printenv 0.405 0.443 0.427 0.604 0.221 0.591 0.224 0.605
rmdir 0.398 0.675 0411 0.753 0.393 0.632 0.396 0.663
sync 0.348 0.499 0.364 0.509 0.334 0.641 0.341 0.641
true 0412 0.829 0.418 0.824 0.256 0.647 0.262 0.643
tty 0.316 0.605 0.323 0.675 0.331 0.563 0.338 0.594
uname 0.471 0.497 0.491 0.587 0.258 0.649 0.269 0.679
yes 0.377 0.616 0.406 0.631 0.252 0.625 0.259 0.632
Average 0.384 0.553 0.401 0.636 0.296 0.620 0.302 0.645
TABLE IV: C++ Programs Testing TABLE V: C++ Programs Testing Detailed Numbers
F1-score Total GT M. M.y,
BinDiff DEEPBINDIFF psdish 650 89 78 11
psdlsh 0.556 0.876 LSHBOX rbslsh 843 | 108 9 2
tbslsh 0.526 0.889 v1.0 vs v3.0 rthplsh 812 | 107 96 11
Vig‘i‘j?;fo thplsh 0.528 0.895 thish 968 90 79 11
thish 0539 0.877 psdish 646 | 240 | 234 6
Average 0.534 0.584 LSHBOX tslsh 715 | 252 | 252 0
psdish 0.9096 0.975 v2.0 vs v3.0 thplsh 728 | 269 | 260 0
LSHBOX bslsh 0.876 1 thish 736_| 249 | 249 0
v2.0 vs v3.0 rgﬁl;h 82% i blockprogressbar 675 82 79 3
> : multithreadedbar 793 | 83 | 70 3
Average 0.892 0.994 .
indicators progressbarsetprogress 668 79 69 10
blockprogressbar 0.943 0.958 -
= vl.2 vs v14 progressbartick 633 70 62 8
multithreadedbar 0.796 0.843 — 905 93 7} I
indicators progressbarsetprogress 0.814 0.873 pr()tgressspgnner 636 7 57 3
V12 ve vid progressbartick 0.659 0.852 imemeter S
& vs vl progressspinner 0.920 0.989 bloclfprogressba.r 793 83 72 11
timemeter 0.637 0.814 o multithreadedbar 695 85 79 6
Average 0.795 0.888 indicators progressbarsetpr-ogress 669 79 73 6
blockprogressbar 0.796 0.867 vl.3 vs v14 progressbartick 633 79 68 11
multithreadedbar 0.945 0.929 progressspinner 905 | 107 | 107 0
. progressbarsetprogress 0.814 0.924 timemeter 636 70 67 2
indicators -
progressbartick 0.659 0.936
vl3 vs vl4 -
progressspinner 0.920 1 . . .
timemeter 0.637 0.940 in OpenSSL are used for an in-depth comparison between our
Average 0.795 0.932 tool and the state-of-the-art commercial tool BinDiff.

may expose additional challenges for generating complete
CFGs, and could have negative impact on the performance.
To this end, we leverage 2 popular open-source C++ projects
LSHBOX [8] and indicators [6] from GitHub, and select 3
major versions from each project to evaluate the effectiveness
of DEEPBINDIFF with respect to C++ programs.

We report the experimental results in Table Among all
the 10 C++ binaries, we can clearly see that DEEPBINDIFF
outperforms BinDiff for 9 of them, and achieves a slightly
lower Fl-score for only 1 binary (0.929 vs 0.945). When the
differences between the testing binaries are bigger, DEEPBIN-
DIFF performs much more stable than BinDiff. We further
present the detailed numbers for DEEPBINDIFF during the
diffing in Table [V] Columns 3-6 represent the total number
of basic blocks for the diff’ed binary, the number of basic
blocks in our collected ground truth, the number of correctly
matched basic blocks, and the number of wrongly matched
basic blocks, both by DEEPBINDIFF.

H. Case Study

We further showcase the efficacy of DEEPBINDIFF with
real-world vulnerability analysis. Two security vulnerabilities

12

DTLS Recursion Flaw. The first vulnerability (CVE-2014-
0221) is in OpenSSL v1.0.1g and prior versions, and gets fixed
in v1.0.1h. It is a Datagram Transport Layer Security (DTLS)
recursion flaw vulnerability, which allows attackers to send an
invalid DTLS handshake to OpenSSL client to cause recursion
and eventually crash. Listing [I] shows the vulnerability along
with the patched code. As listed, patching is made to avoid
the recursive call by using a goto statement (Ln.9-10).

To analyze this vulnerability, we feed a vulnerable version
(1.01h) as well as a patched version (1.01g) of OpenSSL into
the diffing tools and see if the tools can generate correct
matching for all the basic blocks, including the ones that
contain the vulnerability and the patch.

The total number of basic blocks is 11734. And our
ground truth collection process is able to collect 9591 blocks,
achieving a coverage of 82%. Both BinDiff and DEEPBINDIFF
can achieve very high Fl-scores of 0.947 and 0.962, because
of the high similarity between two adjacent versions. More
precisely, the two tools can correctly match 8659 and 9172
basic blocks respectively. Despite the high accuracy for both
tools, only DEEPBINDIFF is able to match the vulnerability
correctly due to the function inlining technique.

rdx

rex

esi, dword ptr [rsp+1D8h+var_1D8]

dword ptr [r13+60h], 0

r8, rbx

rex, rbop

edx, r12d

rdi, r13
dtis1_get_message_fragment
loc_40E34

pop
pop
mov

mov rax, [r13+50h]
mov rax, [rax+8]

add rax, 0Ch

mov [r13+58h], rax

movsxd rax, dword ptr [r13+60h]
jmp loc_40FA1

I
1

1

|

i

1| mov
1| mov
1| mov
| mov
| mov
! call

i | ime

1

|

...

__

rdx

rox

esi, dword ptr [rsp+1D8h-+var_1D8]
dword ptr [r13+60h], 0

r8, rbx

rex, rbp

edx, r12d

rdi, r13

call dtls1_get_message_fragment

jmp loc_40E34

pop 18
pop 9

mov rax, [r13+88h]

mov dword ptr [r13+60h], 0

mov jmp loc_4103F

(b) Matching Result from DEEPBINDIFF

Fig. 10: DTLS Recursion Flaw

Listing 1: DTLS Recursion Flaw

1 | static long dtlsl_get_message_fragment() { ‘
2

3| + redo: \
4 if ((frag_len = fragment(s, max, ok)) {

5

6 if (s—msg_callback) {

7 s—>msg_callback (0, s—>version)

8 | - return dls]_get_message_fragment(); |
9 | + goto redo; ‘
0| |

The patched function dtsl_get_message_fragment() is
inlined into function dtsl_get_message() in v1.0.1h. As
shown in Figure [T0a, BinDiff fails to handle this case and
incorrectly matches the vulnerable function in v1.0.1h with
its caller in v1.0.1g, leaving dtsl_get_message() in v1.0.1g
unmatched. Therefore, it could not match the basic block
containing the recursive call to the basic block that has the
goto statement. Instead, it mistakenly matches the basic block
to another similar basic block but with completely different
context. Meanwhile, DEEPBINDIFF finds the correct matching
shown in Figure [I0b] by considering both the semantics and
the program-wide structural information.

This real-world case study shows that DEEPBINDIFF is
very useful even when BinDiff can also achieve a very high
accuracy. The unique design of our system makes it more
accurate in harder scenarios that include function inline.

Memory Boundary Checking Failure. The second vulner-
ability (CVE-2016-6308) exists in OpenSSL v1.1.0 and the
prior versions, and gets fixed in v1.1.0a. The program fails to
check the length before memory allocation, allowing attackers
to allocate excessive amount of memory. As shown in List-
ing 2} the patch inserts a new condition check.

13

cmp qword ptr [rdi+1F8h], 454Ch
mov eax, 454Ch
mov r12, rdi

I
I

mov rdx, [rdi+98h] |
I

cmovnb rax, [rdi+1F8h] :
I

'

I

I

|

i
i
i
I
| mov 12 rdi
1| cmp qword pir [rdx+198h], 0
i
I
i
i
i

jz shortloc_3FEA8 cmp b, rax

jbe short loc_3FFFO

mov rdx, [rdi+98h]
cmp qword pir [rdx+198h], 0
jz shortloc_40018

(a) Matching Result from BinDiff

cmp qword ptr [rdi+1F8h], 454Ch
mov eax, 454Ch

mov r12, rdi

cmovnb rax, [rdi+1F8h]

cmp rbp, rax

jbe short loc_3FFF0

mov rdx, [rdi+98h]
mov r12, rdi

0
|

: mov rdx, [rdi+98h]
I

1 cmp qword ptr [rdx+198h], 0

|

|

I

|

cmp qword ptr [rdx+198h], 0
jz shortloc_40018

jz shortloc_3FEA8

(b) Matching Result from DEEPBINDIFF

Fig. 11: Memory Boundary Checking Failure

Listing 2: Memory Boundary Checking Failure

static int dtlsl_preprocess_fragment() {
size_t frag_off;
frag_len = msg_hdr—>frag_len;
if ((frag_off + frag_len) > len) ||
+ len > max_handshake_message_len(s)) {

SSLerr ();
return SSL_AD_ILLEGAL_PARAMETER;

}

// memory allocation

O 01N L BN~

using len

We then feed the vulnerable version (1.1.0) and a patched
version (1.1.0a) into the tools and observe the results. There
are a total of 10359 basic blocks for the version 1.1.0 binary,
and we collect a ground truth of 8622 basic blocks. BinDiff
and DEEPBINDIFF can correctly match 7204 and 7815 basic
blocks.

While both tools can achieve high accuracy, still, only
DEEPBINDIFF is able to correctly match the vulnerability
patch. More specifically, we expect diffing tools to identify the
patch as a new insertion, while still matching the original basic
blocks, for the vulnerability analysis. Depicted in Figure
BinDiff mismatches the vulnerable basic block with the new
condition check basic block, rendering the real matching basic
block unmatched (shown as white block). For DEEPBINDIFF,
it successfully matches the basic blocks and identifies the new
condition check as an insertion. This case study shows that
DEEPBINDIFF can identify inserted basic blocks accurately,
with the help of its design choices and Algorithm [I]

VIII. DISCUSSION
A. Compiler optimizations

Different compiler optimization techniques are one of the
major reasons for code transformation. For example, it is

TABLE VI: Compiler Optimizations

Optimizations DEEPBINDIFF Design

T) choose not to use sequential info as a part of context
for each instruction

2) exclude instruction sequence during block feature
vector generation

1) NLP technique is used to distill semantic information
1) treat the merged ICFG as an undirected graph

) generate random walks across function boundaries
2) avoid function level matching

3) k-Hop greedy matching is done on top of ICFG

rather than CFG S
1) register name normalization

instruction scheduling

instruction replacement
block reordering

function inlining

register allocation

reported that about 10% functions with GCC O2 optimization
have been transformed by function inlining technique [21].
DEEPBINDIFF is designed to handle common optimization
techniques as so to achieve high matching accuracy.

As shown in Table the design of DEEPBINDIFF takes
care of multiple most common compiler optimization tech-
niques [[15]. We deliberately choose to exclude some easy-to-
break assumptions such as the order of instructions and blocks,
CFG directions, function boundaries.

Particularly, when training the block feature vector gener-
ation model, instruction sequential information is not part of
context information. By considering ICFG as an undirected
graph, our system will not be affected by block reordering as
long as the two blocks are still k-hop neighbors. For function
inlining, DEEPBINDIFF generates random walks based on
ICFG, meaning control dependency information is extracted
regardless of function boundary changes. Also, we choose not
to perform function level matching as in BinDiff to avoid being
affected by function boundary changes. Finally, k-Hop greedy
matching is based on ICFG other than CFG, therefore, block
matching is not affected.

B. Limitations

Besides all the advantages, DEEPBINDIFF still has a few
limitations. First, in practice, certain blocks are often merged
by the compiler to reduce branch mispredictions. Hence, the
numbers of blocks for the two binaries can be changed. In this
case, DEEPBINDIFF could mistakenly categorize some blocks
as insertions or deletions since our system performs one-to-
one block matching. We argue that our tool can still match the
merged blocks to their most similar counterparts. Therefore, if
a block is semantic-rich (i.e., contains multiple instructions),
it will still be matched correctly to the merged block, leaving
only the less meaningful block unmatched.

Second, optimizations that drastically change the control
flow could thwart the effectiveness of DEEPBINDIFF. This is
due to the fact that our analysis heavily relies on ICFG to
extract graph structural information in order to differentiate
semantically similar blocks, big change of control flow can
significantly affect the results. Consequently, DEEPBINDIFF
is vulnerable to obfuscation techniques that completely alter
the CFG. Packing techniques [51]], [24] that encrypt the code
can also defeat our system. But please note that no existing
learning-based techniques can do a better job since they all
rely on control flow information.

Third, DEEPBINDIFF currently has no support for cross-
architecture diffing, which has become quite popular, espe-

14

cially in IoT related security research [29], [27], [19]. Poten-
tially, DEEPBINDIFF could solve this issue by lifting binaries
into IR first and then perform diffing in the same way. We
leave this as a furture work.

IX. RELATED WORK

A. Code Similarity Detection

Static Approaches. Static approaches usually transform bi-
nary code into graphs and then perform the comparison.
Bindiff [10], [25] performs many-to-many graph isomorphism
detection on callgraph to match functions and leverages CFG
matching for basic blocks. Binslayer [[12] further augments
the graph matching with the Hungarian algorithm to improve
the matching results. Pewny et.al. [49] searches bugs by
collecting input/output pairs to capture the semantics of a
basic block and perform graph matching. To improve runtime
performance, discovRE [27] uses lightweight syntax features
and applies pre-filtering before matching. However, the pre-
filtering may significantly affect the accuracy [29]. To avoid
heavy graph matching, Tracelet [20] converts CFGs into a
number of paths with fixed-length called tracelets and then
matches them via rewriting. Esh [17] decomposes the func-
tions into data-flow dependent segments named strands and
uses statistical reasoning to calculate similarities. GitZ [18]]
finds strands equality through re-optimization. BinGo [14]
performs selective function inlining and extracts partial traces
for function similarity detection. These techniques can only
decompose within functions to abstain from massive number
of fragments. BinHunt [30] uses static symbolic execution
and theorem proving to extract semantics. CoP [40] also uses
symbolic execution to compute the semantic similarity of
blocks and leverages the longest common sub-sequence of
linearly independent paths to measure the similarity.

Dynamic Approaches. Blanket Execution [26] executes func-
tions of the two input binaries with the same inputs and
compares monitored behaviors for similarity. iBinHunt [43]
extends the comparison to inter-procedural CFGs and reduces
the number of candidates of basic block matching by mon-
itoring the execution under a common input. BinSim [44],
which is specifically proposed to compare binaries with code
obfuscation techniques, relies on system calls to perform
dynamic slicing and then check the equivalence with symbolic
execution. Essentially, dynamic analysis based approaches
by nature suffer from poor scalability and incomplete code
coverage problem.

Learning based Approaches. Genius [29] forms attributed
CFGs and calculates the similarity via graph embeddings gen-
erated through comparing with a set of representative graphs
named codebook. Gemini [54] improves Genius by leveraging
neural network to generate function embeddings and trains
a Siamese network for similarity detection. aDiff [39] uses
a similar Siamese network with CNN to generate function
embeddings. This eliminates the need of manually-crafted
features. InnerEye [58] utilizes NLP techniques and LSTM-
RNN to automatically encode the information of basic blocks.
Asm2Vec [23]] adopts an unsupervised learning approach by
generating token and function embeddings using PV-DM
model. However, it only works on function comparison. Also,

it does not consider any program-wide CFG structural infor-
mation during analysis. SAFE [41]] leverages a self-attentive
neural network to generate function embeddings.

B. Graph Embedding Learning

HOPE [47] preserves higher-order proximity and uses gen-
eralized Singular Value Decomposition to improve efficiency.
TADW [56] is the first work that considers feature vectors for
nodes during matrix factorization. REGAL [32] also performs
factorization with node features. However, it only checks the
existence of features without considering the numeric values.

DeepWalk [48] is proposed to learn latent representations
of nodes in a graph using local information from truncated
uniform random walks. node2vec [31]] specifically designs
a biased random walk procedure that efficiently explores
diverse neighborhoods of a node to learn continuous feature
representations of nodes.

DNGR [13]] proposes a graph representation model based
on deep neural networks that captures the graph structure
information directly. SDNE [52]] designs a semi-supervised
model that has multiple layers of non-linear functions to
capture both the local and global graph structures. GCN [33]]
uses a localized first-order approximation of spectral graph
convolutions to perform semi-supervised learning on graphs in
a scalable way. Structure2Vec [16]] is proposed for structured
data representation via learning features spaces that embeds
latent variable models.

X. CONCLUSION

In this paper, we propose a novel unsupervised learning
based program-wide code representation learning technique
to perform binary diffing. To precisely match the blocks
within given binaries, we leverage NLP techniques to gen-
erate token embeddings which are further used to generate
block feature vectors containing semantic information. We then
generate inter-procedural CFGs (ICFGs), extract the program-
wide structural information from the ICFGs using TADW
algorithm and generate basic block level embeddings. Finally,
we propose a k-hop greedy matching algorithm to find op-
timal matching for the blocks. We implement a prototype
named DEEPBINDIFF and evaluate it against 113 binaries from
Coreutils, Diffutils and Findutils, 10 C++ binaries, and 2 real-
world vulnerabilities in OpenSSL under the scenarios of cross-
version and cross-optimization-level diffing. The results show
that our system could outperform state-of-the-art techniques
by a large margin.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their helpful and constructive comments. This work was sup-
ported in part by National Science Foundation under grant
No. 1719175, DARPA under grant FA8750-16-C-0044, and
Office of Naval Research under Award No. N00014-17-1-2893.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

15

(9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

“diffing-with-kam1n0,”
diffing-with-kam1n0/, 2019.

“GNU Coretuils,” https://www.gnu.org/software/coreutils/, 2019.
“GNU Difftuils,” https://www.gnu.org/software/diffutils/, 2019.
“GNU Findutils,” https://www.gnu.org/software/findutils/, 2019.

https://www.whitehatters.academy/|

“IDA Disassembler and debugger,” https://www.hex-rays.com/products/
ida/, 2019.

“indicators,” https://github.com/p-ranav/indicators/, 2019.
“InnerEye,” https://nmt4binaries.github.io//, 2019.

“LSHBOX,” https://github.com/RSIA-LIESMARS-WHU/LSHBOX/,
2019.

“OpenSSL,” https://www.openssl.org/, 2019.
“zynamics BinDift,” https://www.zynamics.com/bindiff.html, 2019.

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “Aeg: Automatic
exploit generation,” 2011.

M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop. ACM, 2013,
p. 4.

S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations.” in AAAI, 2016, pp. 1145-1152.

M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
“Bingo: Cross-architecture cross-os binary search,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 678-689.

K. Cooper and L. Torczon, Engineering a compiler. Elsevier, 2011.

H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in International Conference on
Machine Learning, 2016, pp. 2702-2711.

Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
ACM SIGPLAN Notices, vol. 51, no. 6, pp. 266-280, 2016.

——, “Similarity of binaries through re-optimization,” in ACM SIG-
PLAN Notices, vol. 52, no. 6. ACM, 2017, pp. 79-94.

, “Firmup: Precise static detection of common vulnerabilities in
firmware,” in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp.
392-404.

Y. David and E. Yahav, “Tracelet-based code search in executables,”
Acm Sigplan Notices, vol. 49, no. 6, pp. 349-360, 2014.

F. De Goér, S. Rawat, D. Andriesse, H. Bos, and R. Groz, “Now you
see me: Real-time dynamic function call detection,” in Proceedings of
the 34th Annual Computer Security Applications Conference. ACM,
2018, pp. 618-628.

T. Dietterich, “Overfitting and undercomputing in machine learning,”
ACM computing surveys, vol. 27, no. 3, pp. 326-327, 1995.

S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfus-
cation and compiler optimization,” in Security and Privacy (SP), 2019
IEEE Symposium on. IEEE, 2019.

Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang,
and X. Wang, “Things you may not know about android (un) packers:
A systematic study based on whole-system emulation.” in NDSS, 2018.

T. Dullein and R. Rolles, “Graph-based comparison of executable ob-
jects,” in Proceedings of the Symposium sur la Securite des Technologies
de Linformation et des communications, 2005.

M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium (USENIX Security). USENIX
Association, 2014.

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code.” in NDSS, 2016.
M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Binclone:
Detecting code clones in malware,” in Software Security and Reliability
(SERE), 2014 Eighth International Conference on. 1EEE, 2014, pp.
78-87.

https://www.whitehatters.academy/diffing-with-kam1n0/
https://www.whitehatters.academy/diffing-with-kam1n0/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://github.com/p-ranav/indicators/
https://nmt4binaries.github.io//
https://github.com/RSIA-LIESMARS-WHU/LSHBOX/
https://www.openssl.org/
https://www.zynamics.com/bindiff.html

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 480—491.

D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in International Conference
on Information and Communications Security. — Springer, 2008, pp.
238-255.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ~ACM, 2016,
pp. 855-864.

M. Heimann, H. Shen, T. Safavi, and D. Koutra, “Regal: Representation
learning-based graph alignment,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management.
ACM, 2018, pp. 117-126.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30-37, 2009.

H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics (NRL), vol. 2, no. 1-2, pp. 83-97, 1955.

N. Lageman, E. D. Kilmer, R. J. Walls, and P. D. McDaniel, “Bindnn:
Resilient function matching using deep learning,” in International Con-
ference on Security and Privacy in Communication Systems. Springer,
2016, pp. 517-537.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on Machine Learning, 2014,
pp. 1188-1196.

Y. Li, W. Xu, Y. Tang, X. Mi, and B. Wang, “Semhunt: Identifying
vulnerability type with double validation in binary code.” in SEKE,
2017, pp. 491-494.

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “adiff:
cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 667-678.

L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 389—-400.

L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 309-329.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-
procedural control flow,” in International Conference on Information
Security and Cryptology. Springer, 2012, pp. 92-109.

J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,” in
Proceedings of the 26th USENIX Security Symposium, 2017.

J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in IFIP International
Information Security Conference. Springer, 2015, pp. 416-430.

E. W. Myers, “Ano (nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, pp. 251-266, 1986.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2016, pp. 1105-1114.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701-710.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-

16

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

architecture bug search in binary executables,” in Security and Privacy
(SP), 2015 IEEE Symposium on. 1EEE, 2015, pp. 709-724.

K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of documentation, vol. 28, no. 1, pp.
11-21, 1972.

X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok:
Deep packer inspection: A longitudinal study of the complexity of
run-time packers,” in 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015, pp. 659-673.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp. 1225-1234.

S. Wang and D. Wu, “In-memory fuzzing for binary code similarity
analysis,” in Proceedings of the 32nd IEEE/ACM International Con-
ference on Automated Software Engineering. 1EEE Press, 2017, pp.
319-330.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similar-
ity detection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 363-376.
Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in Proceedings of the 39th International Conference on Software
Engineering. 1EEE Press, 2017, pp. 462—472.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015, pp.
2111-2117.

H.-E. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Parallel matrix
factorization for recommender systems,” Knowledge and Information
Systems, vol. 41, no. 3, pp. 793-819, 2014.

F. Zuo, X. Li, Z. Zhang, P. Young, L. Luo, and Q. Zeng, “Neural
machine translation inspired binary code similarity comparison beyond
function pairs,” in NDSS, 2019.

	Introduction
	Problem Statement
	Problem Definition
	Assumptions

	Approach Overview
	Pre-processing
	CFG Generation
	Feature Vector Generation

	Embedding Generation
	TADW algorithm
	Graph Merging
	Basic Block Embeddings

	Code Diffing
	k-Hop Greedy Matching

	Evaluation
	Experimental Setup, Datasets & Baseline Techniques
	Ground Truth Collection
	Effectiveness
	Parameter Selection
	Efficiency
	Comparison with InnerEye+k-Hop
	C++ Programs Testing
	Case Study

	Discussion
	Compiler optimizations
	Limitations

	Related Work
	Code Similarity Detection
	Graph Embedding Learning

	Conclusion
	References

