
Judicious QoS using Cloud Overlays
Osama Haq
Tufts University

Cody Doucette∗
Raytheon BBN

John W. Byers
Boston University

Fahad R. Dogar
Tufts University

ABSTRACT
We revisit the long-standing problem of providing network QoS to
applications, and propose the concept of judicious QoS – combining
the cheaper, best effort IP service with the cloud, which offers a
highly reliable infrastructure and the ability to add in-network ser-
vices, albeit at higher cost. Our proposed J-QoS framework offers a
range of reliability services with different cost vs. delay trade-offs,
including: i) a forwarding service that forwards packets over the
cloud overlay, ii) a caching service, which stores packets inside the
cloud and allows them to be pulled in case of packet loss or disrup-
tion on the Internet, and iii) a novel coding service that provides
the least expensive packet recovery option by combining packets of
multiple application streams and sending a small number of coded
packets across the more expensive cloud paths. We demonstrate the
feasibility of these services using measurements from RIPE Atlas
and a live deployment on PlanetLab. We also consider case studies
on how J-QoS works with services up and down the network stack,
including Skype video conferencing, TCP-based web transfers and
cellular access networks.

CCS CONCEPTS
• Networks→ Overlay and other logical network structures;
Data center networks; Error detection and error correction;
Network layer protocols; Network measurement.

ACM Reference Format:
Osama Haq, Cody Doucette, John W. Byers, and Fahad R. Dogar. 2020.
Judicious QoS using Cloud Overlays. In Proceedings of CoNEXT ’20. ACM,
New York, NY, USA, 14 pages. https://doi.org/TBA

1 INTRODUCTION
The limitations of IP’s best effort service are well-known: it pro-
vides no guarantees on latency, packet loss, or bandwidth, which is
restrictive, especially for interactive applications such as voice and
video conferencing that require quality of service (QoS) support
from the network. Despite decades of research in this area, from
“first generation” QoS proposals that required in-network changes
(e.g., IntServ [21]) to overlay based solutions in the late 90’s and
early 2000’s (e.g., RON [14], OverQoS [53]), an ideal solution still

∗This work was completed when the author was at Boston University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN TBA. . . $TBA
https://doi.org/TBA

remains elusive – a solution that can offer the reliability and per-
formance of in-network solutions while being as easy to deploy as
overlay-based solutions.

Fortunately, the emergence of the cloud offers us an opportu-
nity to revisit this problem. By the cloud, we refer to a distributed
network of data centers (DCs), inter-connected through a private
network (e.g., Azure, EC2, Google Cloud). For any communication
between two end-points, we can potentially use the cloud as an
overlay, with DCs acting as an insertion point for in-network ser-
vices [35, 40]. A cloud-based overlay offers unique opportunities:
cloud paths are well-provisioned, offering low jitter and very high
reliability; and each DC has visibility into many users and appli-
cations, so it can act as a unique vantage point for control and
insertion of in-network services. On the flip side, using the cloud as
an overlay can be costly: cloud providers charge for the use of their
resources (e.g., processing, network connectivity), with wide area
network (WAN) bandwidth being particularly expensive [35, 37, 59].
Therefore, we argue that the most effective use of the cloud as an
overlay is one that does so in a judicious manner, in conjunction
with the cheaper, best effort Internet paths.

Toward this end, we present the Judicious QoS (J-QoS) frame-
work, which uses the cloud infrastructure to provide enhanced
network QoS. The main goal of J-QoS is to provide reliable and
timely packet delivery to demanding applications. J-QoS achieves
this goal by offering three services with different cost vs. perfor-
mance trade-offs.

The forwarding service is the simplest one: it forwards packets
over the cloud overlay, similar to how IP forwards packets on the
Internet, but with the additional reliability and lower latency of
cloud paths. A potential use case of this service is switching flows
with consistently poor Internet paths onto the cloud overlay, similar
to VIA [40]. The forwarding service acts as a building block for two
new services, which use the storage and processing capability of
the cloud, in addition to leveraging the high quality cloud paths.

The caching service provides (short term) storage of packets at a
DC, leveraging the storage capability of the cloud, a functionality
missing in IP routers. Unlike traditional caching approaches (e.g.,
CDNs), we use the cache for fast packet recovery. In our primary
use case, a copy of the packet is forwarded along the cloud path
and cached at a DC close to the receiver. In case of a packet loss
on the direct Internet path, the receiver retrieves the lost packet
from its nearby DC’s cache, rather than going all the way to the
source. Because typical Internet path loss rates are low (< 1%),
this reactive approach used by the caching service saves on the
egress bandwidth of the cloud compared to the more pro-active
forwarding service.

Finally, we present a novel coding service, which provides the
most economical option for protecting against packet losses on the
best effort Internet paths, albeit at a slight increase in delay. The
coding service builds on top of the caching service but also leverages
the processing capability of the cloud, in addition to its storage. It

https://doi.org/TBA
https://doi.org/TBA

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

relies on the observation not all receivers experience a loss at the
same time, so instead of caching the original packets at a DC near
the receiver, we store a small number of coded packets. To recover a
lost packet on the Internet, these coded packets are combined with
data packets from other receivers, using an on-demand cooperative
recovery process. For wide-area paths, this cooperative recovery
process is still faster compared to relying on the source to retransmit
a packet. The coding service, thus, exploits a number of observations
and trends: encoding packets across users is made feasible because
of cloud’s visibility into many concurrent streams, and independent
losses on Internet paths. Similarly, cooperative recovery, using other
receivers, can be feasible because of the low (and decreasing) latency
between end-points and their nearby DCs.

While these services run in the cloud, J-QoS also provides suit-
able end-point support, which is important for fully leveraging the
benefits of these services, including an API to access the services
and a receiver driven loss detection mechanism. The API allows
end-point applications to specify their latency budget, allowing
J-QoS to choose the lowest cost service that would meet this re-
quirement. The loss detection mechanism runs on the receiver; it
predicts losses based on past packet arrivals and proactively under-
takes loss recovery with the help of a suitable service running on a
nearby DC (e.g., caching or coding).

We have implemented a prototype of J-QoS that logically sits just
below the transport (e.g., TCP/UDP), providing enhanced reliability
services on top of IP’s best effort service. It seamlessly works with
both TCP and UDP based applications (including encrypted traffic)
without requiring any application modification, enabling a holistic
evaluation of J-QoS along two broad themes: i) the feasibility and
benefits of various J-QoS services in providing timely packet deliv-
ery, through measurements on RIPE Atlas [12], and a deployment
on the public cloud and PlanetLab [48], and ii) interplay of these
services with protocols up and down the stack, with the help of
case studies.

Our measurements on RIPE Atlas show the feasibility of our
proposed services through latency measurements of the public
Internet and the cloud overlay paths. For example, we observe that
80% of the nodes can reach their nearest data center within 20ms,
resulting in caching service recovering packets within a quarter of
a round-trip time.

Our deployment on a public cloud for over a month helps us
quantify the wide area performance improvement for PlanetLab
paths. For example, our results show that the coding service is
able to recover more than 70% of losses, the recovery is typically
within half a round-trip time, and the associated overhead of using
the cloud judiciously is far less compared to other services (e.g.,
forwarding).

Through case studies, we also evaluate how J-QoS interacts with
protocols up and down the network stack – we show that: i) J-QoS’s
enhanced packet reliability can improve the user’s QoE experience
for a Skype video conferencing scenario, ii) J-QoS can speed up short
web transfers by avoiding TCP timeouts and congestion avoidance
caused by bursty losses, iii) under what scenarios it maybe feasible
to use J-QoS on mobile networks, in terms of bandwidth, energy
consumption, and latencies to nearby DCs.

Overall, we make the following contributions in this paper.

• A case for the judicious use of cloud overlays, using them in
conjunction with the best effort Internet to meet the desired
application QoS (§2).

• Design and implementation of J-QoS framework, which includes
multiple reliability services, each using the cloud in a different
way, providing a different cost-latency trade-off (§3).

• Design and implementation of a novel coding service that in-
cludes a practical, tunable coding module and a receiver-driven
protocol for cooperative packet recovery (§3).

• A multi-faceted evaluation of J-QoS, using both network and
user level metrics, on diverse networks (RIPE Atlas, PlanetLab,
cellular) and applications (video conferencing, short web trans-
fers) (§5).

2 THE CLOUD AS AN OVERLAY
We consider using a cloud overlay as a potential solution to the
network QoS problem. Some interactive applications, such as Skype
and Google Hangouts, have already migrated their services to at
least partial use of cloud relays [40], but there has been little work
in studying how to best utilize the cloud for such QoS sensitive
applications. With COVID-19 and the increasing reliance on these
applications (e.g., Zoom), a systematic way to use the cloud overlays
has become even more important. To approach this problem, we
characterize the properties of cloud paths in terms of network
conditions and cost, and ask: can the cloud be leveraged in a cost-
efficient way to make up for the Internet’s performance limitations?

Benefits. There are two key advantages of using the cloud as an
overlay:

(1) ImprovedPerformance.Measurements show that cloud paths
are highly reliable with a typical downtime target of a few min-
utes per month [30, 36]. Recent studies show that inter-DC
paths have an order of magnitude lower loss rate, better latency,
and significantly higher bandwidth, compared to public Inter-
net paths [15, 36]. Similar benefits are being extended all the
way up to ISP networks, with major cloud operators providing
bandwidth-guaranteed pipes between their data centers and
customer premises (e.g., Azure ExpressRoute [9], AWS Direct
Connect [2]). These advances in the WAN as well as at the last
hop are poised to make the entire cloud overlay highly reliable
with predictable latency between end-points.

(2) Ability to insert in-network services. The cloud infrastruc-
ture provides the ability to implement in-network services in
software in a scalable and fault tolerant fashion, with the help
of network function virtualization (NFV) [49, 50]. These in-
network services can leverage the storage and processing capa-
bilities of the cloud to help with timely packet delivery, such as
caching or coding of packets – functionality that is infeasible
to support in today’s IP routers.

Cost. Although the cloud as an overlay provides significant ben-
efits, it can be expensive to use, especially due to the high cost
of inter-DC bandwidth. Anecdotal evidence, as well as our discus-
sions with operators, suggests that an inter-continental leased line
could be an order of magnitude or more expensive compared to
a connection to the best effort Internet. This reasoning underlies

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

forwarding

Public Internet Path

Cloud Overlay

DC1

S

DC2

R

caching coding

cc
δ

Figure 1: J-QoS Services - An Overview. Forwarding sends
packets using the cloud overlay. Caching stores a copy of
packet at DC2 while Coding only sends a small number of
coded packets across the inter-DC path.

several recent proposals that try to make efficient use of inter-DC
bandwidth in order to reduce their network costs [35, 39, 41, 45].

Judiciously Using the Cloud. We argue that in current settings,
we only need to rely on the cloud whenever the best-effort Internet
cannot provide the desired QoS. For example, an application using
an Internet path with 1% loss is still getting 99% of its packets
delivered, so it could potentially make minimal use of the cloud and
yet get its desired QoS. To this end, we propose judicious use of
cloud resources: leveraging the availability, performance, and other
benefits of cloud only when the best-effort Internet fails to meet
the desired QoS. The key to our idea is to not only leverage the
performance benefits of cloud paths (which other overlay proposals
like VIA [40] propose), but to also judiciously use the storage and
processing capability of the cloud, resulting in novel cloud-based
services for timely packet delivery.

3 J-QOS DESIGN
J-QoS offers cloud-based reliability services that enhance the best
effort service provided by IP. Figure 1 shows the main use-case for
the J-QoS services: there is a sender (S) sending latency sensitive
traffic (e.g., voice) to a receiver (R) over a wide-area Internet path
(e.g., across continents). Both the sender and the receiver have
nearby DCs (DC1 is close to the sender while DC2 is close to the
receiver) with a small access latency (𝛿) and the only cost incurred
at the DCs is their egress bandwidth charge, which is denoted by 𝑐 .
These DCs run the J-QoS services, which leverage different aspects
of the cloud (storage, processing, etc), and offer trade-offs in terms
of latency and cost, as we describe next.

The forwarding service forwards packets over the cloud overlay,
leveraging the reliable inter-DC paths and high egress bandwidth
of DCs. In the typical use case of forwarding, the sender forwards
the packet to DC1, which forwards it to the receiver using the
cloud overlay (via DC2), similar to VIA [40]. The resulting packet
delivery latency is comparable to the direct Internet path latency,
as we show in our evaluation (§5.1). However, it incurs the cloud
bandwidth cost of 2𝑐 (egress bandwidth of both DC1 and DC2).

Our use case of forwarding service is similar to VIA[40], which
performs selective forwarding and chooses between cloud relay or
Internet path on the basis of performance history. Our framework,
on the other hand, offers other services that have lower costs with
slightly higher latency, as we describe next.

The caching service, built on top of the forwarding services,
provides on-demand delivery by storing packet at the DC. In the
typical case, a copy of the packet is sent on the cloud overlay – from
the sender to DC2 via DC1 – but instead of forwarding it all the way
to the receiver, it is cached at the DC close to the receiver. In case
of a packet loss on the Internet path, the receiver can initiate a pull
request to get the missing packet from the nearby DC (i.e., DC2).
Compared to the forwarding scenario described above, caching
service can reduce the cost from 2𝑐 to 𝑐 but at the expense of
additional delay which is at least 2𝛿 .

Our coding service (Figure 2) uses cloud processing and generates
a small number of coded packets at DC1; these coded packets are
sent across the inter-DC path and cached at DC2. When a receiver
tries to pull a missing packet, the DC undertakes a cooperative
recovery process with the help of other (nearby) receivers. This
service is the extreme point in this design space – it brings the cost
down to only 𝛼 · 𝑐 (where 𝛼 is a small constant « 1). However, it
adds some latency by requiring an additional delay 4𝛿 time once
the receiver detects a loss. With latencies to nearby DCs (𝛿) getting
smaller and the best effort Internet being sufficient most of the time,
the coding service can be a cheaper (but with higher latency) alter-
native to the caching service, which in turn, is a cheaper alternative
to the forwarding service.

To fully benefit from these services, J-QoS also provides suit-
able end-point support, in the form of a reliability layer that log-
ically sits in between the transport and network layers, thereby
enabling support for legacy applications, including both encrypted
and non-encrypted traffic. Unlike today’s sender-based recovery
mechanisms (e.g., TCP), J-QoS includes a receiver-driven recovery
protocol (§3.2), which proactively detects losses, and undertakes
loss recovery with the help of a nearby DC. Finally, J-QoS employs
a simple API and service selection mechanism (§3.3): given an ap-
plication latency budget, it chooses the cheapest service that can
meet the requirement.

The above simplified overview only considers the bandwidth cost
for the services, but in reality, the cost depends on the deployment
scenario. In §3.4, we discuss how bandwidth costs would dwarf
other costs (e.g., processing) if J-QoS services are deployed on a
public cloud (e.g., AWS), and how advance services like coding
would provide significant cost savings over a service like forwarding
(e.g. VIA). Finally, we also discuss how J-QoS services can be used
to support a diverse range of scenarios – beyond the primary use
case considered in this paper – including support for multicast,
partial cloud overlays (where only a single DC is used rather than a
full overlay), selective duplication, and different cost models (§3.5).

3.1 Coding Service
We focus on the design of the coding service as it makes use of both
the forwarding and caching services. Our coding service, CR-WAN,
uses a full overlay, where multiple senders send a copy of their
packets to their nearby DC (Fig. 2). DC1 generates a small number
of coded packets, which are sent to DC2 using the inter-DC cloud
path. The key aspect of CR-WAN is in how it generates these coded
packets – some important considerations include which packets
are considered together, what type of coded packets are generated,

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

Wide Area Path

Coded Packets

C2

567

123S1

DC1
C1

DC2

Data Packets

R2S2

R1

Figure 2: Coding Service Overview. DC1 encodes packets,
DC2 stores them and performs recovery upon request.

and at what rate. CR-WAN uses a novel cross-stream coding de-
sign: coding is done across a subset of user streams, which protects
against bursty losses or even complete outages on a network path.
For example, if (𝑆1-𝑅1) experiences an outage, J-QoS undertakes
a cooperative recovery process by combining the coded packets at
DC2 with the data packets of 𝑆2-𝑅2 to recover the lost packets.

The cooperative recovery process, however, has its own set of
challenges. First, decoding overhead can be high because it requires
getting data packets from all other flows in the encoding subset.
To ensure that this procedure is invoked only when necessary,
CR-WAN also uses in-stream coding, whereby it generates a small
number of forward error correction (FEC) packets within a single
user stream, thereby avoiding the potentially costly cooperative
recovery for random losses. Second, during cooperative recovery,
some packets could be lost or delayed, especially if many streams
are involved – we call this the straggler problem. J-QoS’s cross-
stream coding accounts for potential stragglers by generating extra
coded packets, thereby treating packets from stragglers similarly to
losses on the direct Internet path. We elaborate on how CR-WAN
deals with these challenges in §3.1.2.

While CR-WAN provides a cost-effective recovery option, its
effectiveness depends on a number of factors, such as the latency
and nature of losses on the direct Internet paths, latency between
DC to end hosts, cloud’s visibility into concurrent streams, and
independent losses across multiple flows. Through CR-WAN’s de-
ployment on PlanetLab (§5.2), we shed light on these factors and
highlight scenarios where CR-WAN is able to provide unique ben-
efits compared to other potential loss mitigation techniques (e.g.
FEC).

We now elaborate on the key pieces of CR-WAN encoding pro-
cess: what packets are considered together for coding (the coding
plan) and at what rate are the encoded packets generated (coding
rate).

3.1.1 Coding Plan
The coding plan needs to account for spatial and temporal con-
straints while forming a batch of packets on which coding will be
applied. By spatial constraints, we mean that only flows with the
same destination DC can be considered together for cross-stream
coding. For example, if DC1 is in the East US region and is receiving
traffic destined for a European DC and an Asian DC, it forms two
groups, one for each destination DC. Each flow belongs to one
group and DC1 keeps a track of the mapping of flows to groups.
Within a group, we pick a further subset of flows based on the
arrival timing of their packets to form coding batches.

Temporal constraints restrict packets in a batch to only those
packets that arrive within a short interval – this imposes an en-
coding delay. For in-stream coding, the encoding delay is well-
understood (and is considered a limitation of FEC for low bitrate
applications) as we need to wait for all packets in a block to arrive
before we can generate the FEC packets. However, J-QoS’s use of
cross-stream coding ensures that encoding delay is typically lower,
because packets from different user streams can arrive within a
short time-frame, even if each application individually is generating
low bitrate traffic. Finally, our coding module limits the block size
(for a given level of protection) and uses timeouts to bound delay.

3.1.2 Coding Rate
Given a batch of data packets arriving at DC1, J-QoS needs to
decide how many cross-stream and in-stream coded packets to
generate. For both types, the coded packets are created using a
block code (for example, Reed-Solomon codes), which allows J-QoS
to generate multiple coded packets per batch if desired. Figure 3(a)
depicts some of the possible trade-offs, for a batch of 20 packets
from four synchronous (for simplicity) flows, A-D. In this depiction,
in-stream encoding proceeds horizontally: a single FEC packet
(𝑌𝑖) is produced for each flow 𝑖 . Cross-stream encoding proceeds
vertically: two cross-stream packets are produced from groups of
four packets across flows, i.e., 𝐴2, 𝐵2, 𝐶2, and 𝐷2 are combined to
generate coded packets 𝑋3 and 𝑋4.

Coding logically proceeds with two rates: an in-stream encoding
rate of 𝑠 < 1 coded packets per within-flow data packets, and a
cross-stream encoding rate of 𝑟 < 1 coded packets per data packet,
where the data packets are selected among at most 𝑘 different
flows.1 Note that DC1 must also include information in the coded
packets about which flows and sequence numbers are represented,
to facilitate later recovery. In our depicted setting, we have 𝑘 = 4,
𝑟 = 2

4 and 𝑠 = 1
5 , but in practice we use fewer coded packets for a

batch of data packets, with the typical overhead of coded packets
less than 20%.

Coded packets provide protection in multiple ways. In-stream
encoding packets protect primarily against random loss, much like
traditional FEC, providing a first line of defense: providing faster
recovery for random losses. As depicted in Figure 3(b), packet 𝑌𝐴
can recover from the loss of𝐴3. Cross-stream encoding, on the other
hand, is both much more powerful (it can recover both random and
bursty losses), but also incurs a potentially higher delay because of
cooperative recovery (§3.2). In Figure 3(d), if some of 𝐶’s packets
are also lost on the direct path, additional protection using more
encoding packets could enable recovery at both 𝐴 and 𝐶 .

CodingAlgorithmOverview. DC1 cross-stream encoding2 groups
the arriving packets based on their destination DC. Within these
groups, packets are selected randomly and flows are not pinned
together. DC1 utilizes multiple timer based queues with strict flow
occupancy limits to deal with varying packet arrival times. In case
a receiver goes offline, the encoding process chooses another flow
and can generate multiple coded packets to handle the straggler
problem during the recovery.
1We deviate from the standard notation of block coding theory, where 𝑘 data elements
are encoded to generate a block of size 𝑛, yielding (𝑛 − 𝑘) coded packets. Data rate
and timing constraints may require us to code before 𝑘 packets are available.
2The details of the J-QoS encoding algorithm can be found in appendix A.

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

(a) cross-stream and in-
stream encoding.

(b) 𝑌𝐴 protects flow 𝐴
(in-stream).

(c) 𝑋 ’s protect flow 𝐴
(cross-stream).

(d) 𝑋 ’s protect 𝐴 and
𝐶 (cross-stream).

DC

A B

D

C

1

2

3

4
Decoded

Packet

(e) Cooperative Recovery.

Figure 3: Coded Packet Generation and Recovery.

3.2 Receiver-Driven Recovery Protocol
For the caching and coding services, J-QoS uses a receiver-driven
recovery protocol: the onus is on the receiver to quickly detect
packet loss and undertake recovery with the help of its nearby
DC. The key challenge in loss detection is how to make a fast,
accurate prediction of whether a packet is lost (and thus needs to
be recovered using the nearby DC).

The caching and coding services provide (short term) storage
of packets inside a DC. For any packet using these services, there
should be an associated timeout value and an identifier that can be
used to retrieve/pull that packet. These concepts are well known
in the context of prior proposals that support in-network caching
(e.g., NDN [38], XIA [33], etc) or indirection-based architectures
(e.g., i3 [52]). For the use cases considered in this paper, in-memory
caching of packets is sufficient, but other scenarios could benefit
from longer term storage of the packets (e.g., DTN [27], Slack-
Stack [25]). Similarly, any unique identifier schema (e.g., XIDs [33],
URIs [38], etc) can be used, although for convenience our prototype
uses unique packet sequence numbers.

Loss Detection. In J-QoS, the receiver detects a loss if either a gap
in sequence numbers is detected (the simple case) or a timer expires
for the next expected packet. Setting a suitable timeout value – low
enough for fast recovery, but high enough not to cause spurious
timeouts – requires learning and predicting packet arrival times.
While this opens up the possibilities to use machine learning algo-
rithms. Our current design uses a simple two-state Markov model
that works well for our workloads. The model uses a small timeout
value for packets arriving within a burst (i.e., sub-RTT scale), and
a long timeout value across packet bursts or application sessions.
These values are chosen based on previously observed inter-arrival
times of packets and J-QoS loss detection module switches back
and forth between them accordingly.

Once a NACK is sent to the nearby DC, the recovery depends on
the service being used. In the case of caching, recovery is simple
as the data packet can be transmitted to the requesting receiver.
CR-WAN’s recovery could be more involved, as it may need to
undertake cooperative recovery.

Cooperative Recovery. Figure 3(e) shows the steps involved in
the cooperative recovery protocol. After receiving a NACK from
receiver 𝐴 (step 1), DC checks that there are sufficient cross-stream
coded packets to conduct the recovery process. If so, DC then sends
cooperative requests to relevant receivers since they have the data

packets needed to decode the missing packets (step 2). The J-QoS
module at the receivers stores the data packets for few(1-2) RTTs
and purges them after this time.

DC then processes any incoming cooperative recovery responses
from the solicited receivers (step 3). By tracking responses, DC can
tabulate the number of cooperative responses for each recovery
event. For each loss, once the number of responses is equal to 𝑘 − 1
then recovery is possible. DC then decodes the lost packets and
sends them to the receiver (4). Depending on the number of cross-
stream coded packets, DC may only require a few of the receivers
to respond in a timely fashion, thereby ignoring stragglers (such as
𝐶 in Figure 3(e)) that can cause delay in recovery. Since recovery
is time sensitive, the protocol fails silently if not enough coded
packets or cooperative recovery responses are received within a
set deadline. We discuss these conditions under which recovery is
not possible in Section 5.2.

3.3 J-QoS End-to-End Workflow
J-QoS services not only require adequate end-point support in the
form of loss detection and recovery but also a way for applications
to specify their demands. We now describe how J-QoS framework
selects and switches between services according to application
demands and changing network conditions.

API and Service Selection. Applications registering with J-QoS
use a simple register(...) API to express their latency budget
and target destination. Based on the budget, J-QoS selects the lowest
cost service that can meet this requirement. As our services operate
on a continuous spectrum, with CR-WAN being the cheapest and
forwarding being the expensive, J-QoS service selection module
picks the cheapest service as long as it can meet the latency budget.
In our evaluation, we show that these services operate in different
delay regions and can be mapped to a latency demand (§ 5.1).

End hosts using J-QoS also use register(...) to bootstrap with
themembershipmanagement module running on a central DC. This
module relays nearest DC location as well as latency information,
required for service delay computation, to the registering end host.

For packet routing, our base forwarding service decides the
next hop based on the destination address of the packet. Given the
small scale of the overlay network in J-QoS, the next hop decision
is simple and made in a centralized fashion. The next hop could
be another J-QoS service, an end-point (e.g., the receiver), or a
multicast group.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

𝑣𝑑𝑐 VM instance price ($/hr) 𝑖 Ingress
𝑓𝑑𝑐 # of flows sharing the VM 𝑒 Egress
𝑡 𝑗 Time duration of flow j 𝑝 Internet Packet loss rate
𝑏𝑑𝑐 Bytes sent/received at DC 𝑟 Cross-stream coding rate
_ Unit bandwidth price ($/GB) 𝑠 In-stream coding rate
Δ𝑁 Total NACK bytes Δ𝑐𝑟𝑠𝑝 Coop response bytes
Δ𝑐𝑟𝑒𝑞 Coop request bytes 𝐵𝑓 𝑤𝑑 Bandwidth cost of fwd
𝐵𝑐𝑎𝑐ℎ𝑒 Bandwidth cost of caching 𝐵𝑐𝑜𝑑 Bandwidth cost of coding
𝐶𝑐𝑜𝑑 Compute cost of coding 𝐶𝑓 𝑤𝑑−𝑐𝑎𝑐ℎ𝑒 Compute cost of fwd & cache

Table 1: Notations for the cost model.

Delay Computation. J-QoS service selection module uses the des-
tination of the application flow to calculate the service delay. Some
of the delays, such as latency between DC1-DC2 are pre-computed
and stored at each end host during initial bootstrap. Other delays
such as S/R-DC latency (𝛿) and S-R latency are initially assumed to
be average values based on the latency of existing end-points com-
municating with their nearby DCs. The delay values are updated
once communication starts between the end-points.

Feedback. Finally, the service selection decision is communicated
to the J-QoS sending module so it can route the packets accordingly.
The service selection mechanism receives the packet delivery sta-
tistics from the receiver and can decide to upgrade to an improved
service, if the existing service is not meeting the applications la-
tency demand. As our caching and coding services mask packet loss
from the sender, J-QoS can use this feedback information to indicate
congestion to higher layers that may require this information (e.g.
TCP).

3.4 Deployment Model and Cost
Deployment model. We believe a J-QoS-like service can poten-
tially be deployed by the cloud infrastructure provider, an ISP, or
a third-party service provider who pays the cloud operator only
for the infrastructure usage. Users can explicitly opt into using
J-QoS if they require a more reliable packet delivery service – for
example, implemented as a paid service or added value proposition.
One recent example of a similar paid service is the network tier
service by Google Cloud [5], which offers packet delivery using
either standard transit ISP (at lower cost) or Google’s own network
(at higher cost) between its DCs [4].

The deployment model may also have implications on the prac-
tical usage of J-QoS design. For example, an ISP or cloud provider
with full control over its resources (e.g., using SDN [37]) may prior-
itize the inter-DC traffic for even higher resilience and lower delay,
leading to even higher recovery efficiency. An ISP providing the
service can also reduce sender overhead by duplicating the packets
in the core as well.

Deployment Cost. We use a simple model to estimate the cost of
J-QoS services for a single flow (Tables 1 & 2). This model estimates
compute and bandwidth cost of each service; we do not consider
storage cost, as the J-QoS services store packets in the local (free)
storage of the cloud virtual machine (VM).

The compute cost of a VM instance in a DC is shared among all
the flows traversing it. The coding service requires encoding and

DC1 DC2
𝐵𝑓 𝑤𝑑 𝑏_𝑖𝑑𝑐1 + 𝑏_𝑒𝑑𝑐1

𝑏_𝑖𝑑𝑐2 + 𝑏_𝑒𝑑𝑐2
𝐵𝑐𝑎𝑐ℎ𝑒 (𝑏 + Δ𝑁)_𝑖𝑑𝑐2 + 𝑏𝑝_𝑒𝑑𝑐2
𝐵𝑐𝑜𝑑 𝑏_𝑖𝑑𝑐1 + 𝑏 (𝑟 + 𝑠)_𝑒𝑑𝑐1

(𝑏 (𝑟 + 𝑠) + Δ𝑁 + Δ𝑐𝑟𝑠𝑝)_𝑖𝑑𝑐1
+(𝑏𝑝 + Δ𝑐𝑟𝑒𝑞)_𝑒𝑑𝑐2

𝐶𝑓 𝑤𝑑−𝑐𝑎𝑐ℎ𝑒 𝑣𝑑𝑐1/𝑓𝑑𝑐1 · 𝑡 𝑗 𝑣𝑑𝑐2/𝑓𝑑𝑐2 · 𝑡 𝑗
𝐶𝑐𝑜𝑑 𝛼 · (𝑣𝑑𝑐1/𝑓𝑑𝑐1 · 𝑡 𝑗) 𝛼 · (𝑣𝑑𝑐2/𝑓𝑑𝑐2 · 𝑡 𝑗)

Table 2: J-QoS Cost Model. Service cost is the sum of band-
width (𝐵) and compute (𝐶) cost at DC1 and DC2.

decoding of packets, and hence has a higher cost (represented by
𝛼) compared to the other services.

The bandwidth cost (𝐵) of a single flow at a DC is the sum of
the ingress and egress bandwidth cost at that DC. For forwarding
service, the same amount of bytes pass through both DCs; for the
caching service, DC2 only sends packets in case of Internet packet
loss; and the coding service utilizes cross and in-stream encoding
to reduce egress cost at DC1; however, cooperative recovery adds
overhead at DC2. Finally, the bandwidth costs could be different
across DCs as cloud providers typically have different prices for
different regions.

We used this model in our evaluation (§5.1.1) to compare the ac-
tual costs of using the J-QoS services under a range of scenarios. The
key takeaways are: i) the bandwidth cost dwarfs the compute cost,
so coding service is the cheapest option, ii) current pricing schemes,
which include free ingress bandwidth and expensive egress cost in
certain regions, are helpful for the coding service, but the coding
service remains a better choice even if we relax these conditions, iii)
coding service remains the cheapest option for typical loss rates, but
for persistently high loss rates (or outages) it is more economical
to move to caching or forwarding.

Currently our model does not provide support for storage costs
and excludes the cost of duplication at the sender. We discuss how
to expand this model to include more use cases in section §7.

3.5 Other Use Cases
We now discuss a number of other use-cases, involving the services
(forwarding and caching), how applications use these services (e.g.,
selective duplication), and cost models.

Forwarding. For even higher reliability, we can use both the In-
ternet and the cloud overlay: the sender can use the forwarding
service to transmit a copy of the packet to the receiver. This use
case is most beneficial for mission critical applications like financial
transactions [11]. In contrast, a partial overlay (single DC) scenario
may not offer the benefits of reliable inter-DC paths, but it costs
less, and can still benefit from the high egress bandwidth of the
DC. This use case can be extended to support a multicast scenario:
the sender sends its stream to the cloud forwarding service which
forwards it to the multicast group, again leveraging its high egress
bandwidth. This scenario can be useful for applications like video
streaming, software distribution, etc.

Caching. The basic caching use-case described earlier could be
extended to support a hybrid multicast, which provides a cheaper
alternate to the cloud-based multicast that uses the forwarding

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

service only. In hybrid multicast, the sender uses the public Internet
to send its stream to all the receivers; a copy of the stream is sent
to the nearby DC where it is cached. If a receiver fails to receive a
packet, it goes to the DC and retrieves it.

The caching service is also useful for mobility scenarios, provid-
ing an on-path caching/rendezvous point for mobile-hosts, similar
to Internet architectural proposals like NDN [38], XIA [33] and
i3 [52]. For example, a mobile sender only sends packets to a DC,
where they are cached. The receiver, whenever it is online, pulls
the packets from the nearby DC rather than requiring the mobile
sender to come online and retransmit the packets.

Selective Duplication. J-QoS can also support scenarios where
applications may want only some packets to be duplicated and
sent through the J-QoS services. Some examples of such packets
could be an I-frame for video streaming, important user actions
for gaming or AR applications, and the last packet of a window for
short TCP transfers [28]. Such selective duplication can provide a
lower overhead alternative to the full duplication option described
earlier, and can be used in scenarios where sources have limited
bandwidth or limited budget for packet recovery.

4 J-QOS PROTOTYPE
The J-QoS prototype3 is implemented in C++ and operates in user
space. Our implementation uses UDP for forwarding application
traffic, coded packets, and cooperative recovery packets, and uses
TCP for control channel traffic between the endpoints and the
data centers. J-QoS can intercept outgoing packets for a specific
application using iptables [10] and the NetFilter library [55] or it
can act as a local proxy receiving data from applications.

Our prototype uses Reed-Solomon codes to encode and decode
application data using the open-source zfec [56] library, and uses
25ms for the small timer and RTT for the long timer. Finally, we
tune the parameters related to coding (coding rate, timers, and
queues) on a per-application basis, depending on the application’s
characteristics and requirements.

Coding Parameters. For cross-stream coding, we use a default of
two cross-stream coded packets (𝑟 = 2/𝑘) to mitigate the effects of
stragglers and protect against bursty losses and outages.In practice,
we bound 𝑘 to a moderate value (𝑘 <= 10 in our evaluation), since
larger values add significant overhead in the cooperative recovery
process. When more than 𝑘 flows use J-QoS concurrently at an
ingress DC, the DC organizes them into subgroups of at most 𝑘
flows per group.

For in-stream coding, we find that for interactive applications –
where the average frame rate is 10-15 fps and the average frame is
composed of 2-5 packets [54] – it is best suited to send an in-stream
packet for each frame (𝑠 = 1

5), although that results in relatively
higher overhead, so applications with low cost budget can choose
to fall back to cross-stream coding only. The in-stream encoding
overhead is less for applications that send back-to-back packets,
such as TCP flows, where a single coded packet can be sent for an
entire TCP window (e.g., 𝑠 = 1

16 or 𝑠 = 1
32).

3Available at https://tinyurl.com/jqos-code

5 EVALUATION
We perform a multi-tiered evaluation with the goals of answering:
(1) How feasible are J-QoS services in real world (§5.1)? (2) How
effectively does J-QoS coding service recovers packets within a time
budget for wide-area paths (§5.2)? (3) How does J-QoS perform in
the contexts of challenging application (§5.3), transport (§5.4), and
network requirements (§5.5)?

5.1 Feasibility of J-QoS Services
Our goal is to evaluate the feasibility of J-QoS services using latency
data from hosts around the world.

Methodology. We use the RIPE Atlas testbed [12] and Amazon
Web Services (AWS) [1] data centers to measure latencies of public
Internet and cloud overlay paths. In our scenario, RIPE Atlas anchor
nodes are senders and probe nodes are receivers. We use AWS data
centers near senders and receivers to form a full (2-DC) cloud
overlay. Overall, we measure 22K paths spanning four continents,
US, EU, Asia, and Oceania4.

We measure the following latencies for each pair of RIPE Atlas
nodes: 𝛿 (S/R-DC), 𝑥 (DC1-DC2), and 𝑦 (S-R). We compute delay
for forwarding service as 𝑥 + 𝛿𝑆−𝐷𝐶1 + 𝛿𝑅−𝐷𝐶2, caching as 𝑦 +
2𝛿𝑅−𝐷𝐶2 +Δ and coding as 𝑦 + 2𝛿𝑅−𝐷𝐶2 + 2𝛿𝑅′−𝐷𝐶2 +Δ. Note that,
for caching and coding, we include𝑦 which is one way latency from
𝑆 to 𝑅. We use Δ to represent the delay of a caching/coding pull
request, if it reaches DC2 before the desired packet arrives from
the sender to DC2. We also represent cooperative recovery delay as
𝛿𝑅′−𝐷𝐶2. In this case, we compute it as the maximum R-DC2 latency
of five random nodes in the same region.

J-QoS services can meet latency budget of applications. Fig-
ure 4(a) shows the end-to-end packet latency for J-QoS services as
well as the direct Internet latency for all paths. We make three ob-
servations. First, using the (indirect) cloud overlay does not inflate
latency compared to using the direct Internet: for a majority of the
paths, the forwarding service has a latency similar to the Internet
paths. Second, Internet delivery has a long tail compared to the
forwarding service, confirming earlier findings by Microsoft [40]
that some Internet paths are persistently low quality, and it is better
to completely switch to a cloud overlay for such paths. The for-
warding service can be a great fit for such cases. Third, we also
observe that packet delivery, using the caching service, takes up to
200ms for 85% of the paths (50% for coding). This is acceptable delay
for many latency-sensitive applications that require timely packet
delivery [7, 32, 46]. Therefore, for these set of paths, both caching
and coding can provide similar benefits as forwarding service but
at much lower costs.

These results add to the growing evidence that cloud overlays
can be feasible for a diverse range of end-to-end scenarios (e.g.,
cloud middleboxes [50], web transfers [20]), etc).

Service delays vary across regions. Figure 4(b) shows the region-
wise end-to-end packet delivery latency for the caching service. We
observe that, in the US-EU region, packet delivery takes less than
200ms for 95% of the paths. We ascribe this to the short one-way
latency between the majority of the nodes in the US and EU regions

4Path details at: https://tinyurl.com/atlas-paths

https://tinyurl.com/jqos-code
https://tinyurl.com/atlas-paths

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

0 200 400 600
End-to-End Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD
F Internet

Fwd
Cache
Coding

(a)

0 200 400
End-to-End Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

US-EU
EU-AS
EU-OC

(b)

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

Recovery Delay/RTT

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Caching
Coding

(c)

0 20 40 60 80
Nodes to DC Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F US

EU
AS
OC

(d)

Figure 4: J-QoS service feasibility. a) End-to-End packet delivery latency is within acceptable range. b) Caching service latency
varies across regions. c) Most packets are recovered within 0.5xRTT. d) Latency to nearest DC is small.

as well as small delta in the EU region. It also means that, for US-EU
paths, caching and coding can provide similar benefits to the appli-
cations as the forwarding service. On the other hand, due to high
one-way latency on EU-OC paths, only 50% of the paths deliver
packets within 200ms, requiring the rest of the paths to rely only
on forwarding. We also find that other paths (not shown e.g.US-AS,
US-OC) follow a similar pattern as EU-AS paths. For these paths,
stricter delay requirements will result in a subset of the paths using
caching service. Region-wise coding service delays (not depicted)
follow a similar pattern, albeit shifted slightly to the right.

These results show that based on the delay demand and the end
hosts region, we can potentially select a suitable service.

On-demandRecoveryDelays. A traditional retransmission-based
recovery from the source takes at least one RTT whereas J-QoS’s
caching and coding services retrieve the missing packet from a
nearby DC. We compare this difference in delay by plotting the
recovery latency as fraction of the RTT.

Figure 4(c) shows that 75% of the time, these services can recover
packets within 0.5xRTT of the direct Internet path. We also observe
a clear separation between service recovery times, e.g., 90% of the
time, caching service can recover packets within 0.25xRTT whereas
coding service can only recover packets 20% of the time. Most of
the coding service benefits are in 0.25xRTT to 0.5xRTT range, we
also confirm this in our real world deployment (§5.2).

End host to DC latency (𝛿) is small. J-QoS services rely on end
hosts having low latency to their nearest DC, so we now focus on
these latencies. Figure 4(d) shows the 𝛿 value for RIPE Atlas probes
in different regions (i.e., EU, Asia, Oceania, US). We observe that 50%
of paths have 𝛿 less than 10ms in Europe and Asia. We also observe
that 20% of paths have delta higher than 20ms. While Oceania
region has relatively high 𝛿 compared to the other regions, we
observe that 75% of probes can be reached within 25ms. Depending
on the application’s latency budget, paths with high 𝛿 can still
utilize coding and caching services.

5.1.1 Cost Feasibility
Wenow turn our attention to cost and use our costmodel to estimate
J-QoS cloud cost for a single user. Our main goal is to understand
where each of the J-QoS service provides the most benefits, in terms
of cost.

Methodology. We consider a Skype-like application which sends
data at 1.5Mbps [6] for 1 hour with 20% coding overhead (𝑟 = 2

10).

2

4

6

8

10

co
st
 (
¢/
hr
)

0 20 40 60 80 100
Loss rate (%)

20

40

60

80

100

co
st
 %

Forwarding
Caching
Coding

Figure 5: J-QoS service costs from OC to EU.

For our analysis, we consider Amazon (AWS) and use an on-demand
compute intensive VM (8vCPUs, 15GBMem) and the cheapest band-
width prices for data transfer.

Compute & bandwidth pricing. We observe that compute re-
quirements for the coding service is approximately 2.6× more than
that of the forwarding service5. In our setting, with current AWS
pricing, the median compute cost for a single flow is 0.19¢/hr for the
forwarding/caching services and 0.51¢/hr for the coding service. We
also observe that the cloud bandwidth pricing varies significantly
across regions. For example, US and EU DCs have low egress cost
(2-5¢/GB) for both inter DC and Internet destinations compared to
other DCs in Asia, South America, and Africa (8-14¢/GB).

We estimate the cost of our services for various regions at differ-
ent loss rates and make the following observations.

Coding provides significant benefits under certain settings.
Figure 5 shows the normalized and actual cost of J-QoS services
from OC to EU with the forwarding service as the baseline. We
observe that the coding service provides significant cost benefits
compared to the caching and forwarding services. This is due to
the high inter DC egress cost of OC region (9.8¢/GB). In this case
CR-WAN incurs DC1 egress cost of 1.32¢/hr, whereas caching and
forwarding cost is 6.62¢/hr. With the current pricing, these benefits
exist for all the flows originating fromAsia, Oceania, South America,
and Africa and terminating at the US and EU.

Coding is beneficial for typical Internet loss rate. While pre-
vious result is an example of a region with high DC1 and low DC2
egress pricing, CR-WAN benefits vary for regions with low DC1
and/or high DC2 egress pricing. We observe that loss threshold for
these regions varies from 10% to 50% i.e. coding remains primary
service until loss rates are greater than this threshold. This means

5We determine this based on our prototype evaluation – Appendix B

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

that for typical Internet loss rates (<1%), coding will provide cost
benefits in all of the regions, irrespective of where the flow orig-
inates and terminates. However, for persistent high loss rates or
complete outage scenarios, a flow using caching or forwarding is
more economical.

Sensitivity Analysis. Although the current cloud pricing model
provides free ingress, this can change in the future. We also eval-
uate the feasibility of J-QoS services by enabling ingress cost in
our model. We use varying prices from $0.1/GB to $0.01/GB, in
accordance with the current and past cloud prices [3]. We observe
that for typical Internet loss rates, at maximum ingress price, the
average cost of the forwarding service doubles, whereas the cost
of the coding service is around 40%. Hence we observe similar pat-
terns as discussed earlier with service costs being high. Overall the
coding service remains cheaper than the caching and forwarding
services.

Osama: we will evaluate scenarios where the changes in the
network ingress and egress pricing affects the service selection
decision. - update text from thesis draft

5.2 CR-WAN Deployment and Evaluation
We have evaluated J-QoS services under various controlled settings,
verifying their ability to handle different uses which we described
earlier. In this section, we evaluate our coding use case, CR-WAN,
with its deployment and evaluation on the PlanetLab testbed. We
select this service because it builds on the other services and adds
the most delay in terms of packet recovery, representing the worst
case scenario for the effectiveness of J-QoS services.

Experimental Setup. We ran CR-WAN as a service on five differ-
ent DCs of Microsoft Azure [8], located in US (East, West), EU, Asia,
and OC, for over a month. We use F1 type virtual machine, which
is compute-optimized with 2.4 GHz single core and 2 GiB RAM.
We evaluate 45 PlanetLab wide area paths spanning four different
continents6.

We run a simple constant bitrate application on the PlanetLab
nodes. To observe long-term time-averaged behavior without over-
loading the paths, we use ON/OFF periods with Poisson OFF times
and constant ON times. In each ON interval, we send packets for
5 minutes with 10ms frequency; we set the mean OFF time to be
55 minutes. DC1 relays the start of each ON interval to senders
using a separate control channel, thereby ensuring that senders
are (loosely) synchronized. We use 𝑟 = 2/6 and 𝑠 = 1/5 as our
coding parameters. Given the high churn rate of PlanetLab nodes,
the total samples collected from each path varies. Typically, we
recover 500-800 samples per path, which translates to 3-5 weeks of
measurement collection. Our wide-area evaluation makes five key
findings, summarized below:

Most losses happen on wide-area links and CR-WAN is able
to recover them. CR-WAN is able to recover 78% of all packets
that are lost on the PlanetLab paths. Loss rates on these paths
are relatively high: up to 0.9% loss, with 40% of paths having a
loss rate greater than 0.1%. Overall, we lose 0.02% packets in our
experiment and we consider any packet that takes longer than one

6Path details at http://tinyurl.com/pl-paths

RTT to recover as a lost packet. As we discuss later, most of the
packets that CR-WAN is unable to recover are lost on the access
paths. If we ignore those losses, CR-WAN’s packet recovery goes
up significantly. Figure 6(a) elaborates on the above results – it
shows a CCDF of the fraction of successfully recovered packets
(i.e., those lost packets that are recovered within one RTT) for
all PlanetLab paths. Most paths experience high recovery (low
unrecovered packet rate) – overall, 82% of paths successfully recover
more than 80% of lost packets.

CR-WAN’s coding is able to handle a wide range of loss pat-
terns. We next zoom into the loss patterns to understand what
types of losses are being recovered by CR-WAN. Figure 6(b) shows
a CDF of loss episode patterns observed on PlanetLab paths that
have greater than 80% packet recovery (82% of total paths). We look
at the burst length of the loss episode and classify them as Random
(single packet loss), Multi-Packet (2-14 packets), and Outage (>14
packets). We observe all three types of loss patterns on the cho-
sen paths. While random and multi-packet bursts contribute more
towards the loss rate, outages are not uncommon on these paths.
Our data shows that 45% of paths see outages that last from 1 to
3 seconds. Our recovery rates show that J-QoS service can handle
multiple types of burst lengths, quickly.

Most access losses can be recoveredusing existing techniques.
While access losses (between source-DC1 and DC2-receiver) are not
the main focus of J-QoS, we look at their loss characteristics to see
whether well-known techniques can be used to recover such losses.
Our results show that around 98% of such losses occur on source-
DC1 paths and that a significant fraction, 90%, of loss bursts are
single packet losses and can be recovered using simple retransmis-
sions (ARQ) or other simple redundancy based techniques (e.g., [28])
at the edges (i.e., between the end-points and the DCs). In future,
we plan to augment J-QoS to incorporate this observation.

CR-WAN vs. On-Path FEC schemes. To compare CR-WANwith
traditional, on-path FEC packet recovery schemes, we perform a
what-if analysis on the probes sent on the direct PlanetLab paths.
Our goal is to compare CR-WAN with sending different number of
FEC packets on the direct path. We divide the probes into 5 packet
bursts and consider the next burst as the FEC packets. We then
compute recovery success rates for 20% (𝑠 = 1

5), 40% (𝑠 = 2
5), and

100% (𝑠 = 5
5) FEC overhead. We also assume that, for CR-WAN,

access losses can be recovered using existing techniques.
Figure 6(c) shows the percentage increase in recovery rates for

all the paths using CR-WAN, compared to different levels of FEC.
We observe that even at 100% overhead (full duplication), 90% of the
paths had at least one loss episode that could have been recovered
using CR-WAN but not with on-path, 100% FEC overhead. Further,
10% of the paths observe more than 160% improvement in recovery
rates with CR-WAN compared to full, on-path duplication. These are
paths that experience long burst of losses or outages that cannot be
recovered using FEC on the direct path. For 20% overhead scheme,
100% increase in recovery rate is seen by 70% of the paths. This
result shows that there exist paths for which CR-WAN’s cross-
stream coding is more effective in recovering from outages and
bursty losses compared to traditional, on-path FEC based schemes.

http://tinyurl.com/pl-paths

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

406080100
Recovery Success Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

PlanetLab Paths

(a)

0 25 50 75 100
Loss Rate Contribution (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Random
Multi
Outage

(b)

101 102 103 104
Percentage Increase in Recovery

CR-WAN vs FEC Levels

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

20%
40%
100%

(c)

0.0 0.5 1.0
Recovery Time/RTT

0.0

0.2

0.4

0.6

0.8

1.0

CD
F US-EU

US-OC
EU-OC
Agg

(d)

0 20 40 60 80 100
Percentage Increase in Recovery

 2 vs 1 Coded Packets

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

PlanetLab Paths

(e)

Figure 6: CR-WAN’s performance on PlanetLab paths.(a) CCDF of successfully recovered packets. (b) Loss episode contribution
to loss rate on paths with greater than 80% recovery. (c) Percentage increase in CR-WAN recovery rate vs FECwith 20%, 40%,and
100% packet overhead on direct path (note x-axis). (d) Packet recovery times as ratio of direct path RTT. (e) Percentage increase
in recovery rates using 2 cross coded packets per batch versus 1.

CR-WAN’s loss recovery is usually fast. We next look at packet
recovery time using CR-WAN, which Figure 6(d) depicts for paths
in different regions. We show our recovery times as a ratio of
direct public Internet path RTT between the source and destination.
We note that 95% of packets are recovered within 0.5 × RTT. As
expected, we observe faster recovery for paths with higher absolute
latency on the direct public Internet path. For example, on low RTT
paths between the US and EU (110-130 ms), we see higher recovery
times as a proportion of RTT, but in terms of absolute latency, 90%
of packets are retrieved within 75 ms. We also observe that receiver-
DC2 RTTs on these paths vary significantly. For example, the RTT
between receivers in the EU and their nearest data center varies
from 16-70 ms (` = 28 ms). However, as cloud providers continue to
strive towards reducing their latency to end-users [23], we expect
CR-WAN recovery times to continue to improve over time.

Finally, we observe two systematic reasons contributing to the
tail in the recovery time (Figure 6(d)): delay in detecting and recov-
ering a loss (e.g., due to delayed NACKs) and delay in arrival of
coded packets at DC2. Overall, the percentage of recovered packets
that fall outside of a reasonable time budget value is low and only
accounts for roughly 1% of the recovered packets.

Recovery time is improved due to straggler protection. Last,
we show the benefit of using extra cross-stream coded packets to
provide protection against stragglers during cooperative recovery.
Figure 6(e) shows the performance gains using two cross-stream
coded packets per batch, as opposed to one. We observe that, with
adequate protection of two packets per batch, 60% of paths see
greater than 10% improvement in recovery rates. We also observe
that the recovery times decrease by at least 50 ms for 70% of the
recovered packets (not shown) – in some instances, the difference
is some stragglers that take several seconds. This further justifies
our choice of default parameter values for PlanetLab paths.

5.3 Case Study: Skype Performance
We run J-QoS services under Skype’s video conferencing scenario
to measure their interaction with a popular, interactive application.
We focus on the performance of Skype in wide-area settings where
outages occur (similar to ones described earlier in our wide-area
evaluation). To do so, we leverage the cloud path to run the video
conference in three experiments. First, we examine how the video
quality degrades during an outage along a public Internet path used

by Skype. We then duplicate all Skype packets over a cloud path
(J-QoS’s forwarding service) to show that such a path can indeed
make up for lost packets during outages. Finally, we use CR-WAN to
selectively transmit coded packets over the cloud path and perform
recovery at the receiver.

Testbed andMeasurement Procedure. We use a similar testbed
to that used by Zhang et al. [60], in which clients communicate
using Skype’s video conferencing service. We connect clients run-
ning Skype for Linux 4.3 in a LAN, and emulate wide area path
characteristics such as latency, packet loss rate, and jitter.

We use Skype’s screen sharing mode to transmit a pre-recorded
video that closely represents the normal motions of human inter-
action during a video conference. We then compare the quality of
each received video against the reference video by converting all
videos to raw (uncompressed) format, and compute objective QoE
scores on a frame-by-frame basis using VQMT [34]. Although ob-
jective video quality metrics are not as reliable as subjective metrics
given by users (such as Mean Opinion Score), they are sufficient to
approximate the quality of the video on a frame-by-frame basis. We
show the scores of each frame in a CDF to approximate the quality
of each video in aggregate.

Use of the forwarding service enables higherQoE.. Figure 7(a)
shows the video quality results as we vary the network conditions
and paths used. When a 30 second outage occurs along the Internet
path, Skype’s built-in FEC mechanism is insufficient to maintain an
acceptable level of QoE. The video quality degrades with pixelation
and frozen video, and the number of frames with poor PSNR scores
significantly increases. Due to the high availability of the cloud
path, when we use the forwarding service during the 30-second
Internet path outage, virtually all packets reach the destination,
preserving the video quality (similar to an Internet path with a
0% loss rate). This shows that Skype is amenable to using J-QoS
services running in tandem with it to correct losses on its direct
public Internet path.

CR-WAN achieves similar QoE as forwarding but with less
bandwidth. When running Skype over CR-WAN, we disable in-
stream coding on the cloud path (𝑠 = 0), since Skype uses its own
FEC techniques on the Internet path to recover lost packets [54].
To use cross-stream coding, we inject three ~200 Kbps background
UDP flows whose packets are coded with Skype packets at DC1

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

20 30 40 50
PSNR Bin

0.0

0.5

1.0

CD
F

CR-WAN-Mobile

Internet
Fwd
CR-WAN

(a)

1 3 9
Flow Completion Time (s)

0.90

0.95

1.00

CD
F

Internet
CR-WAN

(b)

Figure 7: a) PSNR scores of a set of video conferences, b) Tail
of TCP flow completion times (note y-axis scale).

at a rate of 𝑟 = 1/4, with 𝑘 = 4. Figure 7(a) shows that CR-WAN
achieves a similar level of QoE compared to using the forwarding
service. We also observe that CR-WAN uses much less bandwidth.
In our experiments, J-QoS sent just 13.4% as many packets and
13.6% as many bytes as did the forwarding service.

5.4 Case Study: TCP Performance
We now evaluate the performance of TCP if it is used over J-QoS.
Our goal is to understand how the additional reliability provided by
J-QoS interacts with TCP’s own reliability and congestion control
mechanisms, and whether it can provide any additional benefits.
We also evaluate whether we can use J-QoS services for only some
(selective) TCP packets rather than all the packets. We focus on
TCP short flows as they are latency sensitive and do not require
high throughput.

Experimental Setup. Our experimental setup is inspired by a
similar experiment conducted by Google to evaluate different loss
mitigation techniques for their web transfers [28]. Using Emulab,
we emulate the same topology and loss model as used in the Google
study: we consider a 200 ms RTT between end hosts and loss prob-
abilities of 0.01 for losing the first packet in a burst and 0.5 for
each subsequent loss. We pick CR-WAN for our analysis as it in-
curs the highest delay out of all the J-QoS services. We consider a
single client-server scenario, in which a client sends a 12B request
and receives a 50 KB response from the server. The RTT between
server/client-DC paths is 30 ms with an RTT of 200 ms on the
DC1-DC2 path. We make 10K requests each for TCP and TCP over
J-QoS.

J-QoS reduces tail latency for lossy short flows. Figure 7(b)
shows TCP’s flow completion times with and without J-QoS. We
observe that shows that TCP suffers from long latency tail that goes
up to 9 seconds, whereas J-QoS reduces the tail significantly. Our
analysis shows that TCP is able to recover from most of the losses
(using SACK), but there are some losses which are problematic for
TCP, and hence cause the long tail. Such losses typically occur at
the start of the connection, e.g., SYN-ACK(s), or at the very end.
Such losses cause TCP to timeout, and successive losses mean that
these timeout values could become huge, resulting in the long tail
for TCP. J-QoS is able to reduce flow completion times by quickly
recovering these losses. As soon as a packet is recovered by J-QoS,
our TCP client sends an ACK to the server, effectively hiding the
loss, and avoiding TCP timeouts.

Selective duplication can yield some benefits. When full du-
plication at source is infeasible – due to limited access bandwidth or
applications with high bitrates – we can use J-QoS only for selected
packets. To demonstrate the feasibility of such a strategy (and its
potential benefits), we modify our TCP experiment and only du-
plicate SYN-ACK packets. We observe that selective duplication
reduces tail by 33% (83% with full duplication). Other examples of
such duplication can include I-frames for video streaming, impor-
tant user actions for gaming or AR applications, and the last packet
of a window for short TCP transfers [28].

5.5 Case Study: Mobile Networks
Some of the J-QoS services make assumptions that can be chal-
lenged in mobile networks, as mobile settings have different band-
width, power, and latency characteristics. We pick CR-WAN for our
analysis as it subsumes other services, in terms of its overhead. Our
findings suggest that while it seems feasible to run CR-WAN on
mobile hosts, it may be best to use selective duplication to avoid
extra overheads.

Duplicating traffic can be feasible. The bandwidth provided to
cellular devices can vary greatly [57] – our survey of major US car-
riers shows users can typically expect 2-5 Mbps uplink bandwidth.
Therefore, we consider whether the most bandwidth intensive part
of CR-WAN – the duplication of traffic to the cloud path at the
sender – works within the link rates of mobile networks.

We modified our Skype testbed (§5.3) to tether the sending host
to a mobile device connected to an LTE network, and observed that
the overall bandwidth required by CR-WAN to duplicate a Skype
video stream was 1.5 Mbps and well within the uplink bandwidth
afforded by the LTE network (∼5.0 Mbps). However, in general
the recommended bandwidth for HD video calls in Skype is 1.5
Mbps [6], so duplicating that traffic to over 3.0 Mbps could reach
the capacity of uplinks in some networks. We also tested how CR-
WAN affects other ongoing transfers on the device, and found that
the transfer time for 5 MB files over WhatsApp is not affected by
CR-WAN running simultaneously.

For data-intensive uses, J-QoS may need to utilize the forwarding
service so that packets are not duplicated. Alternatively, mobile
applicationsmight selectively duplicate packets when using caching
or coding and the Internet path performance is below a certain
requirement. While current access capacity limits the use of J-QoS
services, cellular bandwidth is expected to increase in future with
5G networks.

Duplicating traffic has negligible impact on power consump-
tion. We tested the effect of duplicating a traffic stream on the
battery life of the device. We ran 20 minute trials of Skype video
calls, with and without cloud path duplication. We observed that
in both cases the battery drain was ∼20 mAh, highlighting that the
extra overhead of CR-WAN has negligible impact on battery life.

Recovery can be feasible despite latency issues. Mobile net-
works also suffer from greater end-to-end latency and jitter [57].
We conducted a short study to quantify this effect by pinging three
major cloud providers (Amazon, Microsoft, and Google) 1,000 times
using different mobile networks: Verizon’s LTE network (east coast)

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

and T-Mobile’s LTE network (both east and west coasts). The me-
dian ping times to each provider was typically in the range of 50-60
ms, but the 50%-90% RTTs to each cloud provider was in the range
of approximately 50-100 ms.

These latencies could be problematic for mobile receivers, as the
effect of greater latency is multiplied during recovery, especially
during the coding service’s cooperative recovery process. Despite
this, our mobile Skype testbed was able to recover packets during
an outage (fig 7(a)) because the application is able to adapt to a
greater end-to-end delay as long as it is consistent. In addition, due
to increased jitter, correcting random packet losses may be difficult
for interactive applications, but can likely be mitigated for other
applications (such as web transfers) using in-stream coding. Finally,
with cellular latencies expected to go down with 5G networks, the
recovery delays will become smaller in future.

6 RELATEDWORK
J-QoS connects to and benefits from a large body of prior work. We
comment on key pieces from the literature that are most relevant
to our study.

Overlay Networks and Internet Architectures. Our work
is inspired by overlay networks that improve availability by us-
ing detour points, e.g., RON [14], OverQoS [53], one-hop source
routing [31], Spines [13], etc. Our use of the cloud as an overlay
creates unique opportunities and challenges. For example, we can
do sub-RTT recovery, but to minimize cost, we have to send an
additional small number of recovery packets. Recently, there have
been proposals that make the case for using cloud as an overlay to
improve QoS of interactive applications [16, 35, 40], TCP-based ap-
plications [18, 22], and provide Network-as-a-Service [41]. Schemes
like VIA [40] improve performance by routing all of a certain user’s
traffic through the overlay path. VIA dynamically selects best relay
out of top-k options before sending the data. J-QoS, on the other
hand, uses the nearest data centers to route a user’s traffic. While
we take into account cost of using cloud infrastructure and pro-
pose different use cases that use cloud storage and processing (e.g.
coding across streams, caching), other schemes [16, 18, 22] route
all of the traffic through cloud overlays, similar to our forwarding
service.

Caching.Our caching service is similar in spirit to various Inter-
net architecture proposals that do in-network caching e.g. NDN [38],
i3 [52], XIA [33], etc. A DC that stores packet for later delivery can
be thought of as a rendezvous point as in i3 [52], or as a fallback
host like XIA [33]. Traditionally, CDNs are also used to store and
deliver content. Our scheme is analogous to commercial live stream-
ing CDN solution [43] that considers similar coding techniques as
CR-WAN to increase the reliability of inter-CDN paths. In CR-WAN,
we use nearby endpoints to recover the lost packets whereas a CDN
node already has all the required data for recovery. Furthermore,
our scheme can also be deployed on CDNs provided the quality of
inter-CDN paths is same as the inter-DC paths. RPT([32]) is also rel-
evant as it uses caching for loss recovery – it uses on-path content
aware routers to compress and decompress packets on every hop.
Our use of caching is unique as we use it only for packet recovery:
we use nearby off-path DCs to storage packet and receivers pull
lost packets from the nearby cache. Further, we only store a flow’s

packet for very short times (1-2RTTs) whereas typical caches (e.g.,
CDNs) store content for longer duration and serve multiple users.

Coding. Traditionally, network coding techniques have seen
widest use in the context of wireless networks [29, 42]. J-QoS applies
cross-stream coding on wide area Internet paths and uses it to
recover lost packets. FEC based coding schemes have also been
used in different contexts over the last several decades. The most
relevant work to our scheme is Maelstrom [17], which uses an
FEC-based technique to reduce packet loss on lambda networks.
Maelstrom’s layered interleaving provides additional protection
against bursty losses, but at the expense of higher decoding delay,
which limits its use for highly interactive applications. Also, unlike
Maelstrom, the coded and data packets are sent on different paths,
with very different properties.

Reliable and Low Latency Wide Area Communication. Fi-
nally, we share the goals of recent proposals that call for low latency
and high reliability for wide area communication [19, 44, 47, 51].
Some recent proposals focus on improving performance of TCP
short flows [24, 26] using different techniques (e.g. per packet times-
tamps, early retranmissions). We, however, use the nearest DC to
recover lost packets within a fraction of a path’s RTT.

7 FUTUREWORK
Multi-cloudOverlays. In J-QoS, we form a cloud overlay by using
a single cloud provider’s inter data center network. In the future,
we plan to extend the J-QoS framework to incorporate DCs of other
providers in a muti-cloud like fashion. Multi cloud strategies are
increasingly becoming popular as they provide more flexibility in
choosing data centers, reduce reliance on a single provider, and
offer high reliability on inter-cloud paths [58].

Cost Model. Our cost model excludes the endpoint to cloud band-
width costs. To extend this model, we first need to understand how
different types of endpoints connect with the cloud. For example,
enterprises use virtual private interconnections or dedicated paths
to connect with their nearest cloud locations. We also need to take
into account billing strategies such as 95th percentile metering. In
the future, we plan to extend our model to incorporate multiple use
cases.

ACKNOWLEDGEMENTS
We thank our shepherd, the anonymous CoNEXT reviewers, and
Tufts NAT lab members for their constructive feedback on this
work. This work was supported by NSF CNS under award numbers
1815046 and 1815016.

8 CONCLUSION
J-QoS seeks to connect two complementary interests: the pull of
existing (and burgeoning) applications and their demand for better
user experience, and the push of DC technology that makes cloud
services more accessible to the edge than ever before. The key idea
behind J-QoS is to use the cloud paths in a judicious manner, in
order to provide reliability services to applications with different
latency requirements. We view J-QoS as a promising step toward
providing application and network architects with new insights
into how to judiciously leverage the cloud.

Judicious QoS using Cloud Overlays CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REFERENCES
[1] [n.d.]. Amazon AWS. http://aws.amazon.com.
[2] [n.d.]. AWS Direct Connect. https://aws.amazon.com/directconnect/.
[3] [n.d.]. AWS News Blog - AWS Lowers its Pricing Again! https://amzn.to/

2B93dtW.
[4] [n.d.]. GCP NETWORK SERVICE TIERS. https://cloud.google.com/network-

tiers/.
[5] [n.d.]. Google Cloud. https://cloud.google.com/.
[6] [n.d.]. How much bandwidth does Skype need? https://support.skype.com/en/

faq/FA1417/how-much-bandwidth-does-skype-need.
[7] [n.d.]. ITU G.1010 : End-user multimedia QoS categories. https://www.itu.int/

rec/T-REC-G.1010-200111-I.
[8] [n.d.]. Microsoft Azure. http://azure.microsoft.com/.
[9] [n.d.]. Microsoft Azure ExpressRoute. https://azure.microsoft.com/en-us/

services/expressroute/.
[10] [n.d.]. netfilter iptables. https://www.netfilter.org/.
[11] [n.d.]. NetScaler SD-WAN | Packet Duplication. https://www.citrix.com/blogs/

2016/09/22/netscaler-sd-wan-the-packet-duplicator/.
[12] [n.d.]. RIPE Atlas Measurement Platform. https://atlas.ripe.net/.
[13] Yair Amir and Claudiu Danilov. 2003. Reliable communication in overlay net-

works. In Proc. IEEE DSN.
[14] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris.

2001. Resilient Overlay Networks. In Proc. ACM SOSP.
[15] Todd W Arnold, Ege Gurmericliler, Arpit Gupta, Matt Calder, Georgia Essig,

Vasileios Giotsas, and Ethan Katz-Bassett. 2020. (How Much) Does a Private
WAN Improve Cloud Performance?. In IEEE INFOCOM.

[16] Amy Babay, Emily Wagner, Michael Dinitz, and Yair Amir. [n.d.]. Timely, reli-
able, and cost-effective internet transport service using dissemination graphs. In
Proceedings of ICDCS 2017.

[17] Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, and
Einar Vollset. 2008. Maelstrom: Transparent Error Correction for Lambda Net-
works. In Proc. USENIX NSDI.

[18] Aran Bergman, Israel Cidon, Isaac Keslassy, Noga H. Rotman, Michael Schapira,
Alex Markuze, and Eyal Zohar. 2018. Pied Piper: Rethinking Internet Data
Delivery. CoRR abs/1812.05582 (2018). arXiv:1812.05582 http://arxiv.org/abs/
1812.05582

[19] Debopam Bhattacherjee, Sangeetha Abdu Jyothi, Ilker Nadi Bozkurt, Muham-
mad Tirmazi, Waqar Aqeel, Anthony Aguirre, Balakrishnan Chandrasekaran,
P. Brighten Godfrey, Gregory P. Laughlin, Bruce M. Maggs, and Ankit Singla.
2018. cISP: A Speed-of-Light Internet Service Provider. CoRR abs/1809.10897
(September 2018).

[20] Debopam Bhattacherjee, Muhammad Tirmazi, and Ankit Singla. 2017. A Cloud-
based Content Gathering Network. In Proceedings of the 9th USENIX Conference
on Hot Topics in Cloud Computing (HotCloud’17). USENIX Association, Berkeley,
CA, USA.

[21] Robert Braden, David Clark, and Scott Shenker. 1994. Integrated Services in the
Internet Architecture: An Overview. RFC 1633.

[22] Chris X Cai, Franck Le, Xin Sun, Geoffrey G Xie, Hani Jamjoom, and Roy H
Campbell. 2016. CRONets: Cloud-Routed Overlay Networks. In Proc. ICDCS.

[23] Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann, and Ramesh
Govindan. 2013. Mapping the expansion of Google’s serving infrastructure. In
Proc. ACM IMC.

[24] Yuchung Cheng, Neal Cardwell, and Nandita Dukkipati. 2017. RACK: a time-based
fast loss detection algorithm for TCP. Internet-Draft draft-ietf-tcpm-rack-02. IETF
Secretariat.

[25] Fahad R. Dogar. April 2018. Towards Slack-Aware Networking. SIGCOMM
Comput. Commun. Rev. (April 2018).

[26] Nandita Dukkipati, Neal Cardwell, Yuchung Cheng, and Matt Mathis. 2013. Tail
Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses. Internet-Draft
draft-dukkipati-tcpm-tcp-loss-probe-01. IETF Secretariat.

[27] Kevin Fall. 2003. A delay-tolerant network architecture for challenged internets.
In SIGCOMM ’03 (Karlsruhe, Germany). ACM, New York, NY, USA, 27–34.

[28] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. 2013. Reducing web latency: the virtue of gentle aggression. In Proc.
ACM SIGCOMM.

[29] Christina Fragouli, Jean-Yves Le Boudec, and JörgWidmer. 2006. Network Coding:
An Instant Primer. SIGCOMM Comput. Commun. Rev. 36, 1 (Jan. 2006), 63–68.

[30] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proc. SIGCOMM.

[31] P Krishna Gummadi, Harsha V Madhyastha, Steven D Gribble, Henry M Levy,
David Wetherall, et al. 2004. Improving the Reliability of Internet Paths with
One-hop Source Routing. In Proc. USENIX OSDI.

[32] Dongsu Han, Ashok Anand, Aditya Akella, and Srinivasan Seshan. 2012. RPT:
Re-architecting Loss Protection for Content-Aware Networks. In Proc. NSDI.
USENIX.

[33] Dongsu Han, Ashok Anand, Fahad R Dogar, Boyan Li, Hyeontaek Lim, Michel
Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella, David G Andersen,
et al. 2012. XIA: Efficient Support for Evolvable Internetworking. In Proc. USENIX
NSDI.

[34] P Hanhart and R Hahling. 2013. Video Quality Measurement Tool (VQMT).
[35] Osama Haq and Fahad R. Dogar. 2015. Leveraging the Power of the Cloud for

Reliable Wide Area Communication. In Proc. ACM Hotnets.
[36] Osama Haq, Mamoon Raja, and Fahad R. Dogar. 2017. Measuring and Improving

the Reliability of Wide-Area Cloud Paths. In Proc. WWW.
[37] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In Proc. SIGCOMM.

[38] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. 2009. Networking named content. In Proc.
CoNEXT.

[39] Virajith Jalaparti, Ivan Bliznets, Srikanth Kandula, Brendan Lucier, and Ishai
Menache. 2016. Dynamic Pricing and Traffic Engineering for Timely Inter-
Datacenter Transfers. In Proc. SIGCOMM.

[40] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan, Philip A. Chou, Venkata
Padmanabhan, Vyas Sekar, Esbjorn Dominique, Marcin Goliszewski, Dalibor
Kukoleca, Renat Vafin, and Hui Zhang. 2016. Via: Improving Internet Telephony
Call Quality Using Predictive Relay Selection. In ACM SIGCOMM.

[41] P. Kathiravelu, M. Chiesa, P. Marcos, M. Canini, and L. Veiga. 2018. Moving Bits
with a Fleet of Shared Virtual Routers. In 2018 IFIP Networking Conference (IFIP
Networking) and Workshops.

[42] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Medard, and Jon
Crowcroft. 2006. XORs in the Air: Practical Wireless Network Coding. In Proc.
SIGCOMM.

[43] Leonidas Kontothanassis, Ramesh Sitaraman, Joel Wein, Duke Hong, Robert
Kleinberg, Brian Mancuso, David Shaw, and Daniel Stodolsky. 2004. A transport
layer for live streaming in a content delivery network. Proc. IEEE 92, 9 (2004),
1408–1419.

[44] Vasileios Kotronis, George Nomikos, Lefteris Manassakis, Dimitris Mavrommatis,
and Xenofontas Dimitropoulos. [n.d.]. Shortcuts Through Colocation Facilities.
In Proceedings of the IMC 2017.

[45] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang, and Pablo Rodriguez.
2011. Inter-datacenter Bulk Transfers with Netstitcher. In Proc. SIGCOMM.

[46] K. Matsuzono, H. Asaeda, and T. Turletti. 2017. Low latency low loss streaming
using in-network coding and caching. In IEEE INFOCOM 2017.

[47] Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson, and
Arvind Krishnamurthy. 2014. One tunnel is (often) enough. In Proc. ACM SIG-
COMM.

[48] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. 2002. A
Blueprint for Introducing Disruptive Technology into the Internet. In Proc. ACM
HotNets.

[49] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
2012. Design and Implementation of a Consolidated Middlebox Architecture. In
Proc. NSDI.

[50] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middleboxes. In Proc.
SIGCOMM.

[51] Ankit Singla, Balakrishnan Chandrasekaran, P Godfrey, and Bruce Maggs. 2014.
The Internet at the Speed of Light. In Proc. ACM HotNets.

[52] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
2002. Internet indirection infrastructure. In Proc. SIGCOMM.

[53] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy H
Katz. 2004. OverQoS: An Overlay Based Architecture for Enhancing Internet
QoS.. In Proc. USENIX NSDI.

[54] Jue Wang. 2010. ChitChat: Making video chat robust to packet loss. Ph.D. Disser-
tation. Massachusetts Institute of Technology.

[55] Harald Welte and Pablo Neira Ayuso. [n.d.]. NetFilter. http://www.netfilter.org.
[56] Zooko Wilcox-O’Hearn. 2008. Zfec 1.4. Open source code distribution: http:

//pypi.python.org/pypi/zfec (2008).
[57] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic

Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
USENIX NSDI.

[58] Bahador Yeganeh, Ramakrishnan Durairajan, Reza Rejaie, and Walter Willinger.
2020. A First Comparative Characterization of Multi-cloud Connectivity in
Today’s Internet. In International Conference on Passive and Active Network Mea-
surement. Springer, 193–210.

[59] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haib-
ing Guan, and Ming Zhang. 2015. Guaranteeing deadlines for inter-datacenter
transfers. In Proc. EuroSys.

[60] Xinggong Zhang, Yang Xu, Hao Hu, Yong Liu, Zongming Guo, and Yao Wang.
2012. Profiling Skype video calls: Rate control and video quality. In IEEE INFO-
COM.

http://aws.amazon.com
https://aws.amazon.com/directconnect/
https://amzn.to/2B93dtW
https://amzn.to/2B93dtW
https://cloud.google.com/network-tiers/
https://cloud.google.com/network-tiers/
https://cloud.google.com/
 https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
 https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://www.itu.int/rec/T-REC-G.1010-200111-I
https://www.itu.int/rec/T-REC-G.1010-200111-I
http://azure.microsoft.com/
https://azure.microsoft.com/en-us/services/expressroute/
https://azure.microsoft.com/en-us/services/expressroute/
https://www.netfilter.org/
https://www.citrix.com/blogs/2016/09/22/netscaler-sd-wan-the-packet-duplicator/
https://www.citrix.com/blogs/2016/09/22/netscaler-sd-wan-the-packet-duplicator/
https://atlas.ripe.net/
https://arxiv.org/abs/1812.05582
http://arxiv.org/abs/1812.05582
http://arxiv.org/abs/1812.05582
http://www.netfilter.org
http://pypi. python. org/pypi/zfec
http://pypi. python. org/pypi/zfec

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain O.Haq et al.

Algorithm 1: Coding algorithm at DC1.
def in_stream_qs[]
def cross_stream_qs[][]

dc1_process(pkt, flow_id):

// (1) In-stream coding.
1 q = in_stream_qs[flow_id]

2 q.push(pkt)

3 if q.isFull() then
4 in_coded_pkts = encode(q)

5 send(dc2_id, in_coded_pkts)

// (2) Cross-stream coding.
6 dc2_id = extract_dc2_id(flow_id)

7 q_index = next_round_robin_q(flow_id)

8 q = cross_stream_qs[dc2_id][q_index]

// Find a queue that doesn’t have a packet from this flow.
9 initial_q = q

10 while q.contains(flow_id) do
11 q_index = next_round_robin_q(flow_id)

12 q = cross_stream_qs[dc2_id][q_index]
// If we’ve tried all q’s, empty the first by encoding or discarding.

13 if q == initial_q then
14 if q.size() > 1 then
15 cross_coded_pkts = encode(q)

16 send(dc2_id, cross_coded_pkts)

17 else
18 q.clear()

19 break

20 q.push(pkt)

21 if q.isFull() then
22 cross_coded_pkts = encode(q)

23 send(dc2_id, cross_coded_pkts)

A CODING ALGORITHM
DC1 follows Algorithm 1, which captures the task of encoding
across multiple flows at once. DC1 maintains two sets of queues:
one set for in-stream encoding (one set per flow), and a set for
cross-stream encoding (one set per 𝑘). When a packet arrives, it is
copied and pushed into one queue of each type.

Lines 1-5 checkwhether the relevant in-stream queue has reached
a threshold, and if so, create coded packets and send them to DC2.
For cross-stream coding, DC1 first selects the set of queues des-
tined for the same DC2, and then chooses the individual queue in
round-robin order (lines 6-8). DC1 avoids placing multiple packets
from the same flow in the same cross-stream queue; if there already
exist packets from the same flow in all queues, then DC1 processes
the oldest queue. If there is only a packet from the flow in ques-
tion, then the old packet is evicted and discarded, since sending
cross-stream packets with only packets from a single stream re-
duces its effectiveness (lines 9-19). Once the packet is pushed into
a cross-stream queue, if a threshold is reached, then coded packets
are generated and sent to DC2 (lines 20-23).

Timing constraints pose a challenge to this algorithm. If one flow
is much faster than all other flows, DC1 cannot hold back recovery
data from the faster flow to wait to make full recovery packets.
Therefore, we create a timer for each in-stream and cross-stream
queue (not shown in Algorithm 1). On expiry of a queue timer, DC1
encodes all packets in the queue and sends them to DC2.

B PROTOTYPE SCALABILITY
We benchmark the performance of our CR-WAN prototype, which
is the most computationally intensive service of J-QoS. We focus on
its most computationally expensive part: the encoding algorithm
performed at DC1. Our goal is to measure how efficiently CR-WAN

1 2 3 4 5 6 7 8
Number of Encoding Threads

0
100
200
300
400
500

Ba
nd

wi
dt

h
(K

pp
s)

Ingress
Egress

Figure 8: Throughput of the J-QoS prototype scales linearly
with the number of encoding threads. Eight threads can han-
dle up to 500Kpps.

can process and encode packets as the system scales to many con-
current streams. For each flow, we configure CR-WAN to generate
a single coded packet per every five data packets. We use Dell Pow-
eredge R430 servers on Emulab, and each server is equipped with
two 2.4 GHz 8-core processors with two threads each, for a total of
32 hardware threads.

We first determine the maximum throughput achievable at DC1
in packets per second. Measuring packets (instead of bits) is the
appropriate measurement granularity because the encoder operates
over entire packets. We observe that a single J-QoS thread can
handle up to 170 kpps for forwarding and caching service. For
context, assuming an average packet size of 512 bytes, 170 Kpps is
enough for performing one-way processing for ~460 simultaneous
HD Skype video calls [6].

We find that a single encoding thread can handle around 65 Kpps,
which is equivalent to ~175 simultaneous HD Skype video calls. At
this rate, the bottleneck is the generation of coded packets from
data packets. In terms of cost, a single flow using coding service
costs 2.6× more than the one using forwarding.

We then increase the number of DC1 encoding threads as we
increase the number of senders, and load balance the streams to the
different encoding threads. We rate limit each sender to 65 Kpps
– the empirical maximum rate that can be processed by a single
(sender, encoder) pair. Figure 8 shows that the processing power
scales linearly with the number of encoding threads: up to ~500
Kpps with eight encoding threads. This shows that CR-WAN is
amenable to parallelism and can be deployed in software to handle
a large number of users.

	Abstract
	1 Introduction
	2 The Cloud as an Overlay
	3 J-QoS Design
	3.1 Coding Service
	3.2 Receiver-Driven Recovery Protocol
	3.3 J-QoS End-to-End Workflow
	3.4 Deployment Model and Cost
	3.5 Other Use Cases

	4 J-QoS Prototype
	5 Evaluation
	5.1 Feasibility of J-QoS Services
	5.2 CR-WAN Deployment and Evaluation
	5.3 Case Study: Skype Performance
	5.4 Case Study: TCP Performance
	5.5 Case Study: Mobile Networks

	6 Related Work
	7 Future Work
	8 Conclusion
	References
	A Coding Algorithm
	B Prototype Scalability

