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Abstract. We examine the effects on a financial network of clearing all contracts though a central node (CN),
thereby transforming the original network into a star-shaped one. The CN is capitalized with external
equity and a guaranty fund. We introduce a structural systemic risk measure that captures the
shortfall of end users. We show that it is possible to simultaneously improve the expected surplus of
the banks and the CN as well as decrease the shortfall of end users. We determine the CN's equity
and guaranty fund policies as a Nash bargaining solution. We illustrate our findings on simulated
credit default swap networks compatible with aggregate market data.
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1. Introduction. The reform of over-the-counter (OTC) derivatives markets lies at the
core of the Dodd--Frank Wall Street Reform and Consumer Protection Act of 2010. Among
the regulations is that the majority of OTC derivatives, of the order of dozens of trillions of
US dollars in terms of notional, should be centrally cleared so as to ensure financial stability.
The Basel Committee for Banking Supervision and European and UK regulators have enacted
similar proposals. Introducing a central node (CN) modifies the intermediation structure of
the market: any financial obligation among banks is now intermediated by the CN, while part
of the banks' liquidity is transferred to the CN.

Centralized clearing is complex and multifaceted, and a variety of viewpoints must be
weighed. The CN must be designed so as to decrease the risk imposed on the outside economy,
i.e., systemic risk, and at the same time be Pareto optimal; otherwise a unanimous agreement
cannot be reached. The question we ask is whether a unanimous agreement can be achieved:
can one can find parameters of a CN design that are Pareto optimal and that can be achieved
as a solution of a bargaining game?

We use a network representation of the OTC market, with financial institutions (banks)
interlinked by liabilities. We focus on scenarios where the survival of the CN is threatened,
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SYSTEMIC RISK IN NETWORKS WITH A CENTRAL NODE 61

and we refer to these as extreme scenarios. We can think of the interbank liabilities as large
variation margin calls following a catastrophic event on the market. Yet another question
(not yet answered in the literature) is how a CN would be replenished or continue following
an extreme event. This is beyond our model (the recovery mechanism is the last point in the
default waterfall---see https://www.theice.com/clear-europe/risk-management).

To account for the risk imposed on the outside economy, banks have end users. We capture
systemic risk by using a structural measure defined as the expected loss imposed on the end
users. A key ingredient in the model is the early liquidation losses: banks receive endowments
of nonpledgeable assets, such as long-term investments which are liquidated at a loss as banks
pay the realized liabilities. Negative network externalities due to default contagion further
increase the liquidation losses and vice versa. As the CN changes the network structure to a
star-shaped network and members' default management resources are transferred to the CN
in the form of guaranty fund contributions, the CN changes the equilibrium payments and
liquidations across the network.

The CN in our paper is not meant to represent an actual clearinghouse. Indeed, current
clearinghouses segregate the members' contributions into well-determined layers: variation
margin, initial margin, and default fund. Under an extreme event, the critical layers are the
initial margin and the default fund.1 Our guaranty fund is closest to a default fund in the
absence of the initial margin. Bank shares in the guaranty fund are pooled and absorb the
losses imposed by members. It is understood that members would first wipe out their own
guaranty fund contribution before the remaining losses would cascade into the other members'
pooled shares of the guaranty fund. Because the initial margin is not present in our model,
morally, a real-world CCP's initial margin plus its default fund should be larger than the
guaranty fund of our model.

We show that the CN does not necessarily reduce systemic risk and we derive rigorous
conditions for a systemic risk reduction. We give guidance on how to select the guaranty fund
contributions and the CN external capital. We use as a solution concept the Nash bargaining
solution; see, e.g., Roth (1979).2 We show that all parties can (via bargaining) reach a binding
agreement to form a CN. By the axioms of the Nash bargaining solution, such an agreement
is Pareto optimal. We verify that the main US clearinghouse for credit derivatives has default
resources that are larger than those implied by our model.

One important insight emerging from our model is that under the Nash solution, the
seniority of the CN's own equity will not change the expected surplus across all parties. The
banks and the CN adapt and their utilities in the Nash solution stay the same. While the
utilities are the same, the Nash solution capital levels differ. When the CN's equity is junior
with respect to the guaranty fund, also known as ``skin in the game,"" the level of CN equity
at the Nash solution is almost a third as for the case where CN equity is senior. When CN
capital is junior the equilibrium shifts and it is the banks that make higher contributions to
decrease systemic risk.

This shows that the prevailing debate should not be about ``skin in the game"" but rather
about the adequate levels of capitalization under a junior versus a senior CN equity setup.

1For examples of a real-world waterfall procedure we refer the reader to https://www.theice.com/clear-
europe/risk-management or https://www.cmegroup.com/clearing/risk-management/financial-safeguards.html.

2Because we are under a cooperative game setup, banks form binding commitments (the model already
features binding liabilities).
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62 HAMED AMINI, DAMIR FILIPOVI\'C, AND ANDREEA MINCA

The overall resources in the Nash bargaining solution could actually increase when the CN's
capital is senior.

Relation to prior literature. There is an emerging literature on centralized clearing. Duffie
and Zhu (2011) focus on netting effects and point out the trade-off between multilateral netting
achieved through a CN and bilateral netting across asset classes. Amini, Filipovi\'c, and Minca
(2016a) investigate partial netting of a subset of liabilities and account for network knock-
on effects as well as asset liquidation effects. Glasserman, Moallemi, and Yuan (2016) study
margin provision in the case of one dealer and competing clearinghouses. Capponi, Cheng, and
Rajan (2014) obtain endogenous build-up of asset concentration in centrally cleared markets.
Cont and Minca (2016) propose algorithms for generating multilayered OTC networks and
assess the impact of centralized clearing by simulation. Armenti and Cr\'epey (2017) introduce
a quantitative model for determining the clearing (including margin) costs for default-free
clearinghouses.

There cannot be a single model that deals with all different operational regimes of a CCP.
Models on variation margins rely on CVA approaches and stochastic processes and they assume
that the CCP is default free. Our paper assumes the opposite: we abstract away from normal
operations, the CCP can default and cause losses. For normal operations, models determine
variation margins and this is very minutiose. We are giving a ``bird's eye view"" of what
happens under Armageddon liabilities (``extreme events""). In a real-world CCP example (see
https://www.theice.com/clear-europe/risk-management), the events that concern the initial
margin and default funds are referred to as ``extreme.""

Our paper is part of the larger literature on contagion in financial networks and in partic-
ular on payment equilibrium models; see, e.g., Eisenberg and Noe (2001), Cifuentes, Ferrucci,
and Shin (2005), Rogers and Veraart (2013), Glasserman and Young (2015). Similarly to the
more recent works of this strand, the liquidation losses are a critical driver of our results.
Our model suggests that fees and collateral are not substitutes, consistent with Capponi and
Cheng (2015). They propose a model with a default-free CN and no contagion effects. In our
case fees and collateral are not substitutes because larger guaranty fund contributions serve
to satisfy the regulator-imposed constraint to decrease systemic risk, while the fees serve to
make the setting attractive for the CN.

Our work is related to the literature on network structure and contagion. We show a type
of phase transitions in the ex post (statewise) effects on end users. If the liabilities to end users
are fully ``reinsured,"" i.e., the banks fully offset liabilities to end users by using contracts with
other banks (akin to primary insurers and reinsurers), then the CN decreases the shortfall to
end users. However, in heterogeneous settings where some of the banks are overreinsured and
some are underreinsured, the loss to end users increases with the CN. In a particular example
of a stylized financial network reduced to an intermediation chain, we show that as the length
of the intermediation chain becomes large, the CN always decreases the shortfall on end users.
In contrast, for medium length intermediation chains, the shortfall on end users increases.
Our main results are about the ex ante situation, where the effects are in expectation over
the networks realized under a set of extreme scenarios.

We can apply our results to derivatives classes for which risk can be propagated to end
users, and for which bank-end user trades are not centrally cleared. Dodd--Frank (and similar
frameworks in Europe) generally seek to mandate all transactions to be centrally cleared, but
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SYSTEMIC RISK IN NETWORKS WITH A CENTRAL NODE 63

this is not the case for nonfinancial end users such as corporations that are hedging. The end
users we are concerned with are the real economy firms who have hedging needs.

We are focusing on (CDS) markets because we consider extreme events: ``the issue with
credit default swap is that because a default is a discrete event, it can lead to large jumps in
the value of these contracts"" (Stulz (2010)).

Outline. The reminder of the paper is organized as follows. In section 2, we introduce
the OTC financial network and a generic interbank liability clearing equilibrium without
centralized clearing. In section 3, we add a CN to the financial network and explicitly solve
for the corresponding interbank liability clearing equilibrium. In section 4, we study the ex
post impact of the CN on banks, CN, and end users. We compare liquidation losses and
shortfall losses imposed on the end users. In section 5, we introduce the systemic risk measure
and give ex ante conditions for the CN to decrease systemic risk from an ex ante perspective.
In section 6 we present the Nash bargaining solution: the utilities of all parties involved make
use of all previous results. In section 7, we analyze numerically the impact of CNs. Section 8
concludes. Appendix A contains some additional sensitivity results and all proofs.

2. Financial network. We consider m interlinked financial institutions (banks) i =
1, . . . ,m. There are three dates t = 0, 1, 2. Values at date t = 0 are deterministic and
values at date t = 1, 2 are random variables on a probability space (\Omega ,\scrF ,P) with \Omega a set of
extreme scenarios that realize at time 1. Liabilities Lij = Lij(\omega ) represent claims that become
due at date 1 given an extreme scenario \omega \in \Omega . For example, following the default of a large
reference entity, the payments due to CDS can amount to billions of dollars (after the default
of Lehman Brothers, recovery rates were set in auction at only 8\% and AIG faced large lia-
bilities upon the default event, and eventually needed a government bailout that topped \$180
billion). It is this kind of (single) catastrophic event that we consider, and the meaning of the
dates 0, 1, 2 is before the event, the realization of the event, and after the event.

At time 0 bank i holds \gamma i \geq 0 units of cash, with zero return. At time 1 banks receive
a random endowment Qi \geq 0 of a nonpledgeable asset. The asset can be liquidated at its
fundamental value Qi only at t = 2 (e.g., the long-term investment matures at t = 2). If the
asset is liquidated at t = 1 only a fraction of its fundamental value can be recovered, since
early liquidation is costly. Instead of fixed early liquidation value we can use an exogenous
inverse demand function as in (Cifuentes, Ferrucci, and Shin 2005) and (Amini, Filipovi\'c, and
Minca 2016b). The fixed early liquidation value for illiquid assets simplifies the exposition
a lot and is without loss of generality with respect to the case of exogenous inverse demand
function, as in an earlier version of the present paper. We denote by Pi the liquidation value
of the asset at t = 1 and we assume that Pi < Qi if Qi > 0 (naturally, Pi = 0 if Qi = 0). We
assume that the asset can be partially liquidated.

This assumption that the asset is nonpledgeable (i.e., banks cannot borrow against it) is
reasonable in our setting because the scenarios we consider represent extreme events. There
is no funding liquidity in this situation, unless a lender of last resort provides it, which we do
not consider here. Both assumptions are common in the literature on systemic risk; see, e.g.,
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) and Rogers and Veraart (2013).

In addition to interbank liabilities, banks have liabilities toward the end users. If there are
any liabilities from end users to the banks, then these liabilities are included in the random
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64 HAMED AMINI, DAMIR FILIPOVI\'C, AND ANDREEA MINCA

endowment. We note that there is a time mismatch between assets and the liabilities to the
end users. This is realistic: ``hedging with differing maturities is commonplace""; see Chen
et al. (2011).

Nominal interbank liabilities. The nominal interbank liabilities, realized at time 1, are rep-
resented by a nonnegative random matrix (Lij), where Lij \geq 0 (with Lii = 0) denotes the
cash amount that bank i owes bank j at t = 1. The liability of bank i to the end users is
denoted by Di \geq 0. The total nominal interbank liabilities of bank i sum up to

Li =
m\sum 
j=1

Lij .

Bank i in turn claims a total nominal cash amount of
\sum m

j=1 Lji from the other banks.
The nominal balance sheet of bank i at t = 1 is given by
\bullet Assets: \gamma i +

\sum m
j=1 Lji +Qi;

\bullet Liabilities: Li +Di + nominal net worth.
The nominal cash balance is \gamma i +

\sum m
j=1 Lji  - Li  - Di.

The liability matrix represents contingent claims, i.e., financial derivatives such as swaps,
which are the relevant claims in OTC markets. The network of contingent claims is random:
both the direction and the size of liabilities among banks are random and depend on the scenario
\omega \in \Omega .

Bank constraints. We let for each bank

(1) \Lambda i =
m\sum 
j=1

Lji  - Li,

the net receivables from the interbank network. We assume that the interbank dealer network
provides hedging services to the end users. We also assume that end user trades are not
centrally cleared. We assume that dealer banks offset exposures to end users (``customers"")
by entering opposite contracts with other banks. This translates into the condition

(2) Di > 0 =\Rightarrow \Lambda i > 0.

The example of CDS clarifies this assumption because of the similarity to the insurance
business: Di is the amount of primary ``insurance"" that dealer i sells to end users and \Lambda +

i

is the net amount of ``reinsurance"" that dealer i buys from the rest of the network. The
assumption states that a bank exposed to end users will offset this risk at least partially by
reinsuring. If all banks are liquid and reinsured, then the end users have no risk. Of course, if
either banks are not ``reinsured"" or the ``reinsurance"" does not work, then there are knock-on
effects on end users and there is an economic loss for the latter. We will examine the impact
of central clearing on this economic loss of end users.

In the other sense, dealer banks that receive random endowments act as net ``reinsurers""
of the network (note that ``reinsurers"" do take risks even as they have a random endowment
because of the maturity mismatch)

(3) Qi > 0 =\Rightarrow \Lambda i < 0.
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SYSTEMIC RISK IN NETWORKS WITH A CENTRAL NODE 65

Network rationale. While a model of network formation is beyond our scope, we provide
a rationale for the network we consider, under the example of CDS. Assume that that banks
learn at time 1 whether under the realized scenario they receive an endowment or they are
liable to the end user. At time 1 the bank learns its role, ``primary insurer"" or ``reinsurer,""
but this role is of course not known at time 0. The network rationale is to make sure that
endowments are matched to the end users. Since all these are random, so is the network.
In aggregate, we would require that

\sum 
i Pi =

\sum 
iDi statewise or, at least in expectation\sum 

i E[Pi] =
\sum 

i E[Di]. These conditions recall dealer models in equity markets (where the flow
of buyers equates in expectation the flow of sellers). A dealer in equity market models can
manage inventory risk by offsetting her positions intertemporally as buyers and sellers arrive
intermittently. In the case of an OTC market one dealer cannot manage inventory risk over
time because the endowments and liabilities to end users arrive randomly at different nodes,
and the flow of these arrivals is much smaller that the flow of buyers and sellers in equity
markets. OTC dealers manage inventory risk spatially by entering offsetting contracts with
other dealers. As a whole, the network of dealer banks fulfills its role of matching buyers and
sellers. There is liquidation risk when this network of contracts is realized.

Finally, we discuss the implication of our assumption that the probability distribution of
liabilities does not change when introducing the CN. Again, take the CDS example. If the
reference entity is outside the network, then the value of the CDS is not affected by the CN.
In turn, if the reference entity is in the network, then its default risk is affected by the CN
and therefore the CDS liabilities change too.

Interbank liability clearing equilibrium. We assume that the payables to the end users are
senior with respect to the interbank payables. We let the cash, net of outside payables, be

\Gamma i := \gamma i  - Di.

If bank i's cash balance is negative, \Gamma i +
\sum m

j=1 Lji < Li, then bank i has a liquidity shortfall
and is forced to sell its illiquid asset (in part or in full) at price Pi < Qi. If the revenue from
the illiquid does not cover the negative cash balance, \Gamma i +

\sum m
j=1 Lji + Pi < Li, then bank i

defaults. Bank j will in turn receive a fraction of the cash value of bank i's total assets.

Definition 1. An interbank liability clearing equilibrium consists of a random matrix of
clearing payments (L\ast 

ij) that satisfies 0 \leq L\ast 
ij \leq Lij and the clearing condition

L\ast 
i = Li \wedge 

\Bigl( 
\Gamma i +

m\sum 
j=1

L\ast 
ji + Pi

\Bigr) +
, i = 1, . . . ,m,

where we denote by L\ast 
i =

\sum m
j=1 L

\ast 
ij the total clearing payments of bank i.

Note that the clearing condition makes use of the fact that the bank liquidates as much
as needed (and up to its entire endownment) in order to pay its liabilities. Once the clearing
equilibrium is determined, and using that no bank liquidates voluntarily more than what
it needs to cover its cash shortfall, we can determine the amount of asset liquidations in
equilibrium, as shown below in (5).

An interbank liability clearing mechanism is defined in the following example, for which
an equilibrium always exists.
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Example 1. In the setup of Eisenberg and Noe (2001) one assumes a proportional sharing
rule, where in case of default of bank i any counterparty bank j receives the proportion

\Pi ij =

\Biggl\{ 
Lij

Li
if Li > 0,

0 otherwise,

of the cash value of bank i's total assets. The clearing vector of payments L\ast = (L\ast 
1, . . . , L

\ast 
m)

can be determined statewise as a fixed point, \Phi (L\ast ) = (L\ast ), of the map \Phi on [0, (L1, . . . , Lm)]
given by

(4) \Phi (\ell )i = Li \wedge 
\Bigl( 
\Gamma i +

m\sum 
j=1

\ell j\Pi ji + Pi

\Bigr) +
, i = 1, . . . ,m.

It can be shown as in Eisenberg and Noe (2001) that the mapping \Phi has a largest fixed point
(the set of fixed points forms a lattice). The matrix of clearing payments is then given by
L\ast 
ij = L\ast 

i\Pi ij . An extension of the Eisenberg and Noe (2001) setup is given in Amini, Filipovi\'c,
and Minca (2016b), who consider multiple seniority classes and an inverse demand function
for the illiquid asset.

We henceforth assume that (L\ast 
ij) is a matrix of clearing interbank liability payments. The

following results hold irrespectively of whether this equilibrium is based on the proportional
sharing rule of Eisenberg and Noe (2001) or not. The liquidated fraction of the asset of bank
i in the clearing equilibrium is given by

(5) Zi =

\Bigl( 
\Gamma i +

\sum m
j=1 L

\ast 
ji  - Li

\Bigr)  - 

Pi
\wedge 1 for i with Pi > 0.

Note that if bank i is in default, then its asset is liquidated in full, Zi = 1. The actual payment
to end users is given by

D\ast 
i = Di \wedge 

\Bigl( 
\gamma i +

m\sum 
j=1

L\ast 
ji + Pi

\Bigr) +
.

Note that this is compatible with Definition 1 since a fixed point L\ast 
i , i = 1, . . . ,m, would not

change if \Gamma i were defined as \gamma i - D\ast 
i for all i = 1, . . . ,m. In particular, note that when D\ast 

i < Di

we have L\ast 
i = 0, consistent with the seniority assumption for the liability to end users.

Terminal net worth. The value of bank i's assets at t = 2 becomes

Ai = \Gamma i + ZiPi + (1 - Zi)Qi +
m\sum 
j=1

L\ast 
ji.

The net worth of bank i at t = 2 is defined by

(6) Ci = Ai  - Li.

Subtracting the nominal---rather than the clearing---value of its liabilities from the value of
its assets accounts for the shortfall in case of default of bank i. Indeed, bank i is in default if
and only if Ci < 0. In this case, Zi = 1, L\ast 

i = (\Gamma i +
\sum m

j=1 L
\ast 
ji + Pi)

+ and we have
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C - 
i = Li  - Ai =

\Biggl\{ 
Li  - L\ast 

i if D\ast 
i = Di,

Li +Di  - D\ast 
i if D\ast 

i < Di (L\ast 
i = 0).

The shortfall imposed on the financial network and on end users by bank i is thus given
by

(7) C - 
i = Li  - L\ast 

i\underbrace{}  \underbrace{}  
shortfall on other banks

+ Di  - D\ast 
i\underbrace{}  \underbrace{}  

shortfall on end users

and we denote that the shortfall imposed by D - 
i = Di  - D\ast 

i = C - 
i  - (Li  - L\ast 

i ). From the
perspective of the bank's utility, the relevant quantity we will consider is C+

i . The aggregate
utility of the end users is represented by their aggregate receivables

\sum m
i=1D

\ast 
i .

Table 1 summarizes the notations for the financial network without CN.
Aggregate surplus identity. We now establish a fundamental relation between aggregate

surplus and aggregate liquidation losses.

Lemma 1. The aggregate surplus satisfies

(8)
m\sum 
i=1

C+
i +

m\sum 
i=1

D\ast 
i =

m\sum 
i=1

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

Zi(Qi  - Pi).

Hence, the aggregate surplus depends on the interbank liabilities only through the implied
liquidation losses. Forced liquidation of the assets lowers the aggregate surplus. Absent any
illiquid asset, cash gets only redistributed and there are no dead weight losses.

Table 1
Overview of model notation for the financial network without CN.

\gamma i units of liquid asset (cash) hold by bank i at t = 0

Qi fundamental value of asset hold by bank i at t = 2

Pi liquidation value of asset hold by bank i at t = 1

Di liability of bank i to the end users at t = 1

Lij liability (cash amount) that bank i owes bank j at t = 1

Li =
\sum m

j=1 Lij total nominal interbank liabilities of bank i to all other banks

\Lambda i =
\sum m

j=1 Lji  - Li net receivables of bank i from the interbank network

\Gamma i = \gamma i  - Di cash hold by bank i, net of outside payables

\Pi ij = Lij/Li relative (proportional) nominal liability of bank i to bank j

L\ast 
ij clearing liability payment of bank i to bank j in equilibrium

L\ast 
i =

\sum m
j=1 L

\ast 
ij total clearing payments of bank i in equilibrium

D\ast 
i actual payment of bank i to end users in equilibrium

Zi liquidated fraction of the asset of bank i in equilibrium

Ai value of bank i's assets in equilibrium at t = 2

Ci = Ai  - Li net worth of bank i in equilibrium at t = 2

C - 
i = max\{  - Ci, 0\} shortfall imposed by bank i in equilibrium
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3. Central counterparty clearing. We extend the preceding setting by adding a CN to
the financial network. We formally label it as entity i = 0. We assume that all interbank
liabilities among banks (but not toward end users) are cleared through the CN, so that the
interbank network becomes a star-shaped network. The CN is capitalized in cash with equity
\gamma 0 and a guaranty fund,

\sum m
i=1 gi, which is funded by up-front cash-contribution gi \leq \gamma i from

every bank i.
Nominal interbank liabilities. The net exposure of bank i to the CN is given by its net

receivables, \Lambda i =
\sum m

j=1 Lji - Li in (1). In our model, we allow for netting the nominal liability
of bank i to the CN against the up-front guaranty payment gi:

(9) \widehat Li0 =
\Bigl( 
\Lambda i + gi

\Bigr)  - 
.

Note that \widehat Li0 is positive if and only if \Lambda  - 
i exceeds gi. Netting bank i's liabilities against its

up-front payment reduces the forced liquidation need of its asset. This in turn has a positive
effect on the aggregate surplus, as seen in Lemma 1. In a Nash bargaining game of the banks
and the CN it will thus be possible to reach an unanimous agreement to form a CN in which
all parties are better off.

The CN charges a proportional fee f \in [0, 1] to its interbank liabilities in exchange for
putting its own equity \gamma 0 at risk. For tractability, this charge is ex post. The nominal liability
of the CN to bank i is given by

(10) \widehat L0i = (1 - f)\Lambda +
i ,

and the total nominal liability of the CN equals

(11) \widehat L0 =
m\sum 
i=1

\widehat L0i = (1 - f)
m\sum 
i=1

\Lambda +
i .

Nominal guaranty fund. We define the nominal share of bank i in the guaranty fund as

Gi =
\Bigl( 
\Lambda i + gi

\Bigr) +
 - \Lambda +

i =

\left\{     
gi if \Lambda i > 0,

gi + \Lambda i if  - gi < \Lambda i \leq 0,

0 otherwise,

which is contingent on the realization of \Lambda i. As a result we have

(12) Gi  - \widehat Li0 = gi  - \Lambda  - 
i ,

and Gi \times \widehat Li0 = 0. Figure 1 shows Gi and \widehat Li0 as functions of \Lambda i.
We denote by G\mathrm{t}\mathrm{o}\mathrm{t} =

\sum m
i=1Gi the total nominal value of the guaranty fund. The nominal

balance sheet of the CN at t = 1 becomes
\bullet Assets: \gamma 0 +

\sum m
i=1 gi +

\sum m
i=1

\widehat Li0;

\bullet Liabilities: \widehat L0 +G\mathrm{t}\mathrm{o}\mathrm{t} + nominal net worth (\gamma 0 +
\sum m

i=1 f\Lambda 
+
i ).

The guaranty fund is loss-absorbing equity of the CN. It can absorb losses before or after
the CN's external capital. We refer to these cases as ``senior CN"" and respectively ``junior
CN,"" also known as ``skin in the game."" Banks' remaining shares in the guaranty fund are
repaid at t = 2.
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-gi 

gi 

0 Λi 

Gi 

Li0 
^ 

Figure 1. Nominal share in the guaranty fund, Gi, and nominal liability to the CN, \widehat Li0, of bank i as
functions of its net exposure to the CN, \Lambda i, in terms of its guaranty fund contribution, gi.

The guaranty fund share is mutualized but the member retains the right to net his own
liability with this share under an extreme event. Clearly, in the context of our two-period
model, the meaning of netting with a guaranty fund must be made precise.

Our model does not represent the daily margining with a CN but one ``armageddon""
realization of liabilities. We are not suggesting that members net their daily liabilities against
the posted guaranty fund, but we allow this in the extreme scenario. In practice, if a member
nets its guaranty fund contribution with its liability, then a new guaranty fund must be set
up after the extreme event. Old members who cannot replenish the guaranty fund can be
excluded. The CN recovery (including guaranty fund replenishment) following the extreme
event is beyond our model.

Interbank liability clearing equilibrium with CN. Bank i has either a positive liability to the
CN, \widehat Li0 > 0, or a positive receivable from the CN, \widehat L0i > 0, but never both, \widehat Li0\times \widehat L0i = 0. This
fact allows us to solve explicitly for the clearing payments at t = 1. As in the case without
the CN, the payables to the end users are senior, and we let \Gamma i = \gamma i  - Di. The nominal cash
balance of bank i at t = 1 is \Gamma i  - gi + \widehat L0i  - \widehat Li0.

Let i with \Lambda i < 0. Then \widehat Li0 = 0 and moreover Di = 0 from (2). The cash balance is given
in this case by \gamma i  - gi  - \widehat Li0 and bank i is forced to liquidate the fraction

(13) \widehat Zi =

\Bigl( 
\gamma i  - gi  - \widehat Li0

\Bigr)  - 

Pi
\wedge 1

of the asset. The clearing payment of bank i to the CN is

\widehat L\ast 
i = \widehat Li0 \wedge 

\Bigl( 
\gamma i  - gi + Pi

\Bigr) 
.

The value of the CN's total assets becomes

(14) \widehat A0 = \gamma 0 +
m\sum 
i=1

gi +
m\sum 
i=1

\widehat L\ast 
i .

The clearing interbank liability payment of the CN to bank i is defined according to the
proportionality rule, \widehat L\ast 

0 \times \widehat \Pi 0i, with total clearing interbank liability payment

\widehat L\ast 
0 =

\widehat A0 \wedge \widehat L0
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and relative liability weights

\widehat \Pi 0i =

\left\{   
\Lambda +
i\sum m

j=1 \Lambda 
+
j

if \widehat L0 > 0,

0 otherwise.

Liquidation of the guaranty fund. We now determine the clearing payments from the guar-
anty fund to the banks at t = 2. With ``senior CN,"" the guaranty fund is the first layer to
absorb shortfall losses imposed by defaulted banks, prior to the nominal net worth of the CN.
The guaranty fund's surplus in the clearing equilibrium is given by

(15) G\ast 
\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{t}\mathrm{o}\mathrm{t} \wedge 

\Bigl( \widehat A0  - \widehat L0  - \gamma 0  - 
m\sum 
i=1

f\Lambda +
i

\Bigr) +
,

where we used that the nominal net worth of the CN amounts to \gamma 0 +
\sum m

i=1 f\Lambda 
+
i .

Remark 1. With ``junior CN,"" the guaranty fund's surplus in the clearing equilibrium is
given by

(16) G\ast 
\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{t}\mathrm{o}\mathrm{t} \wedge 

\Bigl( \widehat A0  - \widehat L0

\Bigr) +
.

The clearing payment from the guaranty fund to bank i is defined by the proportionality
rule,

G\ast 
i =

Gi

G\mathrm{t}\mathrm{o}\mathrm{t}
\times G\ast 

\mathrm{t}\mathrm{o}\mathrm{t} (= 0 if G\mathrm{t}\mathrm{o}\mathrm{t} = 0).

This means that banks' shares absorb losses in the guaranty fund proportionally.
If \Lambda i > 0, then the bank has net payables to the end users, hedged with net receivables

from the financial network. The cash balance of bank i is given by \Gamma i  - gi + \widehat L\ast 
0 \times \widehat \Pi 0i + G\ast 

i ,
and the actual payable to the end users is

D\ast 
i = Di \wedge 

\Bigl( 
\gamma i  - gi + \widehat L\ast 

0 \times \widehat \Pi 0i +G\ast 
i

\Bigr) 
.

Terminal net worth. The net worth of the CN at t = 2 is defined by

(17) \widehat C0 = \widehat A0  - \widehat L0  - G\ast 
\mathrm{t}\mathrm{o}\mathrm{t}.

The shortfall of the CN becomes

(18) \widehat C - 
0 = ( \widehat A0  - \widehat L0)

 - = \widehat L0  - \widehat L\ast 
0.

The value of bank i's assets, including its share in the guaranty fund, at t = 2 becomes

(19) \widehat Ai = \Gamma i + \widehat ZiPi + (1 - \widehat Zi)Qi + \widehat L\ast 
0 \times \widehat \Pi 0i +G\ast 

i  - gi.

As before, the net worth of bank i is obtained by subtracting the nominal value of its liabilities
from the value of its assets,

(20) \widehat Ci = \widehat Ai  - \widehat Li0.

D
ow

nl
oa

de
d 

10
/2

0/
20

 to
 9

2.
40

.1
76

.5
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYSTEMIC RISK IN NETWORKS WITH A CENTRAL NODE 71

If \Lambda i < 0 the shortfall of bank i equals

(21) \widehat C - 
i = \widehat Li0  - \widehat L\ast 

i .

In this case, bank i is in default, \widehat Ci < 0, if and only if \widehat Li0 > \widehat L\ast 
i , where in this case \widehat L\ast 

i =

\gamma i  - gi + Pi. This again implies that \widehat Ai = \gamma i  - gi + Pi = \widehat L\ast 
i , which proves (21).

If \Lambda i > 0, then the shortfall of bank i equals

(22) \widehat C - 
i = Di  - \widehat D\ast 

i .

Indeed, in this case \widehat Ci < 0 if and only if \widehat Ai < 0. This in turn is equivalent to \gamma i - gi+\widehat L\ast 
0i+G\ast 

i <

Di, which implies D\ast 
i = \gamma i  - gi + \widehat L\ast 

0i +G\ast 
i . Then\widehat C - 

i = \widehat A - 
i = Di  - (\gamma i  - gi + \widehat L\ast 

0i +G\ast 
i ) = Di  - D\ast 

i .

By combining (21) and (22) we obtain

(23) \widehat C - 
i = (\widehat Li0  - \widehat L\ast 

i ) + (Di  - \widehat D\ast 
i ).

Table 2 summarizes the notations for the financial network with CN.

Table 2
Overview of model notation for the financial network with CN.

\gamma 0 units of liquid asset (cash) hold by CN at t = 0

gi guaranty fund contribution by bank i at t = 0

f \in [0, 1] volume based fee charged by the CN on banks' receivables

\Lambda i =
\sum m

j=1 Lji  - Li net exposure of bank i to the CN\widehat Li0 =
\Bigl( 
\Lambda i + gi

\Bigr)  - 
nominal liability of bank i to the CN\widehat L0i = (1 - f)\Lambda +

i nominal liability of the CN to bank i\widehat L0 =
\sum m

i=1
\widehat L0i total nominal liability of the CN

Gi =
\Bigl( 
\Lambda i + gi

\Bigr) +

 - \Lambda +
i nominal share of bank i in the guaranty fund

G\mathrm{t}\mathrm{o}\mathrm{t} =
\sum m

i=1 Gi total nominal value of the guaranty fund\widehat L\ast 
i clearing liability payment of bank i to the CN in equilibrium
\^Zi liquidated fraction of the asset of bank i in equilibrium\widehat A0 value of the CN's total assets in equilibrium\widehat L\ast 
0 = \widehat A0 \wedge \widehat L0 total clearing interbank liability payment of the CN in equilibrium\widehat \Pi 0i = \widehat L0i/\widehat L0 relative (proportional) liability of the CN to bank i

G\ast 
\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{t}\mathrm{o}\mathrm{t} \wedge 

\Bigl( \widehat A0  - \widehat L0

\Bigr) +

guaranty fund's surplus in the clearing equilibrium

G\ast 
i = Gi/G\mathrm{t}\mathrm{o}\mathrm{t} \times G\ast 

\mathrm{t}\mathrm{o}\mathrm{t} clearing payment from the guaranty fund to bank i\widehat D\ast 
i actual payable to the end users by bank i in equilibrium

\^Ai value of bank i's assets in equilibrium
\^Ci = \^Ai  - \^Li0 net worth of bank i in equilibrium\widehat C0 = \widehat A0  - \widehat L0  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t} net worth of the CN in equilibrium
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Aggregate surplus identity with CN. We now establish the aggregate surplus identity with
CN, which is the exact analogue of the aggregate surplus identity for the uncleared network
in Lemma 1.

Lemma 2. The aggregate surplus with CN satisfies

(24)
m\sum 
i=0

\widehat C+
i +

m\sum 
i=1

\widehat D\ast 
i =

m\sum 
i=0

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

\widehat Zi(Qi  - Pi).

Hence, the aggregate surplus depends on the clearing mechanism only through the implied
liquidation losses. The implications are the same as for the uncleared network given following
Lemma 1.

4. Ex post effects of centralized clearing. We analyze the main statewise effects of
centralized clearing on the net worth of all network participants. A critical determinant of the
overall net worth is the amount of asset liquidations. These are determined by the network
structure, which becomes a star-shaped network with a CN. From the banks' perspective,
their net worth depends on the guaranty fund contributions (their own contributions and
the contributions of the other members) and on the CN external capital. Of course, the fee
charged by the CN also affects the bank's net worth, but the effect is secondary. We denote
by \bfitg = (g1, . . . , gm) the vector of guaranty fund contributions. We refer to (\gamma 0, g, f) as ``CN
policy.""

We first state the following invariance result for banks with net payables to the interbank
network (and consequently who have a net payable to the CN).

Lemma 3. For any bank i with net payables to the interbank network, i.e., \Lambda i < 0, the
shortfall on interbank liabilities \widehat C - 

i = (\widehat Li0 - \widehat L\ast 
i ) and the liquidated fraction of the asset \widehat Zi do

not depend on the guaranty fund \bfitg , on the CN external capital \gamma 0, or on the fee f .

The intuition behind this result is that ex post fee collection from receivables does not
affect the default risk of banks with net liabilities toward the financial network. The amount
of liquidations of these banks is independent of the amount of guaranty fund contributions
(because their liabilities are net of the guaranty fund contribution under the extreme event).
In contrast, banks that are net receivers from the CN are also liable to the end users. Their
shortfall on those liabilities does depend on the policy and we will give conditions that the
shortfall is smaller than in the case without CN.

We next provide some basic identities which lead to simple formulas for the net worth
across the network as a function of the banks' aggregated shortfall,

\sum 
i, \Lambda i<0

\widehat C - 
i . Note that a

bank cannot at the same time have a positive nominal share in the guaranty fund and impose
a positive shortfall loss on the network, i.e., \widehat L\ast 

i < \widehat Li0 implies Gi = 0: the first defense in the
CN against losses is the guaranty fund of the member itself. In the lemma, we are providing
the identities for the case ``senior CN"" and respectively ``junior CN.""

Lemma 4. We have that

\widehat A0  - \widehat L0 = \gamma 0 + f
m\sum 
i=1

\Lambda +
i +G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i, \Lambda i<0

\widehat C - 
i .D
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The surplus of the guaranty fund in the case of ``senior"" CN (resp., ``junior"" CN) satisfies

(25) G\ast 
\mathrm{t}\mathrm{o}\mathrm{t} =

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\Bigr) + \Bigl( 
resp., G\mathrm{t}\mathrm{o}\mathrm{t} \wedge 

\Bigl( \widehat A0  - \widehat L0

\Bigr) +\Bigr) 
.

The net worth of the CN equals
(26)\widehat C0 = \gamma 0+

m\sum 
i=1

f\Lambda +
i  - 

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t} - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\Bigr)  - \Bigl( 
resp.,

\Bigl( 
\gamma 0+f

m\sum 
i=1

\Lambda +
i  - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\Bigr) +
 - 
\Bigl( \widehat A0 - \widehat L0

\Bigr)  - \Bigr) 
.

It is nondecreasing in (\bfitg , f), for i = 1, . . . ,m,

(27)
\partial \widehat C0

\partial f
\geq 0 and

\partial \widehat C0

\partial gi
\geq 0.

The net worth of bank i equals

(28) \widehat Ci = \Gamma i +Qi + \Lambda i  - \widehat \Pi 0i
\widehat C - 
0  - \widehat Zi(Qi  - Pi) - f\Lambda +

i  - Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
,

the nominal net worth minus a share in the shortfall of the CN, minus the liquidation loss,
minus the fees, minus a loss in the share in the guaranty fund.

Lemma 4 is essentially a check of the waterfall procedure in the CN, which takes place when
there are members who deplete their own guaranty fund contributions and impose shortfall
losses on the network. In the case of ``senior CN,"" the shortfall of one bank (after depletion
of its own guaranty fund contribution) is absorbed by the nominal shares of the other banks
and then by the external capital of the CN. In the case of ``junior CN"" the order is reversed.
Identity (25) states that the shares of the banks have limited liability.3 For both senior and
junior CN, we check that if \widehat C0 < 0, then the guaranty fund is wiped out, G\ast < 0. Moreover,
we check that \widehat C - 

0 is the same for senior/junior CN:

(29) \widehat C - 
0 = ( \widehat A0  - \widehat L0)

 - =
\Bigl( 
\gamma 0 +

m\sum 
i=1

f\Lambda +
i +G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\Bigr)  - 
.

In turn, CN seniority affects the surplus and the banks' shares in the guaranty fund. Its
sensitivities with respect to the fee and guaranty fund policy shown in (27) confirm economic
intuition. More sensitivity results for banks' individual and aggregate net worth, surplus, and
shortfall are given in Appendix A.

We now state our result on the statewise effects of centralized clearing on the net worth of
the banks. To make the comparison of the financial network with and without CN, we treat
the CN in the latter case as dummy bank i = 0 without any liabilities and with constant net
worth equal to its equity, C0 = \gamma 0.

3More recently, there are CNs where membership does not come with limited liability in the guaranty fund.
The CN can make capital calls so as to recapitalize the guaranty fund if the initial shares are depleted. We do
not consider this case here.
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Theorem 1.
(i) For a bank i with \Lambda i \leq 0, introducing the CN reduces liquidation losses, \widehat Zi \leq Zi, and

shortfall losses, \widehat C - 
i \leq C - 

i .
(ii) The impact of the CN on the net worth of bank i can be decomposed in three compo-

nents,

(30) \widehat Ci  - Ci = T1(i) + T2(i) + T3(i),

corresponding to
\bullet counterparty default,

T1(i) =  - \widehat \Pi 0i
\widehat C - 
0 +

m\sum 
j=1

(Lji  - L\ast 
ji);

\bullet change in liquidation loss,

T2(i) = (Zi  - \widehat Zi)(Qi  - Pi) \geq 0;

\bullet fees and loss in the share in the guaranty fund,

T3(i) =  - f\Lambda +
i  - Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
\leq 0.

(iii) For the bank i with \Lambda i > 0, if T1(i) + T3(i) \geq 0, then the CN reduces the shortfall on
end users: \widehat C - 

i \leq C - 
i . If T1(i) + T3(i) \leq 0, then the CN increases the shortfall on end

users \widehat C - 
i \geq C - 

i .

From Theorem 1 we see that the netting effects due to the CN reduce the liquidation
losses for banks with net liabilities to the financial network, and also the shortfall that these
banks impose on the rest of the financial network. In other words, the ``reinsurers"" have
less shortfall. The natural consequence of this is that if the ``primary insurers"" are fully
reinsured, then the CN will always have a positive effect on the aggregate shortfalls. We will
demonstrate this formally below. However, as the empirical analysis (Chen et al. (2011)) of
the CDS market shows, the offset or ``reinsurance"" is not perfect. Moreover, other banks may
take larger positions than their own exposure to the end users (``overreinsurance""). In this
case, the shortfalls of the underreinsured may increase with a CN and this effect increases
with the guaranty fund share at risk.

The CN impact on the individual net worth of bank i results from weighing three compo-
nents that do not all go in the same direction, as expressed by the decomposition (30). The
CN always reduces liquidation losses, T2 \geq 0 for banks with net liabilities toward the CN. On
the other hand, as captured by T3 \leq 0, the CN always puts the guaranty fund contribution at
risk and charges a volume-based fee that comes along with membership of the CN. The latter
effect becomes more negative with increasing guaranty fund contribution and especially in the
setting ``senior CN."" The CN may have a positive impact on the reduction of counterparty
risk, as captured by the term T1, but this is not guaranteed and depends critically on the
capitalization of the CN. For banks with net receivables from the CN, it is not clear in general
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that CN decreases the shortfall to the end users. The last point of the theorem gives the
necessary and sufficient condition for a decrease of shortfall on end users of these banks. The
sum of the three components, T1 + T2 + T3, is not always positive and a positive impact of
the CN on bank i's surplus cannot be guaranteed statewise. In the next section, we aggregate
the statewise effects using a systemic risk measure.

We now consider the loss imposed on the end users. This loss is imposed by banks which
have Di > 0 (and thus \Lambda i > 0). We consider two extremes: one in which the realized network
is fully symmetric and fully ``reinsured"": Di constant over i and \Lambda i = Di. In this case, the CN
always decreases the aggregate shortfall to end users and consequently increases the aggregate
surplus of end users.

Proposition 1. Suppose that all primary insurers are fully reinsured, Di = \Lambda i for all i with
\Lambda i > 0, and that Lij = 0 for all i,j with \Lambda i\Lambda j > 0 (there are no linkages between two primary
insurers or two reinsurers). Moreover we assume that the primary insurers are symmetric: Di

constant over i with Di > 0 and that \gamma  - g  - f supi \Lambda i > 0, with supi \Lambda i the supremum of the
random variable \Lambda i. Then, the aggregate shortfall on external users decreases with the CN:\sum 

i, \Lambda i>0

\widehat C - 
i \leq 

\sum 
i, \Lambda i>0

C - 
i .

The previous proposition assumes a network with full reinsurance. In reality, the primary
primary insurers may be either over- or underinsured. In this case the CN can increase the
shortfall of end users, as the following example shows.

Assume a network in which all ``primary insurers,"" i.e., i with Di > 0, either do not
``reinsure"" (Lji = 0 for all j) or are overreinsured and have the same ``reinsurer,"" say, node
m: Lmi > Di. We assume that under the given realization \Gamma i = 0 for all i with Di > 0: the
cash holdings suffice to pay the liabilities to the end users in the case without the CN. In the
case with CN, this may be no longer the case if the guaranty fund contributions of the banks
that are not reinsured are effectively transferred to the banks which are overreinsured.

Let i with Di > 0 and \Lambda i = 0 (bank i is not reinsured). Then

\widehat C - 
i =

\Bigl( 
\Gamma i  - 

Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigr)  - 
=

Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
,

while C - 
i = \Gamma  - 

i = 0.
Let i with Di > 0 and \Lambda i > Di (bank i is overreinsured). Then

\widehat C - 
i =

\Bigl( 
\Gamma i + \Lambda i  - \widehat \Pi 0i

\widehat C - 
0  - f\Lambda +

i  - Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigr)  - 

and C - 
i = (\Gamma i + L\ast 

m\Pi mi)
 - = 0. We clearly have\sum 

i,\Lambda i=Di

\widehat C - 
i +

\sum 
i,\Lambda i>Di

\widehat C - 
i \geq 

\sum 
i,\Lambda i=Di

C - 
i +

\sum 
i,\Lambda i>Di

C - 
i .

The inequality can be strict. To see that, let \Lambda i \rightarrow \infty for an overreinsured i. In this limit
case the reinsurer m defaults, and the guaranty fund suffers losses (the effect being stronger
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with senior CN equity). For any i with Di > 0 and \Lambda i = 0, the shortfall equates the depleted
guaranty fund share and therefore the shortfall of these banks on end users is strictly positive.
On the other hand, overreinsured banks will have capital surplus (partly coming from the
transfer of the guaranty fund shares of the banks that are not reinsured under the realized
scenario). In sum, banks that are not reinsured may independently have sufficient cash to
pay their end users. With the CN, part of their cash is transferred to the surplus of the
overreinsured bank and they are led to impose losses on their end users.

5. Does centralized clearing reduce systemic risk? We have seen that the CN reduces
banks' liquidation and shortfall on other banks, and it improves the aggregate surplus. This
comes at the cost of potentially increased shortfall on the end users in the case the realized
network is asymmetric. This cost is higher if the CN capital is senior. We compare these
shortfall losses imposed on the end users, with and without CN.

There are a variety of well-known systemic risk indicators, such as CoVAR (Adrian and
Brunnermeier (2011)) or SES (Acharya et al. (2010)), which are based on measuring losses in
terms of market equity. In contrast to these approaches, the systemic risk measure we employ
here uses a structural model of loss propagation in the network of liabilities. Chen, Iyengar,
and Moallemi (2013) extend Brunnermeier and Cheridito (2014) and the classic axiomatic
risk measure theory to an axiomatic theory of systemic risk measures. More recent works on
systemic risk measures include Biagini et al. (2019), Feinstein, Rudloff, and Weber (2015),
Weber and Weske (2017), and Kusnetsov and Veraart (2019). These works have shown that
a systemic risk measure can be expressed using a single firm risk measure and an aggregation
function in a variety of settings and have explored the properties of such measures.

In contrast to these approaches, the systemic risk measure we employ here uses a struc-
tural model of loss propagation through the financial network. This is a new example of an
aggregation function, of independent interest to the literature on systemic risk measures.

We aggregate the economic loss of the end users,
\sum m

i=1(Di  - \widehat D\ast 
i ), which can be partially

offset (for example, via tax) by a fraction \alpha \geq 0 of the surplus of the banks,

(31) \scrA \alpha =
m\sum 
i=1

(Di  - D\ast 
i ) - \alpha 

m\sum 
i=0

C+
i ,

and respectively

\widehat \scrA \alpha =
m\sum 
i=1

(Di  - \widehat D\ast 
i ) - \alpha 

m\sum 
i=0

\widehat C+
i

for the case with the CN. The regulator measures systemic risk using

(32) \scrR = E
\Bigl[ 
\scrA \alpha 

\Bigr] 
,

which can be interpreted as an expected shortfall of the end users. Our results are robust to
aggregation functions (equivalent to the ``externality function"" in Brunnermeier and Cheridito
(2014) and related to the expectile in Bellini et al. (2014)) of the type \scrA \alpha = \alpha 

\sum m
i=0C

 - 
i  - 

(1 - \alpha )
\sum m

i=0C
+
i but are less interesting from a societal viewpoint because they consider the

losses of the banks and not of the end users.
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We now compare the systemic risk in the financial network with and without CN. The
following theorem shows that a CN does not always reduce systemic risk. More importantly,
it gives a simple and tight condition for a reduction of systemic risk in terms of the expected
shortfall on end users and a threshold which can be computed using only the uncleared
interbank network.

Theorem 2. We have that

(33) \widehat \scrA \alpha  - \scrA \alpha =  - \alpha 

m\sum 
i=1

(Zi  - \widehat Zi)(Qi  - Pi) + (1 - \alpha )

m\sum 
i=1

(D\ast 
i  - \widehat D\ast 

i ).

Moreover,
\sum m

i=1(Zi  - \widehat Zi)(Qi  - Pi) \geq 0 and does not depend on \gamma 0 and the fee and guaranty
fund policy (f, \bfitg ). The CN reduces the systemic risk in the financial network if and only if

(34) E
\Bigl[ m\sum 

i=1

(D\ast 
i  - \widehat D\ast 

i )
\Bigr] 
< E

\Bigl[ 
\alpha 

m\sum 
i=1

(Zi  - \widehat Zi)(Qi  - Pi)/(1 - \alpha )
\Bigr] 
.

The shortfall risk on end users on the left-hand side of (34) is decreasing in its equity \gamma 0
and has a nonmonotonous dependence on (g, f), while the threshold on the right-hand side
depends only on the parameters of the initial, uncleared interbank network. Condition (34)
thus provides a regulatory criterion for a reduction of systemic risk in terms of the policy
(\gamma 0, f, \bfitg ) of the CN.

On the right-hand side, E[\alpha 
\sum m

i=1(Zi  - \widehat Zi)(Qi  - Pi)/(1  - \alpha )] quantifies the mitigation
effects of the CN on liquidation costs. The shortfall imposed by bank i without the CN, Zi,
can be determined by multiple iterations of the ""fictitious default"" algorithm of Eisenberg and
Noe (2001) that converges increasingly to the equilibrium liquidation losses. The liquidated
quantity by bank i with the CN, \widehat Zi, corresponds to the first iteration of the algorithm. As
such, the term Zi - \widehat Zi corresponds to second and higher rounds of liquidations in the network
without CN.

In the following example, we apply Theorem 2 to a stylized network in which two banks
have opposite net positions and there exists a chain of intermediaries between these banks fully
hedged, i.e., with zero net positions. CDS markets (and generally OTC markets) constitute
examples of markets with this topology; see, e.g., Stulz (2010) and Minca (2011). We analyze
the impact of introducing a clearing facility in the network.

Example 2 (intermediation chain). Consider a set of m banks in which banks 2, . . . ,m - 1
are intermediaries for a claim between banks 1 and m. More specifically, we let \Lambda > 0 a
bounded random variable, and the interbank claims are given as

Li,i+1 = \Lambda for all i = 1, . . . ,m - 1.

We let Dm = \Lambda and Di = 0 for all i = 1, . . . ,m - 1 and we further assume that f sup\Lambda +g \leq \gamma .
For the systemic risk measure we set \alpha \in (0, 1) such that

(35) \scrR = E
\Bigl[ m\sum 

i=1

(Di  - D\ast 
i ) - \alpha 

m\sum 
i=1

C+
i

\Bigr] 
.D
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We also assume that the guaranty fund contributions are identical across banks, gi = g, and
that \gamma i = \gamma 1 and Pi = P1 for all i = 1, . . . ,m. Introducing a CN will replace the intermediation
chain with one intermediary, which is the CN. We have that

(36) \Lambda i =

\left\{     
0, i = 2, . . . ,m - 1,

\Lambda , i = m,

 - \Lambda , i = 1.

Consequently, the shares in the guaranty fund are given by

(37) Gi =

\Biggl\{ 
g, i = 2, . . . ,m,

(\Lambda  - g) -  - \Lambda  - , i = 1.

We obtain

\widehat C - 
0 =

\Bigl( 
\gamma 0 + f\Lambda + g(m - 1) - 

\Bigl( 
 - \Lambda + P1 + \gamma 1

\Bigr)  - \Bigr)  - 

and

Dm  - \widehat D\ast 
m = \widehat C - 

m =
\Bigl( 
\gamma m  - f\Lambda  - \widehat C - 

0  - Gm

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigr)  - 
= 1 \widehat C0<0

\Bigl( 
\gamma m  - f\Lambda  - \widehat C - 

0  - g
\Bigr)  - 

= 1 \widehat C0<0

\Bigl( 
\gamma m  - f\Lambda + \gamma 0 + f\Lambda + g(m - 1) - 

\Bigl( 
 - \Lambda + P1 + \gamma 1

\Bigr)  - 
 - g

\Bigr)  - 

= 1 \widehat C0<0

\Bigl( 
\gamma m + \gamma 0 + g(m - 2) - \Lambda + P1 + \gamma 1

\Bigr)  - 
,

where in the second line we used the assumption f sup\Lambda + g \leq \gamma , in which case there is a
shortfall on the end users only if the CN defaults. For the case without the CN we have

Dm  - D\ast 
m = C - 

m =
\Bigl( 
\gamma m  - \Lambda 

\Bigr)  - 
=

\Bigl( 
\gamma m + (m - 1)(\gamma 1 + P1) - \Lambda 

\Bigr)  - 
.

The total liquidated amount in the case with the CN is

\widehat Z1 =
(\gamma  - \Lambda ) - 

P
\wedge 1,

whereas the total liquidated amount in the case without the CN is

m - 1\sum 
i=1

(i\gamma + (i - 1)P  - \Lambda ) - 

P
\wedge 1.

The difference in systemic risk is E[ \widehat \scrA \alpha  - \scrA \alpha ], where\widehat \scrA \alpha  - \scrA \alpha = (1 - \alpha )1 \widehat C0<0
(\gamma m + \gamma 0 + g(m - 2) - \Lambda + P1 + \gamma 1)

 - 

 - (1 - \alpha )(\gamma m + (m - 1)(\gamma 1 + P1) - \Lambda ) - 

 - \alpha 

\Biggl( 
m - 1\sum 
i=1

(i\gamma + (i - 1)P  - \Lambda ) - 

P
\wedge 1 - (\gamma  - \Lambda ) - 

P
\wedge 1

\Biggr) 
(Qi  - Pi).(38)D
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We note that the last term corresponds to the difference in liquidation losses and is always
negative:

 - 
\Bigl( m - 1\sum 

i=1

(i\gamma + (i - 1)P  - \Lambda ) - 

P
\wedge 1 - (\gamma  - \Lambda ) - 

P
\wedge 1

\Bigr) 
(Qi  - Pi) < 0.

In the uncleared network there are liquidations at each intermediary bank. The first two terms
in (38) represent the difference in the shortfall to the end users with and without CN. Because
each intermediary is liable, the total pool of assets that absorbs the potential loss induced by
node 1 is m\gamma + (m - 1)P in the case without CN. In the case with the CN, the total pool of
assets is \gamma 1 + P1 + \gamma m + (m  - 2)g + \gamma 0 = 2\gamma + P + (m  - 2)g + \gamma 0: the intermediaries only
contribute up to the amount of g to the pool of loss absorbing assets.

The difference in the loss absorbing pool with CN and without CN is \gamma 0 - (m - 2)(\gamma +P - g).
As long as \gamma 0 > (m - 2)(\gamma +P  - g), the shortfall on end users is smaller with the CN and we
have \widehat D\ast 

m > D\ast 
m. For these case, we have \widehat \scrA \alpha  - \scrA \alpha < 0 and the systemic risk decreases with

the CN.
However, the loss absorbing pool can decrease with a CN. To see that, we analyze the\widehat \scrA \alpha  - \scrA \alpha under varying length of the intermediation chain. If m = 2, then the last term in

(38) is zero as there is no difference in liquidation losses. We have that the shortfall on end
users is smaller with the CN because \gamma 0 > (m  - 2)(\gamma + P  - g) = 0 and the difference in the
first two terms is negative, so \widehat \scrA \alpha < \scrA \alpha for m = 2. For the limit case m \rightarrow \infty , we have that
the first two terms in (38) tend to zero (since \Lambda is bounded), so \widehat \scrA \alpha < \scrA \alpha .

We conclude by virtue of Theorem 2 that for large and small intermediation chains the
CN reduces systemic risk. However, for medium size intermediation chains, the pool of loss
absorbing assets of the entire chain is larger than the pool of the CN (but still not enough for
the shortfall on end users to be zero)---\gamma 0 < (m  - 2)(\gamma + P  - g)---but m still small enough
such that D\ast 

m < Dm. In this case, the shortfall increases with the CN.

6. Nash bargaining solution. We now consider the cooperative4 game among the CN
and the banks. We place ourselves under an axiomatic model of bargaining, namely the Nash
bargaining solution. For a textbook introduction to the axiomatic model, following Nash, we
refer the reader to Roth (1979). The banks and the CN are risk neutral. Their utility is given
by their expected surplus. We assume that the cash resources in the system are fixed, and
the players enter a bargaining game in which they decide on the membership, the external
CN capital, and guaranty fund contributions (\gamma 0, \bfitg ). Under a pure bargaining problem, the
group of players is faced with a set of possible outcomes. Any such outcome will be reached
if there is unanimous agreement. In this section we fix the fee f and focus on the CN capital
as this is of higher importance in our context of an extreme event.

The utility vector for an agreement outcome is \widehat U = (E[ \widehat C+
i (\gamma 0, \bfitg )])i=0,...,m. There is also a

disagreement outcome, namely that the network remains uncleared. The utility vector for the
disagreement outcome is U = (E[C+

i ])i=0,...,m. The game is played under constraints imposed
by the regulator that systemic risk, as measured by (32), decreases by at least a given threshold
level \ell \geq 0: \scrR  - \widehat \scrR \geq \ell .

4Because the model already has binding commitments in the form of liabilities, it is natural to consider the
cooperative setting, with binding agreements.
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Any bargaining game is described by the set of feasible utility payoffs, i.e., those outcomes
that can be achieved by unanimous agreement and in which all players receive higher utility
than in the disagreement outcome. In our case, the set of feasible utility payoffs is given by

\scrF :=
\Bigl\{ \widehat U | \gamma 0 \geq 0 for all i \in 0, . . . ,m : gi \in [0, \gamma i],E[ \widehat C+

i (\gamma 0, \bfitg )] \geq E[C+
i ],\scrR  - \widehat \scrR (\gamma 0, \bfitg ) \geq \ell 

\Bigr\} 
.

For the game to be well defined, the set \scrF must be nonempty. Only in this case may
the bargaining problem offer a potential reward to the players for reaching an agreement. If
\scrF is empty, then disagreement is the only rational outcome of the bargaining game. Nash
proposed that a solution to the bargaining game should verify four axioms: independence of
equivalent utility representations, symmetry (which states that symmetry of players implies
symmetry of the solution), independence of irrelevant outcomes, and Pareto optimality; see
Roth (1979).

If \scrF is nonempty, then any rational outcome of the bargaining game is among the Pareto
optimal points of \scrF . Under the four axioms there exists a unique solution to the bargaining
game, called the Nash solution.

We assume that the network is symmetric, in the sense that

(39) Ci
d
= Cj and \widehat Ci

d
= \widehat Cj for all i, j = 1, . . . ,m.

A sufficient condition for this is that gi = g, \gamma i = \gamma , and that the random vector\bigl( 
Qi, Pi, \{ Lij\} j=1,...,m, \{ Lji\} j=1,...,m

\bigr) 
i=1,...,m

is exchangeable, i.e., has the same distribution under any permutation of indices i = 1, . . . ,m.
We also assume that all interbank liabilities Lij form integrable random variables with a con-
tinuous distribution (this is a technical property used in the proof of Theorem 3). We also
assume the case of full reinsurance, which implies that in absence of defaults of the interme-
diary banks, the banks with liabilities to the end users do not default on those liabilities.

By a symmetry axiom of the Nash solution, it follows that any solution of the bargaining
game is symmetric for the banks. This ensures that either all banks will agree to join the
CN or none of them will. This leads to analytical tractability, while it does not trivialize the
problem. There is a conflict of interest among the banks and the CN, as evidenced by (27)
and the sensitivity results stated in Lemma 5 in the appendix. More importantly, banks are
symmetric from an ex ante perspective but not ex post.

The condition E[ \widehat C+
i (\gamma 0, \bfitg )] \geq E[C+

i ] for all i \in 0, . . . ,m required for feasibility is written

(40) \gamma 0 \leq E[ \widehat C+
0 ] \leq \gamma 0 +

m\sum 
i=1

E[(Zi  - \widehat Zi)(Qi  - Pi)] +

m\sum 
i=1

E[D\ast 
i  - \widehat D\ast 

i ],

where in the second inequality we used the surplus identities with and without CN.
Underlying our results is the remarkably simple condition for a reduction of systemic risk

given in Theorem 2. In the general case when banks are heterogeneous, the pure bargaining so-
lution is also nonsymmetric. The following theorem states that there exists a level of systemic
risk reduction required by the regulator, for which the feasible payoff set is non-empty.
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We take f > 0. If the CN capital is senior, we assume that the set

\Bigl\{ 
g \in [0, \gamma ] | E

\Bigl[ m\sum 
i=1

f\Lambda +
i  - 

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\Bigr)  - \Bigr] 
\geq 0

\Bigr\} 
is nonempty. We thus exclude from the outset the cases in which the CN will have an expected
net loss for all possible guaranty fund contributions. If the CN capital is junior, the corre-
sponding condition is stronger, namely the set \{ g \in [0, \gamma ] | E[

\sum m
i=1 f\Lambda 

+
i  - 

\sum 
i, \Lambda i<0

\widehat C - 
i ] \geq 0\} 

is nonempty. Second, we assume (for both the junior and the senior case) that

(41)

m\sum 
i=1

E[Di  - D\ast 
i ] \leq 

m\sum 
i=1

E[(Zi  - \widehat Zi)(Qi  - Pi)] - 
m\sum 
i=1

f\Lambda +
i ,

which means that in the initial network the losses induced on the end users are lower than
the liquidation losses. This is a reasonable assumption since the majority of liabilities are
interbank liabilities and not to the end users. Therefore, in the uncleared network liquidation
losses are amplified in multiple rounds. The loss to the end users is much smaller than the
overall liquidation losses at the level of the dealer banks. The fee gains of the CN

\sum m
i=1 f\Lambda 

+
i

are typically negligible with respect to the liquidation losses in the uncleared network and
appear in our assumption for technical reasons.

Theorem 3. Assume that the systemic risk measure is given by (35) for some weight pa-
rameter \alpha . Then, for any level of systemic risk reduction imposed by the regulator \ell \in 
[0,E[\alpha 

\sum m
i=1 E[(Zi - \widehat Zi)(Qi - Pi)]+(1 - \alpha )E[

\sum m
i=1(Di - D\ast 

i )]], the set of feasible utility payoffs
\scrF is nonempty.

Solution to the bargaining problem. Following Nash's theorem (see Roth (1979, Theorem
1)), since the set of feasible payoff outcomes \scrA is nonempty, there is a unique solution to the
Nash bargaining problem, where uniqueness is understood in terms of utility payoffs. It is
given by

max
\gamma 0,\bfitg 

\Bigl( 
E[ \widehat C+

0 ] - \gamma 0

\Bigr) \Bigl( 
\gamma 0  - E[ \widehat C+

0 ] +

m\sum 
i=1

E[(Zi  - \widehat Zi)(Qi  - Pi)] +

m\sum 
i=1

E[D\ast 
i  - \widehat D\ast 

i ]
\Bigr) 

(42)

subject to (\gamma 0, \bfitg ) \in \scrF .(43)

By the Pareto optimality axiom of the Nash bargaining solution, we must have that
(\gamma 0, g) lies on an aggregate utility indifference curve, where the aggregate utility is understood
for the banks and the CN. The aggregate utility (or more conveniently, the difference in
aggregate utility to the case without the CN) is given by \Delta +

\sum m
i=1 E[D\ast 

i  - \widehat D\ast 
i ] with \Delta :=\sum m

i=1 E[(Zi  - \widehat Zi)(Qi  - Pi)] which does not depend on (\gamma 0, g).

The condition \scrR  - \widehat \scrR (\gamma 0, \bfitg ) \geq \ell is written as

m\sum 
i=1

E[D\ast 
i  - \widehat D\ast 

i ] \leq 
\alpha \Delta  - \ell 

(1 - \alpha )
.(44)D
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Letting x the variable total utility minus \Delta , the solution to the bargaining problem is
written as

max
\gamma 0,x

\Bigl( 
E[ \widehat C+

0 ] - \gamma 0

\Bigr) \Bigl( 
\gamma 0  - E[ \widehat C+

0 ] + \Delta + x
\Bigr) 

subject to x \leq \alpha \Delta  - \ell 

(1 - \alpha )
.

The constraint is saturated at the optimal solution, and the solution to the bargaining problem
(g\ast , \gamma \ast 0) (which exists and is unique by virtue of Nash's theorem) is the solution of the following
system of equations:

m\sum 
i=1

E[D\ast 
i  - \widehat D\ast 

i (\gamma 0, g)] =
\alpha \Delta  - \ell 

(1 - \alpha )
,

E[ \widehat C+
0 (\gamma 0, g)] - \gamma 0 =

\Delta  - \ell 

2(1 - \alpha )
.(45)

In the particular case of ``junior CN,"" the solution is trivial because the CN utility E[ \widehat C+
0 ] - \gamma 0

does not depend on g and is a decreasing function of \gamma 0. Because E[ \widehat C+
0 ] is lower in the case

of ``junior CN"" and due to the monotonicity of \gamma 0 \rightarrow E[ \widehat C+
0 ]  - \gamma 0, we have that the solution

\gamma \ast 0 is also lower for this case.
In other words, the setup ``junior"" or ``senior"" CN does not have an impact on the CN

utility in the Nash solution. This is because the right-hand side of (45), \Delta  - \ell 
2(1 - \alpha ) , does not

depend on seniority of the CN capital. The banks and the CN adapt to the configuration,
and the utilities in the Nash solution are the same. In what follows, we consider the case of
senior CN capital.

``First-best"" benchmark. We conclude this section by comparing the outcome under our
CN design with the first-best benchmark in which all liabilities are netted out in the economy.
A CN as we consider here achieves the same aggregate surplus as in the first-best benchmark.

The CN's layers of capitalization do not change the aggregate surplus, but they change
how this surplus is distributed to the banks, the CN, and the end users. In terms of this
distribution, the first-best benchmark coincides with a CN with zero equity and guaranty
fund requirements. However, such CN is not reducing systemic risk and has the largest
spillover to the end users; see Figure 5 (note that this Figure plots the inverse of systemic
risk). The first-best benchmark is highly unfair to the end users. If we start with an uncleared
network in which the end users are senior to the interbank liabilities, then netting out across
the network will make the end users more junior. To see this, consider the following example.
Bank 1 owes 10 to bank 2; bank 2 owes 10 to bank 3 and 10 to the end users. Assume bank 2
has 0 in its own cash. If the network is not netted out, then 2 pays 10 to the end users which
are senior and defaults on its liability to bank 3. If the network is netted out, then 1 pays
directly to 3, 2 has no receivables or payables from the network and defaults on its liability to
the end users. Because of netting out, the end users have become more junior! This example
illustrates why only a CN with adequate policy can achieve both the best aggregate surplus
and Pareto improvements. Our results are primarily existence results for such policies. Given
the existence results, the Nash bargaining solution selects the levels g\ast and \gamma \ast .
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7. Simulation study. We analyze numerically the impact of centralized clearing of OTC
derivatives in the particular case of CDS, under the assumption of a symmetric network as
in the previous section. We calibrate to a gross market value of all contracts W = 100bn
(all figures are in US dollars) and a gross notional N = 1.8tn.5 The top dealers concentrate
more than 85\% of the CDS market (see, e.g., Cont and Minca (2016)), so it is reasonable to
approximate the whole market by distributing these market values over the top dealers only.
Given the volatility of the CDS asset class and the large positions concentrated on the dealers,
we capture extreme risks of large liabilities.

We let m = 14 banks. We assume that the market is symmetric and set the market share
of bank i as 1

m .6 Moreover, we assume gi = g and \gamma i = .5bn for all i = 1, . . . ,m. We take
fundamental and liquidation values Qi = .2bn and Pi = 70\%Qi constant and equal over all
banks i = 1, . . . ,m.

We let Vij \geq 0 denote the random value at t = 1 of all contracts of bank i with bank j
where bank i owes to bank j. We may think of Vij as the sum of values of CDS contracts where
bank j bought protection from bank i on some reference entities, and where the premiums were
fully paid at some time earlier than t = 0. According to our symmetric market assumption,
the notional underlying Vij amounts to N/(m(m  - 1)). The gross market value is given by
W =

\sum 
i\not =j E[Vij ].

We specify Vij as a half-normal random variable, Vij = | Xij | , whereXij are normal random
variables with mean zero and standard deviation \sigma . The pair (Xij , Xji) have correlation
\rho and are independent of other such pairs. The OCC (2019) reports significant bilateral
netting benefits, close to 90\%, i.e., the sum of interbank liabilities after bilateral netting is
approximately 10\% of the sum of the liabilities before bilateral netting. This means that there
is high correlation between Xij and Xji. In the following we set the correlation parameter
\rho = 90\%.

We obtain

W =
2\surd 
2\pi 

m(m - 1)\sigma ,

which serves as calibration of \sigma . We assume that the interbank liabilities clear as in Eisenberg
and Noe (2001). Hence in the absence of a CN there results a unique matrix of clearing
payments (L\ast 

ij) as outlined in Example 1. In what follows we consider the netted liabilities
of bank i to j (the amount that bank i owes to bank j) are obtained from the netting of Vij

and Vji,

Lij = (Vij  - Vji)
+.

Our framework allows for the case of nonnetted liabilities, but here we consider an initial
network with bilateral netting agreements. Because we isolate a single asset class, when we
introduce the CN the multilateral netting includes the bilateral netting. If we allowed for
several asset classes, then there would be a trade-off between bilateral netting across asset

5This represents the sum (in absolute terms) of the positive market value of all market participants. In
(BIS, 2010, Table 19), the ratio between gross market value and notional is 1:18 for CDS.

6The actual market shares in terms of notional amounts outstanding and gross positive fair values for top
US dealers are given in OCC (2019).
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Figure 2. Systemic risk and banks' and CN utility with CN (solid lines) and without CN (dashed lines)
as functions of guaranty fund contribution g. g\mathrm{r}\mathrm{e}\mathrm{g} is the minimal regulatory acceptable, g\mathrm{m}\mathrm{o}\mathrm{n} is the maximal
banks' utility improving, and g\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p} is the minimal CN utility improving guaranty fund contribution. Number
of banks is m = 14. CN equity is \gamma 0 = .5bn. Fee is f = 2\%.

classes and multilateral netting with the CN (Duffie and Zhu (2011)), and the implication of
this in our model is left for future work.

Thinking of Lij as a variation margin under an extreme event, this liability is considered
after bilateral netting. The random vector

\bigl( 
\{ Lij\} j=1,...,m, \{ Lji\} j=1,...,m

\bigr) 
i=1,...,m

is exchangeable

and therefore (39) holds.
The systemic risk measure is \scrR (\bfitC ) = E[

\sum m
i=1(Di  - \widehat D\ast 

i )], meaning that the regulator
is exclusively concerned by the loss of the end users. The regulatory threshold level for
acceptability is set to \ell = 0. We fix the number of banks to m = 14. The CN charges a fee of
f = 2\%,7 and the external equity varies \gamma 0 \in [0, .5bn].

Figure 2 shows systemic risk and banks' and CN utility with and without CN for varying
guaranty fund contribution g. The external capital of the CN is fixed at \gamma 0 = 5bn. Systemic

7Note that the fee is expressed here as a percentage of the netted liabilities. Given that net liabilities
represent approximately 10\% of the market value before netting (OCC (2019)), the fee is of the order 0.2\% =
20bp in terms of market value. In practice, clearinghouses charge fees per traded volume.
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risk and banks' utility is decreasing in g and CN utility is increasing in g. The level g = g\mathrm{r}\mathrm{e}\mathrm{g} is
the minimal guaranty fund contribution for which the systemic risk with CN is at most as large
as without CN, \scrR ( \widehat \bfitC ) \leq \scrR (\bfitC ). Any g \geq g\mathrm{r}\mathrm{e}\mathrm{g} corresponds to a level acceptable by a regulator.
The level g = g\mathrm{m}\mathrm{o}\mathrm{n} is the maximal guaranty fund contribution for which banks' utility with
CN is at least as large as without CN, E[ \widehat C+

i ] \geq E[C+
i ]. It corresponds to the ``monopolistic""

situation where all bargaining power is with the CN. The level g = g\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p} is the minimal

guaranty fund contribution for which CN utility is at least as large as its equity, E[ \widehat C+
0 ] \geq \gamma 0.

It corresponds to the ``competitive"" situation where all bargaining power is with the banks.
As predicted by Theorem 3, the set of Pareto improving policies [g\mathrm{r}\mathrm{e}\mathrm{g},\infty )\cap [g\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}, g\mathrm{m}\mathrm{o}\mathrm{n}] is non-
empty for \gamma 0 sufficiently large. Of course, Nash's theorem gives the solution to the bargaining
problem, i.e., both the guaranty fund level g\ast and the CN capital \gamma \ast 0 , and we will have that
g\ast \in [g\mathrm{r}\mathrm{e}\mathrm{g},\infty )\cap [g\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}, g\mathrm{m}\mathrm{o}\mathrm{n}]. At the bargaining solution, the banks and the CN share equally
the surplus gain from clearing minus the transfer for this surplus to the end users (which is
imposed via the regulator's constraint)

We further investigate numerically the components of the difference in expected net worth
of a bank with and without CN, using the expectation of the different components T1, T2, T3

in the decomposition (30). Figure 3 plots the dependence of E[T1], E[T2] and respectively
E[T3] on the guaranty fund contribution g. We see that the CN reduces counterparty risk in
expectation, E[T1] > 0, and the term E[T1] increases with g. This comes at the cost of an
expected loss due to the fee and the risk of a possible use of the share in the guaranty fund to
absorb shortfall losses of defaulting banks, E[ - T3], which increases with g. On top of these
two opposite effects, the CN has a mitigating effect on forced liquidations, which is constant
in g and given by the expected reduction in liquidations E[T2]. Both, E[T2] and E[ - T3] are
positive as predicted by Theorem 1.

As a variation of our experiment, we now reduce the number of banks while keeping total
notional N and total gross fair market value W . This increases banks' average exposure.
The cash \gamma = .84bn so as to keep the total cash invariant. Figure 4 points to important

0 1 2 3 4 5 6
g × 108

-3
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1

2

3

4 × 108 Risk components with and without CCP

counterparty: E[T
1
]

asset drop: E[T
2
]

guaranty share: E[T
3
]

Figure 3. Expected differences in stand-alone risk components with and without CN given in decomposi-
tion (30) as functions of guaranty fund contribution g. Number of banks is m = 14. CN equity is \gamma 0 = .5bn.
Fee is f = 2\%.
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Figure 4. Systemic risk with and without CN as a function of guaranty fund contribution g. g\mathrm{r}\mathrm{e}\mathrm{g} is the
minimal regulatory acceptable. Number of banks is m = 10. CN equity is \gamma 0 = .5bn. Fee is f = 2\%.

nonlinearities. Namely for a decrease of the number of banks from m = 14 to m = 10, all else
equal, the value g for which systemic risk is reduced is g = greg = .5bn, where in the case of
14 banks it was close to .4bn. Concentrating the liabilities on fewer banks translates to higher
levels of CN capitalization to achieve systemic risk reduction.

We now vary both the guaranty fund contribution and the CN equity \gamma 0. Again, we fix
the fee to f = 2\% and consider m = 14 banks. Figure 5 shows that the systemic risk measure
is much more sensitive with respect to the guaranty fund contributions than with respect to
the CN equity.

For the design parameters which make the guaranty fund acceptable by a regulator, the
risk that CN equity will be impacted is very small. Consequently, the systemic risk measure
will be less sensitive to the CN equity.

The CN utility increases in g, while increasing \gamma 0 too much will disincentivize it from
joining the network. The bank's utility increases in \gamma 0, while increasing g too much will
disincentivize it from joining the CN. However, as we have seen, there is a wide range of
parameters in which all parties are better off under centralized clearing of the network, and
the regulator will also see the systemic risk decrease. Within that range, the bargaining game
between the CN and the banks determines the parameters g\ast and \gamma \ast 0 as shown in Figure 6.
We obtain \gamma \ast 0 = .26bn and g = .49bn.

Junior CN capital (``skin in the game""). As the theory predicts, the setup ``junior"" or
``senior"" CN does not have an impact on the CN and bank's utility in the Nash solution.
This is because the surplus \Delta  - \ell 

(1 - \alpha ) (which is divided between the CN and the banks) does not
depend on seniority of the CN capital. The banks and the CN adapt to the configuration,
while the utilities in the Nash solution stay the same. Of course, with a ``junior"" CN capital,
the value of the CN equity which is solution to\Bigl( 

E[ \widehat C+
0 (\gamma 0)] - \gamma 0

\Bigr) 
=

\Delta  - \ell 

2(1 - \alpha )

in (45) is much lower than in the case of a ``senior"" CN.
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Figure 5. Systemic risk and banks' and CN utility as functions of CN equity \gamma 0 and guaranty fund contri-
bution g. Planes represent the case without a CN. Policies (g, \gamma 0) corresponding to values above the planes are
regulatory acceptable and incentive compatible for banks and CN, respectively (note that the Z axis is reversed
in the systemic risk figure). Number of banks is m = 14. Fee is f = 2\%.
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Figure 6. (Nash bargaining solution.) (\gamma \ast 
0 , g

\ast ) is the unique solution of the equations
\sum m

i=1 E[D
\ast 
i  - \widehat D\ast 

i (\gamma 0, g)] = 0 (the systemic risk zero line) and E[ \widehat C+
0 (\gamma 0, g)]  - \gamma 0 = \Delta 

2
(the CN utility gain = \Delta 

2
); see (45)

for \ell = 0 and \alpha = 0. We note that for (\gamma \ast 
0 , g

\ast ) we are in the domain in which the banks' utility is above the
noncleared case. We obtain \gamma \ast 

0 = .26bn and g = .49bn.
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Figure 7. The CN equity is junior (``skin in the game""). (\gamma \ast 
0 , g

\ast ) is the unique solution of the equations\sum m
i=1 E[D

\ast 
i  - \widehat D\ast 

i (\gamma 0, g)] = 0 (the systemic risk zero line) and E[ \widehat C+
0 ] - \gamma 0 = \Delta 

2
(the CN utility gain = \Delta 

2
). For

all g and \gamma 0 the utility of the banks is higher than in the non-CN case. We obtain \gamma \ast 
0 = .09bn and g = .55bn.

We now compute the parameters g\ast and \gamma \ast 0 in Figure 7. With the CN junior, we obtain
\gamma \ast 0 = .09 bn and g\ast = .55bn. We stress that the utilities of the banks and the CN are the
same at the respective solution (g\ast , \gamma \ast 0) and these respective solutions satisfy

\sum m
i=1 E[D\ast 

i  - \widehat D\ast 
i (\gamma 0, g)] =

\alpha \Delta  - \ell 
(1 - \alpha ) . The utilities of all parties involved are the same at the respective Nash

bargaining solutions; the difference in resources that are needed in the case of a CN with
junior capital versus the case with a senior capital is (.55  - .49) \times 14  - (.26  - .09) = .67bn.
When the CN has junior capital, also known as ``skin in the game,"" the CN equity (at the
Nash solution) is almost a third of the case in which the CN capital is senior. To satisfy the
systemic risk decrease constraint, the banks need to make higher guaranty fund contributions.
The overall resources in the Nash bargaining solution actually increase when the CN's capital
is junior. Our simulation suggests that a CCP clearing 1.8 tn in CDS in notional should hold
at least 7 bn in default resources. This is largely satisfied by a real-world CCP that clears
comparable amounts of CDS and holds over 30 bn in total default resources.

8. Conclusion and future directions. We propose a stochastic framework with endoge-
nous systemic risk measurement that takes into account the dependence structure among
banks induced by a network of interbank liabilities. Interbank liability clearing can force
early liquidation of banks' assets at a fraction of their fundamental value. Our theoretical
analysis sheds light on several aspects related to centralized clearing. Introduction of a CN
reduces banks' liquidation and thus improves aggregate surplus. The impact on banks' indi-
vidual surplus is indefinite and depends on the trade-off between CN shortfall versus reduced
bank counterparty risk from an ex ante perspective. We find that a CN does not always re-
duce systemic risk. We provide sufficient conditions in terms of the CN's equity and guaranty
fund policy for a reduction of systemic risk. We perform a surplus analysis in the context of
a symmetric financial network with homogeneous banks for which we characterize the Pareto
improving CN equity and guaranty fund policies. A simulation study calibrated to marketD
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data reveals those policies for which centralized clearing improves banks' utility while reducing
systemic risk. Several directions emerge from the current study. Our results are stated under
the symmetry assumption, as well as under a specific form of utility, expected surplus. The
insight that clearing members are compensated for the risk of guaranty fund loss by lower
expected liquidations may carry over to different forms of banks' utilities. The other crucial
element is the initial margin, which represents additional default funds that are segregated
for each member. The part of the resources that are pooled guaranty funds versus segregated
initial margins would result from strategic decisions. A full analysis of this matter as well as
the relaxation of the symmetry assumption warrants a careful study. A direction of particular
importance is systemic risk measurement and clearing facility design in a dynamic network
setting. A Nash equilibrium solution concept would be interesting in a multiperiod version
of the game, where a binding agreement would be only for one period, while in the second
period some banks may exit the CN. We plan to investigate this in future extensions, along
with the question of replenishment: the CN can also ask banks for additional guaranty fund
contributions. Also, we expect that game theoretic arguments would lead to design opti-
mal rules for guaranty fund contributions in the general case with heterogeneous banks and
multiple CNs.

Appendix A.

A.1. Sensitivity analysis. In this appendix, following up on (27), we provide the state-
wise sensitivities of banks' individual and aggregate net worth, surplus, and shortfall with
respect to the fee and guaranty fund policy (f, \bfitg ), respectively. The result confirms economic
intuition and it clearly marks the opposing sensitivities of the parities involved: on one hand
the CN and the banks, and on the other hand the banks among each other.

Lemma 5.
(i) Bank's individual net worth is nonincreasing in f and its own guaranty fund contri-

bution, while it is nondecreasing in the other banks' guaranty fund contributions, for
j = 1, . . . ,m,

\partial \widehat Ci

\partial f
\leq 0, and

\partial \widehat Ci

\partial gj

\Biggl\{ 
\geq 0 if j \not = i,

\leq 0 if j = i.

(ii) The aggregate net worth of the financial network including the CN is nondecreasing in
the fee and guaranty fund policy (f, \bfitg ), for i = 1, . . . ,m,

\partial 
\sum m

k=0
\widehat Ck

\partial f
=  - \partial \widehat C - 

0

\partial f
\geq 0, and

\partial 
\sum m

k=0
\widehat Ck

\partial gi
=  - \partial \widehat C - 

0

\partial gi
\geq 0.

(iii) The aggregate net worth of the banks is nonincreasing in the fee and guaranty fund
policy (f, \bfitg ), for i = 1, . . . ,m,

\partial 
\sum m

k=1
\widehat Ck

\partial f
\leq 0, and

\partial 
\sum m

k=1
\widehat Ck

\partial gi
\leq 0.D
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A.2. Proofs. This appendix contains the proofs of all lemmas and theorems.

Proof of Lemma 1. We have

m\sum 
i=1

Ci =
m\sum 
i=1

\Gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

Zi(Qi  - Pi) +
m\sum 
i=1

m\sum 
j=1

L\ast 
ji  - 

m\sum 
i=1

Li

=
m\sum 
i=1

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

Zi(Qi  - Pi) - 
m\sum 
i=1

(Li  - L\ast 
i ) - 

m\sum 
i=1

Di

=
m\sum 
i=1

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

Zi(Qi  - Pi) - 
m\sum 
i=1

C - 
i  - 

m\sum 
i=1

D\ast 
i ,

which proves the aggregate surplus identity (8).

Proof of Lemma 2. We have

m\sum 
i=0

\widehat Ci = \widehat A0  - \widehat L0  - G\ast 
tot +

m\sum 
i=1

\widehat Ai  - 
m\sum 
i=1

\widehat Li0

= \gamma 0 +
m\sum 
i=1

gi +
m\sum 
i=1

\widehat L\ast 
i  - \widehat L0  - G\ast 

tot +
m\sum 
i=1

\Gamma i +
m\sum 
i=1

Qi

 - 
m\sum 
i=1

\widehat Zi(Qi  - Pi) - 
m\sum 
i=1

gi +
m\sum 
i=1

\widehat L\ast 
0 \times \widehat \Pi 0i +

m\sum 
i=1

G\ast 
i  - 

m\sum 
i=1

\widehat Li0

= \gamma 0 +
m\sum 
i=1

\Gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

\widehat Zi(Qi  - Pi) - (\widehat L0  - \widehat L\ast 
0) - 

m\sum 
i=1

(\widehat Li0  - \widehat L\ast 
i ),

where in the last equality we used the fact that
\sum m

i=1
\widehat \Pi 0i = 1. We obtain that

m\sum 
i=0

\widehat Ci +
m\sum 
i=1

\widehat D\ast 
i =

m\sum 
i=0

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

\widehat Zi(Qi  - Pi) - \widehat C - 
0  - 

m\sum 
i=1

(\widehat Li0  - \widehat L\ast 
i ) - 

m\sum 
i=1

(Di  - \widehat D\ast 
i )

=
m\sum 
i=0

\gamma i +
m\sum 
i=1

Qi  - 
m\sum 
i=1

\widehat Zi(Qi  - Pi) - \widehat C - 
0  - 

m\sum 
i=1

\widehat C - 
i ,

where in the second line we used (24). We obtain the aggregate surplus identity with CN.

Proof of Lemma 3. We let i be a bank with net liabilities to the CN: \Lambda i < 0. It is
sufficient to prove that capital and liquidity shortfall of bank i satisfy

(46) \widehat C - 
i = \widehat Li0  - \widehat L\ast 

i = (\Lambda i + Pi + \gamma i)
 - 

and

(47) (\gamma i  - gi  - \widehat Li0)
 - = (\Lambda i + \gamma i)

 - ,

respectively, and these identities will be useful throughout other proofs as well.
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By (21) we have (since gi \leq \gamma i and Pi \geq 0) for bank i's shortfall

\widehat C - 
i = \widehat Li0  - \widehat L\ast 

i = \widehat Li0  - \widehat Li0 \wedge 
\Bigl( 
Pi + \gamma i  - gi

\Bigr) 
=

\Bigl( \widehat Li0  - 
\Bigl( 
Pi + \gamma i  - gi

\Bigr) \Bigr) +

=
\Bigl( \Bigl( 

\Lambda i + gi

\Bigr)  - 
 - 

\Bigl( 
Pi + \gamma i  - gi

\Bigr) \Bigr) +
=

\Bigl( 
 - \Lambda i  - gi  - 

\Bigl( 
Pi + \gamma i  - gi

\Bigr) \Bigr) +

=
\Bigl( 
\Lambda i + Pi + \gamma i

\Bigr)  - 
,

which proves (46). Note that the right-hand side does not depend on the fee and guaranty
fund policy (f, \bfitg ).

By (9), we have \widehat Li0 = (\Lambda i + gi)
 - . Clearly, for any i = 1, . . . ,m and j \not = i, the quantity

liquidated by bank i, (\gamma i  - gi  - \widehat Li0)
 - does not depend on gj . Let us now show that the

quantity liquidated by bank i does not depend on gi. We have (since gi \leq \gamma i)

(\gamma i  - gi  - \widehat Li0)
 - = (\widehat Li0  - \gamma i + gi)1\widehat Li0>\gamma i - gi

= (\widehat Li0  - \gamma i + gi)1\Lambda i< - \gamma i = ( - \Lambda i  - \gamma i)1\Lambda i< - \gamma i

= (\Lambda i + \gamma i)
 - ,

which proves (47). From (13), it follows that the fraction of liquidated assets \widehat Zi, and thus the
aggregate surplus (24), do not depend on the fee and guaranty fund policy (f, \bfitg ).

Proof of Lemma 4. Recall from (14) that \widehat A0 = \gamma 0 +
\sum m

i=1 gi +
\sum m

i=1
\widehat L\ast 
i , which combined

with (46) yields

\widehat A0 = \gamma 0 +
m\sum 
i=1

gi +
m\sum 
i=1

\widehat Li0  - 
m\sum 
i=1

\Bigl( 
\Lambda i + Pi + \gamma i

\Bigr)  - 

= \gamma 0 +
m\sum 
i=1

Gi +
m\sum 
i=1

\Lambda  - 
i  - 

m\sum 
i=1

\Bigl( 
\Lambda i + Pi + \gamma i

\Bigr)  - 

= \gamma 0 +
m\sum 
i=1

\Lambda +
i +

m\sum 
i=1

Gi  - 
m\sum 
i=1

\Bigl( 
\Lambda i + Pi + \gamma i

\Bigr)  - 
,

where in the second equality we have used (12) and in the last equality we have used that\sum m
i=1 \Lambda 

 - 
i =

\sum m
i=1 \Lambda 

+
i . We define

(48) \scrT = G\mathrm{t}\mathrm{o}\mathrm{t}  - 
\sum 

i, \Lambda i<0

\widehat C - 
i =

m\sum 
i=1

\Bigl( 
Gi  - 

\Bigl( 
\Lambda i + Pi + \gamma i

\Bigr)  - \Bigr) 
.

From (11) and (48) we infer \widehat A0  - \widehat L0 = \gamma 0 + f
\sum m

i=1 \Lambda 
+
i + \scrT .

For the case of ``senior CN"" we note that ( \widehat A0  - \widehat L0  - \gamma 0  - f
\sum m

i=1 \Lambda 
+
i )

+ = \scrT + and from
(15) we obtain that G\ast 

\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{t}\mathrm{o}\mathrm{t} \wedge \scrT + = \scrT +, since \scrT \leq G\mathrm{t}\mathrm{o}\mathrm{t}. For the case of ``junior CN"" we
obtain from (16) that G\ast 

\mathrm{t}\mathrm{o}\mathrm{t} = G\mathrm{t}\mathrm{o}\mathrm{t} \wedge (\gamma 0 + f
\sum m

i=1 \Lambda 
+
i + \scrT )+. This proves (25).

From (17), it now follows that

(49) \widehat C0 = \gamma 0 + f
m\sum 
i=1

\Lambda +
i + \scrT  - \scrT + = \gamma 0 + f

m\sum 
i=1

\Lambda +
i  - \scrT  - ,D
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and respectively

\widehat C0 = \gamma 0 + f

m\sum 
i=1

\Lambda +
i + \scrT  - G\mathrm{t}\mathrm{o}\mathrm{t} \wedge 

\Biggl( 
\gamma 0 + f

m\sum 
i=1

\Lambda +
i + \scrT 

\Biggr) +

=

\left(  \gamma 0 + f
m\sum 
i=1

\Lambda +
i  - 

\sum 
i, \Lambda i<0

\widehat C - 
i

\right)  +

 - ( \widehat A0  - \widehat L0)
 - ,(50)

which proves (26).
From (48) we have

\partial \scrT 
\partial gi

=
\partial Gtot

\partial gi
= 1\Lambda i+gi>0;

\partial \scrT 
\partial f

= 0.

From (26) we have \partial \widehat C0
\partial gi

=  - \partial \scrT  - 

\partial gi
= 1\scrT <01\Lambda i+gi\geq 0 and respectively 1 \widehat C0<0

1\Lambda i+gi>0 for the
``junior CN"" case. Thus

\partial \widehat C+
0

\partial gi
= 1 \widehat C0>0

1\scrT <01\Lambda i+gi\geq 0 \geq 0 (resp., 0) and
\partial \widehat C - 

0

\partial gi
=  - 1 \widehat C0<0

1\Lambda i+gi\geq 0 \leq 0,

where we used that 1 \widehat C0<0
= 1 \widehat C0<0

1\scrT <0. We also obtain from (26) that

\partial \widehat C0

\partial f
=

m\sum 
i=1

\Lambda +
i \geq 0.

This proves (27).
From (12), (19), and (20) we obtain

\widehat Ci = \widehat Ai  - \widehat Li0 = \Gamma i +Qi  - \widehat Zi(Qi  - Pi) + \widehat L\ast 
0 \times \widehat \Pi 0i  - (Gi  - G\ast 

i ) - \Lambda  - 
i

= \Gamma i +Qi  - \widehat Zi(Qi  - Pi) + (\widehat L0  - \widehat C - 
0 )\times \widehat \Pi 0i  - 

Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
 - \Lambda  - 

i ,

where in the third line we used (18) and (25). Combining this with (10) proves (28).

Proof of Theorem 1.
(i) Let i be a bank with net liability to the CN: \Lambda i < 0. By (47), we have that the

liquidity shortfall of bank i is given by

(\gamma i  - gi  - \widehat Li0)
 - = (\Lambda i + \gamma i)

 - =

\left(  \gamma i +

m\sum 
j=1

Lji  - Li

\right)   - 

,

where in the second equality we have used the explicit definition of \Lambda in (1). Combining
this with (13) we obtain (for i with Pi ?` 0)

(51) \widehat Zi =
(\gamma i +

\sum m
j=1 Lji  - Li)

 - 

Pi
\wedge 1.D
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On the other hand, in the case without CN, the clearing vector is obtained as a fixed
point of the mapping \Phi given in (4). The number of units of asset liquidated by bank
i is

Zi =
(\gamma i +

\sum m
j=1 L

\ast 
ji  - Li)

 - 

Pi
\wedge 1,

where we use that Di = 0 (and thus \Gamma i = \gamma i) whenever bank i has \Lambda i < 0. Note
that for all j = 1, . . . ,m, from the definition of the mapping \Phi , L\ast 

ji \leq Lji. We now
conclude that the CN reduces liquidation losses,

(52) \widehat Zi \leq Zi for all i with \Lambda i < 0.

To prove that the CN reduces bank shortfall losses, recall that by (7),

C - 
i = Li  - L\ast 

i =
\Bigl( 
Li  - 

m\sum 
j=1

L\ast 
ji  - Pi  - \gamma i

\Bigr) +
for all i with \Lambda i < 0.

In view of Lji \geq L\ast 
ji and (46) we conclude

C - 
i \geq 

\Bigl( 
Li  - 

m\sum 
j=1

Lji  - Pi  - \gamma i

\Bigr) +
=

\Bigl( 
 - \Lambda i  - Pi  - \gamma i

\Bigr) +
= \widehat C - 

i for all i with \Lambda i < 0.

(ii) The decomposition (30) follows by subtracting (6) from (28).
(iii) Suppose that i is such that \Lambda i > 0. In this case, from (3) we have that Qi = 0 so we

automatically have that T2(i) = 0. From (28) we have moreover that\widehat C - 
i =

\Bigl( 
\Gamma i+\Lambda i - \widehat \Pi 0i

\widehat C - 
0  - f\Lambda +

i  - Gi
G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
G\mathrm{t}\mathrm{o}\mathrm{t} - G\ast 

\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigr)  - 
=

\Bigl( 
\Gamma i+\Lambda i - \widehat \Pi 0i

\widehat C - 
0 +T3(i)

\Bigr)  - 
.

From (6) we have C - 
i = (\Gamma i+\Lambda i - 

\sum m
j=1(Lji - L\ast 

ji))
 - . Then T1(i)+T3(i) > 0 is written

as  - \widehat \Pi 0i
\widehat C - 
0 + T3(i) >  - 

\sum m
j=1(Lji  - L\ast 

ji) and implies that \widehat C - 
i < C - 

i .

Proof of Proposition 1. We use that \Gamma i + \Lambda i = \gamma i under the full ``reinsurance""
assumption. We have

\sum 
i, \Lambda i>0

\widehat C - 
i = (\gamma i  - \widehat \Pi 0i

\widehat C - 
0  - f\Lambda +

i  - Gi
G\mathrm{t}\mathrm{o}\mathrm{t}

(G\mathrm{t}\mathrm{o}\mathrm{t}  - G\ast 
\mathrm{t}\mathrm{o}\mathrm{t}))

 - .

We have that
\sum 

i, \Lambda i>0
\widehat C - 
i =

\sum 
i, \Lambda i>0(\gamma i  - \widehat \Pi 0i

\widehat C - 
0  - f\Lambda +

i  - gi)
 - , where we used that

Gi = gi when \Lambda i > 0 and G\ast 
\mathrm{t}\mathrm{o}\mathrm{t} = 0 when C0 < 0.

We consider the symmetric case: Di constant over i with Di > 0 implies that \widehat \Pi 0i =
1

\#\{ i,Di>0\} . In the symmetric case we also have gi = g, \gamma i = \gamma . Under the assumption that

\gamma  - g  - f supi \Lambda i > 0, all terms \widehat C - 
i (for \Lambda i < 0) are equal. There can be a shortfall \widehat Ci < 0

only if the CN fails ( \widehat C0 < 0),\sum 
i, \Lambda i>0

\widehat C - 
i =

\sum 
i, \Lambda i>0

\Bigl( 
\gamma i  - \widehat \Pi 0i

\widehat C - 
0  - f\Lambda +

i  - gi

\Bigr)  - 

=
\Bigl( 
 - \widehat C - 

0  - 
\sum 

i, \Lambda i>0

f\Lambda +
i +

\sum 
i, \Lambda i>0

\gamma i  - 
\sum 

i, \Lambda i>0

gi

\Bigr)  - 
.

The only case when ( - \widehat C - 
0  - 

\sum 
i, \Lambda i>0 f\Lambda 

+
i +

\sum 
i, \Lambda i>0 \gamma i - 

\sum 
i, \Lambda i>0 gi) < 0 is when C0 < 0.

In this case we use (29) to further obtain
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\sum 
i, \Lambda i>0

\widehat C - 
i =

\Bigl( 
\gamma 0 + f

m\sum 
i=1

\Lambda +
i +G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i,\Lambda i<0

\widehat C - 
i  - 

\sum 
i, \Lambda i>0

f\Lambda +
i  - 

\sum 
i, \Lambda i>0

\gamma i +
\sum 

i, \Lambda i>0

gi

\Bigr)  - 

=
\Bigl( 
\gamma 0 +G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i,\Lambda i<0

\widehat C - 
i +

\sum 
i, \Lambda i>0

\gamma i  - 
\sum 

i, \Lambda i>0

gi

\Bigr)  - 

=
\Bigl( 
\gamma 0 +

\sum 
i, \Lambda i<0

Gi  - 
\sum 

i,\Lambda i<0

\widehat C - 
i +

\sum 
i, \Lambda i>0

\gamma i

\Bigr)  - 

\leq 
\Bigl( 
\gamma 0  - 

\sum 
i,\Lambda i<0

\widehat C - 
i +

\sum 
i, \Lambda i>0

\gamma i

\Bigr)  - 
\leq 

\Bigl( 
 - 

\sum 
i,\Lambda i<0

\widehat C - 
i +

\sum 
i, \Lambda i>0

\gamma i

\Bigr)  - 
,

In the third line we used that Gi = gi if \Lambda i > 0. By Theorem 1(i) we have

(53)
\sum 

i, \Lambda i>0

\widehat C - 
i \leq 

\Bigl( 
 - 

\sum 
i,\Lambda i<0

C - 
i +

\sum 
i, \Lambda i>0

\gamma i

\Bigr)  - 
.

On the other hand, under the assumption of ``full reinsurance"" we have\sum 
i, \Lambda i>0

C - 
i =

\sum 
i, \Lambda i>0

\Bigl( 
\gamma i  - 

m\sum 
j=1

(Lji  - L\ast 
ji)

\Bigr)  - 
\geq 

\Bigl( \sum 
i, \Lambda i>0

\gamma i  - 
\sum 

i, \Lambda i>0

m\sum 
j=1

(Lji  - L\ast 
ji)

\Bigr)  - 

=
\Bigl( \sum 

i, \Lambda i>0

\gamma i  - 
\sum 

j,\Lambda j<0

C - 
j

\Bigr)  - 
,(54)

where in the last line we used the assumption that there is a link only between ``reinsurers""
and primary ``insurers"": in this case

\sum 
i, \Lambda i>0

\sum m
j=1(Lji - L\ast 

ji) =
\sum 

i, \Lambda i>0

\sum 
j, \Lambda i<0C

 - 
j \Pi ji and\sum 

i, \Lambda i>0\Pi ji = 1 for all j with \Lambda j < 0. Inequalities (53) and (54) give that
\sum 

i, \Lambda i>0
\widehat C - 
i \leq \sum 

i, \Lambda i>0C
 - 
i , i.e., the CN reduces the shortfall to the end users.

Proof of Lemma 5.
(i) First consider the case of ``senior CN."" From (25) and (28), we infer (for j \not = i)

\partial \widehat Ci

\partial gj
=  - \widehat \Pi 0i

\partial \widehat C - 
0

\partial gj
+Gi

\partial (\scrT +/G\mathrm{t}\mathrm{o}\mathrm{t})

\partial gj

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

+
Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
1 - \scrT 

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1\scrT >0

\Bigr) 
1gj+\Lambda j>0 \geq 0.

We also have

\partial \widehat Ci

\partial gi
=  - \widehat \Pi 0i

\partial \widehat C - 
0

\partial gi
 - \partial Gi

\partial gi

\Bigl( 
1 - \scrT +

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
+Gi

\partial (\scrT +/G\mathrm{t}\mathrm{o}\mathrm{t})

\partial gi

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

 - 
\Bigl( 
1 - \scrT +

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
+

Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
1 - \scrT 

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1\scrT >0

\Bigr) 
1gi+\Lambda i>0

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

 - 1 +
\Bigl( \scrT 
G\mathrm{t}\mathrm{o}\mathrm{t}

+
Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
1 - \scrT 

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigr) 
1\scrT >0

\Bigr) 
1gi+\Lambda i>0

\leq 
\Bigl( \widehat \Pi 0i1 \widehat C0<0

 - 1 + 1\scrT >0

\Bigr) 
1gi+\Lambda i>0 \leq 0

where in fourth line we used that Gi
G\mathrm{t}\mathrm{o}\mathrm{t}

\leq 1.
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From (28) and (27) we obtain

\partial \widehat Ci

\partial f
=  - \Lambda +

i  - \widehat \Pi 0i
\partial \widehat C - 

0

\partial f
=  - \Lambda +

i +
\Lambda +
i\sum m

j=1 \Lambda 
+
j

m\sum 
j=1

\Lambda +
j 1 \widehat C0<0

=  - \Lambda +
i 1 \widehat C0\geq 0

\leq 0.

Consider now the case ``junior CN.""
From (25) and (28), we infer (for j \not = i)

\partial \widehat Ci

\partial gj
=  - \widehat \Pi 0i

\partial \widehat C - 
0

\partial gj
+Gi

\partial (1 \wedge ( \widehat A0  - \widehat L0)
+/G\mathrm{t}\mathrm{o}\mathrm{t})

\partial gj

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

+
Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
1 - 

\widehat A0  - \widehat L0

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1
0< \widehat A0 - \widehat L0<G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1gj+\Lambda j>0 \geq 0,

Moreover,

\partial \widehat Ci

\partial gi
=  - \widehat \Pi 0i

\partial \widehat C - 
0

\partial gi
 - \partial Gi

\partial gi

\Bigl( 
1 - 1 \wedge ( \widehat A0  - \widehat L0)

+/G\mathrm{t}\mathrm{o}\mathrm{t})
\Bigr) 
+Gi

\partial (1 \wedge ( \widehat A0  - \widehat L0)
+/G\mathrm{t}\mathrm{o}\mathrm{t})

\partial gj

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

 - 
\Bigl( 
1 - 1 \wedge ( \widehat A0  - \widehat L0)

+/G\mathrm{t}\mathrm{o}\mathrm{t})
\Bigr) 

+
Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigl( 
1 - 

\widehat A0  - \widehat L0

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1
0< \widehat A0 - \widehat L0<G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1gi+\Lambda i>0

=
\Bigl( \widehat \Pi 0i1 \widehat C0<0

1 \widehat A0 - \widehat L0>G\mathrm{t}\mathrm{o}\mathrm{t}
+

\Bigl( Gi

G\mathrm{t}\mathrm{o}\mathrm{t}
 - 1

\Bigr) \Bigl( 
1 - 

\widehat A0  - \widehat L0

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1
0< \widehat A0 - \widehat L0<G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1gi+\Lambda i>0

=  - 
\Bigl( 
1 - Gi

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) \Bigl( 
1 - 

\widehat A0  - \widehat L0

G\mathrm{t}\mathrm{o}\mathrm{t}

\Bigr) 
1
0< \widehat A0 - \widehat L0<G\mathrm{t}\mathrm{o}\mathrm{t}

1gi+\Lambda i>0 \leq 0

where in the fourth line we used that 1 \widehat C0<0
1 \widehat A0 - \widehat L0>G\mathrm{t}\mathrm{o}\mathrm{t}

= 0 and Gi
G\mathrm{t}\mathrm{o}\mathrm{t}

\leq 1.
From (28) and (27) we obtain similarly as in the case with ``senior CN""

\partial \widehat Ci

\partial f
=  - \Lambda +

i  - \widehat \Pi 0i
\partial \widehat C - 

0

\partial f
=  - \Lambda +

i +
\Lambda +
i\sum m

j=1 \Lambda 
+
j

m\sum 
j=1

\Lambda +
j 1 \widehat C0<0

=  - \Lambda +
i 1 \widehat C0\geq 0

\leq 0.

(ii) From the aggregate surplus identity (24) we have

m\sum 
k=0

\widehat Ck =
m\sum 
k=0

\gamma k +
m\sum 
i=1

Qi  - 
m\sum 
i=1

\widehat Zi(Qi  - Pi) - \widehat C - 
0  - 

m\sum 
i=1, \Lambda i<0

\widehat C - 
i  - 

\sum 
i, \Lambda i>0

Di.

It is immediate to see, using Lemma 2, that the dependence of this sum on (f, \bfitg )
comes only from \widehat C - 

0 . Thus, by (27), this sum is nondecreasing in (f, \bfitg ), as stated.
(iii) We have

\partial 
\sum m

k=1
\widehat Ck

\partial gi
=

\partial 
\sum m

k=0
\widehat Ck

\partial gi
 - \partial \widehat C0

\partial gi
=  - \partial \widehat C - 

0

\partial gi
 - \partial \widehat C0

\partial gi
=  - \partial \widehat C+

0

\partial gi
\leq 0,

and, similarly,

\partial 
\sum m

k=1
\widehat Ck

\partial f
=  - \partial \widehat C - 

0

\partial f
 - \partial \widehat C0

\partial f
=  - \partial \widehat C+

0

\partial f
\leq 0.D
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Proof of Theorem 2. We have that

\widehat \scrA \alpha  - \scrA \alpha =  - \alpha 
m\sum 
i=0

( \widehat C+
i  - C+

i ) - 
m\sum 
i=1

( \widehat D\ast 
i  - Di)

=  - \alpha 
m\sum 
i=1

(Zi  - \widehat Zi)(Qi  - Pi) + (1 - \alpha )
m\sum 
i=1

(Di  - \widehat D\ast 
i ),

where in the second line we used (8). The first term is always negative by Theorem 1,
and contributes to a reduction of systemic risk. The second term, as we have seen, can be
positive or negative depending on the realized network: in networks with large asymmetries
(``overinsured"" and ``underinsured"") the shortfall on end users increases with a CN, while
in symmetric networks the shortfall decreases. As a consequence of Lemma 3,

\sum m
i=1(Zi  - \widehat Zi)(Qi  - Pi) does not depend on \gamma 0 and the fee and guaranty fund policy (f, \bfitg ) and can be

computed using only the parameters of the initial, uncleared interbank network.
Now using (32), we obtain

\scrR ( \widehat \bfitC ) - \scrR (\bfitC ) = E
\Bigl( 
\scrA \alpha ( \widehat \bfitC )

\Bigr) 
 - E

\Bigl( 
\scrA \alpha (\bfitC )

\Bigr) 
= E

\Bigl( 
\scrA \alpha ( \widehat \bfitC ) - \scrA \alpha (\bfitC )

\Bigr) 
= (1 - \alpha )E

\Bigl( 
Di  - \widehat D\ast 

i

\Bigr) 
+ E

\Bigl( 
 - \alpha 

m\sum 
i=1

(Zi  - \widehat Zi)(Qi  - Pi)
\Bigr) 
.

Proof of Theorem 3. By Theorem 2 we have \scrR (\bfitC )  - \scrR ( \widehat \bfitC ) = E[\alpha 
\sum m

i=1(Zi  - \widehat Zi)(Qi  - 
Pi)  - (1  - \alpha )

\sum m
i=1(D

\ast 
i  - \widehat D\ast 

i )], so that the CN reduces the systemic risk by at least \ell , i.e.,

\scrR (\bfitC ) - \scrR ( \widehat \bfitC ) \geq \ell , if and only if

(55) \alpha 
m\sum 
i=1

E[(Zi  - \widehat Zi)(Qi  - Pi)] + (1 - \alpha )
m\sum 
i=1

E[ \widehat D\ast 
i  - D\ast 

i ] \geq \ell .

We first prove that there exists \gamma \ast 0 such that (55) holds for any \gamma 0 \geq \gamma \ast 0 , f \in [0, 1], and
g \in [0, \gamma ]. By Lemma 4 we have

\widehat C - 
0 =

\Bigl( 
\gamma 0 +

m\sum 
i=1

\Bigl( 
f\Lambda +

i +Gi  - \widehat C - 
i

\Bigr) \Bigr)  - 
,

which statewise and monotonically tends to 0 as \gamma 0 \rightarrow \infty . Under the assumption of full
reinsurance, we have that \widehat D\ast 

i = Di for all i with \Lambda i > 0, and thus lim\gamma 0\rightarrow \infty E[
\sum m

i=1(
\widehat D\ast 
i  - 

D\ast 
i )] \rightarrow E[

\sum m
i=1(Di - D\ast 

i )] > 0 and the convergence is uniform over all g \in [0, \gamma ] and f \in [0, 1].
The limit is attained due to the integrability assumptions on L.

Recall from Theorem 2 that \widehat Zi does not depend on \gamma 0, and we assume that \ell \leq \alpha 
\sum m

i=1

E[(Zi  - \widehat Zi)(Qi  - Pi)] + (1 - \alpha )E[
\sum m

i=1(Di  - D\ast 
i )]. By monotone convergence, there exists \gamma \ast 0

such that (55) holds for any \gamma 0 \geq \gamma \ast 0 , f \in [0, 1] and g \in [0, \gamma ].
For the case ``senior CN,"" we show that there exists \gamma \prime 0 such that (40) is verified for \gamma 0 > \gamma \prime 0

uniformly over \scrG := \{ g | E[
\sum m

i=1 f\Lambda 
+
i  - (G\mathrm{t}\mathrm{o}\mathrm{t}  - 

\sum 
i, \Lambda i<0

\widehat C - 
i ) - ] > 0\} . Using the convexity we

have that E[ \widehat C+
0 ] = E[(\gamma 0+ f\Lambda +

i  - (G\mathrm{t}\mathrm{o}\mathrm{t} - 
\sum 

i, \Lambda i<0
\widehat C - 
i ) - )+] \geq \gamma 0 for all \gamma 0 and g \in \scrG . For the
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second inequality, we have that lim\gamma 0\rightarrow \infty E[ \widehat C+
0 ] - \gamma 0 = E[

\sum m
i=1(f\Lambda 

+
i  - (G\mathrm{t}\mathrm{o}\mathrm{t} - 

\sum 
i, \Lambda i<0

\widehat C - 
i ) - )],

whereas
\sum m

i=1 E[(Zi  - \widehat Zi)(Qi  - Pi)] +
\sum m

i=1 E[D\ast 
i  - \widehat D\ast 

i ] \rightarrow 
\sum m

i=1 E[(Zi  - \widehat Zi)(Qi  - Pi)] +\sum m
i=1 E[D\ast 

i  - Di]. The second inequality of (40) holds in the limit under assumption (41).
For the case ``junior CN"" the first inequality of (40) is verified under condition E[

\sum m
i=1 f\Lambda 

+
i  - \sum 

i, \Lambda i<0
\widehat C - 
i ] > 0. The second inequality holds in the limit under assumption (41).
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