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Abstract. We develop a model for contagion in reinsurance networks by which primary
insurers’ losses are spread through the network. Our model handles general reinsurance
contracts, such as typical excess of loss contracts. We show that simpler models existing in
the literature—namely proportional reinsurance—greatly underestimate contagion risk.
We characterize the fixed points of our model and develop efficient algorithms to compute
contagion with guarantees on convergence and speed under conditions on network
structure. We characterize exotic cases of problematic graph structure and nonlinearities,
which cause network effects to dominate the overall payments in the system. Last, we
apply our model to data on real-world reinsurance networks. Our simulations demonstrate
the following. (1) Reinsurance networks face extreme sensitivity to parameters. A firm can
be wildly uncertain about its losses even under small network uncertainty. (2) Our sen-
sitivity results reveal a new incentive for firms to cooperate to prevent fraud, because even
small cases of fraud can have outsized effect on the losses across the network. (3) Non-
linearities from excess of loss contracts obfuscate risks and can cause excess costs in a real-

world system.
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1. Introduction

The London market excess of loss (LMX) spirals of
the 1980-1990s revealed how global interconnec-
tions among reinsurers (i.e., insurers who insure other
insurers) can cause contagion in the reinsurance mar-
ket (Bain 1999). There was high concentration of
losses, despite the belief that all parties were properly
insured. A series of major storms caused tail losses
to the London insurance market (Lloyd’s in partic-
ular). Although risks in the London market were
reinsured outside the United Kingdom, retroces-
sion (i.e., reinsurance on reinsurance) brought these
losses back to the London market, resulting in un-
expected concentration of losses. Figure 1 visualizes
these interconnections.

After these events, the industry mitigated spiral
risks by reducing the size of the retrocession market.
Today, there is a sense in insurance that the risk of
spirals is largely a thing of the past and that risks are
properly shared with reinsurers. To our knowledge,
no reinsurance risk models used in industry directly
account for these network effects. By applying the
machinery we develop in this paper to estimates of
the current U.S. reinsurance system, we show that the
reinsurance market is, in fact, not safe from network
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effects. We show such network effects can domi-
nate the tail behavior of the system in ways that are
difficult to predict. The United States has insurance
guaranty mechanisms that protect policyholders in
case of insurance company insolvency. Our results are
even more relevant in this case because the spiraling
losses would be borne by the state.

We propose a model for contagion in reinsurance
markets by which primary insurers’ losses are spread
throughout the network. Despite a vast literature on
contagion in financial networks (see, e.g., Eisenberg
and Noe 2001, Elliott et al. 2014, Acemoglu et al. 2015),
no existing contagion models are general enough to
cover reinsurance contracts. The majority of financial
network models are limited to simple contexts in
which network interactions are representable by debt
or equity contracts between entities. Very little work
has extended these models to more complicated de-
rivatives whose payoffs in equilibrium depend on the
liabilities and counterparty risk across the network.
As a notable exception, Schuldenzucker et al. (2016,
2019) demonstrate difficulties in clearing networks
with credit default swaps in addition to initial debt
contracts. Reinsurance contracts differ from debt con-
tracts in that we do not outright know their liabilities.


http://pubsonline.informs.org/journal/mnsc
mailto:aak228@cornell.edu
mailto:acm299@cornell.edu
http://orcid.org/0000-0002-2216-9793
http://orcid.org/0000-0002-2216-9793
https://doi.org/10.1287/mnsc.2019.3389

Klages-Mundt and Minca: Cascading Losses in Reinsurance Networks
Management Science, 2020, vol. 66, no. 9, pp. 4246-4268, © 2020 INFORMS

4247

Figure 1. (Color online) Diagram of LMX Reinsurance
Spirals

LMX Spirals 1980s-90s

—

Primary Insurers

Non-UK
Reinsurers

— Flow of insurance risk
<+—— Triggered payouts

Reinsurance contracts differ from credit default swaps
in that contract liabilities are not related to default
events. Instead, the liabilities of reinsurance contracts
are interrelated and nonlinear, which can lead to dif-
ficulties in determining equilibrium payoffs and to
multiple solutions. Our model ventures far beyond the
settings and results of Eisenberg and Noe (2001) and
Acemoglu et al. (2015) because it, in general, requires
working with matrices with arbitrarily large column
sums as opposed to column sums < 1.

Blanchet et al. (2015) developed one of the first
network models for reinsurance contagion; however,
they assume that reinsurance contracts are propor-
tional contracts as opposed to the more common
excess of loss contracts (we provide more background
on these types of contracts in the next section) and that
reinsurance contracts do not cover liabilities from
other reinsurance contracts, which limits the propa-
gation of losses to two steps in the network. These
assumptions remove exotic behavior from the system,
such as reinsurance spirals, which we show can play a
critical role. Under these assumptions, they provide
large deviation results for the loss in the system.
In contrast, we focus on a more general setting that
handles a wide variety of reinsurance contracts that
exist in the real world, including the more common
excess of loss contracts. Our simulations comparing
excess of loss networks with proportional networks
further show that this assumption in Blanchet et al.
(2015) dangerously underestimates contagion risk in
real reinsurance networks.

Banerjee and Feinstein (2019) develop a dynamic
framework for contingent claims that can accommo-
date some reinsurance contracts. However, the re-
insurance contracts in their model cannot have caps.
Kley et al. (2016) develop a bipartite graph model of
tail risk in insurance. However, their model does not
include reinsurance.

Feinstein et al. (2017) describe the sensitivity of
payment equilibria in Eisenberg and Noe (2001) to
small variations in the interbank liabilities. In contrast,

our focus is on the reinsurance model that produces
these liabilities. Further, we show that these liabilities
can have wild variations from small uncertainties in
network parameters.

In addition to developing a contagion model for
reinsurance networks, our contributions include the
following:

o We establish efficient algorithms to compute
contagion with guarantees on convergence and speed
under conditions on network structure.

e We characterize exotic cases of problematic graph
structure and nonlinearities, which cause network ef-
fects that dominate the overall payments in the system.
We relate reinsurance spirals to structural properties
of the network, such as the existence of graph cycles
that recirculate large proportions of reinsurance losses.
Further, we show that these cycles can be very com-
plicated interactions of simple graph cycles.

e We apply our model to real-world reinsurance
networks using data provided by the National As-
sociation of Insurance Commissioners (NAIC). Our
simulations show that, using real-world data, non-
linearities in contagion can cause extreme uncertainties.
We demonstrate that even if a firm has unreasonably
precise information’ (i.e., with small uncertainty) about
the global structure of the system, it can still be wildly
uncertain about the losses it will face from a given
shock. We further demonstrate that these nonlinear-
ities can cause excess costs in a real-world system
(i.e., the insurance-reinsurance system could be struc-
tured differently to perform its function to protect
real-world infrastructure more efficiently).

We conclude by introducing three promising
starting points for solving real-world issues that our
results reveal: using distributed systems to control
fraud, using network features to predict risk expo-
sure, and designing markets to lower systemic costs.

2. Reinsurance Contagion Model

2.1. Primer on Reinsurance Contracts

Reinsurance contracts are insurance contracts that
insurance companies take out to protect against large
losses on their insurance portfolios. In primary re-
insurance, the insurance company protected by the
reinsurance is a primary insurance company. In retro-
cession reinsurance, the insurance company protected
by the reinsurance is another reinsurance company.
These reinsurance contracts are typically partly col-
lateralized, meaning that, in the event that the re-
insurer defaults on their obligations, the reinsured
firm still has recourse to the collateral. Most reinsurance
contracts in property and casualty are treaty contracts,
which insure against losses from the reinsured com-
pany’s entire insurance portfolio. Alternatively, in a
niche case that we will not consider, some contracts
have more specialized coverage of facultative risks.
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The most common form of treaty reinsurance is an
excess of loss (XL) contract, in which the reinsurer
covers losses on the reinsured above a deductible (or
attachment point). These contracts also commonly
have caps (or limits) on the payouts of the contract. The
total coverage of a firm is typically split into multiple
deductible-cap layers in a tranche structure. Multiple
reinsurers typically split each layer, taking fractions of
the coverage. Together, the layers form a tower.

Another treaty contract is proportional reinsurance.
These have no deductibles or caps, and the reinsurer
takes on a percentage of the liabilities of the reinsured
according to a coinsurance rate.

2.2. Two Contagion Mechanisms
Reinsurance contracts between a set of insurance com-
panies form a network. Exogenous liabilities to a subset
of primary insurers constitute a shock to this network.
This shock may activate the reinsurance to the primary
insurers, which can in turn activate a cascade of retro-
cession reinsurance. Figure 2(a) outlines this liability
propagation mechanism. The equilibrium of this pro-
cess gives a network of liabilities between firms. Given
their available capital, some firms may be unable to
pay these liabilities. These firms default, potentially
with extra default costs representing the legal, trans-
actional, and liquidity costs of default. Each default
negatively affects the capital of neighboring firms as
these firms receive less on the liabilities they are
owed. This can trigger a secondary cascade of defaults.
Figure 2(b) outlines this default propagation mecha-
nism. An equilibrium of this second process is a
clearing payment vector to the liability network.
Given a shock, we aim to determine the equilibrium
reinsurance payments from a complex interconnec-
tion of contracts. Unlike the case of a debt network in
Eisenberg and Noe (2001), we do not outright know
the liabilities of each contract, so we cannot directly
calculate a clearing payment vector. In a reinsurance

Figure 2. (Color online) Propagation Mechanism Diagrams

(a)
Reinsurance Liability Propagation
Primary Insurers Reinsurers
1. Claims > deductible trigger
< | reinsurance contracts

4

-
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AT\

£ A\

A v
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interact until next cap is met
or next deductible is not met

Liability propagation in a reinsurance network.

network, the liabilities are interrelated and nonlinear.
The difficult problem in this case is to determine
the equilibrium liabilities given a shock, after which
we can solve for a clearing payment vector as in
Eisenberg and Noe (2001). The process for calculating
contagion is then as follows:

1. Given a primary insurance shock, calculate the
equilibrium reinsurance liabilities.

2. Apply the available collateral from reinsurance
contracts to fulfill or partially fulfill liabilities.

3. Given the remaining capital of firms, clear the
remaining liabilities in the network.

We proceed in this paper by developing the ma-
chinery to handle the missing piece of the puzzle: the
first step. This problem is much more general than
related problems formulated in Eisenberg and Noe
(2001) and Acemoglu et al. (2015) and involve ma-
trices with column sums > 1.

2.3. Network Definitions
We define the reinsurance network as follows:

e nnodes of primary insurance and reinsurance firms

e 1m edges represent reinsurance contracts between
firms, directed from reinsurer to reinsured firm. Edges
are described by the following weight matrices

e I' n X n matrix of coinsurance rates on contracts
(0 if no contract between parties)

e DD n X n matrix of deductibles (also called “at-
tachment points”) on reinsurance contracts (0 if no
contract between parties)

e CP n x n matrix of reinsurance caps (also called
“limits”) on contracts (0 if no contract between
parties). This is the maximum payout of the contract

e shvector representing shocks to primary insurers

e ¢y vector representing initial capital (also called
“equity”) values of each firm available to payout
liabilities

We assume the graph is connected, because we can
otherwise handle the components separately. We also

(b)
Clearing Default Propagation

Primary Insurers Reinsurers

_ 3. Lower capital can cause next firm
-~ =~ "7/ todefault, propagating the effect

-
.

~

> 2. Default lowers clearing
payment, decreasing capital
of other firms

R

4
@ O

Default propagation in a liability network.

~
~
~ 1. If liability > capital, firm
defaults, triggering default cost
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assume that firms can only reinsure up to 100%; that
is, the column sums of I corresponding to a particular
layer of reinsurance sum to < 1. This is a reasonable
assumption because otherwise the contract ceases to
serve as insurance and the insured company stands
to profit from taking on large losses to their portfolio.
This assumption is a standard requirement in in-
surance contracts.

We will work with the line graph of the network,
that is, the graph that represents edges of the original
graph as nodes in the new network and has directed
edges when the head of an edge in the original net-
work intersects the tail of another edge in the original
network. We define the line graph network as follows:

e m nodes representing contracts (i.e., edges) in the
reinsurance network

e X m x m adjacency matrix of the line graph, 1-0
weighted

e { liability vector on contracts

e d deductibles vector on contracts

® C caps vector on contracts

e s shock vector on contracts

e v m X m diagonal matrix of reinsurance rates on
contracts

The following example describes the transforma-
tion to the line graph network.

Example 1. Consider the reinsurance network in Fig-
ure 3(a). Figure 3(b) shows the resulting line graph
structure. In the original reinsurance network, sup-
pose we have

0 0 O 0 0 O
=05 0 0fDD=(10 0 O0f,

L0 05 0 0 10 0

[0 0 0 20
CP=|100 0 O|,sh=]|0

L 0 100 O 0

Then the line graph network becomes

0 0 05 0 10 100

%[t o=l asbt=liobe= il
10 0 05 10 100
o]
s= .

0
The line graph network serves to consider the sys-
tem as a network of contracts instead of a network of
firms. We define a financial system in terms of its line
graph network (X, y, 4, ¢, s) (sometimes omitting the c
if we are in the domain of infinite caps) because that is
the machinery we will need in our theorems and al-
gorithms; however, it can equivalently be defined in
terms of the adjacency graphs of the reinsurance
network (T,DD,CP,sh). Note that because yX is
nonnegative, the Perron-Frobenius theorem gives us
that the spectral radius p(yX) = Ayax(yX). We will
show in the next section how to calculate the resulting
equilibrium liabilities matrix L (or equivalently lia-
bilities vector ¢ in the line graph network) giving li-
ability weights on contracts in a financial system.

3. Network Liabilities

3.1. Liabilities Without Contract Caps

In the case that each contract has a deductible but no
cap (equivalently, each contract has an infinite cap,
and so there is no layering of reinsurance), liabilities
on contracts equal the sum of direct shocks — de-
ductibles + cross-effects from the network, multiplied
by y and with a floor at zero. That is, the equilibrium
liabilities vector £ is a fixed point to the equation

D) =y(s+ Xt —d) vO0.

Define B(£) as the m xm diagonal matrix with 1-0
entries indicating which contracts are activated (i.e.,
have surpassed the deductible) under ¢. Specifically,
B(¢);; =1if (X¢+s—d); >0 and 0 otherwise. We de-
fine a B-constant set to be the subset of the domain such

Figure 3. (Color online) Example Line Graph Network Transformation

(@)
Reinsurance Network on Firms

<
«

Example reinsurance network.

(b)
Line Graph Network on Contracts

Example line graph network.
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that B is a given constant value (i.e., the preimage of a
particular B). We will mostly work with B-constant
sets, so we will refer to B({) as simply B. With this
terminology, @ is equivalent to

() = yB(XC +5 — d).

Note that this @ is nonnegative, monotone increasing
(i.e., nondecreasing), and convex because it is the
composition of an increasing affine function and a
nonnegative, increasing convex function (pointwise
maximum). This instance of the problem is similar to
the problem considered in Eisenberg and Noe (2001)
but without a general upper bound. We solve it in
similar ways but provide more direct proofs.

3.2. Liabilities with Contract Caps

In the more general case in which each contract has a
deductible and a cap (possibly infinite), there can be
multiple layers of reinsurance. Adding the capping
effect to the setup started above, the liabilities vector £
is a fixed point to the equation

D) = (y(Xt+s—-d)vVO) Ac.

We define the following:

o C({) is the m x m diagonal matrix with 1-0 entries
indicating which edges have surpassed their caps
(and so no longer activated); specifically, C(£); = 1 if
Y(XC + 5 —d); = ¢i; and 0 otherwise.

o W({) is a map to a system on the zero diagonal
coordinates of C({). Essentially, W({) is (I - C(¢))
where we have dropped the zero rows.

e Dropping dependence on ¢, =WyWT, B=
WBYT, X = wxwT,

o ({=Cc,o=W(Xl+s—d).

We define a (B, C)-constant set to be the subset of the
domain such that both B and C are given constant
values (i.e., the intersection of the preimage of a
particular B and the preimage of a particular C). We
will mostly work with (B, C)-constant sets, so we will
refer to C({) and W(¢) as simply C and W. With this
terminology, @ is equivalent to

O(£) = (I - C)yB(X(I - C) + XCc + (I - C)(s —d)) + Cc
= WI9B(XWE +9) + L.

Unlike the simpler ® without contract caps, whichisa
subcase of the more general setting, the ® with contract
caps is not generally convex. It remains monotone
increasing, however. This problem is similar to the
problem considered in Acemoglu et al. (2015); how-
ever, their methodology is limited to the case in which
column sums for the network interaction matrix are < 1.
In the general case of reinsurance layering, column
sums of yX can be arbitrarily high. We develop ma-
chinery to handle this much more general setting.

Unless specifically pointed out, we will work with
the general form of @ with contract caps.

3.3. Unique Fixed Point

We characterize conditions under which a unique
fixed point exists in Theorem 1. To construct the
proof, we will need the following lemmas.

Lemma 1. A linear system with matrix A is a contraction
with respect to some norm if and only if the spectral radius
p(A) <1. Further, this norm ||-||; can be taken to be a
weighted Euclidean norm of the form [ly||, = ||Myl|,, where M
is a square invertible matrix.

A proof of Lemma 1 can be seen in, for example,
appendix B of Bertsekas (2013).

Lemma 2. The (B, C)-constant sets are convex and form a
finite partition of the space {£|¢ > 0}.

See proof in Appendix A.

We now define the terms used in the theorem:

o Let H(X,y,d,c,s) be the set of (B,C) pairs such
that the (B, C)-constant set is nonempty. That is, for
(B,C) € K, there is a feasible ¢ such that B(f) = B and
C(¢) = C. Notice that there is no feasible ¢ such that
B(¢) = 0 and C(¢) = I because the activation of all caps
means that all deductibles are also met. Contracts in
different layers reinsuring the same firm also cannot
simultaneously be activated: we only reach the sec-
ond layer if the first layer has reached its cap. Ad-
ditionally, unless all caps are infinite, B=Iand C = 0
is not feasible.

o Let (X, y,d,c,s) be the element-wise maximum
over all (B,C) € ¥ of the matrices (I — C)yBX(I — C).
Notice that (I — C) performs the same function as
the W map here; however, it maintains zero rows and
columns, making the result comparable across dif-
ferent (B, C) pairs. Notice that

(I-C)yBX(I-C) = WTyBXW.

We will use this tilde notation to simplify the alge-
bra. To distinguish between tilde notation from dif-
ferent W(C), we will use different subscript nota-
tions. For example, for (B1,Cq) € ¥, W1 :=¥(C;) and
)N/l = \Ply‘:[/{

Theorem 1. Let (X,y,d,s,c) be a financial system and
Q:= Apcjex (I = C)yBX(I—C) be the matrix element-
wise maximum. Then if p(Q) <1, there is a unique fixed
point to ©((; X, y,d,s, c).

The idea behind this condition is that not all (B, C)
pairs are feasible—in particular, if some caps are fi-
nite, we will never have to work with all of yX at
once—and so we only need to consider the worst cases
of the feasible pairs to construct a dominating linear
map. Then if the dominating linear map gives a con-
tractive norm on the whole space, the Banach fixed
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point theorem gives us uniqueness. The proof is pro-
vided in Appendix A.

The following corollary describes a more intuitive
condition on the spectral radius of the “full” graph yX.
However, this simpler condition does not cover general
layering structure. In particular, column sums are re-
stricted to < 1. Notice that the only condition of the
corollary is that p(yX) <1, which further means that
any such system leads to a unique fixed point for every
possible shock.

Corollary 1. Given a financial system (X,v,d,c,s), if the
spectral radius p(yX) <1, there is a unique fixed point to ®.

In the case of all infinite caps (i.e., effectively no
caps), Corollary 1 gives a result similar to theorems 1
and 2 in Eisenberg and Noe (2001). We note that our
proof is more direct and general. The more general
condition on the spectral radius of yX enables the
more powerful Banach fixed point theorem to prove
theresult directly. This method can apply to a broader
set of problems, whereas the proof in Eisenberg and
Noe (2001) requires minutiae of the specific contagion
mechanism and the relations between different firms
to arrive at the result.

The general case of Corollary 1 is similar to prop-
osition 1 in Acemoglu et al. (2015), which considers
clearing vectors in a liabilities network with external
senior debt. However, the theorem in Acemoglu et al.
(2015) only applies to matrices of connectivity with all
entries strictly positive because the proof relies on the
positive version of the Perron-Frobenius theorem. To
handle nonnegative matrices, we need to require the
spectral radius be <1 because eigenvalues can oth-
erwise be 1.

Theorem 1 and the results we derive in the fol-
lowing sections venture well beyond the setting and
results in Acemoglu et al. (2015) to describe fixed
points that apply for the full range of layering
structure that can be seen in reinsurance networks.
In particular, we need to allow column sums of yX to
be >1 because there can be multiple complete layers
of reinsurance.

A natural question is whether we can strengthen
Theorem 1 to a wider setting. Conditioning on
p(WyBXWT)<1 for all (B,C) pairs that partition the
domain into nonempty (B,C)-constant sets (and
recalling that C defines W), @ is everywhere a local
contraction (i.e., ®@ is a contraction restricted to each
(B,C)-constant set by some metric). We can further
show that @ is globally nonexpansive. We conjecture
that, under these conditions, ® has a unique fixed
point. However, this problem is more challenging
because we need to establish a metric over which the
function is globally contractive in order to use the
existing machinery. We leave this as further work.

3.4. Other Cases: Unique, Multiple, and No
Fixed Points

Problematic graph structure can cause ® to be non-
contractive. This occurs when circular sequences of
contracts allow 100% reinsurance to be continually
recirculated through a given set of nodes. We will
refer to an instance of this as a 100% cycle. Cycle here
refers to the graph theoretic meaning as opposed to
the economic meaning. Figure 4 provides three ex-
amples of how this can happen. Figure 4(a) is the
simplest example that directly recirculates 100% re-
insurance around one cycle. Figure 4(b) shows that
multiple cycles can interact to recirculate 100% re-
insurance to a central node. Figure 4(c) shows that in
the most extreme case of a complete graph with all
I'=1/(n—1),100% reinsurance can be recirculated to
every node in the network: because all weights are
1/2, the reinsurance that can be recirculated to each
node can be a geometric sequence that converges to 1.

3.4.1. 100% Cycles: No Caps Case. For simplicity, we
first describe the effects of these 100% cycles from the
perspective of a system with infinite/no caps, in
which yX mostly describes the entire system.

Analytically, these 100% cycles cause the matrix
powers (yX)¥ to fail to converge to 0 as k — oo because
we enter an infinite increasing loop. On the other
hand, the condition on the spectral radius <1 from
Corollary 1 ensures that lim;_,(yX)" = 0. Checking
the spectral radiusis a simple check of whethera 100%
cycle exists; however, it may be difficult to identify the
actual cycle in the network. As shown by the exam-
ples in Figure 4, a problematic cycle can be a complex
interaction of many graph cycles. A naive method to
search for the problematic cycle would involve iter-
ating over graph cycles in the network, which is itself
NP-hard.

If p(yX) > 1 in this setting, a 100% cycle exists. In
this case, there may still be a unique fixed point. If not,
there may be a smallest fixed point or there may be no
fixed point. The following characterize these cases
and follow from the main theorems in this section.

3.4.1.1. Unique Fixed Point If 100% Cycles Are Not
Activated. The term B in yBX serves to remove edges
from the resulting graph. Because the spectral ra-
dius of a proper subgraph is less than the spectral
radius of the initial connected graph, we may have
local contraction on some B-constant sets, but not on
the whole domain. Depending how far the shock s
spreads, there may still be a unique fixed point on the
contractive B-constant sets. In this case, 100% cy-
cles that cause the spectral radius to be > 1 are not
activated. We can restrict the domain to the con-
tractive region to find a unique fixed point. Notably,
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Figure 4. (Color online) Some Examples of 100% Cycles
@)

Reinsurers

Primary Insurer

A direct 100% cycle.

Primary Insurer

(b)

Reinsurers

Primary Insurer

100% cycle from two interacting cycles.

Reinsurers

O
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Many interacting cycles can form a 100% cycle.

such a system will not yield a fixed point for all pos-
sible shocks.

3.4.1.2. No Fixed Point If 100% Cycles Are Activated. When
100% cycles are activated by shocks, the system is
noncontractive. In this case, there is no fixed point,
and some nominal liabilities will increase to infinity
as contracts call circularly in 100% cycles. For ex-
ample, say that the primary insurer faces a shock of
10 in Figure 4(a). Then this loss is passed around the
cycle because the reinsurance rate is 100%. The first
reinsurer faces a loss of 20, which is again passed
around the cycle, and so on. Because @ is monotone,
these “infinite” fixed points are the only cases of
nonexistence. This could happen but is extremely
unlikely in practice. The only contracts without caps
are proportional and not reinsured at 100%. A 100%
cycle in this case would be quite contrived.

3.4.1.3. Multiple Fixed Points from Self-Reinforcing
Claims. If 100% cycles have their deductibles ex-
actly met from outside claims but are otherwise
unactivated, we have multiple solutions. A simple
example of this is a 100% cycle with zero deductibles
and zero outside claims. Any value on these contracts
is self-fulfilling, and so there are infinitely many fixed
points. Notice that each 100% cycle is self-contained
owing to the assumption that no firm can reinsure
more than 100%. This means that the self-fulfilling
solutions in each such cycle are independent. Then the
set of fixed points looks like a Cartesian product of

individual solution subsets related to the 100% cycles
in the network that have deductibles exactly met by
outside claims.

3.4.2. 100% Cycles: General Caps Case. Corollary 1
tells us cases in which we can prove unique fixed
points for all shocks. Theorem 1 covers more cases.
Outside of these theorems, there may still be unique
fixed points in other systems: in some cases if the
shocks do not activate problematic network structure,
and in other cases there may be no problematic net-
work structure to worry about. When we are not
guaranteed uniqueness, we can see similar effects as
in the no caps case of multiple fixed points or no fixed
points. The following characterize these situations
and follow from the main theorems in this section.

3.4.2.1. Caps Limit Noncontractive Effects. Even if
100% cycles are activated, finite contract caps can
limit the noncontractive effect to particular layers that
reach capacity. In this case, the finite caps remove the
problematic graph structure from the remainder of
the problem.

3.4.2.2. Multiple Fixed Points Bounded Within Layers. 1f
a 100% cycle has deductibles exactly met from out-
side claims but remains otherwise unactivated, we
have multiple solutions as before. However, these
solutions are constrained by the caps and restricted
to self-reinforcing liabilities within particular layers
of reinsurance.
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As we will see in the following subsections, in the
case of multiple fixed points, there is always a least
fixed point that represents the real-world solution.
Other fixed points are mathematical artifacts from
self-reinforcing liabilities that are not propagations of
primary insurance claims.

3.4.2.3.No Fixed Point If Uncapped 100% Cycle Is
Activated. As before, the only instances of nonexis-
tence are when fixed point iteration diverges to infinity
on some liabilities. This only happens when an un-
capped 100% cycle is activated. Because @ is mono-
tone, all other problematic structures are eventually
capped out and so do not contribute to nonexistence.
For the same reasons as before, this is extremely un-
likely to occur in practice.

3.5. Least Fixed Points

In the event that we have multiple solutions, there is
a least fixed point as the others are self-fulfilling and
not caused by actual claims. This is formalized in the
following theorem.

Theorem 2. For financial system (X,y,d,c,s), if a fixed
point of ®({;X,y,d, c,s) exists, then there is a least fixed
point. Further, fixed point iteration starting at O converges to
the least fixed point.

Note that the Tarski fixed point theorem cannot be
used in this setting because the domain lattice is not
necessarily bounded above. Instead, our proof relies
on the Kleene fixed point theorem. The Kleene fixed
point theorem is additionally constructive, and so
guarantees that fixed point iteration converges to the
least fixed point if it exists. We present the proof of
Theorem 2 in Appendix A, including an overview of
the Kleene fixed point theorem.

The next theorem gives us a conditions under
which we can apply the Tarski fixed point theorem,
in which case we know outright that a least (and
greatest) fixed point exists.

Theorem 3. Let (X, y,d,c,s) be a financial system. Let ¥
map to a system on the edges with infinite caps (or map to the
zero matrix if all caps are finite). Then if the spectral radius
p(WoyXWT) <1, @ has least and greatest fixed points.

See proof in Appendix A.

Note that this means that, if all caps are finite, there
is always a maximum fixed point. This means that
liabilities cannot spiral to infinity. In practice, most
reinsurance contracts have caps, and so there will be a
resulting equilibrium liability structure.

We have provided a wide variety of cases for which
we are guaranteed least fixed points. In the next
subsection, we show that the least fixed point is the
real-world solution of interest.

3.6. Multiple Fixed Points: Net Liabilities Equal
Recall that L is the equilibrium firm-to-firm liabilities
matrix. Rows represent liabilities from the row firm to
each column firm. Define the net liabilities of each
firm as a vector

A(L):=L"e - Le,

where e is the all ones vector. (L'e); is what i is due
from other firms. (Le); is what i owes to other firms.
The following theorem shows that net liabilities of
firms are constant across multiple fixed points of ®.

Theorem 4. IfL, L’ are fixed points of ®, then A(L) = A(L").
That is, the net liabilities of each firm are equivalent under
any fixed point.

We will need the following two lemmas to prove
the theorem.

Lemma 3. If L, L’ are fixed points of ® with L > L’ (entry-
wise), then A(L) < A(L).

Lemma 4. If L is a fixed point of @, then ¥; A;(L) = 0.

See proof of Lemma 3 and proof of Lemma 4 in
Appendix A. Lemma 4 is rather immediate because
the reinsurance system does not amplify losses—it
only distributes losses across the network. Because
the initial shock is not included in L, the terms in L
sum to 0. Once we have established these lemmas,
the proof of Theorem 4, which is included in Ap-
pendix A, is similar to that of theorem 1 in Eisenberg
and Noe (2001).

Because net liabilities are equivalent between fixed
points, the least fixed point corresponds to the real-
world solution. It represents the propagation of pri-
mary insurance shocks, whereas other fixed points
add self-fulfilling liabilities on top of this. To see this,
note that fixed point iteration starting from zero rep-
resents stepwise propagation of primary insurance
shocks and converges to the least fixed point. Then,
from Theorem 4, any greater fixed points can only
come from adding additional liabilities that net out.

3.7. Consequences of Multiple Fixed Points

Note, however, that Theorem 4 does not imply that
the clearing of different fixed point liabilities is equiva-
lent. In general, the clearing will depend on the nominal
liabilities as opposed to the net liabilities. Figure 5
gives an example in which different fixed points lead
to different clearing outcomes. The liability on edge
(B,A) is Lpa = 10 in any fixed point. However, Lcg =
Lpc = 0and Lcp = Lpc = 10 are both valid fixed points
(the net liabilities are the same for both fixed points
ALy = -10, AL = 10, AL¢ = 0). If the capital of firm B
has zero value, A will receive zero payment after
clearing in the minimum fixed point, whereas in the



4254

Klages-Mundt and Minca: Cascading Losses in Reinsurance Networks
Management Science, 2020, vol. 66, no. 9, pp. 4246-4268, © 2020 INFORMS

Figure 5. (Color online) Example in Which Different Fixed
Points Lead to Different Clearing Payments

Primary Insurer Reinsurers
r=1
d=0
. s=10 .: '
r=1
d=10

Lep = Lpe = 10 fixed point, A will receive 5 and C
will pay 5.

The only reason a system would find itself in a
nonleast fixed point is from fraud. In this case,
someone has inflated their liabilities such that the
network makes it self-fulfilling. In the case of Figure 5,
firm A is better off in a nonminimal fixed point and
could have an incentive to influence (outside of our
model) firm B. Firm B could present fraudulent higher
claims to firm C, which would be self-fulfilling from
the 100% cycle. This would cause a nonminimal fixed
point in liabilities. If the network is complicated, this
fraud could be difficult to uncover.

Remark 1. There are two other realistic mechanisms
that can cause multiplicity of solutions, which pose
governance challenges:

o The parameters of many reinsurance contracts are
not well defined, even to the parties of the contracts. It
is a common practice in the reinsurance industry to
agree to “in the future agree on a specific contract.”* In
extreme cases, these “contracts” have been litigated to
determine what contract would have been reasonably
agreed upon. In this case, the global contract pa-
rameters are not in principle knowable, as assumed
in our model, and there are additional potential solu-
tions for the different potential versions of the un-
known contract.

e Given liabilities, multiple fixed points for de-
termining clearing payments can also exist when
costs of default are nonzero (Rogers and Veraart
2013). This is realistically the case because there are
legal, transactional, and liquidity costs associated
with real-world defaults.

In either case, if there is disagreement in the pay-
outs of reinsurance contracts, such as from multiple
potential solutions, the issue goes to a panel of arbi-
trators to resolve (Schiffer 2006). The members of the
panel are typically active or former executive officers
of insurance or reinsurance companies (Schiffer 2006)
and will have different incentives. For example, these
could include the following: driving a competitor out
of the market, limiting contagion to given markets, or
pinning default on parties that are least connected to
themselves. Even when the arbiters do not have direct
conflicts of interest, indirect conflicts of interest are

unavoidable through network structure. The arbiters
will have different perceived risk exposure to the
various solutions. These incentives are outside of the
focus of this study; our purpose is to illustrate that
cases like this can happen. We leave it to future work
to model these incentives and design good gover-
nance structures to account for these.

We have widely characterized least fixed points
of @. In the next section, we provide efficient algo-
rithms for finding these fixed points.

3.8. Algorithms to Find the Least Fixed Point

To find the minimum fixed point, if it exists, we
can perform a fixed point iteration of ® starting at 0.
Algorithm 1 performs this fixed point iteration. The
constructive statement of the Kleene fixed point
theorem guarantees that Algorithm 1 converges to the
minimum fixed point, if it exists. In practice, this runs
efficiently. However, in the worst case, it can take
arbitrarily long, as in some examples of problematic
graph structures we will see in Section 4.1. The fixed
point iteration operates by pushing mass iteratively
around the system starting at the primary liabilities. As
a given edge’s liabilities increase in one iteration, its
tail node makes further calls on its reinsurers in the
next iteration, increasing the liabilities on their edges.
The number of fixed point iterations goes to infinity
as the damping goes to 0. This is because all excess
loss will end up with the damping node, but we re-
quire arbitrarily many trips through the cycle to
reach equilibrium because the mass removed from
the recirculation in each iteration is smaller with a
smaller damping.

Algorithm 1 (Fixed Point Iteration Algorithm to Determine
Reinsurance Network Liabilities)
Input: d,¢,y,s, X
Let £y be the zero vector, t < 1, finish « False
while finish = False do
Let b; indicate the entries that satisfy X¢;_; +
s —d > 0; define B; = diag(b;)

€, — min(B;y(X€— +s — d), c) element — wise
if ¢; = {;_1 then

finish < True
end if
te—t+1
end while
return {;

3.8.1. lterative Linear Solver: No Caps Case. This
motivates Algorithm 2, which calculates liabilities in
polynomial time complexity by iteratively solving
linear systems in networks without caps. The linear
systems are of the form ¢ = yB(s + X¢ — d), whichhas a
unique solution

¢ =(I-yBX)'yB(s — d)
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if (I -yBX) is nonsingular. In the case of zero de-
ductibles (i.e., proportional contracts), costs are shared
linearly according to coinsurance rates between firms,
and only one iteration is required.

Algorithm 2 (Determine Reinsurance Network Liabilities
in a System Without Caps)
Input: d, v, s, X
Let By be the O matrix and t =1
Define diagonal matrix By by setting Bj; =1 if
(s —d); = 0 and 0 otherwise
while B; # B;_1 do
Solve for ¢} = yB(s + Xt; — d)
te—t+1
Define diagonal matrix B; by setting By ; = 1 if
(s+ X —d); = 0 and 0 otherwise
end while
return ¢

Proposition 1. Given a financial system (X,y,d,s) with
infinite caps, if the spectral radius p(yX) <1, then Algo-
rithm 2 converges to the solution in at most O(m*) time.

See proof in Appendix A.

Note that Algorithm 2 works in some additional
cases (still assuming infinite caps). In the first case, we
may have problematic graph structure as demon-
strated in the previous section, but which is not in a
region of the graph that is activated by the given
shock. This means that the algorithm never leaves the
contractive region of ®. In the second case, (I — yBX)
can be invertible even if p(yBX) > 1. Note that in this
latter case, (I — yBX)™ will not be nonnegative, but
this is not an issue because ¢ = (I — yBX) 'yB(s — d)
will still be nonnegative as required.

3.8.2. Iterative Linear Solver: Caps Case. We now
adapt the iterative linear solver to the setting with
contract caps. However, this is complicated by the
fact that an iteration from 0 could mistakenly activate
edges owing to overcapacity leakage along edges in
one of the linear solves. To avoid this, we need to start
from the worst case and iterate downward, which
results in a process that terminates at the maximum
fixed point. Thus, this process only converges to the
least fixed point if there is a unique fixed point.

The linear systems that come up in iterations are of
the form ¢ = ¥B(X{ + ) (recall that tilde notation in-
corporates the W transformation onto the subsystem
of edges that are not overcapacity in the previous
iteration), which has a unique solution

7= (1 - ;*/BX) 1585

if (I — yBX) is nonsingular.
Algorithm 3 describes the iterative linear solver.

Algorithm 3 (Determine Reinsurance Network Libilities
in a System with Deductibles and Caps)
Input: d,¢,y,s, X
Let by and ¢y be all twos vectors (> all ones
vectors) and t =1
Let by be the all ones vector and ¢; indicate entries
with finite caps
while b; # b;_1 and ¢; # ¢;_1 do
Let ¢ = diag(c;)c
Let W map to a system on the zero coordinates
of ¢;
For iac; zero coordinate index, let ¢(i) give the
corresponding coordinate index under W.
Let 7 =WyWT, B, =WB,WT X =WXVT,5=V.
(S + X% - d)
Solve for £ = 77&(5(? + D)
Let t e« t+10 « Wl +¢
Let b; indicate the entries that satisfy X¢+
s—d>0
Let ¢; indicate the entries that satisfy y(X{+
s—d)>c
end while
return ¢

To prove that Algorithm 3 converges, we need a
stronger condition than in Theorem 1. This is because
we have to start at an upper bound that is easily
computable. In some cases, there may be a suitable
upper bound, but unlike in Algorithm 3, it is not
immediately clear what it is. The following propo-
sition provides sufficient conditions for convergence.

Proposition 2. Let (X, y,d,s,c) be a financial system and
Q:= A@pcjex (I = CyyBX(I—C) be the matrix element-
wise maximum, and Vo be the map to a system on the
edges with infinite caps (or map to the zero matrix if all caps
are finite). Then if p(QQ)<1 and p(WoyXW{)<1, Algo-
rithm 3 converges to the solution in at most O(m*) time.

See proof in Appendix A.

Note that the conditions of the proposition may be
difficult to check in general. An easier condition to
check is that p(yX)<1; however, this is again not
general enough to include many real-world cases of
multiple layers of XL contracts.

This algorithm additionally “works” when p(7BX) <1
for all (B,C) pairs. However, we only know that it
terminates at the minimum fixed point (i.e., a unique
fixed point) when p(Q)<1.

4. Real-World Implications of the
Network Model

In the previous sections, we developed the machinery
of our reinsurance network model. This model works
sequentially by calculating liabilities given a shock,
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Figure 6. (Color online) Example of a Reinsurance Spiral
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Notes. An initial shock of 5 is passed around the reinsurance cycle,
with 0 deductibles until nominal liabilities reach 10, at which point
the cap on edge (C,A) is activated. All excess loss is then left with
firm A.

applying the collateralized portion of reinsurance
contracts to cover liabilities, and then calculating
clearing payments in the network. We now discuss
two features that result from this model: dangerous
network structures and parameter sensitivity. These
features introduce new issues in risk management,
present a new incentive to combat fraud, and dem-
onstrate the importance of global contract design to
ensure the insurance system works well.

4.1. Dangerous Network Structures Cause
Reinsurance Spirals

Relaxations of 100% cycles cause counterintuitive
nonlinear behavior known as reinsurance spirals. By
relaxation, we mean that the cycle circulates close to
(but <) 100% reinsurance. We will refer to this as
relaxed cycles. This is introduced, for instance, in Bain
(1999) with an example in the Lloyd’s of London
reinsurance markets in the 1980s. In these spirals,
nominal liabilities increase at each step through the
graph cycle until one of the contract edges reaches its
cap, after which all excess liability is left with the
reinsured party of that contract. Figure 6 provides an
example. In this example, even though the size of the
shock is less than all contract caps, the spiral effect
causes the cap on (C, A) to be reached, leaving all li-
ability for the shock on A. Given local first-degree
information, all parties think they are adequately
reinsured; however, it turns out that this is not the
case. Relaxation of the 100% cycle to smaller values
of y lessens the growth of liabilities in the cycle but
leads to a similar effect, where a disproportionate
amount of excess liability is left with a single party.
Further, the effect is the same, even if we arbitrarily
scale the caps around the cycle. Even if caps are very
high, in which case a firm would intuitively expect to
be very well reinsured, firms are still subject to the ex-
act same spiral risk.

Another type of spiral that can happen is when a
relaxed cycle is damped by a node outside the cycle.

See Figure 7 for an example. In this case, in each trip
through the cycle, a small proportion of excess lia-
bility is siphoned off by the damping reinsurer. The
remaining proportion continues around the cycle
until a proportion of it is again siphoned off by the
damper. In equilibrium, a disproportionate amount
of the excess loss can be left on the damping reinsurer,
depending on the cap parameters in the cycle. The
damping reinsurer may not be aware of the role they
are taking in the network; given local first-degree
information, they may think they are only reinsur-
ing one firm instead of the whole cycle.

If there are multiple damping reinsurers, it will be
difficult to predict whether one of the dampers (and
which one) will be left with disproportionate excess
liability if there is imperfect information about net-
work parameters. For instance, one damping contract
could have a low cap, leaving most liability on the
second damping contract. Alternatively, a contract
cap within the cycle could be activated and leave most
excess loss on one of the reinsurers in the cycle. We can
also have a damping chain of reinsurers. In this case, a
node can be arbitrarily far from a relaxed cycle in a
connected graph but still be left with disproportionate
excess loss.

4.1.1. Standard Risk Management Does Not Work for
Relaxed Cycles. Relaxed cycles can serve to aggre-
gate losses from multiple sources across the network
inaway thatis not transparent to a damping reinsurer
who only knows its local structure in the network.
Figure 8(a) is an example in which losses from mul-
tiple primary insurers are aggregated through the
relaxed cycle, leaving all excess liability with the
damping reinsurer. For comparison, a tree structure
such as in Figure 8(b) can aggregate losses from many
primary insurers onto one reinsurer (the root node).
However, reinsurers can control for this tree aggre-
gation risk by putting limits on the size of the rein-
surered portfolios (usually in terms of premiums the
reinsured firm receives). The reinsured portfolios
would have tobelarge to lead tolarge aggregations of

Figure 7. (Color online) Example of a Relaxed Cycle with a
Damping Reinsurer

Reinsurers Damping Reinsurer

=0.01 O

Primary Insurer

O O\ =099

Notes. Excess loss is passed around the cycle, with 1% being absorbed
by the damping reinsurer in each circulation. If the caps on the
cycle contracts are high, disproportionate excess loss is left on the
damping reinsurer.
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Figure 8. (Color online) Standard Risk Management Works for Trees but Fails in the Case of Relaxed Cycles
(@) (b)
Primary Insurer Reinsurers Damping Reinsurer Primary Insurers Reinsurers
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Example of cycle that aggregates multiple losses. With A tree structure that aggregates many

high caps, most aggregated loss is absorbed by damper. losses on one reinsurer.

losses. This risk management method does not work
in the case of relaxed cycles. Even if firms in a relaxed
cycle individually have small reinsurance portfolios,
the relaxed cycle can include a large number of firms
and the spiraling behavior can aggregate losses from
all of these portfolios.

Another example of unintuitive behavior is that a
contract cap does not necessarily limit the liability of a
node caused by another node. Figure 9 gives an ex-
ample in which graph connections through a second
layer of reinsurance counteract the contract cap on
the first layer. In this case, B reinsures A up to the
cap, after which additional excess loss is translated
back to B through a second layer of reinsurance from
C. Of course, deductibles may reduce the total loss
borne by B. In a real application, B likely knows little
of the network structure outside of first-degree con-
nections and so may be unaware that it is also liable
for parts of the second layer of reinsurance coverage
of A.

We have demonstrated the emergence of reinsurance
spirals and the extreme bearing of reinsurance losses
due to network structure using simple examples. Al-
though these examples are illustrative, more compli-
cated examples, as in real-world reinsurance networks,
can exhibit the same effects.

4.2. Extreme Parameter Sensitivity

4.2.1. Incomplete Network Information. In a real set-
ting, small groups of firms have incomplete in-
formation about the global network structure. They
face intrinsic uncertainty of global contract parties
and parameters. Indeed, in many cases, the network
is unable to be fully observed in principle, even by
regulators or the industry as a whole. We have pre-
viously mentioned that the parameters of some real

industry contracts are not even agreed upon before-
hand. Instead, the “contract” is really just an agree-
ment to in the future agree on a contract, and so the
parties of the contract do not even know the actual
terms of the contract.

4.2.2. Difficulties in Measuring Risks. As a result of
this uncertainty, there is also high uncertainty about
which dangerous structures can emerge. For exam-
ple, it is difficult to determine whether, by taking a
given contract position, a firm exposes itself to being
a damping node. Thus firms face high uncertainty
about their extreme bearing of reinsurance losses.’
Additionally, even small perturbations in the net-
work parameters can lead to large differences in losses
and where extreme losses are borne, presenting ad-
ditional complexities to risk management. To illustrate
this, consider again the example in Figure 6. Small
changes to the contract caps (e.g., switching which
contract has a cap of 10 versus 11) affect which edge
capismetand, in turn, who bears all excess loss. In the
real world, uncertainty around network parameters is

Figure 9. (Color online) Example in Which a Contract Cap

Is Counteracted

Primary Insurer Reinsurers

O‘ Yy 1t layer
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Notes. If the cap on B’s coverage of A is passed, B is still liable for
additional coverage of A through C’s second layer coverage of B.
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likely to belarge, which only exacerbates the problem.
We demonstrate this high sensitivity to parameters
using real network data in the next section.

4.2.3. A New Incentive to Cooperate on Fraud Pre-
vention. Given the complexity of real-world net-
works, fraud can be quite difficult to uncover. In
principle, to fully protect against fraud, a system
needs to allow all parties to verify that upstream li-
abilities are valid propagations of primary insurance
claims. Ordinarily, firms only have access to audit
the direct claims they receive and must trust all other
firms to properly audit their claims and to not col-
lude in this regard. In the industry today, there is
typically no good way to detect fraud. Indeed, there
is a sense that reinsurers only work with insurers
they trust.*

Because of the parameter sensitivity of these sys-
tems, even very small fraud can have outsized effects
on the equilibrium. Further, a fraudulent ordering
of payments could also affect the equilibrium after
taking into account clearing. Because individual firms
cannot fully observe the network, they face wild
variability in the valid claims they could face given a
shock. Each firm should be highly suspect of whether
the network of claims is correct, especially if they face
high losses under the proposed claims. Even if fraud
is very unlikely and only very small, a firm’s potential
benefit from exposing it could be quite large (e.g., the
difference of the firm defaulting or not). Thus our
sensitivity results suggest a very strong—and to our
knowledge, previously undiscussed—incentive for a
large majority of firms to band together to combat
fraud, and potentially share information with each
other in order to do so.

4.3. Implications for Contract Design

From a global contract design perspective, there are a
few things that can help mitigate spirals and pa-
rameter sensitivity. We discuss contract deductibles
and proportional contracts. However, these are not
guaranteed to be effective.

Contract deductibles help to lower the excess loss
that is recirculated through graph cycles by absorbing
some loss before each edge activation. However,
given alarge shock, deductibles may not be enough to
prevent disproportionate network effects from spi-
rals, as was the case during the Lloyd’s of London
reinsurance market spiral during the 1980s.

The cap-deductible layering structure of XL re-
insurance obfuscates risks and heightens sensitivity
to parameters by adding lots of nonlinearities into the
network. On top of this, we have to clear the network
liabilities given the available equity, which adds
additional nonlinearities. On the other hand, a system
composed of proportional reinsurance contracts is

much simpler to compute because liabilities can be
calculated through a linear system. This removes
many of the nonlinearities (but not all as we still need
to clear the network), which helps make the risk faced
by a firm in the network clearer. This lessens the
chances that firms think they are adequately rein-
sured but later find out otherwise. This may also lead
to less parameter sensitivity because, as pointed out
in a previous section, the liabilities of a proportional
system are determined by solving a single linear
system. On an aggregate level, this may also lower
systemic risk, which we examine using real network
data in the next section.

5. Simulations with Real Network Data

In this section, we investigate two questions posed in
the previous section using simulations on real re-
insurance network data:

e Is there high parameter sensitivity in real re-
insurance networks? That is, is it difficult to estimate
the risk faced by a firm in the network from a par-
ticular shock? We demonstrated that this is a theo-
retical issue in the previous section.

e Are XL or proportional contract systems better
from a systemic perspective? In the previous section,
we demonstrated that a system based on XL contracts
adds many nonlinearities to the system, which can
serve to obfuscate risk and concentrate losses. A
proportional system, on the other hand, has much
less nonlinearities.

We also briefly explore the effect of time de-
pendency of claims. Our code is freely available at
www.github.com/aklamun/reinsurance_networks.

5.1. Network Construction

Asthebasis for our simulations, we use real network
data on property and casualty reinsurance from
2012 Schedule F Part 3, as obtained from the NAIC
(NAIC 2018). These data detail premiums ceded to
reinsurers by U.S. insurance companies. Naturally,
these data do not provide all contract parameters,
so we estimate these using common rules of thumb in
the insurance industry, which we back up with data
where available.

We develop methods for constructing plausible
networks of XL and proportional contracts consistent
with the data. These methods and the more general
simulation setup are detailed in Appendix B. In our
simulations, we consider 1-in-100 and 1-in-250 year
shocks to the network.

Figure 10 gives a visualization of a resulting XL
network with edges weighted by y. The figure shows
a core-periphery structure. The core is composed of a
central group of reinsurers and primary insurers who
reinsure through most of them. This core-periphery
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Figure 10. (Color online) Network Visualization

structure is common in a variety of financial net-
works; see, for example, Craig and Von Peter (2014).

5.2. Sensitivity to Parameter Perturbations

In our first set of simulations, we examine the firm-
level effects of perturbations in the XL financial
network parameters. As discussed in the previous
section, the nonlinearities added by layering struc-
ture make it difficult to evaluate the exposure of a
firm to a shock under parameter uncertainty. Expo-
sures under slightly different parameter sets could
be completely different on a theoretical level. In these
simulations, we demonstrate that sensitivity occurs
in reasonable estimates of a real-world reinsur-
ance network.

In these simulations, we construct an XL network
from our data, which is our base case for comparison.
We then perturb the network parameters by a factor 6
as described in Appendix B. For moderately small
values of 0, these perturbations are conservative be-
cause firms face a lot of uncertainty about how other
firms’ contracts are structured and, because of market
forces, there are intrinsic uncertainties about each
firm’s capital available to pay out liabilities at the time
of clearing. Additionally, for privately owned in-
surers, equity values are not publicly available.

With a given shock sh, in each simulation, we
calculate a liabilities matrix L and clear the liabilities
using methods from Eisenberg and Noe (2001).” This
second step is done without default costs for simplicity
and outputs a clearing payment vector p, representing
the total payment from each firm, and a default in-
dicator vector. After the simulation, we calculate the
vector of end equities e; as

elzeo—p+LTa—sh,

where ¢ is the initial equity vector and « is defined
component-wise as

Pi ,
a; = (L1);
0,

where 1 is the all ones vector. The multiplicative
equity return is then e;/eg. A return of 1 represents
no loss, 0 represents complete loss of capital, and a
negative value means that a primary insurer has
outside liabilities that are unable to be covered after
clearing. Note that, under this definition, reinsurers
face a return floor of zero (i.e., e; > 0 because sh =0
for a reinsurer); this makes sense because they have
limited liability. In a legal sense, limited liability
could be applied to primary insurers; however, it will
be useful to us to explore the uncovered primary
losses that are represented using our definition above
for equity. Uncovered primary liabilities represent a
failure of the system, because the purpose of the
insurance-reinsurance industry is to provide pro-
tection on physical infrastructure. This does not hap-
pen if primary liabilities are not met.

Under a static 1-in-250 year shock, we run simu-
lations with 2.5%, 5%, 10%, and 20% perturbations,
each with 50 random samples. We examine how firm
equity returns and defaults differ between the per-
turbed systems and the base system. Figure 11 shows
the extent to which these perturbations change firm
equity returns. These histograms are over maximum
differences observed in the 2,609 network firms, ex-
cluding those with zero observed difference. Even
under small 2.5% perturbations, a firm’s equity return
can differ by 100 percentage points.® The tail of the
distribution fattens quickly as the perturbation mag-
nitude increases. These results demonstrate that small
uncertainties in financial network parameters can lead
to wild differences in outputs, as demonstrated with
firm equity returns.

These perturbations altered the default status of 8
firms (2.5% perturbation) up to 21 firms (20% per-
turbation). Additionally, these perturbations affected
firm equity levels on the order of $790M (2.5% per-
turbation) up to $110B (20% perturbation). This de-
monstrates that perturbations can affect key players of
the market. An individual firm could be wildly un-
certain about the risks it faces from a given shock given
even small network uncertainties.

if (L1);>0

otherwise,

5.3. Systemic Effects of Contract Structures

In our second set of simulations, we examine the
systemic effects from different contract structures. As
discussed in the previous section, systems of XL
contracts can have the effect of concentrating losses in
unpredictable ways. This can cause firms to mis-
takenly think they are properly reinsured when in
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Figure 11. (Color online) Log-Scale Histograms of Perturbation Effects on Firm Equity Returns, Measured by Maximum
Absolute Value of Change from the Base Case to the Perturbed Case, Under a Static Shock
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effect they are not. On the other hand, a system of pro-
portional contracts can have much less obfuscation of
risk. In these simulations, we demonstrate that, given
real-world network structure, proportional reinsur-
ance systems are more stable in the face of tail risk
than comparable XL reinsurance systems.

A key word here is of course “comparable.” Our
methods for constructing comparable networks are
described in Appendix B. Note that this comparison
is limited because it is likely that in the real world the
equilibrium graph structure, premiums ceded, and
firm capital levels would be different between the
different settings, whereas we are setting these con-
stant. In the different settings, firms may make dif-
ferent decisions about these parameters. This said,
our comparison is still useful because it shows that,
given the same aggregate costs in terms of reinsurance
premiums ceded and firm capital levels, the reinsur-
ance market could perform systemically better.

We simulate 50 1-in-100 year shocks and 50 1-in-250
year shocks to two comparable XL and proportional
reinsurance systems. We compare the aggregate num-
ber of defaults, the aggregate uncovered primary claims,
and the distribution of firm equity returns for each
network in each scenario.

Figure 12 compares the number of defaults and the
uncovered primary liabilities in each shock scenario.
The number of defaults is a common measure of the
resilience of financial networks. We argue that the
level of uncovered primary liabilities is also a useful
comparison because the purpose of the reinsurance
industry in the first place is to redistribute risk such
that primary insurance liabilities (insurance on real-
world infrastructure) can be more easily met during
shocks. By both measures, the XL system performs
consistently worse than the proportional system.

Figure 13 shows histograms comparing firm equity
returns between the XL and proportional systems

(b)
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under 1-in-100 year and 1-in-250 year shocks. These
histograms collapse two (notably dependent) di-
mensions of data into one: the 2,609 firms in the net-
work and the 100 shock simulations. Thus each firm
accounts for 100 data points. These histograms help to
visualize the firm-level effects across the simulations.

Figure 13, (a) and (b), shows empirical distributions
of firm equity returns, which demonstrate that firms
face higher tail risk of losses under the XL system
than the proportional system. Note that the histo-
gram spikes at 0 are caused by the limited liability
of reinsurance companies. As discussed in the pre-
vious subsection, we could apply the same limited
liability to primary insurers but find it more useful to
represent the uncovered primary liabilities within
the distribution.

Figure 13(c) shows the histogram of firm-level dif-
ferences in returns between the two models, taking into
account all scenarios. In these scenarios, >49% of firms
are better off under the proportional model than the
XL model. In particular, the additional cost of the
proportional structure to the average firm is small.
Consistent with the previous histograms, however,
firms are predominantly better off in the tails under the
proportional model than the XL model. Figure 13(d)
shows a 2-dimensional (2D) histogram of firm equity
return under the proportional model versus the XL
model. The same tail structure can be seen in the 2D
histogram. Note that again we can see the limited liability
effect of reinsurance companies in the square structure
around 0 in the 2D histogram. Reinsurers’ returns are
constrained to the square between 1 and 0 in the 2D
histogram owing to the limited liability, whereas the
primary insurers’ returns form the triangle structure.

5.4. Effects of Time Dependency of Claims
We now briefly explore the effects of claims that come
in over multiple time periods. In reality, claims take
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Figure 12. (Color online) Aggregate Comparison of Proportional Versus XL Systems
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varying time and up to several years to reach re-
insurers. Two main factors contribute to this. First,
claims are largely manually reported from one party
to the next. This paperwork process can take con-
siderable time to trickle through chains of reinsurers
in the network. Reinsurers who are closer to the
source see claims earlier. Second, some claims do not
materialize until future years. Most reinsurance
contracts are tied to property and casualty, in which
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losses commonly develop over 5-10 years. Loss run-
offs beyond 10 years are common with major shocks
like terrorist attacks and hurricanes. For instance,
claims from the World Trade Center attacks were
litigated over nearly a decade. Further, asbestos claims
can come in decades after the fact.

We consider a simple setup in which claims come in
over two time periods. After the first claims come in,
the network liabilities are cleared and the firm capital

Figure 13. (Color online) Firm Equity Returns Under XL and Proportional Systems
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Note. Histograms include all simulations, weighted by relative probability of 1-in-100 versus 1-in-250 year events (60% versus 40%).
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is updated. The network is cleared again after the
second claims come in. Such a setting with multiple
rounds of clearing underlies the emerging literature
on dynamic network models (Capponi and Chen
2015, Banerjee et al. 2018, Kusnetsov and Veraart
2019). We compare this to a single-period setup in
which all of the claims come in at the same time.
Formally, the network faces shocks sh; and sh; in
periods one and two, respectively. These yield net-
work liabilities matrices L; and L, respectively. We
apply clearing from Eisenberg and Noe (2001) se-
quentially over the periods. In period one, liabilities
Ly are cleared and firm capital is updated as follows.
Given starting equities ey, shock shy, and liabilities L,
the period one clearing payment vector p; is calcu-
lated. Then period one end equities are calculated as

- T
€1 =€ —p1 +L10(1 —shy,
where a; is componentwise

(f t'll') . if (L1),>0
t4)i

0, otherwise

Qpi =

and 1 is the all ones vector.

Recall that as the shocks only directly affect the
primary insurers, the minimum equity of a reinsurer
is zero after the clearing. As before, we allow negative
equities for primary insurers to account for uncovered
primary losses. Because primary insurers are simply
leaves in the network, these do not affect the next
period clearing.

In period two, remaining capital e; is used to clear
liabilities L,. In particular, if a reinsurer defaults in
period one, any retrocession payments they receive in
period two are channeled to the period two liabili-
ties that triggered these payments. Given equities e,
shock shy, and liabilities L,, the period two clearing
payment vector p; is calculated. Then period two end
equities are calculated as

e =e1—p2+ Lgaz - Sl’lz.

The multiplicative equity return across the two pe-
riods is then e;/ep.

The effect of the two-period clearing is that insurers
who are connected to defaulted reinsurers may have
their claims paid in different fractions of face value,
depending on whether they are paid in the first or
second period. This compares to a single-period
clearing, in which everyone is paid out in the same
proportion. This means that earlier claims may ef-
fectively get seniority over later claims. A reinsurer
may be able to pay out in full for early claims but may
enter default in the second period. However, the

opposite can also happen. A reinsurer may be unable
to pay in full on early claims but is able to pay more if
retrocession contracts are activated when the second
wave of claims comes in. Notice, however, that a firm
that defaulted in the first period will never have ex-
cess value in the second period because reinsurance
coverage is <100%.

We simulate 50 1-in-250 year shocks that are split
between two periods. For each of the 50 simulations,
we generate two random 250-year shocks distributed
in the same way as described in Appendix B (i.e.,
not uniformly distributed but proportional to the
size of premiums). We divide the magnitude of
each by two; these are the period one and period
two shocks. We then compare this to the single ag-
gregate shock.

Figure 14 shows the histogram of firm-level dif-
ferences in returns between two periods and one
period clearing. The histogram collapses two (notably
dependent) dimensions of data into one: the 2,609
firms in the network and the 50 shock simulations.
Thus each firm accounts for 50 data points. This
histogram is useful for visualizing how much the time
dependence of claims can affect firms” equities. Note
that the average difference is very close to 0 (0.00032),
although the distribution as visualized is asymmetric.
This reflects that the structural change is not adding
excess costs but rather changing the distribution of
costs. To illustrate how much firm equities can change
between the two-period and one-period clearing
schemes, in every simulation, at least 5% of firms saw
>22% absolute change, and at least 1% of firms saw
>60% absolute change.

6. Concluding Remarks

Current reinsurance risk models do not capture
network effects, which we show can be quite extreme.
We have demonstrated that even if firms know the
global network structure unreasonably well (i.e., with
small uncertainty), they can be wildly uncertain about

Figure 14. (Color online) Difference in Firm Equity Returns
Between Two-Period and One-Period Clearing
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how losses will be distributed from a given shock. Tail
risk from network structure should be taken into
account in determining capital requirements, evalu-
ating counterparty risk, and pricing reinsurance con-
tracts. This exposes inherent inefficiencies in the
current system.

6.1. Combating Fraud

Our sensitivity results reveal a strong new incentive
for firms to band together to combat fraud. This could
be achieved through a trusted central party or, in the
absence of such a party, a distributed ledger system.
A blockchain could provide guarantees on fraud pre-
vention if it is able to record audited and time-ordered
claims and reinsurance payments. Such a system would
need to allow participants in the network to in-
dependently verify the equilibrium liabilities and
clearing state in the network. We propose future work
to design such a system that works given the real-world
constraints around contract privacy. We note, however,
that the strong incentive we have demonstrated may
make firms more willing to share some data to con-
tribute to fraud prevention, thus relaxing these con-
straints. Many organizations are making a concerted
effort to incorporate blockchain systems into the (re)
insurance industry. Our paper helps to inform them
about the problems they should be addressing.

6.2. Measuring Risk

We have revealed dangerous structures that lead to
tail risk from network effects. We propose new tools
that better measure and classify tail risk of positions
(e.g., nodes or contracts) within the network. One
approach s to use inner Monte Carlo simulations over
a range of shocks, and outer Monte Carlo simulations
over a range of parameters; however, convergence
may be costly. A second approach is to use machine
learning classification algorithms. This would entail
generating a wide variety of graphs and parameters
and evaluating losses from contagion shocks under
different scenarios via algorithms from our paper.
Using this as a training set, the aim is to detect graph
structures that predict which nodes bear tail risk from
spirals. We believe the structure that we have revealed
about tail risk in this paper will aid in the construction
of such methods. One promising result from our
simulations is that, under a given shock, the losses of
many network nodes seem robust to parameter error,
whereas others suffer more chaotic behavior. This
suggests that classification algorithms may be suc-
cessful in predicting which nodes bear high uncertainty
and are therefore more susceptible to model error.

6.3. Designing Better Systems
Our simulations suggest that, for the same societal-
level costs in terms of reinsurance premiums and

capital locked in the reinsurance industry, the in-
dustry can be better structured to perform its social
purpose more effectively during extreme events.
We would like to extend this to a market design per-
spective. One issue is that, in isolation, firms can have
an incentive to require caps on payouts (although this
is not clear), but at the network level this does not
seem optimal. We leave it to future work to explore
the robust systemic design perspective taking into
account how the y matrix changes with respect to
changes in contract structure.

In recent years, catastrophe bonds held by non-
traditional players, such as hedge funds, have become
more popular in place of traditional reinsurance
contracts. One advantage of these is that they could
become additional dampers in the system as they
absorb losses in the system without recirculating
them. This has the tradeoff, however, of more sig-
nificantly interconnecting the larger financial system,
which can cause other potential exposures that are
relevant from a market design perspective.

Last, stemming from our discussions with industry
executives, we propose the following extensions to
the model and analysis.

e Time dimension: As discussed in the previous
section, time dependence of claims can have a large
effect on firms’ equities. This warrants further work.
We note that NAIC provides an extensive historical
database on insurance loss run-offs in Schedule P.

e Liquidity factor: Extreme events in the insurance-
reinsurance industry—such as high concentration of
large losses due to network structure—could trigger
a liquidity crisis from fire sales of risky assets. This
can amplify losses within and beyond the reinsur-
ance industry, propagating an insurance-specific event
into a systemic crisis.
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Appendix A. Proofs
Lemma 2

Proof. Forevery £ > 0, there is a unique corresponding B and
C defined (and so also a unique W). Note that on the boundary
between (B, C)-constant sets multiple Bs and Cs could be
defined equivalently. This is because @ is an intersection of
linear systems on the boundaries—the difference in possible
Bs and Cs comes from edges that have exactly met their
deductible or cap, respectively, but have no excess liability
under . In these cases B; or Cj, respectively, can be set
equivalently to 1 or 0, but a unique selection is defined in
the definition.
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The derivatives of B({) and C({) are defined and zero except
at points of discontinuity because B and C only change at
thresholds. B and C are defined such that their value on the
boundary (i.e., at points of nondifferentiability in either B
or C) are constant with a value on one side of the boundary.
Because there are 2" possible B and C matrices (1 or 0 for each
diagonal entry), the (B, C)-constant sets form a finite partition
of {£|¢ > 0} of size at most 22".

To establish convexity, notice that systems of linear
inequalities define B and C. So the (B, C)-constant sets, each
the intersection of the preimage of a given B and C values, are
convex sets because they are the intersections of half-spaces
from each inequality. O

Theorem 1

Proof. Lemma 1 gives us that a linear system with matrix Q
is a contraction with respect to some weighted Euclidean
norm. Let ||-||; be such a norm, and let a € [0,1) be the
corresponding Lipschitz constant. Because our matrices are
nonnegative, the Perron-Frobenius theorem gives us that for
(B,C) € ¥, p((I - C)yBX(I-C)) < p(Q) < 1.

Note that the derivatives of B({) and C({) are zero except
at points of discontinuity. On the subsets of the domain
space on which (B, C) is constant ((B, C)-constant sets), @ is a
linear system described by (I — C)yBX(I — C). This can be
written as

®(£) = (I - C)yB(X(I - C) + XCc + (I - C)(s — d)) + Cc
= WTyB(XWl + ) + L.
Let {1, {; be points in a (B, C)-constant set. Then

IO(6) — D)l = |[PT7BXYE +9) + 6 — PT9B
XVl +0) + 6,
= \WTPBRW (L - L),
<1Q6 = 6)
<allty = 6|,

where the third line follows because 0 < WyBXW < Q
element-wise. Thus @ is a contraction with respect to || - ||
locally on each (B, C)-constant set.

Note that for £ on the boundary of a (By, Cy)-constant set
and a (B,, Cy)-constant set,

WI‘?]B1 (Xﬂy][ + Z~}1) + C]C = \ygfzgz(j(z\l/[ + ZNJz) + C2C

because ® is continuous. The explanation for this is that,
on the boundary, multiple Bs and Cs could be defined
equivalently. @ is an intersection of linear systems on
the boundaries. The difference in possible Bs comes from
edges that have exactly met their deductible but have no
excess liability. The difference in possible Cs comes from
edges that have exactly met their cap. In these cases, Bj;
(respectively Cj;) can be set equivalently to 1 or 0. Hence,
the contraction relation extends to the boundaries of B-
constant sets.

We next show that the contraction relation extends to
the union of two adjacent (B,C)-constant sets. Choose
{1 € (B1,Cy)-constant set and ¢, € (B,, Cp)-constant set such
that the shortest path only crosses one (B,C)-constant

boundary. Because ||-||; is a weighted Euclidean norm,
there is a shortest path between ¢; and ¢, that crosses the
boundary between (B, C1)- and (B,, Cz)-constant sets. Let ?
be the crossing point of this boundary. Then

[D(61) = DLl = |O(81) — E) + D) — D(L)]
= | WT5 B Xy W (6 — ) + W1§2B, X, W)

(@ -0l
< W1 B1 X Wi (6 = D), + W1 728X,
(2 - 52)“5

<116 =)l + 1QE - &)l
< allty = Ul + allZ = L
= allty - &,

where the second line follows because either (B1,Ci1) or
(B2, C2) can be used in ® along the boundary, the third line
follows from the triangle inequality, the fifth line follows
from the contraction relation on (B, C)-constant sets and
their boundaries, and the sixth line follows because Z is on
the shortest path from ¢ to £,.

Next, consider the shortest path (a line) between any two
points in the space {{|¢ > 0}. As established by Lemma 2, the
(B, C)-constant sets are convex, which means that a line
cannot cross the boundary of any (B, C)-constant set more
than twice. Thus, the shortest path between the points can
only cross finitely many boundaries (at most 2 - 22", or two
for each possible (B, C)-constant set). Then, by induction on
the number of (B, C)-constant sets along the shortest path,
the contraction relation of @ extends to the union of all
(B, C)-constant sets, which is equivalently the whole space
{{|¢ > 0} by Lemma 2.

We now need to show that solutions are restricted to a
compact set. Because p(Q)<1, we can derive an upper
bound for the solution by solving the dominating linear
system Q (which may or may not come from a feasible
(B,C) € J), taking the maximum coordinate, and forming
the hypercube in which coordinates are bounded by 0 and
this maximum coordinate. The Banach fixed point theorem
then gives the result. O

Theorem 2

We will first introduce the machinery behind the Kleene
fixed point theorem following the exposition from Baranga
(1991) and then use it to prove Theorem 2.

Let (P, <) be a partially ordered set, meaning the binary
relation < is reflexive, antisymmetric, and transitive.

e (P,<) is w-complete if every increasing (i.e., non-
decreasing) sequence {x,},cy in P has supremum in P.

e A function f:P — P is w-continuous if it preserves
supremums of increasing sequences. That is, for every in-
creasing sequence {x,},y in P that has supremum in P,
the sequence {f(xu)},ey also has supremum in P and
limy, oo f () = f(limMy—e0 Xy).

Notice thata w-continuous function is monotone increasing.
This is a direct consequence of preserving suprema of all
increasing sequences.

Theorem A.1 (Kleene Fixed Point Theorem). Let (P,<) be a
w-complete partially ordered set and f : P — P be a w-continuous
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function. If there is x € P such that x <f(x), then X = sup{f" (x)|n € N}
is the least fixed point of f in {y€Ply>x}.

Let R be the completion of the real numbers with co. We
will work in this extended space and draw our results back
to the normal real space. We now prove Theorem 2.

Proof. First notice ({¢ € R"|¢ > 0}, <) is a w-complete partial
ordering. Choose x = 0 and note that 0 < ®(0). Notice that we
are working in an extension of R", and so we may find that
the fixed point promised by the theorem is infinite. To ad-
dress this, we have assumed that there is a (finite) fixed point
on R™, and so the minimum fixed point must also be finite. It
now remains to be shown that @ is w-continuous.

Take two sequences x,, T X and y, T X in the partial or-
dering. We need to establish that lim, . ®(x,) = limy e -
D(y,,). This result is immediate if all coordinates of X are finite
because @ is continuous and monotone increasing. So sup-
pose some coordinates of X are infinite. As we go along the
process @(x,), a finite number of edges and caps can be ac-
tivated, after which activations stop. Thus there is a step N
after which @ will be a linear map on the remaining x,s. The
same is true for some step M for the sequence of y,,s. Then for
n > max(M, N), the ®(x,) and P(y,) will lie on an increasing
hyperplane, with ®(x,,) = WTyB(XWx, + %) + Cc and ®(y,,) =
WTyB(XWy, + 9) + Cc, for some B, C, W(C). Because x,, > 0 we
then have

lim ®(x,) = WyBXW lim x, + W' 7Bo + Cc
n—co n—oco
= WTyBXWx + WT9Bs + Cc.
The last equality holds because X is the supremum of x,, and
thus lies on the same extended hyperplane. The same equality
holds for the y, sequence.
Now define ®(X) := lim,,_, P(x,) for any sequence x, T x.

By the above, this is well-defined because the value is in-

dependent of the sequence chosen. Thus @ is w-continuous.
Then the Kleene fixed point theorem gives the results. O

Theorem 3

Proof. Because @ is the composition of an increasing affine
map, an element-wise maximum with 0, and an element-
wise minimum with ¢>0, ® is non-negative and mono-
tone increasing.

We now show that we can restrict the domain of @ to a
complete lattice containing all fixed points. In the worst
case, all finite caps are met, leaving us with the system
WoyXW!. Because this has spectral radius <1, this sub-
system has a unique fixed point ¢, by the result in the
previous section. Thus, in the worst case, this is the max-
imum fixed point of ®. Note that this is dependent on the
shock s, but such a point exists for each s. Let y be the max-
imum element of p and form the complete lattice [0, y] C R"
bounded in each coordinate by 0 and y.

Restrict the domain of @ to [0, y]. Then the Tarski fixed
point theorem gives us the existence of least and greatest
fixed points. O

Lemma 3

Proof. Let Ly:=(Le); and L+ := (LTe);. Then A;(L) = L+; — L.
Note that L+; = f(Ly), where

fi(L,'*) = Z(I},((Ll* + Shi — DD],) \Y% O) A CP],)
)

This is because the amount that reinsurers reimburse i is
dependent on the liabilities that i directly faces (i.e., Ly).

Then A(L) = fi(L#) — L# is monotone decreasing (i.e.,
nonincreasing) in Ly because reinsurance is limited to
100%. When a contract deductible is reached, the negative
slope lessens. When a contract cap is reached, the negative
slope steepens. However, the 100% reinsurance limit means
that the slope is never greater than zero.

Because L > L’, we also have Ly > L}. The result then
follows from the fact that A;(L) = A;(L») is monotone de-
creasing in Lx. O

Lemma 4

Proof.

200 = Z(ZLﬁ‘ZLv‘) =2 Li-2Li=0. o
i iy 77

i\ j j
Theorem 4

Proof. Without loss of generality, assume L’ = L™, the least
fixed point. Because L > L’, Lemma 3 implies that A(L) < A(L’).

Now suppose there exists i such that A;(L) <A;(L’). Then
we in turn have

DUAL) < DT AL).
j j
However, by Lemma 4, we know that
DIAL) =0= > A(L).
j j
Thus there can be no suchi. O

Proposition 1

Proof. We first show that, at each step, the system (I — yBX)
is nonsingular. We are given p(yX) < 1. Then, as noted in the
proof to Theorem 1, the spectral radii obey

p(yBX) < p(yX) <1

for any diagonal B with 1-0 entries because B only serves to
remove edges from the initial line graph. Then the Neu-
mann series gives us that (I — yBX) is invertible at each step
in the algorithm.

The algorithm converges to the correct solution by a
simple monotonicity argument. At each step, we have
B, < B, where B is the true set of edge activations, because
we start with all edges unactivated and edges that become
activated are direct propagations of the claims on primary
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insurers. The sequence of B; is monotonically increasing in
entries because the activation of edges can only increase the
number of other edges that become activated. B; can update
atmost m times because thatis how many edges can become
activated. Eventually, we reach a state that represents the
correct edge activations, after which the contagion spreads
to no further edges, and the edge liabilities are the solution
to the resulting linear system. This equilibrium point is the
unique fixed point because solving the linear system and
checking that B does not change is equivalent to verifying a
fixed point of ®. Because each step requires solving a linear
system (requiring in general O(m®) time), and there are at
most m steps, the total running time is at most O(m?). O

Proposition 2

Proof: ~As before, we first show that, at each step, the system
(I - 7BX) is nonsingular. We are given p(Q)<1. Then, as
noted in the proof to Theorem 1, the spectral radii obey

p(7BX) < p(Q) <1,

for any (B,C) € ¥ and W(C) because )7]35( is effectively a
subgraph of Q after removing edges under B and nodes
under W.

We are given p(WyXW)<1. This applies to the first it-
eration of the algorithm. All subsequent iterations involve
(C,B) € i. In particular, the last iterative ¢ value at that
point in the algorithm is feasible for the given (C, B). Thus at
each iteration, we have p(f/Bf() <1. Then the Neumann
series gives us that (I — )71?5() is invertible at each step in
the algorithm.

The algorithm converges to the correct solution by a
monotonicity argument as in Proposition 1. However, the
setup here is more nuanced. If the iteration had started at 0
in this setting, we would lose the property that B; < B and
C < C, where B and C are the true edge activations and cap
activations, because some edge activations could cause the
linear solver to attribute more liability to some edges than
are allowed by their capacities. Although the overcapacity
would be corrected in the following iteration, the over-
capacity leakage could have caused new activations in By
that cannot be corrected by the next iteration.

Instead of starting at 0, we start at an upper bound to the
solution. Such an upper bound is constructed by assuming all
edgesareactivated (B = I) and all finite caps are activated and
solving the linear system, which has a unique solution because
as shown above. Now we will have B; > Band C; > C at each
step because we start with an element-wise overestimate in
B and C, and any caps or edges that become deactivated
through this process will have been unsupported given the
overestimate. In this event, either we correct an elementin C
downward or correct the same elements in both B and C
downward. Thus the sequences of B; and C; are also
monotonically decreasing. Note that we would never want
to revise these corrections back upward in a later iteration
because these edges or caps will never be activated by li-
abilities that are lower element-wise than we have already
tried in the previous round.

In the equilibrium, all edge and cap activations will be
supported by the equilibrium liability values. Eventually,
we reach a state that represents the correct edge and cap

activations, and the edge liabilities are the solution to the
resulting linear system. This equilibrium point is the unique
fixed point because solving the linear system and checking
that Band C do not change is equivalent to verifying a fixed
point of P.

At each step, either B or C changes or we stop our iter-
ation. Thus there are at most 2m steps as there are at most 2m
possible changes to B and C. The most complex task at each
step is again solving a linear system, which requires in
general O(m®) time. Note that the W transformations are
sparse (at most a single entry per row and column) and can
be computed in at most O(m?). Thus the algorithm con-
verges in at most O(m*) time. O

Appendix B. Simulation Details

B.1. Network Construction

As the basis for our simulations, we use real network data
on property and casualty reinsurance from 2012 Schedule F
Part 3, as obtained from the NAIC (NAIC 2018). These data
detail premiums ceded to reinsurers by U.S. insurance
companies. Naturally, these data do not provide all con-
tract parameters, so we estimate these using common rules
of thumb in the insurance industry, which we back up with
data where available.

B.1.1. XL Contract Parameters. We construct networks
of XL contracts consistent with the NAIC data by estimat-
ing the coverage provided by each firm’s reinsurance
contracts and separating its reinsurers into two layers.
We introduce the following “in-the-ballpark” example of a
reinsurance contract.”

Example 2 (“Ballpark” Reinsurance Contract). Suppose $500M
is the 1-in-100 year loss for a firm. As an “in-the-ballpark” figure,
this firm would purchase reinsurance coverage of $500M in
losses with a deductible of $100M. The $400M total cov-
erage limit would be separated equally into two to three
layers. The total premiums ceded for this coverage would
be 10% of the $400M limit. The lower layers would re-
ceive closer to 20% of their respective limits, whereas the
higher layer would receive closer to 2%-3% of its respec-
tive limit.

This example suggests the following rules of thumb that
we use to fill in parameters in our real-world network:

e premiums ceded = 0.1 - coverage limit,

e coverage limit ~ 4 - deductible,

e coverage ~ 5 - deductible, where coverage = coverage
limit + deductible,

e top layer premiums = 0.2 - total premiums ceded.

The only publicly available reinsurance contract data that
we are aware of comes from major state catastrophe
funds—for instance, the Florida Hurricane Catastrophe Fund
and the Texas Windstorm Insurance Association. We com-
piled data on these reinsurance contracts, which are available
in our code repository. These data support that the first rule of
thumb is reasonable.

Given a separation of a firm’s reinsurers into layers, these
rules of thumb allow us to estimate each contract’s de-
ductible and cap. We then estimate each contract’s pro-
portion of the layer as

y = premiums ceded/total premiums ceded for layer.



Klages-Mundt and Minca: Cascading Losses in Reinsurance Networks
Management Science, 2020, vol. 66, no. 9, pp. 4246-4268, © 2020 INFORMS

4267

Note that the coverage limits discussed above, which re-
present the cap payout from the whole reinsurance tower,
are different from individual contract caps, which dictate
the maximum payout from each contract that is itself only a
part of the whole tower.

To separate a firm’s reinsurers into two layers, we use the
last rule of thumb to note that the premiums from the
bottom layer should add to 80% of total premiums and the
premiums from the top layer should comprise the re-
maining 20%. This is a knapsack problem that we can ef-
ficiently solve approximately.

B.1.2. Proportional Contract Parameters. We construct
networks of proportional contracts consistent with the
NAIC data by setting all contract deductibles to 0, all
contract caps to oo, and calculating each contract’s co-
insurance rate as

y = premium ceded/(primary premiums
+ foreign reinsurance premiums

+ reinsurance premiums),

where the denominator describes insurance premiums re-
ceived by the ceding firm in the contract. In this way,
the ceding firm cedes a proportion of their total risk for
the same portion of the premiums they have received. We
estimate the primary premiums and foreign reinsurance
premiums next.

B.1.3. Primary Insurance and Foreign Reinsurance
Premiums. We additionally need to estimate the insurance
premiums received from outside the reinsurance network.
If the receiving firm is a primary insurer, this is the pri-
mary insurance premiums they receive. If the firm is a
reinsurer, this is foreign (outside the United States) rein-
surance premiums.

We then generate figures for these values within an es-
timated range:

1. We collect data on premiums received and reinsur-
ance premiums ceded from 10-Ks and annual reports. Our
data are available in our code repository. From these data,
we determine reasonable upper and lower bounds on
premiums ceded/premiums received for firms.

2. For each firm in the network, we generate a random
number uniformly between the upper and lower bounds. This
is used as the firm’s premiums ceded/premiums received ratio.

3. From this ratio, we calculate the outside premiums—
either primary insurance or foreign reinsurance—that the
firm must receive to achieve this ratio. If the amount is
negative, it is treated as zero.

On the basis of the data, primary insurers generally
have ratios between 0.05 and 0.5, and reinsurers generally
have ratios between 0.1 and 0.3. We use these bounds in
our simulations.

B.1.4. Firm Capital Levels. We next need to estimate each
firm’s capital that is available for paying its liabilities
(i.e., the firm’s equity). Current capital regulations focus
on various factors through Risk-Based Capital; however,
past regulations focused on the simpler leverage ratio. For
simplicity, we use this latter measure as a benchmark in

our simulations. The leverage ratio is defined in the fol-
lowing way:

leverage ratio = equity/net written premiums.

According to The Actuary (2004), American regulation re-
quired minimum 50% leverage ratios. They also state that
20% leverage ratios was a “rule of thumb” in the German
market for property and casualty insurers.

We extend this information by collecting data on equities
and net written premiums from 10-Ks and annual reports.
Our data are available in our code repository. We use
these data to determine reasonable upper and lower bounds
on current leverage ratios. On the basis of the data, in-
surers generally have leverage ratios between 0.7 and 2.0,
which we use as bounds in our simulations. We then
generate figures for firm leverage ratios within the esti-
mated range:

1. For each firm in the network, we generate a random
number uniformly between the upper and lower bounds.
This is used as the firm’s leverage ratio.

2. From the ratio, we calculate the firm’s equity.

Note that following a market collapse, leverage ratios can
plummet, which can significantly affect the capital levels in
the reinsurance network. This is the reason that Risk-Based
Capital is now used for regulation instead of the leverage
ratio. For the price of adding greater complexity to our
simulations, we could alternatively use Risk-Based Capital
measures to estimate equity values instead.

B.1.5. Shocks to Primary Insurers. The final component of
our simulation setup is to calibrate network shocks. These
shocks are claims on primary insurers in the network. For
our simulations, we consider 1-in-100 year and 1-in-250
year shocks. Industry data on the estimated aggregate size
of these shocks is available from AIR Institute’s Certified
Catastrophe Modeler Program (2016). In particular, the
North American 1-in-100 year insured loss is estimated at
$215.2B, and the North American 1-in-250 year insured loss
is estimated at $290.6B. We use these numbers for the ag-
gregate size of tail shocks in our simulations.

The remaining task is to distribute this aggregate shock to
primary insurers in the network. We do this in the follow-
ing way:

1. For each firm, we generate a random number uni-
formly between 0 and the size of that firm, defined by the
total primary premiums received. Under this scheme, the
size of a primary insurer correlates with their exposure.
Reinsurers’ initial exposure is zero because they do not offer
primary insurance coverage.

2. We then generate the shock exposure ratios by nor-
malizing these numbers so that they add to 1. Multiplying by
the size of the aggregate shock then gives the size of claims to
primary insurers under the shock.

In reality, the relation between the size of a primary
insurer and its exposure to aggregate shocks is more
complex than we model here. On one hand, larger primary
insurers may be in a better position to diversify their
holdings against geographic risk. On the other hand, their
exposures could be higher because their portfolios are
larger. In a more realistic model, we would want to account
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for the geographic exposures of each primary insurer and
simulate geographic tail events. However, the data needed
for this is not, in general, publicly available.

B.2. Sensitivity to Parameter Perturbations

In these simulations, we construct an XL network from our
data as described in the previous subsections. This is our
base case for comparison. In this process, we store the
layering structure for future access. Given a multiplicative
error term 0 (i.e., a percentage error), we then perturb the
network parameters as follows:

e For each premium ceded value, we generate a random
number uniformly in [1 - 0,1 + 0] and multiply it with the
premium ceded value.

e We then construct the contract parameters using the
perturbed premium ceded values as described in the previous
subsections using the stored layering structure.

e For each value of a firm’s primary insurance premiums
received, foreign reinsurance premiums received, and capital
levels, we perturb it by a random multiplicative value uni-
formly chosen in [1 - 6,1+ 0].

B.3. Systemic Effects of Contract Structures

We construct systems that are comparable given the structure
of the graph on premiums ceded between insurers and our
rules of thumb for XL reinsurance contracts. We construct
comparable systems using the methods from the previous
subsections keeping premiums ceded, firm capital levels,
primary insurance premiums, and foreign reinsurance pre-
miums constant. The only differences are in how the ceded
premiums are interpreted: as part of a proportional scheme
or XL contracts based on our rules of thumb and knapsack
separation of layers.

Endnotes

'In the extreme, some real contracts are ambiguous to the degree that
the parties to the contract themselves do not even know the contract
parameters. We will discuss this further later in the paper.

2Private conversations with an insurance industry executive. All
€rrors are our Own.

®In the unlikely event that nodes have complete information about
the network, identifying problematic structures would remain dif-
ficult from an algorithmic perspective, as we discussed in the pre-
vious sections. As we also noted, we can determine whether a 100%
cycle occurs in a given network using the spectral radius, but this
criterion is in general not guaranteed to work for relaxed cycles.

* Aside from unequivocal fraud, there are commonly grey instances in
which a reinsurer will pay a little more on a contract if the insurer is a
“good customer,” which can affect claims down the chain. Source:
private conversations with an insurance executive.

®*Note that the clearing in Eisenberg and Noe (2001) assumes re-
insurance contracts are on the same level of clearing importance as
retrocession contracts. By using this clearing, we also assume that
limited liability is always invoked between reinsurers. In reality,
however, there are vague “parental guarantees” between companies
in the same group, as well as some degree of joint and several liability,
in which regulators can force surviving insurance firms to take on
liabilities of failed firms.

® Note that this high uncertainty in equity return could also occur at
smaller perturbation levels. In this study, we do not attempt to
numerically find a lower bound.

"Private conversations with an insurance industry executive. All
€ITors are our own.
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