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Abstract. We introduce a new mechanism for leverage dynamics, based on a multiperiod
game of lenders with differentiated beliefs about the firm’s fundamental returns. The game
features strategic substitutability for low existing leverage and strategic complementarity
for high existing leverage. The resulting leverage process exhibits a mean-reverting regime
around a long-run level, as long as it stays below an instability level. Above the instability
level, leverage becomes explosive. We validate our model empirically using aggregate
returns of financial firms over the 10-year period 2001–2010. Our model is consistent with
the leveraging/deleveraging of this period and with the 2008 collapse in short-term debt.
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1. Introduction
The last financial crisis provides prominent exam-
ples of excessive bank and fund leveraging using
short-term debt, which ended with collapse (see,
e.g., Brunnermeier 2009, Duffie 2010b, Acharya et al.
2011, Financial Crisis Inquiry Commission 2011,
and Gorton and Metrick 2012) and led to systemic
crises. A less recent example is the Long-TermCapital
Management (LTCM) demise (see, e.g., Rubin et al.
1999). We provide a new mechanism of leverage dy-
namics. It is the lenders’ aggregate decision that de-
termines howmuch debt, and consequently leverage,
the firm can attain based on its assets. Our goal is to
endogenize the dynamics of the leverage. The same
game of the lenders—the leveraging/deleveraging
game—played period after period generates the en-
tire leverage dynamics.We seek to characterize the level
where lenders push the firm into a deleveraging spiral.

Asmodel input,wehave the fundamental trajectoryof
log-returns of the firm’s investment strategy, which is
fixed. Every potential lender has a belief about the mean
log-return in the next period. The cross-distribution of
beliefs is common knowledge, but the real-world drift
is not known. Potential lenders take synchronous deci-
sions whether to finance or not the borrower’s asset
(refinance in the case of existing lenders). The value of
the option to finance varies with lenders’ beliefs. A
marginal lender (as a function of the existing leverage)
is one for whom the option to lend equates the out-
side option (which is riskless cash with zero return).

The firm expands (contracts) its asset using the net
inflow (outflow) of debt, and theremay be transaction

costs. We can think of a large leveraged hedge fund
(or dealer bank) that pursues a core strategy. The het-
erogeneous lenders are the only lenders in the model,
and they decide the inflows and outflows of debt. Given
these flows, the management expands or reduces the
asset position. Therefore, our model applies when the
constraints on leverage imposed by the lenders are
stricter than the constraints imposed by the manage-
ment. The example of LTCM, where the management
pursued their core strategy until the fall of the fund,
naturally comes to mind. The game continues until ei-
ther maturity, when the firm is liquidated, or until de-
fault, which occurs if the entire asset cannot cover a net
debt outflow. In case of default, the asset is liquidated
and proportionally distributed to outstanding lenders.
Our game-theoretic framework originates in

Krishenik et al. (2015), whostudya rollovergame for the
debt provision to a sovereign borrower. They provide
an alternative to the global games setting of Carlsson
and Van Damme (1993) and Morris and Shin (2001).
It is more amenable to data and more suitable for a
dynamic model: Heterogenous beliefs about the fu-
ture evolution of the fundamentals replace the noisy
observations of the fundamentals. Here, we keep the
advantages of this framework, while we extend sig-
nificantly the game.
Our leveraging–deleveraging game features com-

plex dependencies that are novel in the literature.
The value of lenders’ options to finance (or refinance)
the firm’s asset changes with existing leverage. When
the existing leverage is low, the payoffs of pessimistic
lenders decrease when others lend as well. There are
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two sources for this strategic substitutability, totally
absent in previous literature. First, under pessimists’
belief, more debt increases default probability be-
cause the firm would become more leveraged for the
next period and they expect low asset returns. Second,
in the case of default, the firm’s assets would be
shared among more lenders, so the pessimists’ ex-
pected recovery rates decrease. (The optimists are
indifferent to the other lenders: Under their belief,
they hold a default-free contract.)

In turn, when the existing leverage is high, then
the firm cannot survive unless a large fraction of the
current lenders roll over. Only in this regime the game
behaves like a rollover game and features strategic
complementarity similarly to Goldstein and Pauzner
(2005) and Krishenik et al. (2015): Payoffs increase
sharply with raised debt (up to a point where debt is
sufficient for the firm to remain liquid). The alter-
nation of leveraging and deleveraging phases and the
roles played by pessimists and optimists are remi-
niscent of a leverage cycle in the collateral equilib-
riummodel ofGeanakoplos (2010); see also Fostel and
Geanakoplos (2014) and the references therein.

1.1. Model Contributions and Financial Insights
Our contribution is to endogenize the dynamics of the
leverage of a large borrower and to fully determine
the regimes of this leverage process: We show that
leverage is mean reverting around a long-run level
and explosive above an instability level. The intuition
comes from the changing nature of the lenders’ game
from strategic substitutability to one-sided strategic
complementarity: When leverage is below the in-
stability level, the firm is not in danger of default, and
the strategic substitutability in the payoff structure
acts as a counterbalance on leverage, which is pushed
down to the long-run level. If leverage reaches above
the instability level, then it becomes explosive: The
strategic complementarity leads to spiraling effects
that end in default. Default technically happens when
leverage hits a ceiling. Determining the regimes of the
leverage yields early warning indicators of default:
When the leverage deviates from the long-run level
and reaches above the instability level, then, in ex-
pectation, it will reach the debt ceiling because of the
regime change from mean-reverting to explosive. We
can moreover quantify sustainable debt levels: A wide
mean-reverting regime around the long-run level is
tantamount to stable short-term debt.

We expand the dynamic debt-run literature (He
and Xiong 2012, Liang et al. 2014, Krishenik et al.
2015, Liang et al. 2015, Carmona et al. 2017, He et al.
2017). Our game has threemain features: It is dynamic;
lenders’ decisions are synchronous; and the lenders’
game drives both leveraging and deleveraging. Equally
important, we have endogenous recovery rates in

default, and these drive the strategic complementarity/
substitutability profile of the game. With the exception
of Krishenik et al. (2015) and Liang et al. (2014, 2015),
who can allow for synchronous decisions in the global
games setting, most other works use a staggered debt
structure and thereby insulate their models from the
multiplicity of equilibria. However, it is valuable to al-
low for synchronous decisions because short-term debt
is the outcome of amaturity race; see Brunnermeier and
Oehmke (2013). Likely, at the end of this race, many of
the lenders will have a similar contract. It is anecdotal
that in the recent crisis, large banks saw tens of billions
of liquidity withdrawn in a matter of days, so there
were large-scale synchronous decisions.
Our analysis exhibits two levels that are critical to

the understanding of leverage stability: the long-run
level and the instability level. Starting from zero debt,
leverage reaches its long-run level, and there is a leveraging
phase as the firm expands its asset position according
to the provided debt. After this initial leveraging
phase, leverage is stable for a while as it mean-reverts:
Lenders adjust leverage (as outcome of their game) in
response to asset returns. However, above the in-
stability level, it is no longer possible to mean-revert:
Existing leverage is too high, and a deleveraging spiral
ensues with the expectation to end in default (leverage
is explosive and expected to reach the debt ceiling).
By comparison, prior works find a ”debt-run bar-

rier” (Liang et al. 2015) or the ”run threshold” (He and
Xiong 2012): If the fundamental process touches these
barriers or thresholds, then a debt run ensues. Touching
the barrier is nonanticipative in these previous works.
The “ceiling” in our model corresponds to these debt-
run barriers.
Our analysis thus goes far beyond the default char-

acterization in terms of the barrier (or ceiling, in our
case), as we fully characterize the regimes of leverage
and we quantify the stability of the leverage. These
do not have a correspondent in the literature. Default
becomes anticipative in our model: Leverage is ex-
pected to reach the ceiling as soon as it deviates from
the long-run level and crosses the instability level: If
leverage ratio tomorrow is an endogenous and, as we
prove, convex function of the debt-to-asset ratio to-
day, then its largest fixed point is the start of the
spiral of lender withdrawals in which the leverage
ratio switches from beingmean-reverting to explosive.
Reaching the instability level is thus an early indicator
of default, and the collapse in debt capacity occurs over
the time lag in which the debt-to-asset ratio process
increases from the long-run level to the instability level
(and further to the ceiling).
Our model provides a mechanism by which pessi-

mistic lenders transform a sequence of mild negative
returns into large liquidity shocks. When asset returns
are high for a while and the firm builds equity,
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pessimistic lenders are drawn in, and the firm attains
high leverage. Convexity effects are significant when
leverage is high. Because of these effects, a sequence
of mild negative returns is followed by a rapid in-
crease of the marginal belief. Pessimists are the fastest
towithdrawbecause the value of their put option (and
expected default costs) increases most under negative
returns. This leads to spiraling effects and a predict-
able collapse in debt capacity. The spiraling effects also
depend on our belief distribution assumption: After
a sequence of withdrawals, only the highly optimistic
lenders stay, and they do not concentrate a large frac-
tion of the capital mass.

Spiraling effects happen when the dependence of
the marginal belief on leverage is stronger (higher
convexity). When this dependence is weaker (lower
convexity), then the firm will be able to recover from
a sequence of negative returns. Deleveraging in not
pronounced in this case: The marginal belief does not
change too much, and the outflows are sufficiently
small. Lower convexity comes along with lower le-
verage and a higher equity ratio. Combined, these
two effects allow the firm to absorb the deleveraging.
These weaker and stronger convexity effects concur
to the existence of a mean-revering and an explosive
leverage, which we will demonstrate in Section 4.

Weprovide a powerfulmodel that can be calibrated
to real data. We provide a “proof of concept” on how
to use the model on real data as we use the financial
commercial paper as a case study of short-term debt.
The input is the aggregate fundamental returns of the
securities dealers in the United States over a 10-year
period. Over this period, the number of dealers is sta-
tionary, and we think of the aggregate as a “repre-
sentative”dealer.We also validate themodel using the

single-firm example of Morgan Stanley. Our model
is consistent with the leveraging/deleveraging wit-
nessed over this period, and in particular with the fi-
nancial commercial paper collapse of 2008; see Figure 1.
We obtain similar resultswhenusing a constant spread
equal to the average spread over the period 2001–2005.
The difference in the model-predicted debt using the
actual spreads and the constant spread is small dur-
ing the 2007–2008 period, in which the actual spreads
strongly increased. This implies that the (short) put
option value for the marginal lender increases very
fast after a sequence of negative returns (due to con-
vexity effects). The implication is that increasing spreads
during the deleveraging spiral has little effect on pre-
venting the debt collapse.

Technical Contribution. Our main technical contribu-
tion is to provide a refinement that leads to a unique
equilibrium. We are building on the game-theoretic
foundations established in Krishenik et al. (2015). The
proof technique there relies on eliminating weakly
dominated strategies. This is not enough to obtain
uniqueness here, but we can use those results to
eliminate the multiplicity of equilibria in which the
firm defaults. There remain two cutoff equilibria in
which the firm survives: The presence of default re-
covery rates leads to nonmonotonous payoffs for a
marginal lender with respect to the total debt. When
the debt is high, the marginal lender is pessimistic,
and her payoff decreases with debt. When the debt is
low, the marginal lender is optimistic, and her payoff
increases with debt. There are two possible marginal
lenders that have the cutoff expected return zero. The
technical innovation in this paper is the concept of
strongly ε-coalition proof equilibria, and the cutoff

Figure 1. (Color online) Real-World Leveraging/Deleveraging vs. Model Predictions

Source. (a) Board of Governors of the Federal Reserve System (fred.stlouisfed.org).
Notes. (a) Financial outstanding commercial paper (data not used). (b) (Model) Debt dynamics with real-world spreads vs. constant spread
equal to the average spread over 2001–2005. Real-world returns of FINRA members used as model input are plotted in the dashed line.
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equilibriumwith the lowest debt does not survive this
refinement: If a small coalition of lenders just below
the cutoff could coordinate to invest, then debt would
increase, and the entire coalition (along with the
marginal lender) would see increasing payoffs.

One assumption that leads to the elimination of
multiple equilibria is that interest rates are constant.
Most literature features constant interest rates, with
the exception of Jarrow et al. (2018), where the firm
optimizes the interest rate under uncertainty about
the lenders’ equilibrium, and multiplicity of equi-
libria cannot be eliminated. Spreads for short-term
debt such as commercial paper did not fluctuate a
lot before the collapse of the commercial paper out-
standing notional (see, e.g., Kacperczyk and Schnabl
2010). The approximation by constant interest rates
is thus valid in the mean-reverting regime of our
model, when short-termdebt provision is stable.More
importantly, in light of Figure 1, we do not expect that
endogenizing interest rates would have any effect
on the leverage regimes. Once a deleveraging spiral
starts, payoffs of pessimistic lenders have little sen-
sitivity to interest rates, and, indeed, during the crisis,
spread increases did not prevent the debt collapse.

Our paper is also related to the literature on optimal
capital structure and endogenous bankruptcy (see,
e.g., Leland and Toft 1996). There, it is the firm that
can choose its amount of debt. Here, it is lenders, and
the firm’s dynamic optimization problem in the op-
timal capital structure literature is replaced here by
the lenders’ dynamic game. Our game can be thought
of as a “game of timing,” as investigated in Carmona
et al. (2017). They are focused on convergence results
for games with finite numbers of players in a game of
timing with strategic complementarities. Here, our
setup is directly with a continuum of players, and we
are focused on refinements that lead to interpretable
“barriers” when the game has both strategic com-
plementarities and substitutabilities.

The paper is organized as follows. Section 2 pres-
ents themodel for thefirm and introduces the lenders’
game. Section 3 analyzes the games’ equilibria and
gives the uniqueness result. Section 4 contains the
results on the regimes of the endogenous leverage
process. Section 5 validates the model empirically by
using as input the real-world fundamental returns,
and, finally, Section 6 illustrates the dynamic be-
havior of our model under a variety of parameters.

2. The Model
We consider a firm that funds itself through short-
term debt provided by a continuum of lenders. Our
model is applicable to a variety of debt maturities; for
example, 1 day, 1 month, 1 quarter. What makes the
debt short-term is that the maturity of the debt con-
tractmatches the frequencywithwhich the lenders can

observe the firm’s performance, and lenders can thus
react to the firm’s shocks. Time is discrete, and there is
a finite horizon T. The firm invests all available
funding in a portfolio of risky assets with given risk.
Lenders’ beliefs about this risk differ.

2.1. Fundamentals
Fundamental Trajectory. We start from a fundamental
trajectory of the asset return, observable on a discrete
time grid, t � 1, 2, . . .T, when the lenders can observe
the firm’s asset performance and can make deci-
sions to invest, withdraw, or rollover. We denote by
logY1, . . . , logYT the sequence of fundamental log-
returns of the firm’s asset, and we assume that Yt

are independent log-normal random variables with
Var[logYt] � σ2. Under the real-world probability
measure P, the expected fundamental log-return is
μ: E Yt[ ] � eμ.
We assume that there is a proportional cost both to

liquidate and to purchase the asset, not necessarily
the same. Liquidating the asset produces a loss equal
to a fraction α ∈ [0, 1) of the traded volume if forced
liquidation takes place before t<T. There are no
liquidation costs at time T. The assumption of fixed
and proportional, and known liquidation cost is com-
mon in the literature. We denote by α1 ≥ 0 the corre-
sponding cost when there are asset purchases (the
asset is liquidated at time T, so the cost for asset
purchases is relevant only for t<T). The firm’s cash
proceeds from liquidating an amount u of the asset
value at time t is given by

ft(u) :� u(1 − α11t<T) if u ≥ 0
u(1 + α1) if u< 0.

{

Note that

f −1t (u) � u
1 − 11{u≥0, t<T}α + 11{u< 0}α1
( ) ,

andwe have positive homogeneity: ft(γu) � γft(u) and
f −1t (γu) � γf −1t (u) for all u ∈ R and γ ≥ 0.

Lenders’ Maximum Exposure. We assume that the
lenders’ maximum investment scales linearly with
the firm’s size, with the same scaling factor for all
lenders. Commercial paper resembles most this set-
ting: It is short-term, and the size of the commercial-
paper issue is proportional to the size of the firm’s
asset. Lenders will decide how much up to this max-
imum they will actually invest.
The linear-scaling assumption will allow us to pre-

serve the homogeneity of the model and describe the
evolution of the firm in terms of a single state variable.
It can be relaxed to more sophisticated dependen-
cies at the expense of an increase in dimension of
the state space. We prefer the linear-dependence as-
sumption because it implies homogeneity in firms’
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trajectories, which is reasonable given our setup with
proportional transaction costs and no price impact.
The resulting balance sheets scale linearly with the
initial capital at any time: Two firms with the same
characteristics—that is, asset returns and belief dis-
tribution among their lenders—will have the same
trajectories up to a scaling factor.

Lenders’Beliefs. We startwith the set of beliefs@ :�R

and a decumulative belief distribution functionΦ, known
by all lenders. Letting Vt be the size of the firm’s asset
at time t, the scalability assumption (with a scaling
constant set to 1 for simplicity) states that the maximum
investment by all lenders is Vt and the maximum in-
vestment by lenders with belief higher than b is

VtΦ(b). (1)

A lender with belief b at time t measures risk using a
probability measure Pb under which the fundamental
log-return logYt is independent of everything else,
with Varb[logYt] � σ2 and Eb Yt[ ] � eb.

There are two interpretations of the notion of be-
liefs. Under the first interpretation, lenders are risk-
neutral, and their differentiated beliefs stem from
differences of opinion, as in Hong and Stein (2003).
The second interpretation of belief is in the sense of
the “pricing measure” of risk. A lender with belief
b will evaluate at time t any payoff ψ at t + 1 using
E[Sbψ(Yt+1)] � Eb[ψ(Yt+1)], where Sb is a stochastic
discount factor and encodes the lenders’ subjective
risk aversion. Using the stochastic discount factor is
equivalent to discounting payoffs under the risk-
neutral expectation but with the modified drift b of
the return (and not the real-world returnμ). Under the
measure Pb, the lender is risk-averse and puts addi-
tional weight on negative outcomes. The larger the
difference μ − b, the larger the subjective risk aversion
of the lender.

Interest Rate. The lenders have as outside option a
risk-free rate set to zerowithout loss of generality. The
interest rate is constant r and is interpreted as a
spread. The firm takes all credit that is provided to it
and invests in the asset. The firm is assumed to act
under a highly optimistic belief about the asset, so
that under its belief, it is optimal to invest as many
funds in this strategy as possible (recall that there is no
price impact in our model, just transaction costs). The
equity-maximization problem of the firm has been
solved in the one-period case in Jarrow et al. (2018).
They find that in the case of nonatomistic lenders,
a sufficiently optimistic firm (e.g., a fund expecting
high returns from its strategy) will place all available
funds in the asset. This setting bears some resem-
blance to the manager in Hart and Moore (1995),
whose “empire-building tendencies are sufficiently

strong that it will always undertake the new invest-
ment if it can.” There, the manager’s financing is
constraint by the maturity structure of the debt. Here,
the belief distribution will play a critical role. When
sufficiently many lenders are less optimistic than the
firm, the ensemble of lenders will impose a stricter
constraint on leverage than the firmwould set. It is this
endogenous leverage imposed by lenders with het-
erogenous beliefs that we seek to determine.
The following assumptions essentiallymean that the

belief distribution is not heavy-tailed (not more heavy
than the exponential distribution). This excludes the
possibility that highly optimistic lenders would con-
centrate a large fraction of the capital and could keep
the firm liquid independently of its performance.

Assumption 1 (Log-Concavity of the Decumulative Belief
Distribution). We assume that the decumulative belief dis-
tribution admits a density φ: Φ′ � −φ. Moreover, we

shall assume that b �→ φ(b)
Φ(b) is increasing on the interval

(−∞,Φ−1(0)). Here, Φ−1(0) ∈ R ∪ {∞}, the supremum of
the support of φ(·), is the maximal belief.

Remark 1. Assumption 1 is satisfied for a wide variety
of distributions φ(·), including exponential right tails,
normal, or a uniform distribution.

2.2. Dynamics Under Given Lenders’ Strategy
The lenders choose an investment strategy π �
(πt)t�0,...,T given by the functions

πt : R × 0,∞[ )t → [0, 1], (2)

for t<T and πT ≡ 0—that is, there is no investment at
time T. In words, a lenderwith belief b lends a fraction
πt(b,Y1, . . . ,Yt) of her capital to the firm when the
sequence of returns is (Y1, . . . ,Yt).
Recall that themaximum investment for the lenders

with belief b, whose density in the market is φ(b),
scales linearly with Vt and the scaling factor is the
same for all beliefs. Then, by (1), the debt capacity at
time t under investment strategy π is given by

Dπ
t �

∫
@
πt(b)Vπ

t φ(b)db, (3)

with Vπ
t the asset value at time t under given strategy

of the lenders. Another interpretation is that in each
period, debt is provided by a population whose size
increases with the size of the firm: A firm that grows
would havemore andmore investors. In a hypothetical
modelwithV

π

t (or a scaling of that), lenders investing a
fraction πt(b) of their one unit of capital, the equation
is equivalent to summing up this investment.

Asset Value and Dynamics Under Given Strategy of the
Lenders. Fix an investment strategy π of the lenders.
At time 0, the firm starts with the initial asset value
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Vπ
0 � V0 > 0 and initial debt Dπ−1 � 0. At each time t �

0, 1, . . . ,T − 1, the firm starts with the asset valueVπ
t . It

accepts all debtDπ
t that is offered to it, due at time t + 1

and bearing interest rate r. The firm then pays back its
maturing debt plus interest Dπ

t−1(1 + r).
If (1 + r)Dπ

t−1 −Dπ
t < 0, then thefirmhas adebt inflow,

which it will use to expand the asset. If (1 + r)Dπ
t−1−

Dπ
t ≥ 0, then the firm has a debt outflow and liqui-

dates the minimum fraction of the asset in order to
cover this outflow. If liquidating the entire asset cannot
cover this outflow, then the firm defaults. In summary,
at time t, the firm needs to liquidate an amount f −1t(1 + r)Dπ

t−1 −Dπ
t

( )
of its asset, in order to cover a debt

outflow of (1 + r)Dπ
t−1 −Dπ

t . The asset value after the
debt flow at time t is given by

Vπ
t − f −1t (1 + r)Dπ

t−1 −Dπ
t

( )
. (4)

This leads to an asset value before the debt flow at
time t + 1, which includes the fundamental log-return
logYt+1

Vπ
t+1 � Vπ

t − f −1t (1 + r)Dπ
t−1 −Dπ

t

( )( )
Yt+1. (5)

We define the default time τπ of the firm as the first
time t when the value of its asset after the debt flow
becomes negative (i.e., liquidating the entire asset
cannot cover the debt outflow),

τπ � min t � 1, . . . ,T |Vπ
t − f −1t (1+r)Dπ

t−1−Dπ
t

( )
< 0

{ }
� min t � 1, . . . ,T | ft(Vπ

t )< (1 + r)Dπ
t−1 −Dπ

t

{ }
.

(6)

Alternatively, we can write the default event in terms
of the fundamental trajectory {τπ > t} � {(Y1, . . . ,Yt) ∈
Γt(π)} with

Γt(π) :� (y1, . . . , yt) | (1 + r)Vπ
k−1(y1, . . . , yk−1)

{
−Vπ

k (y1, . . . , yk) ≤ ft Vπ
k (y1, . . . , yk)

( )∀k ≤ t
}
.

WecallΓt(π) the survival set of the investment strategyπ.
Default relates to insolvency in a complex way,

where insolvency is defined as the value of the asset
being smaller than the value of the debt. At the ho-
rizon, all lenders must be paid back, so default is
equivalent to insolvency. Before maturity however,
the default event depends on the lenders’ decisions,
which in turn are based on their subjective valuation
of lending to the firm (and the future default risk and
recovery rate risk).

Remark 2. Note that liquidation costs (different for
asset purchases and asset liquidations) are not the
primary source of asymmetry between inflows and
outflows. Outflows will play a much more important
role in the firm dynamics than inflows, even in the

absence of any transaction costs, because default can
only occur under a debt-outflow scenario. We will
show that asset purchase costs will not affect the long-
run leverage level. This is because debt capacity is
driven by default risk, and in the default scenario, only
liquidation costs matter.

We will refer to

ft(Vπ
t ) +Dπ

t − (1 + r)Dπ
t−1 , (7)

as the liquidity capacity, and the default time can be
expressed as the first time the liquidity capacity be-
comes negative.
On the set {τπ � t + 1}, the asset is completely liq-

uidated at time t + 1, and the firm stops its operations.
Note that τπ � t + 1 implies Dπ

t > 0 (there cannot be
default in absence of debt).

Lenders’ Recovery Rates. We assume that if the firm
defaults at time t + 1, all debt provided by new lenders
(that is, debt provided by lenders that had not invested
at time t) is immediately paid back in full by the firm,
and all debt provided by old lenders is paid back
partially as determined by the recovery rate. Note
that old versus new lenders does not refer to the order
in which they make decisions (which are simulta-
neous), and rather to the funds of new lenders (if any)
being in a separate account. As such, at default time,
any funds from new lenders can be fully returned
because they are not yet invested in the asset. The debt
provided by old lenders, on the other hand, has been
invested in the asset. Upon default, the asset position is
liquidated and distributed to the old lenders. The as-
sumption that new lenders are not diluted by using the
fresh cash to increase the recovery rates of the old
lenders simplifies the analysis a lot. It is also innocuous
in our setting: It cannot be that the firm is in a situation
of default and that there is an inflow of lenders at the
same time. That would mean that there was negative
performance of the asset (otherwise, there would be no
default), and at the same time, thereweremore lenders
than before. This is impossible under any reasonable
beliefs.
It follows directly from (5) that on the set {τπ �

t + 1}, the recovery rate for the debt provided at time t
(by the old lenders) is given by

ft
Vπ

t+1
Dπ

t

( )
� ft

Vπ
t

Dπ
t
− f −1t (1 + r)D

π
t−1
Dπ

t
− 1

( )( ))
Yt+1. (8)

Finally, we assume that at time T, all debt must be
paid back—that is, πT(·, ·) ≡ 0 and Dπ

T � 0.

Remark 3. It follows recursively from Vπ
0 � V0 and

plugging (3) into (5) that the dependence of Vπ
t on π is

only through π0, . . . , πt−1.
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A key quantity in the subsequent analysis will be
played by the firm’s leverage (or debt-to-asset) ratio
before the debt flow

Xπ
t � Dπ

t−1
Vπ

t
, t � 1, . . . ,T ∧ τπ,

with the convention Xπ
t � ∞ for t> τπ.

2.3. Lenders’ Game
The lenders choose the strategy (πt)t�0,...,T in (2). Note
in particular that all lenders with the same belief play
the same strategy, so we classify lenders according
to their beliefs and we refer to lender b to any lender
with belief b.

Payoff Functions. Let π be a strategy and t ≤ τπ. We
denote by Gπ,b

t the payoff of lender b under strategy π.
The payoff has two branches.

• On {τπ > t} (survival), lender b’s expected return
per dollar from lending at time t is

Rπ,b
t :�Eb

[
11{τπ > t+1}(1 + r)

+ 11{τπ�t+1} ft
Vπ

t+1
Dπ

t

( )
| (Y1, . . . ,Yt)

]
− 1

� r − Eb 11{τπ�t+1} 1 + r − ft
Vπ

t+1
Dπ

t

( )( )
| (Y1, . . . ,Yt)

[ ]
,

(9)

and the payoff at time t is Gπ,b
t :�πt(b,Y1, . . . ,Yt)Rπ,b

t .
•On the set {τπ � t} (default), the payoff of any old

lender at time t is given by

Gπ,b
t :� ( ft Vπ

t
Dπ

t−1

( )
− 1)πt−1(b,Y1, . . . ,Yt−1).

Trade-off and the Lenders’ Short Put Option. The ex-
pected return per dollar invested highlights the
trade-off of a lender with belief b. On one side, she
earns the interest r. On the other side, she bears the
expected default cost. Her default cost depends on the
other lenders’ decisions both in the current period
(the asset would be divided by the total amount of
debt in case of default) and in the next period (because
they determine the default time). The dependence on
the belief is highly nonlinear, and any lender sees a
strictly positive expected default cost. In fact, lenders’
investment is akin them being short a put option on

the (risky) recovery rate ft
Vπ

t+1
Dπ

t

( )
. The higher their be-

lief, the lower their expected default cost.
At the core of our paper is the valuation of the put

option at a marginal belief. The higher the valuation,
the worse the payoff because lenders are short this
option. Figure 2 plots the put-option surface as a
function of the marginal belief and of the firms’ le-
verage. Here, we are interested in a preview of the
monotonicity properties; the specifics of the option
valuation are detailed below in Proposition 2, and the
analysis is in Online Appendix EC.0.2.
The parameters we used for the plots are typical

to those we use in Section 6. The valuation is remi-
niscent of Merton’s model: The debt-holders are short
a put option on the firm’s assets. Here, the lenders
have differentiated values of this put option. Note
that when the marginal belief is too high and the firm
too leveraged, then the firm cannot survive (because
the capital above that marginal belief is insufficient).
In this case, the put option is valued at the maximum

Figure 2. (Color online) (Preview) Value of the Put Option by a Marginal Lender as a Function of the Marginal Belief and the
Firm’s Current Leverage

Notes. For high leverage, payoffs are nonmonotonous as a function of the marginal belief. This monotonicity are shown rigorously using option
valuation techniques; see Proposition 2 and the analysis in Online Appendix EC.0.2. (a) Value of the put option. (b) The marginal lender is such
that her value of the put option is equal to r (the intersecting plane) (r = 1% in this example).
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1 + r, and the lender’s payoff is r − (1 + r) � −1; that is,
she expects full loss of her capital.

Figure 2(b) shows how the marginal lender is de-
termined in equilibrium by equating the put option
value with the outside option r. The curve where the
option surface intersects the plane gives the marginal
lender’s belief as a function of the firm’s leverage.

Equilibrium Definition. In a Nash equilibrium, no
lender can increase her payoff by changing her strat-
egies, if the other lenders keep theirs.

Definition 1 (Nash Equilibrium). By convention, any
strategy is aNash equilibrium at time T. A strategy π∗ is
called a Nash equilibrium at time t<T if for each belief
b ∈ @ and each strategy π that satisfies πs � π∗

s for all
s< t and πt(b′) � π∗

t(b′) for b′ �� b we have Gπ∗,b
t ≥ Gπ,b

t .
A strategy is said to be Nash equilibrium (equilibrium for
short) if it is a Nash equilibrium at all times.

We now consider the two branches (survival and
default) of the payoff Gt. Because the lenders are in-
finitesimally small, a unilateral deviation of lender b
at time t cannot change if the firm defaults or not at
that time and nor can it change b’s payoff in the case of
default (determined by the recovery rate). Therefore,
any strategy that leads to default is automatically a
Nash equilibrium. For strategies that do not lead to
default, the Nash equilibrium condition translates into
a cutoff property for the expected return Rt: Lenders
invest if and only if their expected return is positive.
We therefore have the following (trivial) proposition
that characterizes Nash equilibria.

Proposition 1 (Nash Equilibrium Characterization). A
strategy π∗ is called a Nash equilibrium at time t<T if for
every fundamental trajectory (Y1, . . . ,Yt) we have that either

• (Y1, . . . ,Yt) /∈ Γt(π∗) (the firm defaults at time t), or
• (Y1, . . . ,Yt) ∈ Γt(π∗) (the firm survives at time t) and

for each belief b ∈ @

π∗
t(b,Y1, . . . ,Yt) � 1 if Rπ∗,b

t ≥ 0,

0 if Rπ∗,b
t < 0.

{
(10)

Remark 4. If π∗ is a Nash equilibrium and (Y1, . . . ,Yt) ∈
Γt(π∗), then Dπ∗

t > 0. Suppose Dπ∗
t � 0. Then, there

cannot be default at time t + 1, so Rπ,b
t � r> 0, for all b.

Therefore, all lenders would invest, in contradiction
to Dπ∗

t � 0.

As soon as the firm attains high enough leverage,
there are infinitely many Nash equilibria in which the
firm defaults. For example, πt ≡ 0 pushes the firm to
default at time t as soon as Dt−1(1 + r) − ft(Vt)> 0. This
condition means that the early liquidation of the
entire asset cannot cover existing debt plus interest,
which is the typical case of a leveraged firm. In

this case, there is an infinity of strategies πt with∫
@
πt(b)Vπ

t Φ(db)<Dt−1(1 + r) − ft(Vt), and all these are
Nash equilibria, which lead to default. Note that there
may be infinitely many strategies π with survival—
that is,

∫
@
πt(b)Vπ

t Φ(db) ≥Dt−1(1+ r) − ft(Vt)—but these
are not Nash equilibria in general. Only if one finds
a marginal lender whose value of the put option
is equal to r (see Figure 2(b)), then we have a Nash
equilibrium.
If the Nash equilibria in which the firm defaults

coexist with Nash equilibria in which the firm sur-
vives, then these equilibria with default can be elim-
inated by removingweakly dominated strategies, as in
Krishenik et al. (2015); see Online Appendix EC.0.5
for the definition and intuition behind weakly dom-
inated strategies. We assume that lenders will not
play weakly dominated strategies at time t. Because
of the presence of recovery rates, which induce the
nonmonotonicity in the expected return as a function
of the belief of the marginal lender, there may be two
Nash equilibria in which the firm survives.
We extend the solution concept ”strongly coalition

proof,” introduced by Milgrom and Roberts (1996).
Such an equilibrium is proof to any deviations by
coalitions that are stable in the sense that they are
Nash equilibria themselves, all else fixed outside the
coalition. We will show in Theorem 1 that the first
Nash equilibrium (with higher debt) is strongly co-
alition proof. The strongly coalition proof is a stronger
requirement than coalition proof in the sense of
Bernheim et al. (1987); see the discussion in Milgrom
and Roberts (1996). Therefore, the first Nash equi-
librium is automatically coalition proof.
We introduce the weaker condition “strongly ε-

coalition proofness,” in which we require stability
with respect to deviations of coalitions that are Nash
equilibria and in addition are arbitrarily small. If an
equilibrium is not strongly ε-coalition proof, it au-
tomatically implies that it is not strongly coalition
proof. We will show in Theorem 2 that the Nash
equilibrium with lower debt is not strongly ε-coalition
proof for any ε> 0 (and hence it is not strongly co-
alition proof). Note the importance of “for all ε> 0”: It
would be easy to show that a large group of lenders
can be better off by jointly deviating from the second
equilibrium. But our results are much stronger: No
matter how small (but positive) the size, we can always
find a stable lender coalition of that small size that can
be better off by jointly deviating from the second
equilibrium. Therefore, it is reasonable to exclude this
second equilibrium. For a game with a continuum of
players, it is very natural to consider coalitions of
an arbitrarily small but positive fraction ε> 0 of all
lenders: A player has zero mass in the continuum
limit, whereas in any approximating game with a
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finite but large number of players, she would have a
small but positivemass. Convergence results forfinite
games in the spirit of Carmona et al. (2017) are left
for future research.

Definition 2 (Strongly ε-Coalition Proofness). Let ε> 0.
ANash equilibrium π∗ is said to be strongly ε-coalition
proof at time T by convention, and at time t<T if:

For each (Borel) set of lenders B ⊆ @ of Φ measure
∈ (0, ε) and each strategy π, which satisfies

1. πs(·, ·) � π∗
s(·, ·) for all s �� t

2. πt(b′, ·) � π∗
t(b′, ·) for all b′ ∈ @\B

3. (Stability of the coalition: All else fixed, the co-
alition plays a Nash equilibrium)

πt(b,Y1, . . . ,Yt)

� 1 if Rπ,b
t ≥ 0,

0 if Rπ,b
t < 0,

{
for each b ∈ B and (Y1, . . . ,Yt)

∈ Γt(π),
(11)

we have that the coalition is “worse off”:
(a) Γt(π) ⊆ Γt(π∗) (the survival set decreases), and
(b) Rπ∗,b

t ≥ Rπ,b
t for all (Y1, . . . ,Yt) ∈ Γt(π) and b ∈ B

(returns decrease on trajectories with survival).
A strategy is called strongly ε-coalition proof if it is

strongly ε-coalition proof at all times t.

The solution concept strongly coalition proof is the
same as strongly ∞-coalition proof.

3. Nash Equilibria for the Lenders’ Game
The goal of this section is to determine the set of
equilibria of the lenders’ game. The Nash equilibria
in which the firm survives are of cut-off type is
straightforward (see Lemma EC.1 in the online
appendix).

The subtlety is to show that the marginal belief is
uniquely determined as a function of the firm’s debt-
to-asset ratio Xπ

t . We will also need to show that the
survival set Γt(π) can be also expressed in terms of the
debt-to-asset. As we will see in Section 3.1, there are
two possible marginal belief functions. Note that
in this case, the number of corresponding equilibria
grows exponentially with the number of periods:
One marginal belief function tomorrow yields two
possible marginal belief functions today, and so
on. We will prove uniqueness of an ε-coalition proof
equilibrium and only then the leverage Xπ

t will be a
proper state variable.

Definition 3 (Strategy with Marginal Belief Function). A
strategy π is said to have the marginal belief function
βt(·) : [0,∞] → @ at time t if

πt(b) � 11{b≥βt(Xπ
t )} on Γt(π). (12)

If a Nash equilibrium has a marginal belief function
βt(·) at time t, then fromProposition 1 it follows that its
corresponding marginal belief function βt(·) satisfies

Rπ,βt(Xπ
t )

t � 0. (13)

Let now π be a strategy with marginal belief function
βt(·) at time t as in (12). By (3), the debt of the firm at
time t on the set {τπ > t} is given by

Dπ
t � Vπ

t Φ(βt(Xπ
t )), (14)

which is strictly positive. Recall that the liquidity
capacity at time t of the firm is given by (7). On the set
{τπ > t}, the ratio of the liquidity capacity of the firm and
the asset can be written as λt(Xπ

t ), as defined below.

Definition 4 (Liquidity Capacity Function). Let λt : [0,
∞] → [0,∞] be defined as

λt(x) :� 1 − α11{t<T} + Φ(βt(x)) − (1 + r)x. (15)

It now follows from (6) that

τπ > t ⇒ λt(Xπ
t ) ≥ 0. (16)

The converse is not a priori true because on the de-
fault set {τπ � t}, the newdebt is not given by (14). The
firm’s equity typically cannot cover the liquidation
costs for its entire asset. In such a case, the strategy in
which no one lendsπ ≡ 0 is a trivial Nash equilibrium,
which will not survive the elimination of weakly
dominated strategies if the leverage is sufficiently
low. We will show below that we do have equiva-
lence, and the function λt is uniquely determined if π
is a ε-coalition proof Nash equilibrium in which lenders
do not use weakly dominated strategies. The proof is
by backward induction and will use the following
results as a building block.

3.1. One-Period Building Block for the Equilibrium
In this section, we give explicit formulas for the
lenders’ expected return Rπ

t , akin to those of option
prices in the Black and Scholes model. These formulas
allow us to study analytically the monotonicity (at
time t) of the expected return of themarginal lender as
a function of her belief, which we illustrated in
Figure 2. This analysis will be part of the induction
step in our proof of the uniqueness Theorem 2.
Assume that we have equivalence in (16) for time

t + 1, that is,

τπ � t + 1 ⇔ λt+1(Xπ
t+1)< 0, (17)

and, moreover, that the marginal belief function βt(·)
is increasing and consequently λt(·) is decreasing
(these assumptions will be part of the induction hy-
pothesis in the proof of the uniqueness theorem).
Then, on the set {τπ > t}, by (5), we have that the

Minca and Wissel: Dynamic Leveraging-Deleveraging Games
Operations Research, 2020, vol. 68, no. 1, pp. 93–114, © 2020 INFORMS 101



default event can be expressed as the discounted asset
return being below a discounted strike kt, where the
discount rate is equal to the belief variable b

τπ � t + 1 ⇔ λt+1
Dπ

t

Vπ
t+1

( )
< 0 ⇔ Dπ

t

Vπ
t+1

>λ−1
t+1(0)

⇔ Dπ
t

Vπ
t 1−f −1t (1+r)D

π
t−1
Vπ
t
−Dπ

t
Vπ
t

( )( )
Yt+1

>λ−1
t+1(0),

⇔ Yt+1e−b <
e−b

Dπ
t

Vπ
t

λ−1
t+1(0) 1−f −1t (1+r)D

π
t−1
Vπ
t
−Dπ

t
Vπ
t

( )( )
�: kt b,

Dπ
t

Vπ
t
,
Dπ

t−1
Vπ

t

( )
. (18)

Because we have log-normal returns, we can use the
Black and Scholes machinery to express the expected
return (similar to a short put position) as a functionofXπ

t .

Proposition 2. Let π be a strategy with a marginal belief
function βt+1(·) at time t + 1, for some t<T, which satisfies
(17). Then, on the set {τπ > t}, the expected return under
belief b satisfies

Rπ,b
t � ht kt b,

Dπ
t

Vπ
t
,Xπ

t

( )( )
, (19)

with (1 denotes the cumulative distribution function of the
Standard Normal)

ht(K) � r−(1 + r)1 −d−(K)( ) + 1 − α

λ−1
t+1(0)K

1−d+(K)( ),

d±(K) � − logK ± 1
2 σ

2

σ
.

Suppose moreover that βt+1(·) is strictly increasing. Then,
the function ht(K) is strictly decreasing in K> 0 and
satisfies limK→0 ht(K) � r and limK→∞ ht(K) � −1.
By (19) and (14), the expected return at time t on the

set {τπ > t} under belief b for a strategy π as in
Proposition 2 is given by

Rπ,b
t � ht kt b,Φ(βt(Xπ

t )),Xπ
t

( )( )
,

and b → Rπ,b
t is increasing.

Strategic Substitutability and Complementarity. Having
established the expected return, we are ready to plot
the payoffs that arise in our leverage/deleveraging
game—namely, we plot in Figure 3 the surface
(b,Φ) → ht kt b,Φ,Xt( )( ) for two different values of the
current leverage Xt. These plots illustrate the com-
plex dependencies in our payoff structure. There is a
change fromglobal strategic substitutability to strategic
complementarity as leverage increases. The sources of
these properties are novel in the literature, as discussed
in the introduction.

3.2. Existence and Uniqueness Results
In this section, we show that there exists a strongly
coalition proof equilibrium—namely, the strategy π̂
given in Definition 5. We also show that any other
Nash equilibrium in which the firm would survive
with lower debt is not proof to arbitrarily small de-
viations, in the sense that no matter how small (but
positive) the size, we can always find a stable lender

Figure 3. (Color online) Lenders’ Put Option Value as a Function of Belief and Concurrent Debt (Expressed as Percentage of
Lenders’ Capital)

Notes. Payoffs are given by rminus the value of the put option. When current leverage is lower (a), pessimists’ put option value increases (and
their payoff decreases) with the amount of concurrent debt.When current leverage is higher (b), pessimists’ put option value decreases (and their
payoff increases) with the amount of concurrent debt up to a certain point. (a) Put option surface (debt-to-asset = 0.8) shows strategic
substitutability. (b) Put option surface (debt-to-asset = 0.9) shows strategic complementarity.
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coalition of that size that can be better off by jointly
deviating from that equilibrium.

From Proposition 2, Equation (13) takes the form

ht kt βt(Xπ
t ),Φ(βt(Xπ

t )),Xπ
t

( )( ) � 0. (20)

In Online Appendix EC.0.2, we show that this equa-
tion will have two solutions in the marginal belief
function βt. In the proof of Theorem 2, we will show
that the larger solution cannot correspond to the
marginal belief function in an ε-coalition proof equi-
librium. Indeed, at the larger solution, the marginal
lender is optimistic about the firm’s asset, and higher
debt will increase her expected payoff, because the
firm will expand the asset. Therefore, slightly less
optimistic potential lenders than the marginal one will
join a coalition and invest, leading to positive returns
for themselves and the former marginal one.

On the other hand, the equilibrium corresponding
to the smaller solution of the equation, denoted β̂t, is
not only ε-coalition proof, but coalition proof for any
coalition size. This equilibrium is defined by the
marginal belief functions β̂t, which satisfy the as-
sumptions of Proposition 2 and (20).

Definition 5. Let π̂ be the equilibrium with marginal
belief functions β̂t(·), defined backward recursively for
t � T, . . . , 0 as follows. Set β̂T(·) ≡ ∞. Given the function
β̂t+1(·) for t<T, let

λ̂t+1(x) � 1 − α11{t+1<T} + Φ(β̂t+1(x)) − (1 + r)x,
ĥt(K) � r − (1 + r)1 −d−(K)( ) + 1 − α

λ̂−1
t+1(0)K

1 −d+(K)( ),

k̂t(b, q, x) � e−bq
λ−1
t+1(0) 1 − f −1t (1 + r)x − q

( )( ) ,
and then let β̂t(x) denote the smallest solution of the
equation

ĥt k̂t β̂t(x),Φ(β̂t(x)), x( )( )
� 0, (21)

for all x ≥ 0 for which there exists a solution, and
β̂t(x) � ∞ otherwise.

The definition of the previous functions uses tacitly
that λ̂−1

t+1(0) is well defined. This is indeed the case, by
virtue of the following result.

Proposition 3. The function β̂t(·) is increasing. Moreover,
under the condition

φ′(·) ≤ Φ(·) + 2φ(·), (22)

the function β̂t(·) is strictly convex.

Together with Assumption 1, we have the condi-
tion − φ(·)2

Φ(·) ≤ φ′(·) ≤ Φ(·) + 2φ(·). Condition (22) is
technical and allows us to control the left tail of the
belief distribution. It is, for example, satisfied for the

normal left tails and also for any distribution inwhich
φ′ ≤ 0, such as the case when the density increases
with the pessimism level. Although Assumption 1
controls the right tails (the capital of the optimists
should decrease fast enough), the control of the left
tails ensures, on the contrary, that the pessimists hold
most of the capital.

Notation. In the sequel, we denote by π(s) any strategy
with marginal belief functions β̂t(·) from time s on, t ≥
s and its survival sets are given by

Γt(π(s)) � yt | λ̂t Xπ(s)
t (yt)

( )
≥ 0

{ }
. (23)

Inparticular,wehaveπ(0) � π̂. This strategy is uniquely
determined from time s on, whereas it is a generic
strategy before time s. Any strategy satisfying these
conditions is said to be of the form π(s). It is immedi-
ate to see that this strategy is a Nash equilibrium, so
the proof is mainly focused on strongly coalition
proofness.

Theorem 1 (Existence). Any strategy of form π(t) is a
strongly coalition proof Nash equilibrium at time t. In par-
ticular, π̂ is a strongly coalition proof Nash equilibrium.

The following uniqueness result states that any
other Nash equilibrium than π̂ can be blocked by
deviations of arbitrarily small groups of lenders—
that is, it is not strongly ε-coalition proof for any ε> 0
(and in particular this makes π̂ the unique strongly
coalition proof equilibrium). The uniqueness result is
valid among all strategies, not only those possessing a
marginal belief function.

Theorem 2 (Uniqueness). Let π be a strongly ε-coalition
proof Nash equilibrium for an ε> 0 and assume that no
lender uses weakly dominated strategies. Then, we have that
π � π̂.

Our existence and uniqueness results have critical
implications for leverage stability. Indeed, because
the secondNash equilibrium (with lower debt) can be
blocked by any small stable coalition, it can be rea-
sonably excluded, and lenders will select the equi-
librium that gives the firm the higher leverage. The
convexity effects of the marginal belief as function
of leverage are properties of the equilibrium π̂ and
underlie the existence of explosive regimes of lever-
age that we discuss in Section 4.
The proof of the uniqueness result is by induction:

We show successively that π � π(t+1) leads to π � π(t),
for all t � T − 1, . . . , 0, and thus we uniquely identify
π as the equilibrium with marginal belief β̂ at all
times—namely, we have that π � π̂.
We rely on the one period building block in the

previous section. At step s<T, we use the induction
hypothesis that π � π(t+1). The one period building
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block gives analytical formulas for the expected return
as a function of the belief of the marginal lender,
conditional on survival at time t. Using the elimination
of weakly dominated strategies, we can establish
whether the fundamental trajectory yt leads to default
or not: The firm survives if and only if there exists a
marginal lenderwith zero expected return. Technically,
this means that there is a solution to Equation (21).

Conditional on survival, theremay be twomarginal
lenderswith zero expected return, and they correspond
to the solutions of Equation (21). Note the necessity of
using backward induction: Assuming that we have
removed uncertainty about the future strategies, we
can use Equation (21) to define a Nash equilibrium in
the current period. Using the ε-coalition proof re-
finement, we eliminate the largest solution to the
equation in the current period and complete the in-
duction step because the smallest equation gives the
belief function β̂t, which defines the strategy π(t).

The proof relies onmany results that fit together in a
highly complex structure. As a final detail, we note
that the assumptions of Proposition 2 in the building
block hold due to the induction hypothesis. When
π � πt+1, by virtue of Proposition 3, we have that
β̂t+1(·) is increasing.

3.3. Ceiling
By eliminating the multiplicity of equilibria, we elim-
inate the uncertainty about the value of the ceiling,
because each equilibrium has its own ceiling associ-
ated with it. This unique equilibrium is characterized
by the highest value for the ceiling. Removing un-
certainty about the ceiling means that default becomes
measurable with respect to the observation of the debt-
to-asset. Indeed, from (23), it now follows that the
company defaults as soon as the debt-to-asset ratio
Xt � Dt−1

Vt
exceeds the value λ̂−1

t (0), which henceforth
we shall refer to as the firm’s ceiling. The next result
shows that the ceiling can be written explicitly in
terms of a suitable deterministic function mt(·) given
in Equation (EC.7) in the online appendix.

Proposition 4. The ceiling for the debt-to-asset ratio is
given by

λ̂−1
t (0) � m−1

t
1

ĥ−1t (0)

( )
. (24)

The debt ceiling gives the default condition. In the
next section, we determine the regimes of leverage.
We also give a measure of stability when the debt is in
the mean-reverting regime.

4. Debt Dynamics and Debt Stability
For the remainder of the paper, we assume that lenders
select the unique strongly coalition proof equilibrium

π̂ at all times t � 0, 1, . . . ,T − 1, and we drop the su-
perscript π̂ from our notation of the processes D, V
and X. We also drop the hat from the functions λ̂t(·),
ĥt(·) and k̂t(·) in Definition 5. The debt-to-asset is a
state variable, whose dynamics and stability can be
characterized.
We consider that the debt-to-asset is below the debt

ceiling that we established in the previous period—that
is, Xt ≤ λ−1

t (0)—and we characterize its dynamics. At
the debt ceiling, the firm defaults. We can write the
debt-to-asset ratio in the next period as a function of
the debt-to-asset ratio in the current period, starting
from (5):

Xt+1 � Dt

Vt 1 − f −1t (1 + r) Dt−1
Vt

− Dt
Vt

( )( )
Yt+1

�
λ−1
t+1(0)kt βt(Xt), Dt

Vt
, Dt−1

Vt

( )
eβt(Xt)

Yt+1

� λ−1
t+1(0)h−1t (0) eβt(Xt) 1

Yt+1
, (25)

where in the second line we used the definition of kt in
Definition 5 and (14), and in the last line, we used
(EC.12) in the online appendix.
Our notion of stability is that there exists a level xt

strictly below the debt ceiling λ−1
t (0), such that the

process Xt is mean reverting to the level xt under the
real-world measure P as long as the process stays below
an instability level xt, with xt < xt ≤ λ−1

t (0).
Of course, because ourmodel is in discrete time, the

process Xt can jump from the long-run level over the
instability level in one period. The probability of such
a jump is a necessary addendum to the character-
ization of the stability of the process in terms of the
various regimes. We define the stability measure (for
debt with a mean-reverting regime) as a (conditional)
probability to stay below the instability level xt in
one period if one forces leverage to start the long-run
level xt:

1 − P[Xt+1 > xt | Xt � xt].
We define this measure using a conditional proba-
bility because we think of the assessment of the entire
mean-reverting regime. If the stability measure is too
low, then even if the process is in the mean-reverting
regime, it can very easily ”escape” in the explosive re-
gime. Clearly, the stability measure increases the dif-
ference between the instability level and the long-run
level. The existence of the mean-reverting regime and
the stability measure together determine the sustain-
ability of debt.

Definition 6. Let p ∈ [0, 1]. We say that debt-to-asset
has a mean-reverting regime [0, xt) (with stability
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measure 1 − p) if for each t there exist 0< xt < xt ≤
λ−1
t (0) such that

E Xt+1 | (Y1, . . . ,Yt)[ ]>Xt, ∀ Xt ∈ (0, xt) ∪ (xt, λ−1
t (0)]

E Xt+1 | (Y1, . . . ,Yt)[ ]<Xt, ∀ Xt ∈ (xt, xt),
and P[Xt+1 > xt | Xt � xt]< p. We call xt the long-run
level, xt the instability level, and (xt, λ−1

t (0)] the explosive
regime. If debt-to-asset does not have a mean-
reverting regime, then it is said to be explosive.

In the mean-reverting regime (if any), Xt reverts to
the long-run level xt as long as it stays below the in-
stability level xt. Clearly, the definition uses the ex-
pected return of the asset under the real-world
(”oracle”) measure. We now let the real-world ex-
pected return be eμ � E[Yt]. Using the dynamics of Xt
above, we can compute the drift function of the
process Xt as

at(Xt) :�E Xt+1 | (Y1, . . . ,Yt)[ ] � λ−1
t+1(0)h−1t (0)eβt(Xt)e−μ+σ

2
,

(26)

Remark 5 (Drift Invariance Under the Belief of the Marginal
Lender). Similarly to computing the drift of the process
Xt under the real-world measure, we can compute the
drift under the belief of the marginal lender. At any
time before default, the marginal lender’s expectation
of the future debt-to-asset is constant and given by

Eβt(Xt) Xt+1 | (Y1, . . . ,Yt)[ ] � λ−1
t+1(0)h−1t (0)eσ2 .

The continuum of lenders adjust debt in each period
such that the expectation of the future leverage from
the perspective of the marginal lender is invariant. In
turn, a marginal lender exists (and there is no default)
as long as this adjustment of debt is possible.

This also explains why the instability level xt can be
different from the debt ceiling λ−1

t (0). Indeed, when
debt-to-asset reaches the instability level, an oracle
can detect that the process is explosive and expected
to reach the debt ceiling. But the default does not
happen yet, because a marginal lender can be found,
and, under her belief, the debt-to-asset is not explo-
sive yet. As we will later show, when lenders learn,
then the instability level and the debt ceiling coincide:
xt � λ−1

t (0). In this case, the expectation of any lender
becomes close to the oracle’s expectation. Therefore,
all lenders can detect when the debt-to-asset becomes
explosive, and default happens at this point.

We now assume that the belief distribution func-
tion satisfies (22). Then, by Proposition 3,we have that
the function βt(·) is increasing and convex, and so
is the drift function at(·). We can then fully charac-
terize the regimes of the debt-to-asset process using
thefixedpointsof thedrift function at(x) � λ−1

t+1(0)h−1t (0) ·
eβt(x)e−μ+σ2 , which incorporates all model parameters.

Proposition 5. The debt provision has a mean-reverting
regime if and only if for each t, the drift function at(·) either
has two fixed points 0< xt < xt <λ−1

t (0) or a unique fixed
point 0< xt <λ−1

t (0), in which case we set by convention
xt :�λ−1

t (0). The stability measure is given by1(σ2 + 1
σ log

xt
xt
).

Moreover, if xt <Xt <λ−1
t (0), then we have E Xt+1 |[

(Y1, . . . ,Yt)]>Xt.

If the drift function does not have a fixed point, the
debt-to-asset process is always explosive. If there
exist xt, xt as in the proposition, then the debt-to-asset
process is a mean-reverting process, as long as it does
not exceed xt. We give its stability measure,

P[Xt+1 < xt | Xt � xt] � P
xt

Yt+1e−μ+σ2
< xt

[ ]

� P Yt+1 >
xteμ−σ

2

xt

[ ]

� 1

(
σ

2
+ 1
σ
log

xt
xt

)
. (27)

The larger the distance between the long-run level
and the instability level (in relation to the asset vol-
atility), the larger the stability measure of the debt
when it is in the mean-reverting regime. When the
stability measure is low, the debt-to-asset behaves for
all practical purposes as an explosive process. If there
is no fixed point of the drift function, then the debt
only has an explosive regime.
Figure 4 illustrates the different regimes of the debt-

to-asset. If the debt-to-asset process is in the mean-
reverting regime, but below xt, the firm will leverage,
as it has high equity. A firm whose debt-to-asset is in
the region [xt, xt] successfully deleverages by sell-
ing assets and repaying withdrawing lenders. In the
explosive regime, it is not possible (under typical
returns) to return to the mean-reverting level, and the
debt-to-asset is instead moving away from xt toward
the debt ceiling, at which point the firm defaults.
Around the long-run leverage level, a positive funda-

mental return decreases the debt-to-asset ratio. Then,
lenders increase leverage and push back the ratio to
its long-run leverage. This is achieved by a decrease of
the marginal belief—that is, more pessimists invest.
After a sequence of positive fundamental returns, the
marginal belief is low. However, pessimists are the
fastest to exit because their payoffs decrease the fastest
under negative fundamental returns. If the debt-to-
asset goes into the explosive regime because of nega-
tive fundamental returns, pessimists exit and would
require higher and higher returns to reenter, which will
not occur on a typical sample path of the exogenous
fundamental returns. The explosive regime happens
due to a spiral of withdrawals by pessimists.
We end this section by showing that the mean-

reverting level xt is the level where the net inflow is
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zero (in expectation). Such characterization fully
justifies calling this level “long-run level” (even if the
long-run level is not a constant and may change in
time). Suppose that (1 + r)e−μ+σ2 � 1—that is, E( 1Yt

) �
1

1+r: The expectation of the discount factor on the asset
side is the same as the expectation of the discount
factor on the debt side. Note that in this case, the asset
grows faster than the debt (eμ � (1 + r) eσ2 > (1 + r)).
Intuitively, if the debt-to-asset process is mean revert-
ing to the level xt, then at this point the net debt inflow
is zero—that is, Dt � Dt−1(1 + r) if Xt were determin-
istic and equal to xt. This writes Φ(β(xt)) � xt(1 + r).
Proposition 6. Suppose that (1 + r)e−μ+σ2 � 1 and that there
exists a fixed point 0< xt <λ−1

t (0) such that at(xt) � xt. Then,
Φ(β(xt))� xt(1+ r),andDt �Dt−1(1+ r) ifXt � xt.Moreover,
for x>xt, β(x) does not depend on the asset purchase cost α1.

The proof of Proposition 6 relies on the study of the
dependence of the drift function on the asset pur-
chase cost.

Remark 6. The proposition states that the long-run
leverage xt is the solution to the equation Φ(β(xt)) �
xt(1 + r). This is a direct computation that does not rely
on the fixed point of the drift function at(·). It sets in-
stead the much simpler condition of zero net inflow.
Because xt is the solution to this equation and because
β(x) does not depend on the asset purchase costs for
x> xt, it follows that the long-run level xt does not
depend on the asset purchase costs.

The important implication is that asset purchase
costs can only change the speed of leveraging: The

higher the asset purchase costs, the higher the speed
to reach the long-run leverage level (the proof shows
that α1 → at(·) is increasing). But asset purchase costs
do not change the long-run level, nor do they change
the value of the drift function above the long-run level.
Above that level, we are in a deleveraging phase, so
only the liquidation costs are relevant, andnot the asset
purchase costs (see Figure 4).

5. Model Dynamics Under
Real-World Returns

We illustrate the dynamics of debt capacity in our
model when the input is the series of real-world asset
returns. Notably, we do not use any data on outstanding
debt. We use both a variable interest rate given by
the actual spreads between short-term debt rates and
t-bill rates and a constant interest rate, given by the
average spread over the period 2001–2005.We use the
constant spread to insulate the model predictions
from any information included in the actual spreads.
Even under constant spread, the model predicts the
collapse indebt capacity observed in the real-worlddata.
We do not single out a firm, but we use aggregate

data. We use the U.S. Securities Industry Financial
Results, available at http://www.sifma.org/research/
statistics.aspx, for 40 quarters, from 2001 to 2010.
The data contain “Aggregated income statement,
selected balance sheet, and employment data on
the U.S. domestic broker-dealer operations of all
FINRA member firms doing a public business de-
rived from their Financial and Operational Com-
bined Uniform Single (FOCUS) Report filings.” The

Figure 4. (Color online) The Expected Future Debt-to-Asset as a Function of the Current Debt-to-Asset

Note. Regimes of the debt-to-asset.
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Financial Industry Regulatory Authority (FINRA) is
responsible for regulating every U.S. broker-dealer.
The number of FINRA members in the time frame
we consider averages 4,000. Specifically, we let
the fundamental returns Y(0) � 1 and

Y(t) � Aggregate Revenue FINRA Memberst
Aggregate Revenue FINRA Memberst−1

,

t � 1, . . , 40.

All results in this section will be showing single sam-
ple paths, based on the realization of Y(t).
We divide the data into two parts and only use the

first part, 2001–2005, to estimate the asset mean and
the asset volatility. This is to ensure that model pa-
rameters are not calibrated by using data during the
financial crisis. We use the 3-Month Treasury Bill:
SecondaryMarket Rate as a proxy for the risk-free rate
(the outside option). Monthly data are available at
https://fred.stlouisfed.org/series/TB3MS. We ag-
gregate monthly data to obtain quarterly data. The
outside option has been set to zero in the model expo-
sition, but here we use the actual interest-rate data to be
consistentwithusing the returns of the asset as input.We
use the ”3-Month AA Financial Commercial Paper
Rate,” available at https://fred.stlouisfed.org/series/
DCPF3M, to calibrate the interest rate offered to the
lenders. The spread is plotted in Figure 5.

In summary, the calibrated model parameters are
the following:

• T � 40 periods, and δ � 1/4 for the time length of
one period.

• Asset return (annualized) mean μ � 7% and
(annualized) volatility σ � 20%.

• The outside interest rate is set to the 3-Month
Treasury Bill (quarterly data series 2001–2010, aver-
age spread 2001–2005 is 18 bp).

•The interest rate is set to the 3-MonthAAFinancial
Commercial Paper Rate.

The remaining parameters of the model could be
calibrated by using data reported to regulators. The
liquidation cost α and the asset purchase cost α1 de-
pend on the exact composition of assets in the firm’s
portfolio. Each type of asset can be assigned a liqui-
dation cost (the parameter α is equivalent to Kyle’s
lambda introduced in Kyle 1985). Here, we set the
liquidation cost α ∈ [0.08, 0.2] to illustrate the behavior
of the model under varying values. The belief distri-
bution is harder to infer from data currently collected
by regulators, andwe hope that our results wouldmake
a strong case for such data collection. Banks utilize a
variety of statistical models to assess how “jittery” their
short-term debt holders are. This would be analogous
to the level of pessimism in our model.
We denote the variance of the belief distribution by

σb.We letΦ(b) � 1 −1((b − μ)/σb)
( )

. Results are robust
to variations in the parameters of this distribution, as
we let σb ∈ [0.15, 0.4].
Figure 1(a) shows the real-world dynamics of the

debt, specifically the financial outstanding commer-
cial paper, available at https://fred.stlouisfed.org/
series/FINCP. These data are not used, but plotted
there to compare against the dynamics resulting from
our model. Figure 1(b) shows the dynamics of debt
predicted by ourmodel. The corresponding dynamics
of the debt-to-asset and the critical belief are shown in
Figure 6. The parameters are: σb � 0.2, α � 0.1 (liqui-
dation cost).
In particular, as shown in Figure 1(b), our model

provides a warning signal of the collapse of the fi-
nancial outstanding commercial paper in Q1 2008,
just before the actual event in Q3 2008 after the fall of
Lehman. The early signal holds both when we use the
real-world spread series and when we use the con-
stant spreads. The constant spread is the average
spread over the period 2001–2005 and thus does not
include any information about spreads in the crisis
period. The collapse is therefore not driven by spreads,

Figure 5. (Color online) Spread (Absolute Value) Between 3-Month AA Financial Commercial Paper and Effective Federal
Funds Rate

Minca and Wissel: Dynamic Leveraging-Deleveraging Games
Operations Research, 2020, vol. 68, no. 1, pp. 93–114, © 2020 INFORMS 107

https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/DCPF3M
https://fred.stlouisfed.org/series/DCPF3M
https://fred.stlouisfed.org/series/FINCP
https://fred.stlouisfed.org/series/FINCP


but by the debt-to-asset moving away from long-run
level to the instability level.

The difference in debt under the actual spreads and
under the average spread is minimal. Moreover, as
shown in Figure 6, (a) and (b), the long-run level and
the instability level given by the model change little
when using the actual spreads versus the average
spread. As implied by our theory, debt collapses, as
leverage has a big deviation from the long-run level
toward the instability level. The only difference from
using the actual spreads is the more accurate calcu-
lation of the debt-to-asset Xt. Because spreads vary
when the debt-to-asset was well above the mean-
reverting level, it is not surprising that they have
very little influence on the outcome of the delever-
aging game: The pessimists’payoffs are too low at this
level of leverage, and they are not very sensitive to the
interest rate. Debt does not recover in our model after
the collapse. Because of the convexity of their short
put option, the pessimists would have required much
higher positive returns to compensate for the negative
returns in order to stay with the firm.

In Online Appendix EC.0.7, we demonstrate ro-
bustness of the model behavior under the real-world
return data for a variety of parameters.

5.1. Single-Firm Case
We end this section with the application of our model
to the case of Morgan Stanley (a large broker dealer,
prone to the kind of deleveraging crisis that our pa-
per models; see, e.g., Duffie 2010a). We consider two
periods, 2001–2010 and 2009–2018 (including the crisis
and after the crisis). As proxy for short-term debt, we
use current liabilities, available at Compustat-Capital
IQ. As before, the asset fundamental return is the
quarterly percentage change in revenue. We check
that our early warning signal does not produce false

positives in the postcrisis period. The single-firm case
is more suited as a control case for fictitious defaults
(in the aggregate case, the number of firms before and
after the crisis would be nonstationary). The results
are given in Figure 7, (a)–(d). Before the crisis, the
short-term debt collapsed in reality and as predicted
by the model. After the crisis, the model produces a
similar debt pattern in the period 2009–2012 as in the
real world. Remark that the only input of the model is
the revenue of the bank. Given the complexity of the
current liabilities of an investment bank, it is re-
markable that the model implied short-term debt is a
closematch to reality in the 12 quarters after the crisis.
After the year 2012, the model implies lower debt

than in reality, but there is no trigger of default. One
explanation is that Morgan Stanley has expanded to
other sources of short-term debt—for example, de-
posits by less sophisticated investors. These would be
captured in the “real-world” current liabilities but
not necessarily by our model of strategic lenders. The
model does not produce false positives for any of
the 38 postcrisis quarters, despite several quarters of
significant drop in revenue.
We also note a drop in debt in 2002 in Figure 7(a)

and in 2012 in Figure 7(c). These drops are not del-
everaging spirals in the sense of our model; they are
not genuine ”collapses.” The leverage ratio, although
it increases above the long-run level, stays in both
cases below the instability level. It is then possible for
the leverage ratio to revert to the long-run level and
for debt to recover.

6. Comparative Dynamics and
Financial Insights

In the following sections, we illustrate the dynamic
behavior of our model under a variety of parameters

Figure 6. (Color online) Debt Collapses as LeverageHas a BigDeviation from the Long-Run Level Toward the Instability Level

Notes. (a) (Model) Debt-to-asset dynamics with real-world spreads. (b) (Model) Debt-to-asset dynamics with constant spread.
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and simulated paths of the fundamental trajectory.
Financial insights are highlighted. We assume that
the beliefs are normally distributed around the true
mean μ, with variance σb. In unreported results, we also
considered the case of exponential distribution and uni-
formdistributionwithfinite upper support, both ofwhich
satisfy the log-concavity assumption on the decumula-
tive distribution function. The results are robust.

We fix a time horizon of 10 years and set δ � 1/4 for
the length of one period—that is, T � 40. This means
that lenders observe the firm’s performance quarterly,
and the short-term debt is rolled over on a quarterly
basis. We set σb � 0.2. The asset and money-market
parameters are givenby an annualizedvolatilityσ � 6%,
an annualized expected asset return μ � 3%, and an
annualized short-term interest rate of r � 1%, both in
excess of the risk-free rate. The parameter values μ

and σ for the log return distribution are typical values
for a diversified bond asset. If the firm is a large bank,
the TED spread can be seen as a proxy for r. Its long-
term mean has been around 0.3%, but the spread has
varied considerably over time, averaging between 1%
and 2% during periods of financial distress, such as in
2008 and 2009.
To make the analysis easy to follow, there is an

overlapping case in each pair of consecutive figures,
which show the drift function at(x) of the debt-to-asset
process for different parameters.
We start by analyzing the impact of the liquidation

cost α and the asset purchase cost α1. We illustrate
numerically Proposition 6 in Figure 8(a). We set the
liquidation costα � 0.Weverify the points inRemark 6:
(1) The drift function increases with the asset pur-
chase cost (because the marginal belief function

Figure 7. (Color online) Real-World Current Liabilities vs. Model Implied Short-Term Debt in the Precrisis and Postcrisis
Period for Morgan Stanley

Notes. (a) Real current liabilities vs. model-implied debt (2001–2010). (b) Debt-to-asset dynamics (2001–2010). (c) Real current liabilities vs.
model-implied debt (2009–2018). Fundam., fundamental. (d) Debt-to-asset dynamics (2009–2018).

Minca and Wissel: Dynamic Leveraging-Deleveraging Games
Operations Research, 2020, vol. 68, no. 1, pp. 93–114, © 2020 INFORMS 109



increases with the asset purchase cost); (2) the long-
run level (the first fixed point of the drift function) is
the same for different asset purchase costs, and the
drift functions coincide above this level. Asset pur-
chase costs have no impact on long-run levels of the le-
verage. Of course, because asset purchase costs do
lower the asset value, it means that debt levels are
lower, so that the long-run leverage is invariant with
the purchase costs. (3) Below thefirstfixed point of the
drift function—that is, in the leveraging phase—the
drift function increases with purchase costs. Leveraging
toward the long-run level is faster when purchase costs are
higher.

In the sequel, we set the asset purchase cost to zero.
Figure 8(b) shows the effect of liquidation costs on the
drift function. Unlike asset purchase costs, liquida-
tion costs affect the long-run level for the debt-to-asset
ratio. One can see that: (1) The first fixed point of the
drift function is lower if liquidation costs are higher.
This means that under higher liquidation costs, lenders
impose a lower long-run leverage level. (2) With zero
liquidation costs, the ceiling is one. This means that
insolvency and default coincide under zero liquidation
costs: Thefirmdefaultswhen the debt-to-asset reaches
one (its equity is zero). In contrast, when liquidation
costs are higher, the ceiling is below one and the firm
defaults while it is solvent (its equity is nonzero).

In Figures 9(a) and 9(b), we analyze the role of the
belief distribution and the exposure constraint.We set
the liquidation cost α � 0.08. In Figure 9(a), we in-
vestigate the effect of the variance of the belief dis-
tribution σb on the debt regimes. Larger heterogeneity
of the beliefs translates in both a lower long-run le-
verage and in a higher ceiling. The instability level is

the same for all levels of belief heterogeneity. This
means that the stability measure (given in (27)) in-
creases with the belief heterogeneity as the ratio xt

xt
between the instability level and the long-run level is
higher. When lenders are less certain about the true
mean of the asset returns, they impose a precautionary
lower long-run leverage on the firm. At the same time,
the ceiling is higher, so they allow the firm’s debt-to-
asset process to spend a longer time in the explosive
regime. This makes the early warning indicator more
effective. More belief heterogeneity makes debt more
stable. Under more heterogeneity, capital decreases
more slowly as we go toward more optimistic beliefs.
As we approach a point mass, the debt provision is
most unstable: Assume that the marginal lender is
slightly below the real-world mean. Then, a very
small increase in the marginal lender is accompanied
by a large loss of lender capital.

6.1. Debt Capacity of One Unit of the Asset
As the lenders select themarginal belief β(Xt), the total
debt provided isVtΦ(β(Xt)). Recall that, so far, we have
chosen 1 as scaling constant of the lenders’maximum
exposure. We now vary the scaling of the maximum
exposure: Lenders scale their maximum exposure
to the borrower by γVt. The total debt provided is
γVtΦ(β(Xt)). The quantity γΦ(β(Xt)) is then the debt
capacity at time t of one unit of the firm’s asset, and
we clearly have γΦ(β(Xt)) ≤ γ. Therefore, γ is an upper
limit on the long-run leverage level.
Figure 9(b) shows the effect of this scaling. We set

the variance of the belief distribution σb � 0.15. We
verify that the long-run leverage levels are below
the respective values for γ. As expected, the ceiling

Figure 8. (Color online) The Effect of the Asset Purchase Cost (a) and the Liquidation Cost (b) on Long-Run Level, Instability
Level, and Ceiling

Notes. Levels are read where vertical lines intersect the diagonal. (a) Liquidation cost α is zero. (b) Asset purchase cost α1 is zero.
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increases with γ. However, it is not the ceiling that
drives debt stability but the ratio between the insta-
bility level and the long-run level; see (27). The in-
stability level is the same for all γ considered,whereas
the long-run leverage level decreases as γ decreases.
When lenders are more constraint, they impose a
precautionary long-run leverage, which is lower.When
they are less constraint, they allow for a higher long-run
leverage of the firm. Debt is more unstable when lenders’
constraints relax.

6.2. Debt Dynamics
We now investigate the dynamics of the balance sheet.
For the following simulations, we set σb � 0.2, and
α � 0.08. For these parameters, the debt process has
both a mean-reverting and an explosive regime. We
assume that the company starts with an initial asset
value of V0 � 1. The company’s expected equity at the
time horizon T under the (real-world) probability
measure is given by E[ VT −DT−1(1 + r)( )11{τ>T}]. We
find this value by Monte Carlo simulation to be

Figure 9. (Color online) The Effect of the Belief Distribution and Exposure Constraint on Long-Run Level, Instability Level,
and Ceiling

Notes. Dashed vertical lines mark the long-run average. Dotted vertical lines mark the ceiling. (a) The effect of the belief variance σb. (b) The
effect of the exposure constraint γ. σb = 0.15.

Figure 10. (Color online) Debt Dynamics with Mean-Reverting Leverage

Notes. The dynamics is in steady state (the long-run level, the instability level, and the ceiling are time-independent) for all but the last two
periods (t ∈ [9.5, 10]). (a) A typical trajectory of the asset unit value and associated balance-sheet dynamics. (b) The debt-to-asset ratio and the
marginal belief exhibit a stationary behavior. In gray, the mean-reverting regime (0, xt), with xt the instability level.
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around 2.1. By raising short-term debt, the company
therefore raises its annual expected rate of return on
its initial equity from the fundamental asset’s return of
3% to the rate of 1

10 log 2.1 � 7.4%. This increase in
the expected return rate comes at the expense of in-
troducing default risk; the Monte Carlo simulation
yields a default probability under the real-world mea-
sure of around 0.01 over the 10-year period. The cor-
responding annualized default probability p satisfies
(1 − p)10 � 1 − 0.01—that is, approximately p � 0.1%.
The expected value of one unit of the fundamental
asset at the time horizon is 1.35, whereas the expected
equity is 2.1. The Monte Carlo results indicate that
only a small fraction of the paths end with default. In
the vast majority of paths, for the considered pa-
rameters, the debt-to-asset process stays in the mean-
reverting regime for the entire period.

In Figures 10 and 11, we plot in (a) the sample paths
of the cumulative asset return (or the value of one unit
of fundamental asset over time) Ft � Y1, . . . ,Yt along
with the resulting debt process Dt, the equity process
Vt −Dt−1(1 + r). In (b), we plot the debt-to-asset pro-
cess (which reflects the marginal belief, also plotted).

Figure 10 shows a typical sample in which the debt-
to-asset process stays in the mean-reverting regime
for the entire period. Figure 11 selects one of the paths
with default and shows that on that path the debt-to-
asset switches from the mean-reverting regime to the
explosive regime.

Steady-State Dynamics. For identification of the re-
gimes of the debt-to-asset, we plot the long-run level xt,

the instability level xt, and the ceiling. These quan-
tities are deterministic, and of course coincide in
Figures 10(b) and 11(b). We require to be sufficiently
far away from the time horizon to ensure that the
system is in the “steady state” and that time to ma-
turity is not a driver of the debt-provision stability
(the debt capacity is trivially equal to zero atmaturity,
because all debt is repaid at the horizon).
For time-independent spreads, risk-free rate, and

belief distribution, the long-run level xt, the instability
level xt, and the ceiling for the debt-to-asset ratio are
also time-independent when the system is away from
the time horizon. For the parameters we considered,
the dynamics is in steady state for all but the last 2
(out of 40) periods.
Studying the stability of the debt-to-asset process

necessitates sufficiently many periods to be far away
from the time horizon. When we refer to the collapse
in debt capacity, we refer to the collapse in debt ca-
pacity that occurs in steady state and not at maturity,
as illustrated in Figure 11(a).

7. Concluding Remarks and Implications
We have endogenized the short-term debt by show-
ing uniqueness of a Nash equilibrium in leveraging/
deleveraging games with heterogeneous lenders. We
have shown that the debt-to-asset has amean-reverting
and an explosive regime that we fully determine.
We constructed a parsimonious dynamicmodel that

quantifies short-term debt stability. The character-
istics of the firm’s asset can be estimated from data.
The same is true for the frequency. Our work has

Figure 11. (Color online) Debt Dynamics with Default

Notes. The dynamics is in steady state (the long-run level, the instability level, and the ceiling are time independent) for all but the last two
periods (t ∈ [9.5, 10]). Default happenswhile in steady state, as the debt-to-asset switches from themean-reverting regime to the explosive regime
as it crosses the instability level. (a) A sample trajectory of asset unit value and associated balance-sheet dynamics in which the firm defaults.
(b) After a sequence of negative fundamental returns, the debt-to-asset ratio reaches the instability level. After this, the debt-capacity collapses,
ultimately leading to the firm’s default. In gray, the mean-reverting regime (0, xt), with xt the instability level.
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implications for data collection. Much work remains to
be done, in particular, to retrieve from data the belief
distribution, which is the critical driver of our results.
Our results make the case to collect additional data that
would allow us to calibrate the lenders’ belief distri-
bution, which we have shown is a critical driver of
debt stability. In an empirical study, we have used as
an input to the model the actual fundamental returns
of the aggregate assets of FINRA members (security
dealers). Our model provides an early warning signal
for the collapse of the short-term debt just before the
actual event in Q3 2008. This signal is robust and can
be used aswell in the case of a single-brokerdealer that
finances itself via significant amounts of short-termdebt.

Like other works on the lenders’ debt-provision
game, we restrict the firm from issuing equity. In con-
trast to debt financing, with equity financing, only
optimists invest. Because there is no put option, a model
with equity financing would not show spiraling ef-
fects unless there is a shift in the belief distribution.

In future work, we plan to extend the model to a
setting where lenders learn the distribution of the
asset return. Learning will reduce the heterogeneity
of lenders’ beliefs, and, thus, we expect that the long-
run level will increase and that debt will be more
unstable. We also expect that early indicator of de-
fault to disappear as lenders learn the true mean, as
anymarginal lender would have the same belief as an
oracle who detects the early indicator.

Having shown the existence of an instability level for
the debt-to-asset ratio, perhaps the most important prac-
tical implication emerging out of our study is the timing
for intervention strategies. Such strategies would in-
volve changing the firm’s portfolio in conjunction with
a signal to influence the lenders’ belief distribution.
These strategies would need to be implemented as
soon as leverage approaches the instability level.
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