Towards Reverse Engineering Controller Area
Network Messages Using Machine Learning

Clinton Young
Department of Electrical and
Computer Engineering
Iowa State University
Ames, Iowa 50011
Email: cwyoung @iastate.edu

Abstract—The automotive Controller Area Network (CAN)
allows Electronic Control Units (ECUs) to communicate with
each other and control various vehicular functions such as engine
and braking control. Consequently CAN and ECUs are high
priority targets for hackers. As CAN implementation details
are held as proprietary information by vehicle manufacturers,
it can be challenging to decode and correlate CAN messages to
specific vehicle operations. To understand the precise meanings
of CAN messages, reverse engineering techniques that are time-
consuming, manually intensive, and require a physical vehicle
are typically used. This work aims to address the process of
reverse engineering CAN messages for their functionality by
creating a machine learning classifier that analyzes messages and
determines their relationship to other messages and vehicular
functions. Our work examines CAN traffic of different vehicles
and standards to show that it can be applied to a wide
arrangement of vehicles. The results show that the function of
CAN messages can be determined without the need to manually
reverse engineer a physical vehicle.

Index Terms—Controller area network, automotive security,
machine learning, classification, reverse engineering

I. INTRODUCTION

The modern day vehicle has become increasingly techno-
logically advanced with the integration of embedded systems.
With the adoption of the Controller Area Network (CAN) in
vehicles to enable communication between Electronic Control
Units (ECUs), vehicles now have more features but are also
more vulnerable to cyber attacks. Koscher and Checkoway et
al. [1], [2] were the first to demonstrate physical and remote
attacks on real vehicles. Additionally, there are numerous other
works that have demonstrated the vulnerabilities in modern
day vehicles due to the integration with CAN [3]-[6].

In this paper, we present our efforts that have focused on the
reverse engineering and classification of CAN messages. The
problem is that even though CAN is standardized, the imple-
mentation may vary for different manufacturers and vehicle
models. These implementations are kept secret, and conse-
quently CAN messages for every vehicle need to be analyzed
and reverse engineered in order to obtain information. Due
to the lack of publicly available CAN specifications, attackers
and researchers need to reverse engineer messages to pinpoint
which messages will have the desired impact. The reverse
engineering process is needed by researchers and hackers for
all manufacturers and their respective vehicles to understand

Jordan Svoboda
Department of Electrical and
Computer Engineering
Towa State University
Ames, Iowa 50011
Email: jordans2 @iastate.edu

Joseph Zambreno
Department of Electrical and
Computer Engineering
Iowa State University
Ames, Towa 50011
Email: zambreno@iastate.edu

what the vehicle is doing and what each CAN message means.
The knowledge of the specifications of CAN messages can
improve the effectiveness of security mechanisms applied to
CAN.

The rest of this paper is organized as follows. Section
2 surveys related work in automotive security and machine
learning. Section 3 discusses our approach in classifying CAN
messages. We present our results in Section 4. Finally, in
Section 5 we summarize and conclude our efforts.

II. RELATED WORKS

Cyber attacks towards modern vehicles executed by inject-
ing spoofed messages to the CAN bus has spawned numerous
research efforts towards improving the security of modern
vehicles. Koscher and Checkoway et al. [1], [2] were the
first to demonstrate physical and remote security breaches in
automotive systems. Both research groups injected malicious
messages to take control of various vehicle systems such as
brakes and engines. Valasek and Miller [7] demonstrated real-
world attacks on multiple vehicles via remote hacking to cause
a Jeep to brake and crash into a ditch. Their work led to a
Chrysler recall of 1.4 million vehicles.

To detect attacks, some approaches use machine learn-
ing approaches. Kang et al. [8] trained a deep neural net-
work structure to classify normal vs attack messages using
probability-based features of the message bits. Using normal
and attack data, the system was able to be trained to recognize
specific attacks. Kang et al. [9] proposed an automated process
for correlating CAN messages with its ECU by creating
a machine learning classifier trained on multiple vehicles.
Their approached utilized the time stamp, CAN ID, and data
fields and determined that a nearest neighbor approach would
have the best success as a classifier. They evaluated multiple
machine learning approaches using the same training data to
draw their conclusion. Lestyan et al. [10] proposed a method of
identifying and extracting vehicle sensors from raw CAN data
to infer personal driving behavior. Their approach examined
each message data bit for the probability that it was 1. Using
a random forest based approach, their algorithm attempted to
classify individual messages.

These detection approaches require the analysis of raw CAN
messages by manually inspecting high volumes of data to

reverse engineer message syntax and semantics to reconstruct
the vehicle operations and contextualize the messages. Liter-
ature on network traffic analysis and automatic recognition of
the nature of given network packets already exists. However,
these works are inapplicable to the automotive network as
CAN has less structure in its protocols. For example, CAN
messages do not include conventional networking protocol fea-
tures such as source or destination addresses or port numbers.
Conventional networks also have a clear separation between
network and application layers which is not the case with
CAN.

There exists separate research on the reverse engineering
and translation of CAN messages. Marchetti and Stabili [11]
proposed READ, a novel algorithm for automatic reverse
engineering of CAN data frames. READ analyzes traffic traces
containing unknown CAN messages to identify and label the
signal type based on their data frames. Their method isolates
counters and cyclic redundancy checks (CRCs), among other
values, to label the signals. Verma et al. [12], proposed a
simple algorithm to extract CAN message signals and label
them using OBD-II PIDs. Their algorithm, ACTT: Automo-
tive CAN Tokenization and Translation, leverages diagnostic
information to parse CAN by breaking messages into tokens
and then learning the translation from bits to vehicle function.
Their signal extraction only identifies signals that do not have
a contiguous set of bits. Pese et al. [13], developed a tool
called LibreCAN, which translates CAN messages. This tool
captures the bit-flip rate of messages and uses them along with
body data from a phone to classify messages.

The main limitation of these works is the few features that
can be extracted and analyzed primarily from CAN traffic.
This is due to the fact that access to an operating vehicle
is typically required to manually reverse engineer the CAN
IDs and to validate results. This issue can be mitigated if
access to the complete specifications of CAN messages were
available. However, as previously mentioned, CAN IDs and
their functions are manufacturer trade secrets. Additionally,
manufacturers have an incentive to prevent reverse engineering
of their CAN messages, as it is the main deterrent for
hackers. This paper proposes the novel contribution of reverse
engineering CAN messages without the need for a physical
vehicle.

A. Ground Truth Data

1) DBC file: A .dbc file (database for CAN) contains the
translation for all CAN messages in a particular vehicle. This
file is typically held secret by manufacturers and varies per
make and model. DBCs contain the signal definitions, segment
position (start and end bits), binary to decimal encoding
scheme, and the conversion information for translating the
decimal to meaningful physical value. The DBC also includes
message timing information such as frequency and whether the
message timing is constant or triggered by an event, and the
corresponding ECU(s) responsible for a message. Nearly all
research requires reverse engineering some of the information
of DBCs.

2) J1939: CAN data can follow the Society of Automotive
Engineers standard SAE J1939 [14], which is the vehicle bus
recommended practice for vehicle component communication
and diagnostics. SAE J1939 has been widely adopted by diesel
engine manufacturers for use in large tractors and trucks. This
standard defines that all J1939 packets, except for the request
packet, should contain eight bytes of data and a standard
header which contains a Parameter Group Number (PGN),
that is embedded in the message’s 29-bit identifier. A PGN
identifies a message’s function and associated data. J1939
attempts to define standard PGNs to encompass a wide range
of automotive and other vehicle purposes.

III. PROPOSED APPROACH

In this paper we propose to reverse engineer CAN messages
without manually testing on a physical vehicle and without the
use of a DBC file. We describe the process of extracting CAN
message features and their utilization in machine learning tech-
niques. We utilize machine learning techniques to reduce the
obstacle of reverse engineering CAN messages by identifying
important CAN messages and their functions. The contribution
of our work can be broken down into:

o A supervised learning approach that extracts and iden-
tifies CAN data changes and labels specific IDs corre-
sponding to vehicular functions.

o An unsupervised clustering approach that classifies un-
known CAN messages using the labels learned with our
supervised learning approach. Unknown CAN functions
are extrapolated from known CAN messages.

Our work provides an early demonstration that by utilizing
machine learning techniques, it is possible to reverse engineer
CAN message functions without needing to manually test
against a physical test vehicle. Our work indicates that the
absence of a DBC file does not necessarily prevent a researcher
or attacker from deriving the meaning of individual CAN
messages.

A. Feature Extraction

1) Message Feature Extraction: We first needed to extract
the CAN fields and features required for our approach, as
machine learning approaches require specific input feature
formatting to properly generate classification. To do so we
developed a simple a CAN message parser that extracts CAN
IDs, time stamps, and data fields for every message. These
CAN fields are used to create ordered dictionaries and lists of
CAN messages with the same ID. For our feature engineering
process, we determined it was pertinent to choose features
that are standard to all vehicles. The CAN fields our parser
extracts are in all CAN messages regardless of vehicle’s make
or model. Additionally, these CAN fields are used to extract
other features such as message timings and distances.

2) CAN Function Extraction: Without the full CAN spec-
ification, researchers need to reverse engineer CAN messages
to determine their functions and respective data details. The
typical method of reverse engineering this information is
to manually test individual CAN messages on a physical

vehicle. We propose an alternative method to reverse engineer
CAN messages with the use of labeled time frames that
correspond to specific vehicular functions and a data change
algorithm that detects CAN messages with changing data bits.
We hypothesize that there are specific CAN messages that
correspond to specific vehicular functions. For example, when
a vehicle is braking, the brake controller is active, therefore a
certain ECU is transmitting braking signal to the brake from
the brake pedal. The data field of this certain CAN ID is
changing as the brake pedal pressure is increasing and the
brake is being engaged. We utilize a CAN data bit change
detector in combination with labeled CAN logs to reverse
engineer a few CAN messages.

Our supervised learning approach takes as input a labeled
CAN data set that detailed what the vehicle was doing in
certain time frames. Our approach monitors all the CAN mes-
sages in the time frame for data bit changes. The contribution
here is that given minimal knowledge on what the vehicle is
doing in certain time frames and by detecting CAN messages
with changing data bits, it is possible to reverse engineer
some CAN message functions. We describe our data change
detection approach in Algorithm 1.

Algorithm 1: Obtaining data values for CAN data
frame and checking for data bit changes
Data: CAN Data Raw
Result: List of CAN IDs and training features
training features = ["CAN ID”:[], "Time Stamp’:[],
”Data”:[], ”Vehicle Function:[]]
for Every message in CAN Log do
Parser(message): To obtain individual CAN fields
for Every CAN ID do
Create dictionary of CAN fields and data
Continuously monitor data field bits for
changes

if message data bit changes then

‘ Record CAN ID and vehicular function
else

| pass

Return CAN data fields and training features

Our algorithm associates labels with CAN messages with
respect to their vehicular function. CAN function extraction
is important in the next step of our approach as it provides
CAN message labels to help classify unknown CAN messages.
Given that our data sets are unlabeled, this approach provides
the labeling needed for our machine learning approaches.

B. CAN Clustering

We utilize hierarchical clustering towards reverse engineer-
ing CAN message functions. A basic understanding of how
K-means clustering works is needed to explain hierarchical
clustering. K-means can be broken down into these sections:

1) Decide number of clusters (k)

2) Select random points from the data as centroids

3) Assign all points nearest cluster centroid
4) Calculate centroid of new clusters
5) Repeat steps 3 and 4

This is an iterative process; it keeps running until the centroids
of newly formed clusters do not change or the max number of
iterations is reached. The issue with K-means clustering is that
it always tries to make the clusters the same size. Additionally,
the number of clusters needs to be defined at the beginning of
the algorithm. Realistically, the number of clusters is unknown.
Hierarchical clustering addresses these issues. We implement
agglomerative clustering, a type of hierarchical clustering, to
cluster CAN messages together by related vehicular functions.
Each CAN ID is assigned as a single cluster and as we iterate
through the IDs and their respective distance measurements,
then CAN ID clusters are merged starting with the nearest
neighbor. By grouping CAN IDs together, related CAN IDs
are clustered together by related function. Therefore, if certain
CAN IDs have a known function, the functions of unknown
CAN IDs can be determined.

We combine a supervised learning approach that reverse
engineers some CAN ID message functions and then using
these extracted labels towards classifying other unknown CAN
message functions with the use of agglomerative clustering.

C. Reverse Engineering CAN Messages

The core of our work is to reverse engineer CAN messages
with respect to their vehicular function. Raw CAN is unlabeled
and requires proprietary information from the manufacturer to
reverse engineer. This is a major impediment to researchers
and attackers, and we address this obstacle. Our work utilizes
raw CAN data, captured from a variety of vehicles to derive
CAN clusters. The goal is to circumvent the need for a physical
test vehicle and manufacturer specific data towards reverse
engineering CAN messages.

Our process involves reading CAN data, calculating the
distances between all CAN IDs, merging nearest IDs together
to form clusters, and using these clusters to classify unknown
CAN IDs. We utilize Euclidean distance as our distance metric
between CAN messages.

Messagel =ml = (x1,y1)
Message2 = m2 = (x2,y2)

Fuclideandistance = \/(:vl —x2)% + (y1 — y2)?

The CAN IDs with the smallest distance are merged and this
process iteratively continues until there are k clusters left. The
clusters left are grouping the different CAN messages together
by their respective functions.

Our work is two-fold, the labeling of the clusters and the
visualization of clusters. A tool utilized for our clustering is a
dendrogram. This is used to visualize hierarchical clustering
and determines the optimal number of k clusters. The tree-
like structure records the sequences of merges of the leaves,
in this case the CAN messages. In addition to depicting how
the CAN IDs merge, the dendrogram also details the distances
between IDs and clusters.

Algorithm 2: Pseudocode for creating a dendrogram
and returning predicted data clusters

Algorithm 3: Clustering CAN IDs and labeling of
messages

Data: Distance values

Result: Dendrogram and cluster labels

Create distance matrix;

matrix = DataFrame(squareform(distance values));

Create dendrogram,;

dendrogram = scripy.dendrogram(linkage(distance
values));

Create clusters;

cluster = AgglomerativeClustering();

cluster.predict(matrix);

Return dendrogram and clusterings

Our clustering approach creates clusters of CAN messages
that are related by their vehicular function. Unfortunately,
without labels for these CAN IDs, it is not possible to deter-
mine what these clusters represent, as they are just groupings
of unknown CAN messages. To solve this issue, we utilize the
CAN message labels we derived previously in our supervised
learning approach. Using these labels, which relate specific
vehicular functions to certain CAN IDs, we applied labels to
unknown CAN messages.

In the following section, we analyze the CAN labels and
the clusters that our approaches generated. We detail our pro-
cess of verification and validation of the reverse engineering
process. We demonstrate that our algorithms are correlating
CAN messages to specific vehicular functions, and that these
correlations can create labels for the CAN messages. We are
also able to cluster CAN messages by their relative and related
functions. Combining the clusters and labels enable reverse
engineering of CAN message functions.

IV. RESULTS AND EVALUATION

To evaluate our approach, we utilized three separate CAN
data sets. Our initial work utilized a simulated CAN data log
with ten different CAN IDs, simulating a driving mode and
a braking mode. This data log had messages with different
frequencies and message intervals to simulate real data. There
were five IDs specifically related to driving and another four
IDs related to braking, with one message that was transmitted
during both modes. This data was used to verify and validate
our algorithms as a control group. Given that raw CAN data is
dependent on the vehicle it was captured from, our simulated
data gives us a baseline to understand the workings of our
algorithms when applied towards raw captured CAN data.

Our clustering algorithm and dendrogram required a dis-
tance matrix to be created. This matrix represents all the
distance metrics for the CAN IDs (see Fig. 1). The matrix
was passed to our dendrogram creator and clustering algorithm
to cluster the CAN messages. The dendrogram, shown in
Fig. 2, is created from the leaves first to create the cluster
tree. The dendrogram shows that there are two clusters of the
CAN IDs, which is expected since we simulated two separate

Data: CAN Data Raw

Result: CAN Message Clusters

["Cluster”: ”Label”, ”CAN IDs”:[]]

for Every message in CAN Log do

Parser(message): To obtain individual CAN fields

for Every CAN ID do
L Calculate the distance of this message from

every other message

for Every Message do
Merge closest CAN IDs
Continue merges til K clusters are created

Return CAN data fields and training features

driving modes of braking and accelerating. Our clustering
algorithm confirmed the dendrogram results. CAN IDs 1-6
were designated as accelerating and were clustered into one
group, and CAN IDs 7-10 were designated as braking and
clustered into another group. The simulated data was used to
confirm our hypothesis and approach before applying them to
real CAN data.

10 1 3 2 5 4 7 6 9 8
.00 .75 65 0.70 0.50 55 .20 .25 05 0.15
75 .00 10 0.05 0.25 20 55 .50 70 0.60
.65 .10 .00 0.05 0.15 .10 .45 .40 .60 0.50
.70 .05 .05 0.00 0.20 .15 .50 .45 .65 0.55
.50 .25 .15 0.20 0.00 .05 .30 .25 .45 0.35
.55 .20 .10 0.15 0.05 .00 .35 .30 .50 0.40

o] 0 0

0 0 0

0 0 0

0 0 0

o

.20 .55 .45 .50 .30 .35 .00 .05 .15 .05
.40 .45 .25
.60 .65 .45
.50 .55 .35

.25
.05
.15

.50
.70
.60

.30
.50
.40

.05
.15
.05

.00
.20
.10

.20 .10
.00 .10
.10 .00

@O oG W
©coo0o0000000
OO0 00 00000
ococoooo000O00Q
0000000000
oLcoooo000O0CQ
o000 O0 000 OO0
oLcoooo000O0CQ

Fig. 1: Simulated distance matrix representing all distances
between each CAN ID.

We also obtained CAN traffic logs from Oak Ridge National
Labs [15]. Their configuration consisted of a vehicle set up
on a dynamometer, a treadmill system that simulates real
road operation. The CAN traffic was captured by connecting
through the On-Board Diagnostic port under the dash of the
vehicle. The data was not reverse engineered, as the CAN
messages are unknown, but it captured the vehicle driving in
different modes, from accelerating to braking. This data was
labeled based on the vehicle operations. Typically CAN data
captured is not reverse engineered, and to reverse engineer this
data requires manual injection. Each captured CAN message
is injected into the vehicle to see how the vehicle responds.
Our supervised learning approach simulated this process of re-
verse engineering through manual injection by detecting CAN
messages with changing data bits due to different vehicular
driving modes. Upon examining our data set, we determined
there were 133 unique CAN IDs. Applying our approach, we
identify the significant CAN IDs and correlate them to specific
vehicular functions.

We identified these CAN IDs, Table I, and reasoned that

Driving IDs|Cluster

Braking IDs| Cluster

— ~) - v

© o o ~
=

©

Fig. 2: Dendrogram for simulated data. This figure shows ho
two major groupings for the CAN IDs.

Vehicular Function CAN IDs
Drive 17C
Brake 467, 3C3
Shifter 171, 230
Windows and door lock | 331, 332, 333

TABLE I: Reverse engineered CAN IDs and their correspond-
ing vehicular function.

they have the specified functions. This conclusion was derived
from a combination of knowing what the vehicle was doing at
specific times in the log and utilizing the data change algorithm
to detect which IDs were changing during these times.

By identifying these CAN IDs, it enabled assignment of
labels for the clusters generated with our clustering algorithm.
With more data, our algorithms would improve and be able to
identify more CAN ID labels. The methodology applied here
to derive CAN message functions can be applied to various
different vehicles as it does not require any vehicle specific
information on its messages.

The clustering algorithm was then applied to the Oak
Ridge data set to obtain the CAN message clusters. First,
a dendrogram was created with the distance matrix for the
Oak Ridge data to visualize the clustering of messages. The
dendrogram, shown in Fig. 3, indicated that the CAN IDs
clustered into two major clusters and two minor clusters. The
clustering algorithm returned the respective cluster labels for
all the messages. Our algorithm separated out driving and
braking CAN IDs into different clusters. CAN ID 17C for
driving and IDs 230 and 171 for gear shifter are in the
green cluster, whereas braking 467, 3C3 and other uncommon
functions such as door lock were clustered in red.

Using these labels, we classify the functions of unknown
CAN IDs. To check our clusters, we had a few other CAN IDs
reverse engineered manually. CAN ID 430, we identified as
shifting to drive. This ID was clustered together with shifter
(171, 230) and drive (17C). CAN ID 465 was identified as
shifting to reverse. This ID was clustered together with brake
(467, 3C3). These results demonstrates that even given raw
unlabeled CAN data, it is possible to reverse engineer some
CAN messages and, using these known IDs, extrapolate the

w each CAN ID clustered with the other IDs. It also shows the

Cluster Label[Vehicle Function]

CAN IDs

0 (Driving)

216, 217, 214, 213, 37B, 3CC, 92, 326, 336,
40A, 483, 366, 265, 422, 415, 416, 3B6, 410,
411, 596, 312, 43D, 43E, 82, 83, 81, 85, 3B3,
24A, 3B7, 24C, 24B, 3B8, 368, 369, 367,
423,365, 581, 42C, 440, 42D, 440, 42D, 242,
59E, 2A1, 434, 430, 453, 455, 333, 332, 179,
178, 175, , 4B0, 185, 78, 91, 165, 166,
167, 25B, 25C, 25A, , 33B, 35E, 156,
3AB, 3AA, , 7D, 7A, 5B3, 47, 42, 41,
20A, 471, 14B, 352, 200, 202, 204, 350, 77,
76, 485, 484, 4B, 4C, 4A, 486, 3A8, 476,
471, 474, 475, 2EC

1 (Brake)

439, 454,3C7,3C3, 43C, 3EB, 3EA, 84, 2F1,
447, 446, 386, 431, 331, 482, 465, 467, 466,
488, 38D, 384, 472, 473

2

5A5

3

5B5

7

86, 87, 4BE, 4BF, 600

TABLE II: Cluster labels from Oak Ridge.

functions of other unknown IDs.

While these results are promising, the lack of reverse
engineered data made verifying the results challenging. A
proprietary manufacturer CAN specification would be needed
to completely evaluate the classification of the messages. To
address this issue, we obtained CAN data that followed the
J1939 standard. This standard means that the PGNs are well-
defined and therefore we can validate our clustering results.
J1939 messages have an identifier, called a PGN (parameter
group number), that defines the message function. Where
automotive CAN messages can identify the message and the
sending ECU depending on the manufacturer of the vehicle,
J1939 messages define the message function and the source
of the message.

The 3rd data set was CAN data captured from a John Deere
tractor as it performed tillage operations at different sites.
This data set is raw, has no labels, and contains over 300
CAN IDs. Using the same algorithms and process, a distance
matrix was created for this data. This distance matrix was then
used to create a dendrogram to visualize the CAN clustering
and determine the number of cluster labels. The algorithm
returned four clusters, Table III. The largest cluster contained
all the driving critical functions, such as braking and engine
controller. The other three clusters were much smaller and
contained proprietary IDs, memory accesses, and data transfer

[Driving]

Ve [:

|
W

Fig. 3: Captured raw data dendrogram, clustered the CAN IDs into 5 groupings. The figure identifies the 2 major clusters

related to Brake and Driving.

Cluster Label CAN Function
0 Driving Functions (Engine and brake controllers)
1 Proprietary IDs
2 Memory Access IDs
3 Data Transfer IDs

TABLE III: Reverse engineered J1939 CAN IDs and their
corresponding vehicular function.

IDs in separate clusters. The results using this labeled data set
validates our CAN clustering by confirming that related CAN
messages are being clustered together. Given that J1939 CAN
data has known functions, it is possible to check and confirm
that CAN IDs with related functions cluster together.

These results show that even with CAN logs from different
types of vehicles with different standards, our algorithms were
able to classify, identify, and label specific CAN IDs by their
respective functions. Our algorithms do not require insider
knowledge nor reverse engineered data to classify CAN IDs.
The only input required was raw CAN data logs. Our results
indicate that machine learning algorithms are able to classify
CAN messages using raw CAN logs as the input.

V. CONCLUSION

This paper presents a novel application of machine learn-
ing towards the reverse engineering of CAN messages. Our
proposed approach does not require prior insider knowledge
about the CAN messages. We proposed a supervised method
to extract CAN message function by analyzing change in their
data fields respective to vehicular function. The results of this
method are used to apply labels in our unsupervised learning
method.

We propose utilizing the machine learning approach of
clustering to cluster CAN messages together based on their
function. This approach results in numerous clusters of CAN
IDs, and with our previous labels we are able to classify the
function for these unknown CAN messages. Our work is an
initial step towards automating reverse engineering of CAN
message features without the need to physically and manually
test messages on a live vehicle.

ACKNOWLEDGMENT

This material is supported by the National Science Founda-
tion under Grant No. CNS 1645987.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, and H. Shacham, “Experimental
security analysis of a modern automobile,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2010.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
the USENIX Conference on Security, Aug. 2011.

H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle
network,” in Proceedings of the International Conference on Information
Networking (ICOIN), Jan. 2016.

U. Larson, D. Nilsson, and E. Jonsson, “An approach to specification-
based attack detection for in-vehicle networks,” in Proceedings of the
IEEE Intelligent Vehicles Symposium, Jun. 2008.

M. Miiter, A. Groll, and F. Freiling, “A structured approach to anomaly
detection for in-vehicle networks,” in Proceedings of the International
Conference on Information Assurance and Security (IAS), Aug. 2010.
T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi, “A
method of preventing unauthorized data transmission in controller area
network,” in Proceedings of the IEEE Vehicular Technology Conference
(VIC), May 2012.

C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” in Black Hat USA, 2014.

M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PLoS ONE, vol. 11,
no. 6, Jun. 2016.

T. U. Kang, H. M. Song, S. Jeong, and H. K. Kim, “Automated reverse
engineering and attack for CAN using OBD-IL” in Proceedings of the
IEEE Vehicular Technology Conference (VIC), Aug. 2018.

S. Lestyan, G. Acs, G. Biczok, and Z. Szalay, “Extracting vehicle sensor
signals from CAN logs for driver re-identification,” in Proceedings of the
International Conference on Information Systems Security and Privacy,
2019.

M. Marchetti and D. Stabili, “READ: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083-1097, Apr. 2019.

M. Verma, R. Bridges, and S. Hollifield, “ACTT: automotive CAN
tokenization and translation,” in Proceedings of the International Confer-
ence on Computational Science and Computational Intelligence (CSCI),
Dec. 2018.

M. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. Shin,
“LibreCAN: Automated CAN message translator,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
Nov. 2019.

SAE International, “Serial control and communications heavy duty
vehicle network,” Jun. 2012. [Online]. Available: https://www.sae.org/
standards/content/j1939_201206/

Oak Ridge National Labs, “User facilities at the National Transporta-
tion Research Center,” https://www.ornl.gov/facility/ntrc/research-areas/
vehicle-systems, 2020.

