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Abstract
Aim: Ongoing alterations to Earth’s biogeochemical cycles (e.g., via fertilization, burn-
ing of fossil fuels, and pollution) are expected to impact plants, plant consumers and 
all subsequent trophic levels. While fertilization experiments often reveal arthropod 
nutrient limitation by nitrogen and phosphorus via effects on plant nutrient density 
and biomass, these macronutrients are only two of many nutrients important to ar-
thropod fitness. Micronutrients are key to osmoregulation and enzyme function and 
can interact synergistically with macronutrients to shape the geography of arthropod 
abundance. We examine arthropod response to macro- and micronutrient fertiliza-
tion as a function of nutrient type, application amount, duration, frequency, and plant 
responses to fertilization with the goal of addressing how ongoing alterations to bio-
geochemical cycles will shape future grassland food webs.
Location: Global.
Time period: 1987–2018.
Major taxa studied: Invertebrates.
Methods: We compiled a database of 62 studies to test the response of six arthropod 
trophic groups to multiple fertilizer types (compositions of varying macro- and micro-
nutrients), quantities, application frequencies, and application durations. Additionally, 
we examined the role of plant nutrient content and biomass in mediating arthropod 
responses to fertilization.
Results: Micronutrients applied alone had no effects on plant biomass or arthropod 
abundance. However, when added with macronutrients, micronutrients amplified 
the effect of N, P and K in promoting arthropod abundance, a synergy that did not 
affect plant biomass. Micronutrients thus catalysed the ability of macronutrients to 
promote arthropod abundance across all guilds studied.
Main conclusions: In grasslands, the rules governing the abundance of autotrophs 
and their consumers appear to differ fundamentally in their response to Earth’s 
changing biogeochemistry. By revealing the importance of micronutrients for arthro-
pods using a global dataset, we highlight a stoichiometric mismatch between limits of 
plants and arthropods for metal cations whose biogeochemistry, along with N and P, 
are being actively rearranged in the Anthropocene.
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1  | INTRODUC TION

Arthropod abundance exhibits extreme variation across Earth’s eco-
systems (Kaspari et al., 2000; Lind et al., 2017). One of the import-
ant drivers of this variation is the nutrient content of the plants that 
support consumers (Awmack & Leather, 2002; Joern et al., 2012). 
Terrestrial nutrient availability continues to be rearranged in the 
Anthropocene (Steffen et al., 2015), underscoring the need to un-
derstand how nutrients shape ecological communities. While the 
study of plant nutrient limitation has a long history in the field of 
ecology, there is a comparatively limited understanding of how the 
abundances of different consumer trophic groups vary across a 
spectrum of plant productivity and nutrient content.

Grassland plant productivity is commonly constrained by the 
macronutrients N and P (Elser et  al.,  2007; Gruner et  al.,  2008; 
Harpole et al., 2011; LeBauer & Treseder, 2008; Zheng et al., 2019). 
Fertilization experiments across 42 globally distributed grasslands 
revealed nutrient limitation of plant productivity in 31 sites, pri-
marily by N and P, while a combination of K and micronutrients 
(henceforth +mN) had little effect on productivity (Fay et al., 2015). 
Nutrients that promote plant production may be passed up through 
food webs, increasing the abundance of consumers such as herbi-
vores, their predators, and ultimately, detritivores (Welti, Kuczynski, 
et al., 2020). While micronutrients, defined here as elements rarer in 
living tissues (Kaspari & Powers, 2016) such as Na, Ca, Cu, Fe, Mg, 
Mo, S and Zn, are not commonly limiting to plant growth, they are 
taken up by plants with repercussions for plant consumers.

There are several reasons why consumer responses to nutrient 
addition may be different from those of the plants they eat. First, 
consumer nutritional needs differ from plants in that their growth is 
more constrained by the availability of metals such as Na, Cu and Zn 
(Kaspari & Powers,  2016). Consumers may track increases in these 
micronutrients. For example, gradients of foliar Mg and Na in addi-
tion to N, P and K predicted the abundance of prairie grasshoppers 
(Joern et al., 2012; Welti, Roeder, et al., 2020) while foliar Ca, S and 
N predicted the abundance of arthropods in Neotropical leaf-litter 
(Kaspari & Yanoviak,  2009). Second, some micronutrients such as 
Na are only used by plants under deficiency of other micronutrients 
(Maathuis, 2014), and at high levels can be toxic to plants but promote 
higher insect herbivory (Borer et al., 2019). Grassland arthropod abun-
dance increases both with experimental fertilization of macronutrients 
like N and P (Haddad et  al.,  2000; Lind et  al.,  2017; Ritchie,  2000), 
and micronutrient fertilization (C. M. Prather, Laws, et al., 2018; Welti 
et al., 2019). However, the role micronutrients may play has received 
comparatively little attention in studies of insect nutrition.

Here we conduct a meta-analysis to explore how fertilization 
experiments collectively inform the role of nutrients in limiting the 
abundance of grassland arthropods, a diverse group that significantly 

contributes to grassland processes and ecosystem function (Belovsky 
& Slade, 2000; Meyer et al., 2002; Tscharntke & Greiler, 1995; Whiles 
& Charlton, 2006). We chose grasslands as our focal ecosystem both 
due to their importance globally, covering c. 37% of Earth’s terrestrial 
surface, and for the practical reason that they have been the location 
of many fertilization experiments examining arthropod responses 
(White et al., 2000). Our primary goal was to test for the ubiquity of N, 
P, K and micronutrient limitation – or some combination of the above 
– on total arthropod abundance and the abundance of six common 
feeding guilds: chewing herbivores, sucking herbivores, omnivores, 
predators, pollinators and detritivores. In addition to examining ar-
thropod abundance responses to fertilizer type, we sought to quantify 
the magnitude of the response to an added nutrient as a function of 
(a) total application quantity (Boersma & Elser, 2006; Foy et al., 2003), 
(b) the number of times nutrients were added (Murphy et al., 2012; 
Yodzis, 1988), and (c) time passed since fertilizer application (Andrey 
et al., 2014; Isbell et al., 2013). For the subset of studies that reported 
plant nutrient concentrations and biomass, we analysed how both 
plant responses to fertilization and underlying environmental gradi-
ents of plant productivity and nutrient content mediated arthropod 
responses to fertilization.

We predict that arthropod responses to fertilizer addition will 
vary with fertilizer type (Lind et  al.,  2017). Arthropod abundance 
may increase with increasing amount and duration of fertilization 
or, depending on fertilizer type and application, may decrease as nu-
trient levels exceed arthropod needs (Andrey et al., 2014; Boersma 
& Elser,  2006; Murphy et  al.,  2012). We predict that arthropod 
abundance will increase as plants become more nutrient rich and 
produce greater mass in response to fertilization (Lind et al., 2017). 
Additionally, we expect responses to vary with ecological gradients 
of plant nutrient content and biomass. We predict decreasing arthro-
pod attraction to N fertilization with increasing background levels of 
plant %N (in control plots) (Anderson et al., 2018). How underlying 
gradients of plant biomass may mediate arthropod responses to fer-
tilization is less clear. Dependent on aboveground plant productivity, 
more habitat structure and food could result in increased arthropod 
abundance (R. M. Prather & Kaspari, 2019); alternatively, additional 
plant biomass may dilute nutrient concentrations resulting in damp-
ened arthropod responses to fertilization (Welti, Roeder, et al., 2020).

2  | METHODS

2.1 | Data compilation

We searched for peer-reviewed journal articles published up to 7 
February 2020 and catalogued in the ISI Web of Science using the 
search terms “fertilization” OR “fertilisation” OR “nutrients” OR 

K E Y W O R D S

eutrophication, fertilizer, herbivore, insect, invertebrate, nitrogen, NPK, nutrient limitation, 
prairie, trophic
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“nutrient addition” OR “micronutrient” OR “nitrogen” OR “phospho-
rus” OR “potassium” OR “NPK” AND “arthropods” OR “insects” AND 
“prairie” OR “grassland” OR “pasture” OR “savannah” OR “savanna” 
OR “steppe” OR “old field”. In total, we found 688 publications. To 
provide a more adequate representation of fertilization effects and 
help reduce publication bias, we additionally searched the LTER 
(Long Term Ecological Research, https://ltern​et.edu) database for 
raw experimental data. We then evaluated studies and included only 
those that were non-cage field experiments in non-agricultural grass-
land ecosystems (although the experimental area could be mowed, 
grazed, or have been previously used for agriculture). Additionally, 
we selected only studies that included both a fertilization treat-
ment and a control (no fertilization) treatment, and from which we 
were able to obtain either raw arthropod abundances or both means 
and standard deviations of arthropod abundances in treatment and 
control plots. In the absence of raw data, we used WEbPloTDigiTizER 
(Rohatgi, 2011) to extract data from figures and requested data from 
authors. If a study included treatments other than fertilization (e.g., 
water addition), we used only fertilization and control treatment 
data. From the initial 688 peer-reviewed publications and datasets, 
46 publications from experiments on five continents (see Supporting 
Information Appendix S1: Figure S1) matched our criteria in report-
ing the response of arthropod abundance to fertilization in tropical 
and temperate grasslands (Table 1).

Altogether, the 46 publications encompassed 62 separate stud-
ies (e.g., the response at a different geographic location; Table  1; 
see Supporting Information Appendix S1: Figure S1). Fertilization 
treatments included the macronutrients N, P, K, and the micronu-
trients Ca, Mg, Mo and Na, alone or in combination. Treatments 
also included a common micronutrient mix [Scott's Micromax® (BFG 
Supply Co., Burton, OH, USA) containing Fe, Mn, Zn, Cu, B, Mo, Ca 
and Ni]. For studies that reported multiple time points of arthropod 
sampling, only the final time point was included to eliminate tem-
poral pseudoreplication. We considered experiments within the 62 
studies independent observations when they differed by fertiliza-
tion type, fertilizer amount added, arthropod sampling method, and/
or plot size. Altogether, this resulted in 278 independent treatment–
control pairs (see Supporting Information Appendix S1: Table S1).

For each study, we extracted information on experimental loca-
tion (site name, geographic coordinates, and continent), fertilization 
information [type (identity of element or combination of elements), 
amount of fertilizer added in g/m2/year, frequency of fertilization, 
and duration of fertilization in months) and experimental design (ar-
thropod sampling method, plot size, number of control and experi-
mental plots). For any nutrient addition that included N, we recorded 
whether the N was fast- or slow-release. We extracted the average 
and standard deviation of arthropod abundance, separated by tro-
phic guild. We divided arthropods into eight trophic guilds, namely: 
chewing herbivore, sucking herbivore, pollinator, omnivore, preda-
tor, parasitoid, detritivore and unknown. When trophic guilds were 
not defined by authors and taxonomic resolution allowed classifi-
cation, we assigned trophic guilds based on life history descriptions 
(Triplehorn & Johnson, 2005); see Supporting Information Appendix 

S2 for trophic assignments. As arthropod response to fertilization is 
likely indirectly mediated through the plant responses to fertilization, 
when available, we also extracted the average and standard deviation 
of plant biomass, % N, ppm P and ppm K. Several studies reported 
plant responses in a separate publication; we included these when 
researchers measured plant responses in the same season and year 
as arthropod responses. For each of our 62 studies, we calculated the 
mean and standard deviation of total arthropod abundance, abun-
dance of each arthropod feeding guild, plant biomass, plant %N, and 
plant P and K tissue concentrations (ppm) in fertilized plots and con-
trol plots in order to calculate effect size as Cohen’s d (Cohen, 1988) 
of arthropod and plant response to fertilization. We used Egger’s 
regression test in the R package metafor (Viechtbauer, 2010) and a 
funnel plot to test for publication bias effects (Egger et al., 1997) and 
found none (Supporting Information Appendix S1: Figure S2).

2.2 | Fertilizer models

To identify which fertilizer predictor variables best estimated ar-
thropod responses to fertilization (effect sizes), we used an Akaike 
information criterion (AIC) framework (Burnham & Anderson, 2002). 
Predictor variables included the fixed effects of fertilizer type (e.g., 
NP), total amount of fertilizer applied as log10 transformed g/m2/
year, frequency of fertilization per year, and duration of fertilization 
in months. We additionally included log10-transformed plot size (m2) 
and sampling method as random effects because they both had sig-
nificant effects on total arthropod effect size. Continent on which 
the experiment was conducted did not affect total arthropod effect 
size (R2 =  .02, F(4,274) = 1.5, p =  .21) and thus was not included as 
a random predictor variable in AIC models. Models with ∆AIC cor-
rected for small sample size (∆AICc) < 2 are considered equally parsi-
monious top models (Burnham & Anderson, 2002). However, when a 
non-top model contains one additional parameter and shares a simi-
lar log likelihood to the top model, it is not considered competitive; 
thus we did not report these uninformative models (Arnold, 2010; 
Burnham & Anderson, 2002; Leroux, 2019). We performed a sepa-
rate analysis for total arthropods and for the four most abundant 
trophic guilds (chewing herbivores, sucking herbivores, omnivores, 
and predators). We conducted AICc analysis using the R package 
MuMIn (Bartoń, 2016), and fitted linear mixed models using the R 
package lme4 (Bates et al., 2015). As ammonia release from fast re-
lease fertilizers can be toxic to arthropods (Warren, 1962), we used 
a t-test to compare the effect of fast versus slow release nitrogen 
fertilizers on total arthropod abundance.

To visualize arthropod responses to fertilizer type, we plotted ef-
fect sizes of total arthropods and individual arthropod feeding guilds 
for all fertilizer types represented in > 5 studies. While our literature 
search did not identify ≥ 5 studies with Ca fertilization alone, 6 stud-
ies including 21 independent observations conducted fertilizer addi-
tions that included Ca (e.g., NCa and NPKCaNa fertilizers). Because 
Ca is crucial for maintaining physiological function and metabolism 
in arthropods (Clark, 1958), we included an exploratory analysis of 

https://lternet.edu
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TA B L E  1   Included studies and their location, applied fertilizer type and arthropod sampling method

Study Number Latitude Longitude Country Continent Fertilizer type Sampling method

Andrey et al. (2014) 1 46.14 7.2 Switzerland Europe NPK Bugvac

Barrios-Garcia 
et al. (2017); 
Plant biomass 
from: Crutsinger 
et al. (2013)

2 38.32 −123.07 USA N. America NPK, C Bugvac

Boyer et al. (2003) 3 35.32 −92.55 USA N. America NPK Bugvac

Burkle et al. (2013); 
Plant biomass from: 
Souza (2010)

4 35.85 −84.18 USA N. America N, P, NP Hand collecting

Callaham 
et al. (2003); Plant 
biomass from: Blair 
and Zeglin (2019)

5 39.08 −96.55 USA N. America N, P, NP Berlese

Chen et al. (2009) 6 27.73 117.95 China Asia NPK Sweep net

Cuesta et al. (2008) 7 43.09 −5.98 Spain Europe N Pitfall

Cuevas-Reyes 
et al. (2011)

8 −15.93 −47.88 Brazil S. America N, P Hand collecting

Dawes-
Gromadzki (2002)

9 −34.1 139.43 Australia Australia NPK Pitfall, sweep net

Dennis et al. (2004) 10 51.95 −3.62 Wales Europe N Pitfall

Dittrich and 
Helden (2012)

11 52.15 0.16 England Europe N Bugvac

Evans and 
Sanderson (2018)

12 55.22 −1.68 England Europe N, P, K, NPK Sweep net and pitfall

Everwand 
et al. (2014)

13 51.44 9.33 Germany Europe NPK Sweep net, pantrap

Fay et al. (1996) 14 39.08 −96.55 USA N. America NPK + mN Sweep net

Fountain 
et al. (2008)

15 55.47 −2.22 Scotland Europe NCa Pitfall

Haddad et al. (2000) 16 45.4 −93.2 USA N. America NPKCaMgS + mN Sweep net

Hartley et al. (2007) 17 29.23 −95.12 USA N. America NPK Sweep net

Harvey and 
MacDougall (2015)

18 43.41 −80.47 Canada N. America N Sweep net

Jonas and 
Joern (2007)

19 39.08 −96.55 USA N. America N, P, NP Sweep net

Kaspari, Roeder, 
et al. (2017)

20 35.19 −97.45 USA N. America NP, Na, NPNa Bugvac

Kersch and 
Fonseca (2005)

21 −29.48 −51.1 Brazil S. America PKCa Hand collecting

La Pierre and 
Smith (2016)

22 40.84 −104.72 USA USA N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

La Pierre and 
Smith (2016)

23 38.94 −99.3 USA USA N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

La Pierre and 
Smith (2016)

24 39.08 −96.55 USA USA N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

(Continues)



     |  5PRATHER et al.

Study Number Latitude Longitude Country Continent Fertilizer type Sampling method

La Pierre et al. (2015) 25 39.08 −96.55 USA N. America NPK Bugvac

Lane (2006) 26 35.97 −84.28 USA N. America N, C Sweep net

Lee et al. (2014) 27 51.51 −0.64 England Europe N Sweep net

Lejeune et al. (2005) 28 39.93 −105.19 USA N. America N, P, NP Hand collecting

Lemanski and 
Scheu (2015)

29 51.73 9.38 Germany Europe NPK Berlese

Lessard-Therrien 
et al. (2018)

30 46.14 7.2 Switzerland Europe NPK Pitfall

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

31 44.28 −121.97 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

32 41.79 −93.43 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 33 45.4 −93.2 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 34 39 −123.08 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 35 39.08 −96.55 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

36 44.21 −122.13 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

37 18.47 −66.48 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 38 38.89 −122.42 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

39 39.44 −120.27 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 40 38.94 −99.3 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017); 
Plant P and K 
from: Anderson 
et al. (2018)

41 40.84 −104.72 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

TA B L E  1   (Continued)

(Continues)
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total arthropod and trophic group abundance effect sizes to fertil-
izers containing Ca in addition to other elements. Additionally, to 
visualize arthropod responses to fertilizer amount, we examined lin-
ear relationships between arthropod effect size and the amount of 
fertilizer in g/m2/year for the three most common elements applied 
– N, P and K – for all experiments adding these either alone or in 
combination with other elements.

2.3 | Plant models

To test how both the underlying gradients and responses of plant 
biomass and plant nutrient content to fertilization mediated ar-
thropod response to fertilization we used linear models within an 
AIC framework. To assess how arthropods responded across en-
vironmental gradients of productivity and nutrient limitation, we 

Study Number Latitude Longitude Country Continent Fertilizer type Sampling method

Lind et al. (2017) 42 39.25 −121.32 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Lind et al. (2017) 43 35.99 −78.93 USA N. America N, P, K + mN, 
NP, NK + mN, 
PK + mN, 
NPK + mN

Bugvac

Loaiza et al. (2011) 44 39.08 −96.55 USA N. America N, P, NP Ring count

Moran and 
Scheidler (2002)

45 35.06 −92.44 USA N. America NPK Bugvac

Oliver et al. (2003); 
Oliver et al. (2005)

46 −34.67 148.9 Australia Australia Pmo, PCaMo Pitfall and Berlese

Oliver et al. (2003); 
Oliver et al. (2005)

47 −34.92 139.03 Australia Australia P Pitfall and Berlese

Patrick et al. (2012); 
Plant biomass from: 
Patrick et al. (2008)

48 41.18 −81.65 USA N. America NPK Pitfall

C. M. Prather, Laws, 
et al. (2018)

49 29.23 −95.11 USA N. America Ca, CaNa, K, KCa, 
KCaNa, KNa, Na, 
NNa, NP, NPCa, 
NPCaNa, NPK, 
NPKCa, NPKCaNa, 
NPKNa

Sweep net

R. M. Prather and 
Kaspari (2019)

50 33.89 −96.84 USA N. America NPK + mN Bugvac, pitfall

R. M. Prather 
and M. Kaspari 
unpublished

51 33.89 −96.84 USA N. America NPK + mN Bugvac, pitfall

Ribeiro et al. (2014) 52 −21.62 −42.08 Brazil S. America PK Berlese

Ritchie (2000) 53 45.4 −93.2 USA N. America N Sweep net

Ritchie (2018) 54 45.4 −93.2 USA N. America N Sweep net, bugvac

Simons et al. (2016) 55 51.93 11 Germany Europe N Sweep net

Song et al. (2018); 
Plant biomass from: 
Song et al. (2012)

56 37.62 101.32 China Asia N Hand collecting

Welti et al. (2019) 57 USA N. America NaCl Bugvac

Williams and 
Cronin (2004)

58 47.92 −97.32 USA N. America Na, N, NNa Hand collecting

Wilson (2018) 59 45.4 −93.2 USA N. America NPKCaMg Sweep net

Wimp et al. (2010) 60 39.51 −74.32 USA N. America NP Bugvac

Vanwingerden 
et al. (1992)

61 52.01 5.82 Netherlands Europe N Hand collecting

Woodcock 
et al. (2009)

62 50.98 −3 England Europe NPK Bugvac, pollard walk

TA B L E  1   (Continued)
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included the predictors of aboveground plant biomass (g/m2) and 
plant %N in control plots. To assess how arthropods responded 
to plant responses to fertilization, we included the predictor vari-
ables of the effect sizes of aboveground plant biomass and plant 
%N. We assessed responses of total arthropods and the four most 
abundant trophic guilds (chewing herbivores, sucking herbivores, 
omnivores, and predators) in separate models. We additionally in-
cluded herbivore effect size as a predictor variable in the predator 
model as predators are likely not directly responding to plant nu-
trient content but rather indirectly tracking plant quality via her-
bivore responses. Plant biomass was reported in 64% of studies 
and %N was reported in 44% of studies. Although we extracted 
information on plant P and K, low replication precluded them from 
our AIC analysis (11 and 9 studies, respectively; see Supporting 
Information Appendix S1: Table S2).

To visualize results, we plotted effect sizes of aboveground plant 
biomass for all fertilizer types represented in >  5 studies. We ex-
amined linear relationships between total arthropod effect size and 
aboveground plant biomass effect size as well as plant N, P and K 
effect sizes for the most common fertilizer types. We also examined 
linear relationships between total arthropod effect size and plant 
biomass in control plots as well as plant N, P and K concentrations in 
control plots, again using the most common fertilizer types. We ran 
all analyses in R version 3.6.1 (R Core Team, 2019).

3  | RESULTS

N was added in 71% of studies (added alone in 16% of studies), P was 
added in 65% of studies (added alone in 10% of studies), while K was 
added in 57% of studies (added alone in 0.7% of studies). Micronutrients 
were applied most frequently in combination with NPK and added alone 
in only six studies (KNa, Na, and Ca + mN; see Supporting Information 
Appendix S1: Table S1). Aboveground plant biomass response to fertili-
zation varied from no response in the case of K + mN and PK + mN ferti-
lization to a positive response, with NP addition resulting in the greatest 
increase in plant biomass (effect size: +1.3; Figure 1a). Arthropod abun-
dance varied widely with fertilizer type (Figure 1b), from low abundance 
with K + mN fertilization (effect size: −0.1) to high abundance with the 
addition of NPK + mN (effect size: +1.3).

3.1 | K + mN went from inhibiting alone to 
enhancing arthropod abundance when added with NP

Following the strong positive effect from NPK  +  mN, NP fertiliz-
ers generated the second largest increase in total arthropod abun-
dance (effect size: +0.6), and NPK the third largest increase (effect 
size: +0.4). In contrast, K + mN fertilization significantly decreased 
abundance (effect size: −0.1). Thus, micronutrients showed evi-
dence of catalysing the effects of N and P, doubling their effect size, 
and tripling the capacity of NPK to promote arthropod abundance 
(Figure 1b). This strong, positive effect of NPK + mN was the only 

result shared among all six trophic groups, where it yielded the high-
est average effect size in five of the six guilds (Figure 2).

3.2 | Response to fertilization type, frequency, 
amount and duration

Fertilizer type was the primary predictor of variation in arthropod 
abundance across fertilization experiments included in our study 
(Table 2a). Similar to total arthropods, sucking herbivore response 
varied with fertilizer type, but increasing frequency of fertilizer ap-
plication decreased sucking herbivore abundance (Table  2b). Top 
models predicting the effect sizes of chewing herbivores (Table 2c), 
omnivores (Table  2d), and predators (Table  2e) included the null 
model (containing only random effects) and thus were not well 
explained by our suite of fertilizer variables. With the caveat that 
responses to Ca addition were examined when Ca was added in 
conjunction with other nutrients to allow sufficient sample sizes for 
analysis, fertilizers containing Ca increased arthropod abundance 
(see Supporting Information Appendix S1: Figure S3).

3.3 | Sucking herbivores profited from more 
nutrient combinations than chewing herbivores

Chewing herbivores such as grasshoppers increased strongly on 
only two fertilizer types, both containing N, K and micronutrients 
(Figure  2a). In contrast, arthropods that get their nutrients from 
phloem or xylem, like leafhoppers, were able to convert six of the 
eight added nutrient combinations, most notably including those 
with P, into abundances higher than control plots (Figure 2b).

3.4 | Response of other arthropod guilds

Pollinator response was only measured at n ≥ 5 responses on the domi-
nant nutrient addition types (N, NPK, or NPK + mN fertilization) and 
increased on N and NPK + mN additions (effect sizes: +0.2 and +0.6, 
respectively; Figure 2c). Surprisingly, omnivores declined when N was 
applied solo (effect size: −0.3) but increased when N was added in any 
combination with P (effect sizes: +0.6 to +0.9; Figure 2d). Predators 
generally tracked the response of lower trophic groups and increased 
on NPK and NPK + mN treatments (effect sizes: +0.5 and +0.8, respec-
tively; Figure 2e). Finally, while fewer types of fertilization experiments 
sampled detritivore responses, detritivores consistently increased with 
fertilization for all measured combinations (Figure 2f).

3.5 | Responses to plant nutrient 
content and biomass

The underlying environmental gradient of plant %N drove responses 
of total arthropod abundance to fertilization (Table 3a; see Appendix 
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F I G U R E  1   Forest plot showing effect sizes (Cohen’s d) of (a) plant biomass and (b) total arthropod abundances by fertilizer type. Red 
stars denote significant effect sizes, while black circles indicate non-significant effect sizes. We included fertilizer types used in > 5 studies. 
The number of replicates provided within the figure refers to the number of experimental responses containing each fertilizer type. Error 
bars are the standard error of the mean of the effect sizes of individual experiments

F I G U R E  2   Forest plot showing effect sizes (Cohen’s d) of arthropod trophic group abundances by fertilizer type. Responses are provided 
for the trophic groups of (a) chewing herbivores, (b) sucking herbivores, (c) pollinators, (d) omnivores, (e) predators, and (f) detritivores. 
Red stars denote significant effect sizes, while black circles indicate non-significant effect sizes. We included fertilizer types used in ≥ 5 
studies. Number of replicates provided within the figure refers to the number of experimental responses containing each fertilizer type and 
trophic group. Error bars are the standard error of the mean of the effect sizes of individual experiments
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S1: Figures S4 and S5). Both sucking and chewing herbivores had 
increasing attraction to N-fertilized plots in grasslands with low un-
derlying plant %N (as measured in control plots; Table 3b,c). Chewing 
herbivores responded negatively to increasing plant biomass effect 
size (Table 3c). Omnivores and predators had increasing responses 
to fertilizers at areas of low aboveground plant biomass (Table 3d,e). 
Additionally, omnivore abundance on fertilized plots increased with 
plant %N effect size (Table 3d). Besides stronger responses in prai-
ries with less aboveground plant biomass, predator abundance on 
fertilized plots increased in response to higher herbivore effect size 
(Table 3e).

3.6 | Variation due to experimental design

Amounts of N, P and K applied (g/m2/year) varied over 100-fold 
across the surveyed studies (see Supporting Information Appendix 
S1: Figure S6). Whereas the quantity of N had no effect on the re-
sulting effect size, there was a small but positive effect of fertilizer 
quantity on arthropod abundance for both P and K (R2 = .03 and .03, 
respectively; see Supporting Information Appendix S1: Figure S6). 
The effect size of total arthropod abundance more than doubled for 
experiments using slow release compared to quick release forms of 
nitrogen (t = −4.03, df = 191, p < .001; see Supporting Information 
Appendix S1: Figure S7). Plot size varied from 1 to 10,000  m2 in 
the surveyed studies and effect size decreased with increasing plot 
size (R2 =  .04, F1,277 = 12.3, p <  .001; see Supporting Information 
Appendix S1: Figure S8). Sampling method significantly affected ar-
thropod abundance with the largest effect size resulting from stud-
ies using bugvac sampling (i.e., vacuum sampling; effect size: +0.61) 
while the smallest effect sizes resulted from bugvac combined with 
pollard walks (effect size: −1.28) and hand collecting (effect size: 
−0.54; R2  =  .07, F9,269  =  2.4, p  =  .01; see Supporting Information 
Appendix S1: Figure S9).

4  | DISCUSSION

Fertilization experiments help us to identify key elements that con-
strain abundance in ecological communities. Our meta-analysis reveals 
N and P shortfalls commonly limit grassland arthropod abundance. 
However, unlike plants, a treatment combining K and micronutrients 
(K + mN) catalyses the effect of N and P; specifically, K + mN is neutral 
to negative when applied by itself but doubles or triples the effects on 
arthropod abundance when applied in tandem with N and P. Moreover, 
this synergistic effect is consistent across the major trophic subsets of 
arthropod communities. We also show key differences in the response 
of herbivore feeding guilds with sucking herbivores showing responses 
to a wider variety of fertilization types than chewing herbivores. In 
total, our results confirm recent studies showing that nutrient co-lim-
itation in consumer communities is widespread (Gruner et al., 2008; 
Joern et  al.,  2012; Kaspari, Bujan, et  al.,  2017; C. M. Prather, Laws, 
et al., 2018). The rules translating biogeochemistry to plant biomass in 
grasslands differ in a fundamental way from those predicting arthro-
pod abundance, highlighting the role of micronutrients in catalysing 
macronutrients used by consumers but not plants.

4.1 | Micronutrients had synergistic effects with 
macronutrients

The macronutrients N and P are the primary biogeochemical drivers 
of global variation in grassland plant production (Elser et al., 2007). 
We found similar responses among grassland arthropods, with P 
playing a stronger role in promoting abundance while N applied by 
itself had no net effect. However, when accounting for nitrogen 
type, slow release forms increased arthropod abundance. This is 
probably because slow release fertilizers are less susceptible to nu-
trient leaching and fast release fertilizers release ammonia, which 
can be toxic to arthropods (Warren, 1962).

TA B L E  2   Akaike information criterion (AIC) models of fertilizer effects on arthropod effect sizes (Cohen’s d) for each trophic group 
including (a) total arthropods, (b) sucking herbivores, (c) chewing herbivores, (d) omnivores, and (e) predators

Trophic groups and predictor 
variables AICc LL df Marginal R2

Conditional 
R2 ΔAICc wi

(a) Total arthropods (n = 278)

type 1,032.9 −478.8 33 .1 .32 0 0.4

(b) Sucking herbivores (n = 193)

type, frequency (–) 732 −347.3 17 .33 .43 0 0.32

(c) Chewing herbivores (n = 214) Null model .3

(d) Omnivores (n = 131) Null model .28

(e) Predators (n = 218) Null model .06

Note: Effects of continuous variables are depicted with (+) and (–). Driver variables in top models include the fixed effects of fertilizer type (type), 
frequency of fertilization per year (frequency), total fertilizer amount applied (amount) and duration of fertilization (duration). The random effects of 
plot size and sampling method were included in all models. The number of replicates refers to the number of experimental responses used in analysis. 
AIC statistics include: AICc = AIC statistic corrected for small sample size; LL = log likelihood; df = degrees of freedom; marginal R2 = adjusted 
regression coefficient considering fixed effects; conditional R2 = adjusted regression coefficient considering fixed and random effects; ΔAICc = AICc 
minus top model AICc; wi = model weight. An empty model (model with only random variables and no fixed fertilizer-related variables) was included 
in the top models predicting chewing herbivores, omnivores, and predators; thus, we do not report AICc models for these groups. However, we 
report the conditional R2 for the model containing only the random effects (plot size and sampling method).
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Our most novel result is the strong, synergistic effects of 
K + mN upon arthropods when added in combination with N and 
P. Compared to plants, animal tissue generally has higher concen-
trations of the metals in the micronutrient component of fertilizers, 
with these metals playing important biological roles as osmoregula-
tors and enzymatic co-factors (Kaspari & Powers, 2016). Moreover, 
that K + mN has little detectable effect on plant productivity sug-
gests plant biomass does not mediate their effects. This begs the 
question, which components of the NPK + mN combination drive 
arthropod responses? There are many candidates, as the micronutri-
ent combination includes 10 elements as cations and anions – that 
were not often applied individually or separate from K. However, 
arthropod effect sizes were marginally lower with NPK compared 
to NP fertilization, suggesting that K is not driving the synergistic 
effect of K + mN. Moreover, the micronutrients we examined have 
different soil signatures across geographic gradients (Smith et al., 
2014). While we have yet to identify which micronutrients, when 
added in combination with N, P, and K, are so effective at enhanc-
ing arthropod abundance, common garden experiments, field ex-
periments and geographic analysis could be several ways to further 
study which specific elements enhance arthropod abundance and 
their mechanisms.

4.2 | Arthropod feeding guilds varied in their 
response to nutrient additions

Differential arthropod responses among trophic guilds suggest a 
number of working hypotheses. First, the effect sizes of NPK + mN 
dropped from c. 1.0 standard deviation (SD) for herbivores and om-
nivores to < 1.0 SD for predators and detritivores. This suggests that 
nutrient limitation has the strongest effects on the abundance of 
herbivores and attenuates up the food chain. This is similar to pre-
vious work showing greater Na limitation among plant consumers, 
versus their predators (Clay et al., 2014). However, pollinators and 
detritivores had the smallest response to NPK  +  mN fertilization, 
potentially because there were fewer observations of these two 
groups. Many sampling methods such as sweep net and bugvacs 
– which were common methods in included studies – often do not 
target pollinators and detritivores and only catch small numbers of 
these groups.

The group showing the most ubiquitous nutrient limitation – 
the sucking herbivores – feed on solutions of xylem and phloem. 
Chewing herbivores get their nutrients from mouthfuls of tis-
sue, with nutrients wrapped in cellulose and lignins and are often 
deterred by secondary compounds including tannins, phenolics, 

Trophic group and predictor 
variables AICc LL df R2 ΔAICc wi

(a) Total arthropods (n = 89)

plant N control (–) 337.6 −165.64 3 .05 0.00 0.31

(b) Sucking herbivores (n = 74)

plant N control (–) 225.3 −109.50 3 .18 0.00 0.32

(c) Chewing herbivores (n = 82)

plant N control (–), plant biomass 
ES (–)

281.3 −136.38 4 .16 0.00 0.34

plant N control (–) 282.8 −138.24 3 .12 1.51 0.16

plant N control (–), plant biomass 
control (–)

283.2 −137.35 4 .14 1.93 0.13

(d) Omnivores (n = 62)

plant N ES (+), plant biomass 
control (–)

205.6 −98.43 4 .13 0 0.21

plant N ES (+) 206.3 −99.95 3 .09 0.75 0.15

plant N ES (+), plant biomass 
ES (+)

207.2 −99.23 4 .11 1.60 0.10

(e) Predators (n = 74)

herbivore ES (+), plant N control 
(+), plant biomass control (–)

245.5 −117.33 5 .16 0 0.25

herbivore ES (+), plant N control 
(+)

247.1 −119.25 4 .11 1.56 0.115

Note: Effects of continuous variables are depicted with (+) and (–). Driver variables include the 
effects of plant biomass in control plots, plant biomass effect size, plant %N in control plots, and 
plant %N effect size (ES). Herbivore ES was also included as a driver variable for predator effect 
sizes. The number of replicates refers to the number of experimental responses used in analysis. 
AIC statistics include: AICc = AIC statistic corrected for small sample size; LL = log likelihood; df = 
degrees of freedom; R2 = adjusted regression coefficient; ΔAICc = AICc minus top model AICc; wi 
= model weight.

TA B L E  3   Akaike information criterion 
(AIC) models of plant biomass and nutrient 
effects on arthropod effect sizes (Cohen’s 
d) for each trophic group including (a) total 
arthropods, (b) sucking herbivores, (c) 
chewing herbivores, (d) omnivores, and  
(e) predators
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oxalates (Rosenthal & Berenbaum, 2012). We suggest that sucking 
herbivores are better able to obtain N and P in soluble form, free 
from recalcitrant or defensive molecules, and are thus more prone 
to increase on plots with added N and/or P. Moreover, when added 
alone, K + mN decreased sucking herbivore abundance. Given that K 
is a plant osmolyte that promotes water uptake and turgor pressure, 
sucking herbivores on +K plots may suffer from more dilute xylem 
and phloem, with a commensurate decrease in the concentrations 
of amino acids and other nutrients (Butler et al., 2012; Huberty & 
Denno, 2006).

4.3 | Underlying plant gradients mediate arthropod 
responses to fertilization

Background level of plant %N was the most important driver of total 
arthropod response to the application of fertilizers containing N. 
Arthropods had enhanced attraction to N fertilized plots (increased 
N limitation) in environments with low background levels of foliar 
N. This response was driven by the plant consumers, which are the 
most likely to be N limited. Omnivores and predators increased with 
application of N-containing fertilizers more in grasslands with lower 
aboveground plant biomass. While the mechanism for this effect 
is unclear, omnivores and predators may better track herbivores in 
less complex habitats with low plant biomass. Alternatively, besides 
changes in foliar %N and biomass, which we account for in our model, 
it could be that fertilization affects grassland plants differently 
across the productivity gradient, such as through changes in habi-
tat heterogeneity (Davies et al., 2007) or plant diversity (Hillebrand 
et al., 2007) with consequences for trophic structure.

4.4 | Plant responses to fertilization mediate 
arthropod responses to fertilization

While arthropods responded to fertilizer addition via fertilizer ef-
fects on plant biomass and plant %N (as measured by plant effect 
sizes), this response was not consistent across guilds. Chewing her-
bivores responded negatively to fertilization-driven increases in 
plant biomass. While the studies that measured both biomass and 
plant nutrient content do not provide a large sample size for testing, 
we speculated that this may be due to increased nutrient dilution in 
plant tissue with enhanced growth (Welti, Roeder, et al., 2020) and/
or increased plant volume creating additional habitat that supported 
more predators (Post et  al.,  2000). Alternatively, fertilization may 
allow plants to produce higher levels of secondary compounds, de-
terring chewing herbivores (Mur et al., 2016). Omnivores increased 
both in response to increases in plant biomass and higher plant %N 
with fertilization. Finally, unlike other trophic guilds, predators had 
increased responses to fertilization at higher background levels of 
plant %N. While we did not expect predators to respond to plant %N 
content, the presence of many predators in a plot may itself enhance 
plant %N content, as prey increase consumption of carbohydrates 

relative to protein in the presence of predators (Hawlena & 
Schmitz, 2010).

4.5 | Experimental design affected 
arthropod abundance

Ecologists exploring nutrient limitation must make many small deci-
sions regarding the types of nutrients, their amounts, frequency, and 
the size of plots to use. All can shape the results.

Slow release, and/or frequent small pulses of fertilizer, partic-
ularly N, reduces fertilizer loss through run-off (Haynes,  1985), 
and can enhance plant biomass (Cook & Sanders, 1991; Johnson & 
Carrow, 1988; Slaton et al., 2002) and plant quality (Haynes, 1985; 
Neilsen et  al.,  1995). Accordingly, quick release nitrate fertilizers 
– susceptible to disappearing both through leaching and through 
denitrification – yielded half the effect size of slow release urea. 
Given that urea is the primary form of N in animal urine (Steinauer & 
Collins, 1995), such applications are also likely more similar to natu-
rally occurring forms of N sources for grassland arthropods.

The amount of fertilizer applied had a small but significant ef-
fect on the effect sizes for P and K, but not N. However, com-
pared to fertilizer type, the amount of variance accounted for 
by fertilizer amount was small. Background variation in nutrient 
levels across sites results in differential responses to fertilization 
by arthropod communities, but here we have sufficient data only 
from plant %N to examine this variation. Additional studies of ar-
thropod responses across gradients of plant and soil chemistry 
could further elucidate the role of underlying chemistry in driv-
ing arthropod abundance. The standard application of 10  g/m2/
year from the globally distributed Nutrient Network experiment 
(Borer et  al.,  2017) predominates in grassland nutrient addition 
experiments. We need more experiments that apply amounts of 
fertilizer at other levels and gradient studies to understand the 
future impacts of grasslands to anthropogenic fertilization appli-
cation and deposition. For example, extremely high levels of Na 
addition (4,200 g/m2/year; Williams & Cronin, 2004) significantly 
decreased arthropod abundance while low levels of Na addition 
(10 g/m2/year; Welti et al., 2019) increased arthropod abundance. 
Experiments with more fertilizer levels will allow researchers to 
identify any potential tipping points, whereby additional fertilizer 
application would reduce arthropod abundance. More experi-
ments that test predictions as to how nutrient amount ramifies 
through food webs are particularly germane in an era of anthro-
pogenic fertilizer application and deposition (Steffen et al., 2015).

Additionally, response to fertilization experiments varied with 
plot size and sampling method. Small plot sizes had greater re-
sponses to fertilizers and thus likely allowed more immigration 
from outside plots due to increased edge to area ratio. Arthropod 
sampling method also affected responses, with the largest effect 
sizes from bugvac, pitfall and sweep net sampling methods relative 
to bugvac combined with pollard walks or hand collecting. Each 
sampling method targets different arthropod guilds, body sizes, 
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and dispersal mechanisms (e.g., walking versus flying). As sampling 
method can impact arthropod abundance results, it is important to 
take sampling method into account when designing future fertiliza-
tion experiments. Specifically, future experiments should include 
sampling methods to target understudied groups such as pollinators 
and detritivores and use a combination of methods to capture the 
full response of the arthropod community across body sizes and dis-
persal abilities.

4.6 | Caveats, conclusions and future directions

Meta-analyses are useful both for synthesizing results across studies 
and for the gaps they reveal in the literature (Cadotte et al., 2012). 
More whole food web studies, tracking the nutrients from soil 
through plants and into consumers (e.g., La Pierre & Smith,  2016; 
Lind et al., 2017; Welti et al., 2019) are needed to understand these 
mechanisms. In addition, grasslands in South America, Asia, and 
Africa make up about 80% of global grasslands (Dixon et al., 2014) 
but are underrepresented in the global literature. Additionally, re-
searchers and sampling methods tend to target herbivores and pred-
ators, leaving pollinators, parasitoids and detritivores poorly studied, 
despite their potential importance in providing ecosystem services 
and in food web dynamics. While fertilization can alter production of 
plant secondary compounds, which also affect herbivore responses, 
too few studies included in this paper measured plant secondary 
compounds for analysis of their role in altered herbivory. Clearly, 
there is much to do and large-scale distributed experiments as well 
as smaller coordinated collaborative experiments have much to offer 
in advancing the field. Finally, if micronutrients are key components 
that regulate consumer abundance, then understanding which el-
ements are important and precisely how they work is paramount. 
Progress, using simple addition experiments, has been made along 
those lines for Na, a micronutrient key to animal health and perfor-
mance (Borer et al., 2019; Kaspari, 2020; Kaspari, Bujan, et al., 2017; 
C. M. Prather, Laws, et al., 2018; R. M. Prather, Roeder, et al., 2018; 
Welti et al., 2019). More such experiments are needed to examine 
the effects of Ca, Mg, Mo and other micronutrients on grassland 
arthropod guilds (Kaspari & Powers, 2016).

Arthropods contribute significantly to grassland biodiver-
sity, community-level trophic dynamics, and ecosystem func-
tion (Belovsky & Slade,  2000; Meyer et  al.,  2002; Tscharntke & 
Greiler, 1995; Whiles & Charlton, 2006) and are sensitive to chang-
ing environments (Barton & Schmitz, 2009; Di Giulio et al., 2001). 
Understanding arthropod responses to nutrient addition is import-
ant for both conservation and maintaining critical arthropod-pro-
vided ecosystem services. Humans have dramatically increased 
the global availability of reactive N, P, K and other limiting nu-
trients through fertilizer production and use in the last century 
(Galloway et  al.,  2003). Anthropogenic effects on other biogeo-
chemical cycles such as changes in the C and S cycles due to fos-
sil fuel combustion, irrigation with contaminated water, and mining 
are changing the chemical composition of soils and terrestrial plants 

(Qadir et  al.,  2014; Schlesinger & Bernhardt,  2013; Welti, Roeder, 
et al., 2020). Determining how nutrient addition affects arthropod 
abundance and trophic groups in grasslands worldwide can improve 
predictions of arthropod responses to future alterations to Earth’s 
biogeochemistry.
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