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Abstract
A common goal in observational research is to estimate
marginal causal effects in the presence of confounding
variables. One solution to this problem is to use the
covariate distribution to weight the outcomes such that
the data appear randomized. The propensity score is a
natural quantity that arises in this setting. Propensity
score weights have desirable asymptotic properties, but
they often fail to adequately balance covariate data in
finite samples. Empirical covariate balancing methods
pose as an appealing alternative by exactly balancing the
sample moments of the covariate distribution. With this
objective in mind, we propose a framework for estimat-
ing balancing weights by solving a constrained convex
program, where the criterion function to be optimized
is a Bregman distance. We then show that the differ-
ent distances in this class render identical weights to
those of other covariate balancing methods. A series of
numerical studies are presented to demonstrate these
similarities.
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1 INTRODUCTION

Causal inference has been a topic of intense interest in the statistical literature. The focus of
causal inference methodology deals with the issue of how to properly evaluate treatment effects
in a nonrandomized setting. In many medical and scientific studies, randomization cannot be
performed due to logistic, economic, and/or ethical limitations. Under these circumstances, the
emergent challenge is the consistent evaluation of treatment effects in the presence of confound-
ing. For example, in Bhagat et al. (2017), a cohort of patients undergoing lung resection surgery
are examined to compare the rate of unplanned readmission following thoracoscopic versus open
anatomic lung resections. The mode of surgery is not randomized and there are several preop-
erative characteristics, which inform the method of surgery, that in turn affect the readmission
rate. Methods for causal inference seek to minimize any bias induced by these confounding
variables.

Two important concepts in causal inference are the potential outcomes model (Rubin, 1974;
Splawa-Neyman, Dabrowska, & Speed, 1990) and the propensity score (Rosenbaum & Rubin,
1983). The potential outcomes approach provides a powerful tool for conceptualizing, estimating,
and performing inference regarding causal effects. An overview for implementing the potential
outcomesmodel can be found in Imbens andRubin (2015). They demonstrate that a natural quan-
tity which regularly arises when balancing potential confounders between experimental groups
in observational studies is the propensity score (Rosenbaum&Rubin, 1983). The propensity score
is defined as the probability of receiving treatment given a set of measured covariates. Based on
the assumptions underlying the potential outcomes model and the propensity score, causal infer-
ence proceeds in the following stages: (a) a propensity score model is fit using the observed data;
(b) diagnostics for covariate balance using the propensity score are evaluated; and (c) estimates
of the causal effect are produced by conditioning on the propensity score. Iterating between steps
(a) and (b) is often necessary to ensure the homogeneity of the propensity score adjusted covariate
distributions.

A key goal for the propensity scoremodel is to achieve covariate balance,whichmeans that the
distribution of confounders between the treated and control groups are equivalent. From Rosen-
baum and Rubin (1983), the assumptions of strongly ignorable treatment assignment (defined in
Section 2.2), in conjunction with the definition of the propensity score, imply that adjustment
on the propensity score alone will theoretically achieve balance. However, this result is based on
the population propensity score and does not necessarily hold in finite samples. There have been
numerous approaches that address the issue of balancing empirical covariate distributions using
weighting estimators. We refer to the weights produced by these methods as balancing weights.
One popularmethod is to construct propensity scoreswith covariate balance built into the estima-
tion procedure. Imai and Ratkovic (2013) and Fan, Imai, Liu, Ning, and Yang (2016) introduced
the covariate balance propensity score (CBPS) and its subsequent improvement (iCBPS), both of
which use generalized methods of moments to fit a logit model with covariate balance serving as
an auxiliary condition. Any resulting estimate of the propensity score will automatically achieve
balance by construction.

In the political science literature, Hainmueller (2012) uses maximum entropy density esti-
mation to find balancing weights to estimate the average treatment effect of the treated. The
algorithm, termed entropy balancing, finds the vector of balancing weights that minimize the
normalized relative entropy from a vector of sampling weights subject to a set of linear equality
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constraints about the moments of the covariate distribution. Recent work by Zhao and Per-
cival (2017) shows how this algorithm enjoys a double-robustness property. The general idea
of double-robust estimation is to combine covariate information about the treatment assign-
ment and the outcome model into the weighting estimator (Bang & Robins, 2005; Kang &
Schafer, 2007). If at least one model is correctly specified, then the resulting causal effect
estimate is consistent. When both the outcome and treatment models are correctly specified,
then the estimate achieves the semiparametric efficiency bound described by Hahn (1998).
Entropy balancing is limited to finding balancing weights to estimate the average treatment
effect of the treated, leaving gaps in the procedure for developing doubly robust estimators
of other estimands. This issue is related to the choice of Hainmueller (2012) to optimize the
normalized relative entropy. By changing the criterion distance function in a convex opti-
mization problem, similar to the one presented by Hainmueller (2012), we can draw paral-
lels to other covariate balancing methods. A similar idea is proposed by Zhao (2019), who
shows that CBPS and entropy balancing can be generalized by modifying the score func-
tion derived from the respective covariate balance problem. Calibration estimators (Deville &
Sarndal, 1992) also produce balancing weights using constrained convex optimization tech-
niques. The proposed methods in Chan, Yam, and Zheng (2015) implicitly extends entropy
balancing to include other distance functions. However, they restrict their attention to a non-
parametric setting, characterizing their methodology as a departure from the propensity score
literature.

Our aim is to extend the work of Hainmueller (2012), Imai and Ratkovic (2013), and Fan
et al. (2016) for finding balancing weights that facilitate causal effect estimation when the treat-
ment assignment is not determined by a logit model. We do so by demonstrating how balancing
weights can be computed fromBregmandistances (Bregman, 1967). Bregmandistances havemul-
tiple geometric properties that allow for easy estimation of the balancing weights. This geometric
interpretation of balancing weights complements the implicit geometry found in classic semi-
parametric inference. Using the results of our framework, we prove that CBPS (Imai & Ratkovic,
2013) and iCBPS (Fan et al., 2016) are doubly robust estimators of the average treatment effect
while assuming the propensity scores follow a logit model. As an extension to CBPS, we pro-
pose an estimator for balancing weights akin to the overlap weights discussed by Li, Morgan, and
Zaslavsky (2018). We also show how our framework is consistent with the calibration estimator
approach of Chan et al. (2015), thereby bridging the empirical covariate balancing methods of
entropy balancing, CBPS, iCBPS, and calibration estimators. We are interested in these methods
in particular as they do not incorporate a model of the outcome process into their designs in the
spirit of Rubin (2008).

The outline of this article is as follows. Section 2 defines the general notation and assump-
tions that will be applied throughout the manuscript. Section 3 describes the methods for
finding balancing weights by solving a constrained optimization problem using Bregman dis-
tances as the criterion function. Section 4 describes the similarities between our method and
other covariate balancing methods. Section 5 summarizes results from two simulation stud-
ies comparing different covariate balancing methods. This section also contains the results
for a replication study of Bhagat et al. (2017) using a variety of different covariate balancing
methods. The real dataset illustrates the importance of selecting appropriate covariate bal-
ancing methods. Finally, Section 6 concludes with a discussion of the framework and future
work.
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2 BACKGROUND AND PRELIMINARIES

2.1 Notation and definitions

Parameters will be denoted using Greek letters, whereas random variables will be denoted
with Roman letters. Boldface letters will denote vectors and matrices, while nonboldface letters
represent scalars. For a matrix A, the transpose is written as AT . The symbol ∇f denotes the gra-
dient of a function f . Let 1n denote the (n × 1) vector with each entry equal to one. Similarly, let
0n denote the (n × 1) vector with each entry equal to zero.

Let X denote a vector of real-valued covariate measurements, Z denote the random treatment
assignment with support {0, 1}, and Y denote the real-valued outcome variable. The independent
sampling units will be indexed by i = 1, 2,… ,n. The (n × 1) vector of balancing weights will be
written as p ≡ (p1, p2,… , pn)T , while the (n × 1) vector of sampling weights will be written as
q ≡ (q1, q2,… , qn)T . We will often write pi = p(Xi) for the ith subject to emphasize the fact that
the balancing weights are conditioned on the covariates. Define {cj(X); j = 1, 2,… ,m}, as a set of
functions that generate linearly independent features to be balanced between treatment groups.
We will refer to these quantities as balance functions.

2.2 Potential outcomes model

Potential outcomes provide a convenient framework for conceptualizing causal effects. This
frameworkwas first introduced by Splawa-Neyman et al. (1990) for randomized experiments. The
concepts and assumptions necessary to extend this framework to observational data were later
formalized by Rubin (1974). The potential outcomes are denoted with a vector [Y (0),Y (1)]T with
Y(0) and Y(1) corresponding to the counterfactual outcome when Z = 0 and Z = 1, respectively.
The conditional expectations for the potential outcomes are denoted with 𝜇0(X) ≡ E[Y (0)|X]
and 𝜇1(X) ≡ E[Y (1)|X]. The random outcome is defined by the transformation Y ≡ ZY(1) + (1 −
Z)Y(0). Some common causal estimands are the population average treatment effect (ATE),
𝜏ATE ≡ E [Y (1) − Y (0)], and the population average treatment effect of the treated (ATT), 𝜏ATT ≡

E [Y (1) − Y (0)|Z = 1]. In any case, the causal effects are nonidentifiable as one of the two required
potential outcomes is always missing. This simple observation is the fundamental problem of
causal inference. We adopt the setting proposed by Rosenbaum and Rubin (1983) who describe
a set of assumptions that will allow us to find consistent estimates of the treatment effect in
observational studies. This includes the following assumptions about the data.

Assumption 1 (Strong ignorability). [Y(0),Y(1)]T ⫫ Z|X.
The strong ignorability assumption requires that the vector of potential outcomes be inde-

pendent of the treatment assignment when we condition on the covariates. This assumption
further implies that there is no unmeasured confounding. The implication of Assumption 1 along
with the definition of the propensity score as a balance criterion allows us to conclude that
[Y(0),Y(1)]T ⫫ Z|𝜋(X), where 𝜋(X) ≡ Pr{Z = 1|X} denotes the propensity score (Rosenbaum &
Rubin, 1983).

Assumption 2 (Positivity). 0 < Pr{Z = 1|X} < 1 for all X.

The treatment positivity assumption requires the probability that a subject is assigned to the
treatment group as opposed to the control group be bounded away from zero and one. Since
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Pr{Z = 1|X} must be estimated from the covariates, then Assumption 2 equivalently amounts
to requiring sufficient overlap between the covariate distributions of the two treatment groups.
The feasibility of the convex optimization problems that we will introduce later on are deeply
intertwined with Assumption 2. Without sufficient overlap, the estimated balancing weights will
either not exist, or be unstable and produce biased estimates of the causal effect.

2.3 Horvitz–Thompson estimator

The Horvitz–Thompson class of estimators (Hirano, Imbens, & Ridder, 2003; Horvitz &
Thompson, 1952) frequently appears in the causal inference literature. For example, the
Horvitz–Thompson estimator for the average treatment effect is

𝜏ATE = 1
n

n∑
i=1

[
ZiYi
𝜋(Xi)

− (1 − Zi)Yi
1 − 𝜋(Xi)

]
, (1)

while the Horvitz–Thompson estimator for 𝜏ATT is

𝜏ATT = 1
n1

n∑
i=1

[
ZiYi −

𝜋(Xi)(1 − Zi)Yi
1 − 𝜋(Xi)

]
, (2)

where n1 =
∑n

i=1 Zi. Hahn (1998) was able to show that (1) and (2) have optimal asymptotic prop-
erties for estimating 𝜏ATE and 𝜏ATT. Even whenwe substitute a consistent estimator of the propen-
sity score into (1), the estimator for 𝜏ATE remains consistent and achieves the semiparametric
efficiency bound.

A more general form for causal effect estimation is

𝜏 =
n∑
i=1

(2Zi − 1)p(Xi)Yi∑n
i=1 p(Xi)Zi

, (3)

which accommodates several different estimands through the choice of p(X). For example, we
will see in Section 3.4 that the estimator for 𝜏ATT is similar to estimators of 𝜏ATE with additional
constraints placed on the balancing weights so that p(X) = q whenever Z = 1. Equations (1) and
(2) provide direction for identifying p(X)within (3) in order to estimate 𝜏ATE and 𝜏ATT, respectively.
If the propensity score is known, 𝜏ATE can be estimated by setting p(X) = 𝜋(X)−1 when Z = 1
and p(X) = [1 − 𝜋(X)]−1 when Z = 0. We can also find an estimator for 𝜏ATT by setting p(X) =
𝜋(X)[1 − 𝜋(X)]−1 when Z = 0 and p(X) = 1 when Z = 1. When the propensity score is unknown,
finding an estimator for p(X) that produces consistent estimates of 𝜏ATE and 𝜏ATT is relatively
straightforward. Estimating balancing weights that also preserve the efficiency of 𝜏ATE and 𝜏ATT
is a more challenging proposition.

3 BREGMAN DISTANCES

3.1 Definition

LetΔn ⊆ ℜn be a nonempty, convex, and open set with closureΔ
n
. Define f ∶ Δ

n
→ ℜ to be a con-

tinuously differentiable, strictly convex function. TheBregmandistance generated by the function
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F IGURE 1 Example of a Bregman distance
for one-dimensional p′

, q ∈ Δ. The function f(p) (red
line) is strictly convex over p ∈ Δ. The line tangent
to f at q is the blue line. The Bregman function is
the distance between the red and blue lines at the
point p′ [Colour figure can be viewed at
wileyonlinelibrary.com]

f is the difference between f evaluated at p ∈ Δ
n
and the first-order Taylor series approximation

of f about q ∈ Δn, evaluated at p. In other words, a Bregman distance Df ∶ Δ
n
× Δn → ℜmay be

defined as

Df (p||q) ≡ f (p) − f (q) − [∇f (q)]T(p − q).

Bregman distances are often used to measure the convexity associated with f . Since f is strictly
convex over Δ

n
, it follows that for p ∈ Δ

n
and q ∈ Δn, Df (p||q) ≥ 0 with equality holding if and

only if p = q. This implies that Df (p||q) is also strictly convex. A more complete definition of
Bregman distances can be found in chapter 2 of Censor and Zenios (1998), which includes addi-
tional properties that Df must satisfy which are not mentioned here. A visual representation of a
Bregman distance can be found in Figure 1.

One of the most common examples of a Bregman distance is the unnormalized relative
entropy. Let f (p) =

∑n
i=1 pi log (pi) for p ∈ [0,∞)n. We assume 0 log(0) = 0 so that the domain of f

includes the boundary points contained within the closure ofΔn. The resulting Bregman distance
is written as

Df (p||q) = n∑
i=1

[
pi log

(
pi
qi

)
− pi + qi

]
.

The Euclidean distance is another example of a Bregman distance. By selecting f (p) =
∑n

i=1 p2i ∕2
for p ∈ ℜn, we get

Df (p||q) = n∑
i=1

(pi − qi)2

2
.

In order to simplify the presentation of themethods, we will only consider Bregman distances
that are separable. This means Df (p||q) = ∑n

i=1 Df (pi||qi). Note that both the unnormalized rel-
ative entropy and the Euclidean distance are separable. Since we require positive weights, we
also restrict our focus to convex functions where Δn ⊆ [0,∞)n in order to avoid setting additional
constraints for p ≥ 0n. Notice that the domain of the unnormalized relative entropy satisfies this

http://wileyonlinelibrary.com
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condition while the domain of the Euclidean distance does not. In addition, we will assume
throughout that the sampling weights q ∈ Δn are fixed by design and known.

3.2 Constrained optimization and duality

For some q ∈ Δn, the value p̂ ∈ Δ
n
that minimizes Df (p||q) in an unconstrained setting is p̂ = q.

In covariate balance problems, we specify a set of linear constraints that the optimal solutionmust
satisfy. Consider the constrained convex optimization problem to

minimize
n∑
i=1

Df (pi||qi)
subject to ATp = b, (4)

where A is a linearly independent (n ×m) matrix that forms the basis of a linear subspace that
defines the constraints of the program and b is an (m × 1) vector denoting the margins of those
constraints. The entries of A and b are denoted with aij ∈ ℜ and bj ∈ ℜ (i = 1, 2,… ,n and
j = 1, 2,… ,m), respectively. Equation (4) is often referred to as the primal problem and the cor-
responding solution is referred to as the primal solution. We denote the set of feasible primal
solutions that satisfy the linear constraints in (4) as Ω ≡

{
p ∶ ATp = b

}
.

Geometrically, the solution to the primal problem is the point

p̂ ≡ arg minp∈Ω∩ΔnDf (p||q), (5)

which is the generalized projection of q ∈ Δn into Ω. Note that Ω ∩ Δ
n
is sometimes empty. One

solution to avoid this issue is to choose b = ATp̃, where p̃ ∈ Δ
n
so that p̃ ∈ Ω ∩ Δ

n
. For example

when using the unnormalized relative entropy, we might set b = 0m with p̃ = 0n. However, this
condition is not so obvious for some of the covariate balancing problems that we will encounter
later on. Instead, we will assume Ω ∩ Δ

n
≠ ∅ throughout. Lemma 1 proves that the generalized

projection is unique. The proof appears in section 2.1 of Censor and Zenios (1998). For the sake
of completeness, a version of this proof is also found in the online supplement.

Lemma 1. Suppose Ω ∩ Δ
n
≠ ∅. Then the generalized projection of q into Ω, defined in (5), is

unique.

When p̂ ∈ Ω ∩ Δn, the primal problem can be solved by introducing a vector of
Lagrangian multipliers. With Lagrangian multipliers, we can formulate the Lagrangian L ∶ Δ

n
×

Δn ×ℜm → ℜ for any constrained optimization problem in the form of (4) as

L(p,q,𝝀) ≡ Df (p||q) + (ATp − b)T𝝀. (6)

Optimizing the Lagrangian with respect to p ∈ Δn and 𝝀 ∈ ℜm is an unconstrained problem
equivalent to (4). Instead of finding the point p̂ ∈ Ω ∩ Δn thatminimizesDf (p||q), we find the vec-
tor p̂ that minimizes the Lagrangian with respect to p ∈ Δn and 𝝀̂ that maximizes the Lagrangian
with respect to 𝝀 ∈ ℜm. In other words, the optimal solution forms a saddle point on (6) over the
space Δn ×ℜm for a fixed q ∈ Δn.

The following propositions are used in tandem to obtain balancingweights for treatment effect
estimation. A necessary condition for these propositions is that the function f , which generates
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the Bregman distance Df be zone consistent with respect to Ω. This means that for any q ∈ Δn,
the Bregman distance produced by f has its generalized projection of q into Ω contained within
the open set Δn.

Proposition 1. Assume that f is zone consistent with respect toΩ. Let p̂ ∈ Ω ∩ Δn be the generalized
projection of q into Ω, as defined in (5). Then p̂ is uniquely determined by

Pf
(
q,A𝝀̂

)
≡ (∇f )−1

(
∇f (q) −A𝝀̂

)
,

where 𝝀̂ ∈ ℜm is also unique.

The proof of Proposition 1 can be found in the online supplement. Given the result of Propo-
sition 1, the convex optimization problem can be solved by estimating 𝝀̂ ∈ ℜm with the dual
problem, which is to

maximize L
[
Pf (q,A𝝀),q,𝝀

]
subject to 𝝀 ∈ ℜm. (7)

Propositions 1 and 2 imply that the primal solution to (4) can be obtained by plugging the
solution to the dual problem into the generalized projection. The proof of Proposition 2 is adapted
from section 3.4 of Bertsekas (1999) and appears in the online supplement.

Proposition 2. Assume f is zone consistent with respect to Ω. If the primal problem (4) has an
optimal solution, then the dual problem (7) also has an optimal solution and the two optimal values
are equal.

3.3 Balancing weights for the ATE

In this section, we outline the general strategy and guidelines for obtaining balancing weights for
estimating 𝜏ATE. The proposed method requires solving the primal problem to

minimize
n∑
i=1

Df (pi||qi)
subject to

n∑
i=1

pi(2Zi − 1)cj(Xi) = 0 and

n∑
i=1

piZicj(Xi) =
n∑
i=1

qicj(Xi) for all j = 1, 2,… ,m. (8)

As mentioned in the previous section, (8) can be solved by optimizing the corresponding
Lagrangian, which is defined as

LATE(p,q,𝝀) ≡
n∑
i=1

Df (pi||qi) + m∑
j=1

𝜆j0

[ n∑
i=1

pi(2Zi − 1)cj(Xi)

]

+
m∑
j=1

𝜆j1

[ n∑
i=1

piZicj(Xi) −
n∑
i=1

qicj(Xi)

]
, (9)
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where 𝝀0 ≡ (𝜆10, 𝜆20,… , 𝜆m0)T and 𝝀1 ≡ (𝜆11, 𝜆21,… , 𝜆m1)T with 𝝀 ≡ (𝝀T0 ,𝝀
T
1 )T . The criterion dis-

tance function should be selected so that Pf
[
qi,
∑m

j=1 cj(Xi)𝜆j0
]
= 𝜋(Xi)−1. We can also frame this

problem using the notation from Section 3.2. LetA0 be an (n ×m)matrix whose elements consist
of aij0 = (2Zi − 1)cj(Xi),A1 be an (n ×m)with entries aij1 = Zicj(Xi), b0 = 0m, and b1 be an (m × 1)
vector with entries bj1 =

∑n
i=1 qicj(Xi). We then combine A0 and A1 to construct A = [A0,A1]

while b0 and b1 are concatenated into b =
[
bT0 ,b

T
1
]T .

After differentiating (9) with respect to pi for some i = 1, 2,… ,n and setting the resulting
derivative to zero, we arrive at the generalized projection evaluated at𝝀 ∈ ℜ2m. The dual objective
function is obtained by substituting the generalized projection for pi in the Lagrangian. The dual
solution solves the dual problem,

𝝀̂ = arg max
𝝀∈ℜ2m

n∑
i=1

LATE

{
Pf

[
qi,

m∑
j=1

(2Zi − 1)cj(Xi)𝜆j0 +
m∑
j=1

Zicj(Xi)𝜆j1

]
, qi,𝝀

}
. (10)

As a result of Propositions 1 and 2, the balancing weights are uniquely determined by the
generalized projection evaluated at 𝝀̂ ∈ ℜ2m,

p̂(Xi) = Pf

[
qi,

m∑
j=1

(2Zi − 1)cj(Xi)𝜆̂j0 +
m∑
j=1

Zicj(Xi)𝜆̂j1

]
, i = 1, 2,… ,n. (11)

It is recommended, and often necessary (see the proofs to Theorems 1 and 2), that one of
the balance functions be an intercept—we will assume throughout that c1(X) = 1 for all X. This
constraint implies

∑
{i∶Zi=1}

p̂i =
∑

{i∶Zi=0}
p̂i.

3.4 Balancing weights for the ATT

Next we consider the problem of finding balancing weights to estimate 𝜏ATT. This requires solving
the primal problem to

minimize
n∑
i=1

Df (pi||qi)
subject to

n∑
i=1

pi(1 − Zi)cj(Xi) =
n∑
i=1

qiZicj(Xi) for all j = 1, 2,… ,m. (12)

The criterion Bregman distance should be chosen so that the generalized projection resembles
the functional form for the odds of treatment. That is,

Pf

[
qi,

m∑
j=1

cj(Xi)𝜆j

]
= 𝜋(Xi)
1 − 𝜋(Xi)

,

where 𝝀 ≡ (𝜆1, 𝜆2,… , 𝜆m)T . In terms of the notation presented in Section 3.2, (12) is equivalent
to (4) by setting aij = (1 − Zi)cj(Xi), i = 1, 2,… ,n, and bj =

∑n
i=1 qiZicj(Xi), j = 1, 2,… ,m. Simi-

lar to the balancing weights for estimating 𝜏ATE, we set c1(X) = 1 for all X so that
∑

{i∶Zi=1}
qi =
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∑
{i∶Zi=0}

p̂i. The associated Lagrangian for (12) can then be expressed as

LATT(p,q,𝝀) ≡
n∑
i=1

Df (pi||qi) + m∑
j=1

𝜆j

[ n∑
i=1

pi(1 − Zi)cj(Xi) −
n∑
i=1

qiZicj(Xi)

]
.

Notice that when Z = 1 and q ∈ Δ, then Pf
[
q, (1 − Z)

∑m
j=1 cj(X)𝜆j

]
= q. Moreover, recall

from Section 3.1 that Df (q||q) = 0 for some q ∈ Δ. Therefore, (12) can be reconstructed into the
equivalent primal problem to

minimize
n∑
i=1

Df (pi||qi)
subject to

n∑
i=1

pi(2Zi − 1)cj(Xi) = 0 for all j = 1, 2,… ,m and

pi = qi for all i ∈ {i ∶ Zi = 1}.

According to Propositions 1 and 2, the balancing weights are evaluated with the resulting
generalized projection,

p̂(Xi) = Pf

[
qi, (1 − Zi)

m∑
j=1

cj(Xi)𝜆̂j

]
, i = 1, 2,… ,n,

where the dual vector is estimated by solving for

𝝀̂ = arg max
𝝀∈ℜm

n∑
i=1

LATT

{
Pf

[
qi, (1 − Zi)

m∑
j=1

cj(Xi)𝜆j

]
, qi,𝝀

}
.

4 RELATIONSHIP WITH OTHER COVARIATE BALANCE
METHODS

4.1 Entropy balancing

Entropy balancing (Hainmueller, 2012) is a special case of a constrained Bregman distance opti-
mization problem. By setting f (p) =

∑n
i=1 pi log(pi) and qi ∈ (0,∞) for all i = 1, 2,… ,n, we can

identify the entropy balancing primal problem, which is to

minimize
n∑
i=1

[
pi log

(
pi
qi

)
− pi + qi

]
subject to

n∑
i=1

pi(1 − Zi)cj(Xi) =
n∑
i=1

qiZicj(Xi) for all j = 1, 2,… ,m. (13)

According to Proposition 2, optimizing (13) is equivalent to maximizing the dual objective
function,
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𝝀̂ = arg max
𝝀∈ℜm

n∑
i=1

{
−qi exp

[
−(1 − Zi)

m∑
j=1

cj(Xi)𝜆j

]
− qiZi

m∑
j=1

cj(Xi)𝜆j

}
. (14)

The vector of balancing weights is obtained by evaluating the generalized projection with the
solution to the dual problem, which yields

p̂(Xi) = qi exp

[
−(1 − Zi)

m∑
j=1

cj(Xi)𝜆̂j

]
, i = 1, 2,… ,n. (15)

In Hainmueller (2012), (13) is written using the normalized relative entropy instead of the
unnormalized relative entropy. However, optimizing the normalized relative entropy is simply
achieved by (14) and (15) with minor alterations. Let q′i = qi∕

∑n
i=1 qiZi for all i ∈ {i ∶ Zi = 1}

and constrain the intercept so that
∑n

i=1 p̂i(1 − Zi) =
∑n

i=1 q′iZi = 1. As previously suggested in
Section 3.4, we recommend setting c1(X) = 1. In doing so, the resulting balancing weights for the
control group will sum to one while still satisfying the constraints of the primal problem.

Using the resulting estimating equations for 𝝀 and 𝜏ATT in concordance with results from
M-estimation theory (Stefanski & Boos, 2002), Zhao and Percival (2017) show that entropy
balancing weights produce doubly robust estimates of 𝜏ATT. This means if either logit[𝜋(X)] ∈
span{cj(X) ∶ j = 1, 2,… ,m} or 𝜇0(X) ∈ span{cj(X) ∶ j = 1, 2,… ,m}, then the balancing weights
of (15) applied to (3) is consistent for 𝜏ATT. If both conditions are satisfied, then the estimator
achieves the semiparametric efficiency bound derived by Hahn (1998) for estimators of 𝜏ATT. The
Horvitz–Thompson estimator for 𝜏ATT that substitutes a consistent estimate of the propensity
score for 𝜋(X) in (2), on the other hand, does not achieve the semiparametric efficiency bound.

4.2 Covariate balance propensity scores

Another method for covariate balance, developed by Imai and Ratkovic (2013), proposes fitting a
logit model for the propensity score,

𝜋(Xi) =
exp

[∑m
j=1 cj(Xi)𝜆j

]
1 + exp

[∑m
j=1 cj(Xi)𝜆j

] , i = 1, 2,… ,n, (16)

subject to

n∑
i=1

[Zicj(Xi)
𝜋(Xi)

−
(1 − Zi)cj(Xi)
1 − 𝜋(Xi)

]
= 0 for all j = 1, 2,… ,m. (17)

They opted to solve for 𝝀̂ ∈ ℜm using generalized method of moments (GMM) while at the
same time satisfying (17). The estimated propensity scores can be transformed into balancing
weights for estimating 𝜏ATE with the inverse probability of treatment weighting estimator.Wewill
refer to the model where the balance functions that appear in (17) are identical to the balance
functions within the linear predictor of (16) as the exactly specified CBPS model.

The weights obtained with an exactly specified CBPSmodel can be expressed in an equivalent
manner to a constrained optimization problem following our framework. First, notice that the
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fixed effect coefficients of the logit model can double as a vector of dual variables. Next, observe
that (17) can be rewritten as

n∑
i=1

{
1 + exp

[
−(2Zi − 1)

m∑
j=1

cj(Xi)𝜆j

]}
(2Zi − 1)cj(Xi) = 0 for all j = 1, 2,… ,m.

The CBPS primal problem can then be constructed in order to

minimize
n∑
i=1

[
(pi − 1) log

(
pi − 1
qi − 1

)
− pi + qi

]
subject to

n∑
i=1

pi(2Zi − 1)cj(Xi) = 0 for all j = 1, 2,… ,m. (18)

We call the criterion distance function in (18) the shifted relative entropy, which
is generated by setting f (p) =

∑n
i=1(pi − 1) log(pi − 1), p ∈ [1,∞)n. Notice that (18)

also contains fewer constraints than (8). We assume qi = 2 for all i = 1, 2,… ,m.
Assuming uniform sampling weights follows the prevailing philosophy of the
causal inference literature in which observational data are typically randomly sam-
pled from the population of interest. The solution to the dual problem for (18)
finds

𝝀̂ = arg max
𝝀∈ℜm

n∑
i=1

{
(2Zi − 1)

m∑
j=1

cj(Xi)𝜆j − exp

[
−(2Zi − 1)

m∑
j=1

cj(Xi)𝜆j

]}
. (19)

The principal reason for selecting the shifted relative entropy as the criterion distance func-
tion is the resulting balancing weights, which resemble the inverse probability of treatment
weights,

p̂(Xi) = 1 + exp

[
−(2Zi − 1)

m∑
j=1

cj(Xi)𝜆̂j

]
, i = 1, 2,… ,n. (20)

A similar derivation of CBPS using the dual function setup was also described by Zhao (2019).
Fan et al. (2016) identifies a condition that the balance functionsmust satisfy in order for CBPS

to be doubly robust for estimating 𝜏ATE. This condition is not obvious from a data analytic context.
However, the condition is satisfied if we assume a constant conditional average treatment effect.
Under this assumption, we can prove that CBPS is doubly robust using the balancing weights
produced by (20).

Assumption 3 (Constant conditional ATE). For all X, 𝜇1(X) − 𝜇0(X) = 𝜏.

Theorem 1. Let Assumptions 1 and 2 be given. SupposeE[Y (0)],E[Y (1)], andE[cj(X)] exist for all
j = 1, 2,… ,m. Furthermore, assume V[Y (0)] < ∞ and V[Y (1)] < ∞. Then the balancing weights
determined by (19) and (20) applied to (3) is doubly robust in the sense that:

1. If logit[𝜋(X)] =
∑m

j=1 cj(X)𝜆j for some 𝜆j ∈ ℜ, j = 1, 2,… ,m, then 𝜏 is consistent for 𝜏ATE;
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2. Under Assumption 3 and if 𝜇0(X) =
∑m

j=1 cj(X)𝛽j for some 𝛽j ∈ ℜ, j = 1, 2,… ,m, then 𝜏 is
consistent for 𝜏ATE;

3. If Conditions 1 and 2 are both satisfied, then√
n(𝜏 − 𝜏ATE)→d (0,Σsemi)

where

Σsemi = E

{
V[Y (1)|X]

𝜋(X)
+ V[Y (0)|X]

1 − 𝜋(X)

}
.

As an extension to CBPS, consider the primal problem using the Bregman distance generated
by setting f (p) =

∑n
i=1 pi log(pi) + (1 − pi) log(1 − pi), p ∈ [0, 1]n:

minimize
n∑
i=1

[
pi log

(
pi
qi

)
+ (1 − pi) log

(
1 − pi
1 − qi

)]
subject to

n∑
i=1

pi(2zi − 1)cj(Xi) = 0 for all j = 1, 2,… ,m. (21)

If we assume qi = 1∕2 for all i = 1, 2,… ,n, then according to Propositions 1 and 2, the solution
to (21) is

p̂(Xi) =
1

1 + exp
[
(2Zi − 1)

∑m
j=1 cj(Xi)𝜆̂j

] , (22)

where the dual solution is obtained by solving for

𝝀̂ = arg max
𝝀∈ℜm

n∑
i=1

1

1 + exp
[
(2Zi − 1)

∑m
j=1 cj(Xi)𝜆j

] log ⎡⎢⎢⎢⎣
2

1 + exp
[
(2Zi − 1)

∑m
j=1 cj(Xi)𝜆j

]⎤⎥⎥⎥⎦
+

n∑
i=1

1

1 + exp
[
−(2Zi − 1)

∑m
j=1 cj(Xi)𝜆j

] log ⎡⎢⎢⎢⎣
2

1 + exp
[
−(2Zi − 1)

∑m
j=1 cj(Xi)𝜆j

]⎤⎥⎥⎥⎦
+

m∑
j=1

𝜆j

⎧⎪⎨⎪⎩
n∑
i=1

(2Zi − 1)cj(Xi)

1 + exp
[
(2Zi − 1)

∑m
j=1 cj(Xi)𝜆j

]⎫⎪⎬⎪⎭ . (23)

The Bregman distance in this case is referred to as the binary relative entropy. This distance is
useful for finding balancingweights that produce estimates for a special case of theweighted aver-
age treatment effect called the optimally weighted average treatment effect (OWATE) (Crump,
Hotz, Imbens, & Mitnik, 2006),
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𝜏OWATE ≡
E{𝜋(X)[1 − 𝜋(X)][Y (1) − Y (0)]}

E{𝜋(X)[1 − 𝜋(X)]}
.

A consistent estimator for 𝜏OWATE is also consistent for 𝜏ATE, with the smallest variance, when we
are given Assumption 3 and the potential outcomes have equal variance. Li et al. (2018) further
motivates the use of estimators for 𝜏OWATE when there is poor overlap between the treated and
the control groups. Equations (23) and (22) provide a dual interpretation of the covariate balance
scoring rule for estimating 𝜏OWATE considered by Zhao (2019). By replacing p(X) with (22) in (3),
and using arguments similar to the proof of Theorem 1, we derive a doubly robust estimator for
𝜏OWATE with the usual asymptotic properties.

Corollary 1. Under the same assumptions and conditions as Theorem 1, the balancing weights
determined by (22) and (23) applied to (3) is doubly robust for estimating 𝜏OWATE with asymptotic
variance

Σsemi =
E

(
𝜋(X)2[1 − 𝜋(X)]2

{
V[Y (1)|X]

𝜋(X)
+ V[Y (0)|X]

1−𝜋(X)

})
E{𝜋(X)[1 − 𝜋(X)]}2

. (24)

4.3 Improved CBPSs

The iCBPS approach (Fan et al., 2016) improves upon the CBPS method described in Section 4.2
to better accommodate heterogeneous treatment effects. The objective of this method is to fit a
logit model subject to the constraints

n∑
i=1

[Zicj(Xi)
𝜋(Xi)

−
(1 − Zi)cj(Xi)
1 − 𝜋(Xi)

]
= 0 and

n∑
i=1

[
Zi

𝜋(Xi)
− 1

]
cj(Xi) = 0 for all j = 1, 2,… ,m. (25)

Fan et al. (2016) uses GMM to estimate 𝝀̂ ∈ ℜm in (16) subject to (25). Thismodified approach
can be adapted to fit into our proposed framework, with the balancing weights being estimated
using dual optimization techniques instead of GMM.

Using the same criterion Bregman distance as the one used in (18), we can obtain balancing
weights that satisfy (25) as follows.Assume qi = 2 for all i = 1, 2,… ,m. Define the primal problem
for iCBPS as

minimize
n∑
i=1

[
(pi − 1) log (pi − 1) − pi + 2

]
subject to

n∑
i=1

pi(2Zi − 1)cj(Xi) = 0 and

n∑
i=1

piZicj(Xi) =
n∑
i=1

qicj(Xi) for all j = 1, 2,… ,m. (26)
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As opposed to (18), the iCBPS primal problem follows our guidelines in Section 3.3 more
closely. The resulting dual solution solves for

𝝀̂ = arg max
𝝀∈ℜ2m

n∑
i=1

{
(2Zi − 1)

m∑
j=1

cj(Xi)𝜆j0 + Zi
m∑
j=1

cj(Xi)𝜆j1 −
m∑
j=1

cj(Xi)𝜆j1

− exp

[
−(2Zi − 1)

m∑
j=1

cj(Xi)𝜆j0 − Zi
m∑
j=1

cj(Xi)𝜆j1

]}
. (27)

The covariate balancing weights differ slightly from (20) due to the additional constraints in
(26) with

p̂(Xi) = 1 + exp

[
−(2Zi − 1)

m∑
j=1

cj(Xi)𝜆̂j0 − Zi
m∑
j=1

cj(Xi)𝜆̂j1

]
, i = 1, 2,… ,n. (28)

Note that with the GMMapproach, 𝝀 ∈ ℜm, whereas with ourmethod, 𝝀 ∈ ℜ2m. This implies
that exact balance between covariates is not necessarily achieved with the proposed methods of
Fan et al. (2016). A notable deviation from our own recommendations exists within how b is
specified. Even though qi = 2 for all i = 1, 2,… ,n, we set bj1 =

∑n
i=1 cj(Xi) for all j = 1, 2,… ,m.

If we were to follow the setup in Section 3.3, we would set bj1 =
∑n

i=1 2cj(Xi). However, this dis-
tinction is minor in the context of uniform sampling weights and should produce similar results.
We now show that the weights produced by (27) and (28) applied to (3) is doubly robust given a
linear conditional average treatment effect, defined in Assumption 4. Note that Assumption 4 is
less stringent than Assumption 3, which was necessary to prove Theorem 1.

Assumption 4 (Linear conditional ATE). For all X, 𝜇1(X) − 𝜇0(X) =
∑m

j=1 cj(X)𝛼j where 𝛼j ∈ ℜ
for all j = 1, 2,… ,m.

Theorem 2. Let Assumptions 1 and 2 be given. Suppose E[Yi(0)], E[Y (1)], and E[cj(X)] exist for
all j = 1, 2,… ,m. Assume V[Y (0)] < ∞ andV[Y (1)] < ∞. Then the balancing weights determined
by (27) and (28) applied to (3) is doubly robust in the sense that:

1. If logit[𝜋(X)] =
∑m

j=1 cj(X)𝜆j0 for some 𝜆j0 ∈ ℜ, j = 1, 2,… ,m, then 𝜏 is consistent for 𝜏ATE;
2. Under Assumption 4 and if 𝜇0(X) =

∑m
j=1 cj(X)𝛽j for some 𝛽j ∈ ℜ, j = 1, 2,… ,m, then 𝜏 is

consistent for 𝜏ATE;
3. If Conditions 1 and 2 are both satisfied, then√

n(𝜏 − 𝜏ATE)→d (0,Σsemi),

where

Σsemi = E

{
V[Y (1)|X]

𝜋(X)
+ V[Y (0)|X]

1 − 𝜋(X)

}
.

4.4 Calibration estimators

Chan et al. (2015) describes a class of estimators originally introduced by Deville and Sarndal
(1992) for survey sampling called calibration estimators. One of the contributions from Chan
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et al. (2015) shows how calibration estimators can be applied to covariate balance problems. For
some separable generalized distance function G ∶ Δn → ℜ, calibration estimators find balancing
weights that solve the primal problem to

minimize
n∑
i=1

G(pi)

subject to
n∑
i=1

pi(1 − Zi)cj(Xi) =
n∑
i=1

cj(Xi) and

n∑
i=1

piZicj(Xi) =
n∑
i=1

cj(Xi) for all j = 1, 2,… ,m. (29)

Chan et al. (2015) assume uniform sampling weights. Equation (29) is solved by defining the
functions h(p) ≡ G(1 − p) and g(v) ≡ h

[
(∇h)−1(v)

]
+ v − v(∇h)−1(v)with p ∈ Δ and v ∈ ℜ towrite

the dual objective functions, which we use to solve for

𝝀̂0 = arg max
𝝀∈ℜm

n∑
i=1

{
g

[ m∑
j=1

(1 − Zi)cj(Xi)𝜆j

]
−

m∑
j=1

cj(Xi)𝜆j

}
and

𝝀̂1 = arg max
𝝀∈ℜm

n∑
i=1

{
g

[ m∑
j=1

Zicj(Xi)𝜆j

]
−

m∑
j=1

cj(Xi)𝜆j

}
. (30)

The resulting balancing weights are obtained by evaluating the first derivative of g at 𝝀̂0
and 𝝀̂1,

p̂(Xi) = ∇g

[ m∑
j=1

(1 − Zi)cj(Xi)𝜆̂j0 +
m∑
j=1

Zicj(Xi)𝜆̂j1

]
. (31)

Similar to our solution for finding balancing weights to estimate 𝜏ATE, the dual variable
𝝀 ≡ (𝝀0,𝝀1)T has 2m entries. Tseng and Bertsekas (1987) and Chan et al. (2015) show that (30) can
be solved using any strictly concave g(v), v ∈ ℜ, assuming that a feasible solution for (29) exists.
Therefore, calibration estimators are not necessarily restricted to Bregman distances. However,
if G is a monotone increasing transformation of Df with respect to p ∈ Δn, then (29) can be con-
structed using Bregman distances so that the primal solutions are equivalent. The only difference
from themethods we present in Section 3.3 is with the construction ofA and b. In Theorem 3, we
identify the conditions for which our proposed method is equivalent to the calibration estimator
approach of Chan et al. (2015).

Theorem 3. Suppose we have a generalized distance G(p), which is a monotone increasing trans-
formation of some Bregman distance Df (p||q) with respect to p ∈ Δn and q ∈ Δn is uniform. Then
for

Ω0 =

{
p ∶

n∑
i=1

piZicj(Xi) = bj and
n∑
i=1

pi(1 − Zi)cj(Xi) = bj for all j = 1, 2… ,m

}
and
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Ω1 =

{
p ∶

n∑
i=1

piZicj(Xi) = bj and
n∑
i=1

piZicj(Xi) =
n∑
i=1

pi(1 − Zi)cj(Xi) for all j = 1, 2… ,m

}
,

p̃ = p̂ where p̃ = arg minp∈Ω0∩ΔnG(p) and p̂ = arg minp∈Ω1∩ΔnDf (p||q).
Theorem 1 of Chan et al. (2015) shows that calibration estimators can be used to produce con-

sistent estimates for 𝜏ATE while also attaining the semiparametric efficiency bound described by
Hahn (1998). This is accomplished using a nonparametric setup where the balance functions rep-
resent a basis for uniformly approximating 𝜇0(X), 𝜇1(X), and 𝜋(X). Given this result and Theorem
3 implies that for a sufficiently rich set of balance functions, the Bregman distanceweights in con-
junction with (3) can produce consistent and efficient estimates of 𝜏ATE. This result is quite useful
when the balance functions that determine either the outcome or the treatment assignment are
unknown.

Without further defining the distance to be optimized in the primal problem, (30) and (31)
are less flexible when considering nonuniform sampling weights. This is especially important
when developing iterative estimation algorithms or dealing with more complex balance designs
where the data are not sampled uniformly from the population of interest. Furthermore, calibra-
tion estimators, as they are described in Chan et al. (2015), achieve a three-way balance between
the treated, the controls, and the combined treatment groups for estimating 𝜏ATE. As shown in
Theorem 1, this condition is not required when Assumption 3 holds. Zhao (2019) also noted that
this condition is not required to achieve global efficiency using covariate balance scoring rules.

5 NUMERICAL STUDIES

5.1 Homogeneous treatment effect simulation

In this section, we demonstrate the utility of the proposed methodology using simulated data
that assumes a constant conditional average treatment effect (Assumption 3). We generate 1,000
replications of several datasets determined by one of 72 experimental scenarios. For each dataset,
we find balancing weights from four different covariate balancingmethods to estimate 𝜏ATE. They
are:

1. (IPW) Inverse probability of treatment weights where the propensity score follows a logit
model fit using maximum likelihood estimation;

2. (CBPS) Inverse probability of treatment weights where the propensity score is fit to an exactly
specified logit model subject to (17). The propensity scores are fit using generalized method
of moments as implemented in the CBPS package (Fong, Ratkovic, & Imai, 2019);

3. (SENT) Balancing weights that are estimated by minimizing the shifted relative entropy fol-
lowing the results of (27) and (28). Using these balancing weights instead of (19) and (20)
allows us to test the effect of overspecifying the linear constraints whenwe knowAssumption
3 is satisfied;

4. (BENT) Balancing weights that are estimated by minimizing the binary relative entropy
subject to the constraints in (21) via the dual and primal solutions of (22) and (23).

We consider an extensive set of experimental scenarios adapted from those examined by Kang
and Schafer (2007). These scenarios vary the sample size n ∈ {200, 1, 000}, the error variance 𝜎2 ∈
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{2, 5, 10}, the generative process that determines the treatment assignment (indexed by {a, b}),
the outcome process (indexed by {a, b}), and the correlation between the potential outcomes,
𝜌 ∈ {−0.3, 0, 0.5}. The covariates to be balanced (i.e., the balance functions) are distributed as
X1,X2,X3,X4 ∼  (0, 1). Define the transformationsU1 = exp(X1∕2),U2 = X2∕[1 + exp(X1)] + 10,
U3 = (X1X3∕25 + 0.6)3, and U4 = (X2 + X4 + 20)2. The vector (U1,U2,U3,U4)T is subsequently
standardized to have a mean of zero and marginal variances of one.

The probability that a subject receives the treatment is then determined using the inverse logit
link function,

𝜋
(k)
i =

exp
[
𝜂
(k)
i

]
1 + exp

[
𝜂
(k)
i

] , k ∈ {a, b}.

Scenarios a and b distinguish whether the log odds of the propensity score is either linear or
nonlinear with

𝜂
(a)
i = −Xi1 + 0.5Xi2 − 0.25Xi3 − 0.1Xi4 and

𝜂
(b)
i = −Ui1 + 0.5Ui2 − 0.25Ui3 − 0.1Ui4. (32)

The treatment indicators are generated by samplingZi ∼ Bin(1, 𝜋(k)
i ). For the outcome process,

we use the bivariate model [
Yi(0)
Yi(1)

]
∼ 

([
𝜇
(𝓁)
i

𝜇
(𝓁)
i + 𝜏

]
,

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

])
,

where 𝓁 ∈ {a, b} indexes

𝜇
(a)
i = 210 + 27.4Xi1 + 13.7Xi2 + 13.7Xi3 + 13.7Xi4 and

𝜇
(b)
i = 210 + 27.4Ui1 + 13.7Ui2 + 13.7Ui3 + 13.7Ui4. (33)

Once the potential outcomes have been generated, the observed outcome is the potential
outcome corresponding to the observed treatment assignment. Each of the covariate balancing
methods listed above is provided the design matrix with an intercept and the four original covari-
ates: Xi1, Xi2, Xi3, and Xi4 for i = 1, 2,… ,n. The causal effect is then estimated using (3) where we
substitute p(Xi) with the balancing weights estimated by each method.

We found that the correlation between the potential outcomes did not affect the resulting
estimates of 𝜏ATE. In addition, the effects of altering 𝜎2 and n had anticipated results. Lower values
of 𝜎2 led to lower standard errors of the causal effect estimate, whereas smaller values of n led to
larger standard errors. Therefore, we report the results for 𝜌 = 0, n = 200, and 𝜎2 = 10 in Table 1
and Figure 2. The complete results appear in the online supplement.

For all the methods that we tested, if either the outcome model or the treatment assignment
is correctly specified, then the causal effect estimate is unbiased. We see in Table 1 and Figure 2
that the balancing weights obtained with SENT perform as well, or better in some cases, than
the exactly specified CBPS model, even though the balancing weights obtained with SENT have
twice as many constraints. The Monte Carlo standard error and bias of the estimates for 𝜏ATE are
smallest when BENT is used to estimate the balancing weights for every scenario we examined.
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TABLE 1 Average estimate, Monte Carlo standard error (MC SE), residual mean squared error, and
empirical bias of the constant conditional average treatment effect using the four methods for estimating
balancing weights described in Section 5.1

Outcome
scenario

Treatment
assignment
scenario IPW CBPS SENT BENT

Avg. estimate (MC SE) a a 19.60 (3.28) 20.02 (0.55) 20.02 (0.53) 20.02 (0.51)

a b 20.40 (2.70) 20.00 (0.50) 20.01 (0.49) 20.00 (0.49)

b a 19.36 (5.27) 19.67 (3.81) 19.75 (2.90) 19.90 (2.21)

b b 15.33 (3.57) 15.26 (3.28) 15.83 (2.73) 16.47 (2.31)

Mean squared error (bias) a a 10.91 (−0.40) 0.30 (0.02) 0.28 (0.02) 0.26 (0.02)

a b 7.42 (0.40) 0.25 (0.00) 0.24 (0.01) 0.24 (0.00)

b a 28.21 (−0.64) 14.63 (−0.33) 8.49 (−0.25) 4.87 (−0.10)

b b 34.54 (−4.67) 33.14 (−4.74) 24.79 (−4.17) 17.83 (−3.53)

Note: IPW uses inverse probability of treatment weights estimated from a generalized linear model, CBPS uses the
covariate balance propensity score weights, SENT uses the constrained optimal solution of the shifted relative entropy,
and BENT uses the constrained optimal solution of the binary relative entropy.

This is expected since these weights are used for estimating the 𝜏OWATE (Crump et al., 2006), and
because every condition necessary to ensure that an estimator for 𝜏OWATE is also an estimator for
𝜏ATE are met. The Monte Carlo standard errors and mean square error are also uniformly smaller
for the average treatment effect estimates when using balancing weights estimated by CBPS and
SENT versus IPW. This result indicates that methods which exactly balance the empirical covari-
ate distributions perform better in finite sample settings. When both the outcome and treatment
assignmentmodels aremisspecified, the fourmethods for finding balancing weights all produced
biased estimates of 𝜏ATE. In these completely misspecified scenarios, the balancing weights esti-
mated with BENT produce the least amount of bias and the lowest standard error for estimating
𝜏ATE.

5.2 Heterogeneous treatment effect simulation

In this section, we simulate an additional 72 scenarios with a linear conditional average treatment
effect to test our proposed methods under Assumption 4. We use the same covariate distributions
for (X1,X2,X3,X4)T and (U1,U2,U3,U4)T as in Section 5.1. We also recycle the conditional mean
functions 𝜇(𝓁)

i , 𝓁 ∈ {a, b}, from (33). To generate the linear conditional average treatment effects,
define

𝛿
(a)
i = 20 − 13.7Xi1 + 13.7Xi4 and

𝛿
(b)
i = 20 − 13.7Ui1 + 13.7Ui4.

For outcome scenarios a and b, the bivariate outcome model is defined as[
Yi(0)
Yi(1)

]
∼ 

([
𝜇
(𝓁)
i

𝜇
(𝓁)
i + 𝛿

(𝓁)
i

]
,

[
𝜎2 𝜌𝜎2

𝜌𝜎2 𝜎2

])
, 𝓁 ∈ {a, b},
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F IGURE 2 A subset of the constant conditional average treatment effect estimates using four different
methods for estimating balancing weights. Each boxplot is composed of 1,000 estimates from the replicates that
generate the values in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]

from which we sample n ∈ {200, 1, 000} entries. Each unit's treatment assignment is sampled
from Bin(1, 𝜋(k)

i ), where 𝜋(k)
i is determined by 𝜂(k)i , k ∈ {a, b}, which are defined in (32). Similar to

the simulations conducted in Section 5.1, we also vary 𝜎2 ∈ {2, 5, 10} and 𝜌 ∈ {−0.3, 0, 0.5}. For
this set of scenarios, we examine five different covariate balance methods:

1. (AIPW) Augmented inverse probability weights which uses the estimator

𝜏AIPW = 1
n

n∑
i=1

{
ZiYi
𝜋̂(Xi)

− [Zi − 𝜋̂(Xi)]𝜇̂1(Xi)
𝜋̂(Xi)

− (1 − Zi)Yi
1 − 𝜋̂(Xi)

− [Zi − 𝜋̂(Xi)]𝜇̂0(Xi)
1 − 𝜋̂(Xi)

}
. (34)

𝜇̂1(X) is fit using linear regression on the treated group and 𝜇̂0(X) is fit using linear regression
on the controls. 𝜋̂(X) is fit with logistic regression;

http://wileyonlinelibrary.com
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2. (CAL) Calibration weights that solve (30) and (31) for g(v) = exp(−v), v ∈ ℜ. This is equiva-
lent to minimizing the unnormalized relative entropy subject to the linear constraints in (29).
The R package ATE developed by Haris and Chan (2015) is used to estimate these balancing
weights;

3. (iCBPS) Inverse probability of treatmentweightswhere the propensity scores follow an exactly
specified logit model that must satisfy (25) following the results of Fan et al. (2016). The
propensity score is estimated using generalized method of moments as implemented in the
CBPS package (Fong et al., 2019);

4. (hdCBPS) An augmented version of CBPS that extends (34) by using regularized regres-
sion techniques to find 𝜇̂1(X) and 𝜇̂0(X). The R package CBPS (Fong et al., 2019) is used to
implement this method;

5. (SENT) Balancing weights that minimize the shifted relative entropy conditioned on the
constraints in (26) where the estimates are obtained from (27) and (28).

For CAL, iCBPS, and SENT, the resulting balancing weights are substituted for p(X) in (3)
to estimate 𝜏ATE. The augmented approach of AIPW was first proposed by Robins, Rotnitzky,
and Zhao (1994) while hdCBPS uses the augmented estimator proposed by Ning, Peng, and Imai
(2018).

As with the previous simulation study, it appears that the correlation between potential out-
comes is inconsequential, while the Monte Carlo standard errors predictably decrease when
either n increases or 𝜎2 decreases. A representative selection of results from the experimentwhere
𝜌 = 0, n = 200, and 𝜎2 = 10 is found in Table 2 and Figure 3. The complete results can be found
in the online supplement. This simulation demonstrates that all five methods enjoy the doubly
robust property described in Theorem 2. For each scenario, CAL and SENT had similar levels
of bias and variation despite using different criterion distance functions. Even though the con-
straints of iCBPS and SENT are the same, the differences between the optimization techniques
of the two methods become quite apparent. The Monte Carlo standard error of the estimates for
𝜏ATE using balancing weights obtained with SENT is smaller than the standard error of the esti-
mates using balancing weights found with iCBPS. AIPW, CAL, and SENT performed similarly
whenever the outcome was correctly specified. However, when the outcome model is misspec-
ified and the propensity score is correctly specified, the Monte Carlo standard error and mean
squared error were greater with AIPW than SENT and CAL. This suggests, and is further con-
firmed by hdCBPS, that methods which exactly balance covariate distributions can improve the
efficiency of a doubly robust estimator in finite samples. The estimates from hdCBPS performed
about as well as SENT and CAL. However, this method was proposed to alleviate issues encoun-
tered with high-dimensional covariate data, rendering many of its benefits redundant in this
low-dimensional simulation study.

5.3 Illustrative example of unplanned readmissions after lung
resection

Next, we investigate the results of a real dataset using different weighting and matching meth-
ods. In Bhagat et al. (2017), the odds of unplanned, 30-day readmissions are compared between
lung cancer patients who receive thoracoscopic versus open lung resections. The study identi-
fied 9,510 patients who underwent some form of lung resection from the American College of
Surgeons—National Safety and Quality Innovation Program (ACS-NSQIP) database. Of those
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TABLE 2 Average estimate, Monte Carlo standard error (MC SE), residual mean squared error, and
empirical bias of the linear conditional average treatment effect using the five methods for estimating balancing
weights described in Section 5.2

Outcome
scenario

Treatment
assignment
scenario AIPW CAL iCBPS hdCBPS SENT

Avg. estimate
(MC SE)

a a 19.93 (1.51) 19.93 (1.49) 19.06 (3.94) 19.93 (1.51) 19.93 (1.49)

a b 20.09 (1.48) 20.09 (1.47) 18.05 (3.50) 20.09 (1.47) 20.09 (1.47)

b a 19.80 (7.35) 20.43 (2.76) 19.72 (3.63) 19.59 (3.02) 20.25 (2.78)

b b 15.04 (4.52) 16.91 (2.55) 14.21 (4.48) 16.15 (2.76) 16.77 (2.54)

Mean squared
error (bias)

a a 2.28 (−0.07) 2.22 (−0.07) 16.41 (−0.94) 2.28 (−0.07) 2.23 (−0.07)

a b 2.18 (0.09) 2.16 (0.09) 16.08 (−1.95) 2.17 (0.09) 2.16 (0.09)

b a 53.98 (−0.20) 7.77 (0.43) 13.26 (−0.28) 9.28 (−0.41) 7.78 (0.25)

b b 45.04 (−4.96) 16.01 (−3.09) 53.58 (−5.79) 22.45 (−3.85) 16.84 (−3.23)

Note: AIPW uses an augmented inverse probability of treatment approach where the propensity scores are estimated from a
generalized linearmodel, CAL uses the calibration estimatedweights, iCBPS uses the covariate balance propensity scoreweights,
hdCBPS is an augmented version of CBPS, and SENT uses the constrained optimal solution of the shifted relative entropy.

9,510 patients, 4,935 (51.9%) received a thoracoscopic resection and 4,575 (48.1%) received an
open anatomic resection. The study analysis carried out a greedy one-to-onematching of patients
using the estimated propensity score as the criterion matching function (Ho, Imai, King, &
Stuart, 2007). The propensity scores were fit with standard logistic regression. This algorithm
matched 3,399 thoracoscopic lung resection patients to 3,399 open anatomic lung resection
patients, dropping 2,712 patients (28.5%). In doing so, the “treated” group are assumed to be
the patients who receive thoracoscopic lung resections and represent a random sample of the
target population. Thus, the casual effect being estimated is the average treatment effect of the
treated.

We replicated the study conducted in Bhagat et al. (2017) by estimating balancing weights
using two different methods. The first method uses entropy balancing (EB) where the estimated
balancing weights are obtained with (14) and (15). Recall that these balancing weights applied
to (3) is doubly robust (Zhao & Percival, 2017). The second method fits a propensity score model
using logistic regression (IPW). With the fitted propensity score, we then use (2) substituting
𝜋̂(X) for 𝜋(X) to estimate 𝜏ATT. The causal effect estimates using the propensity score matched
(PSM) cohort from the original article are also reported along with the unadjusted (UN) results in
Table 3.

Figure 4 shows the amount of imbalance observed for each of the covariates among those
included in the covariate balancing models. We see that across each covariate, entropy balancing
perfectly balances the first sample moments of the covariate distribution between the two treat-
ment groups. Logistic regression appears to be less adequate at balancing the covariate moments
than matching. However, aside from hospital length of stay, each of the weighted mean differ-
ences fell within the conservative 0.05 unit threshold using the inverse probability of treatment
weights. The unadjusted differences do not share the same success as their adjusted counterparts,
suggesting that some form of balancing should be implemented. After estimating 𝜏ATT, notice in
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F I GURE 3 A subset of the linear conditional average treatment effect estimates using five different
methods for estimating balancing weights. Each boxplot is composed of 1,000 estimates from the replicates that
generate the values in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

Table 3 that the estimated risk difference is significant when using either the inverse probabil-
ity of treatment weights or entropy balancing, but is not significant when using propensity score
matching. The difference is likely due to the 2,712 patients who were omitted when matching.
This discrepancy illuminates and emphasizes the importance of selecting the most appropriate
method for balancing covariate data, even within a large observational study.

6 DISCUSSION

The generalized projection of a Bregman distance from a vector of sampling weights onto a set
of intersecting hyperplanes is a powerful and flexible tool for normalizing data. In particular,

http://wileyonlinelibrary.com
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TABLE 3 ATT estimates for 30-day unplanned readmission in
thoracoscopic versus open lung resection patients

Balancing method Risk difference SE
95%
confidence interval

UN −0.021 0.006 (−0.032, −0.010)

PSM −0.010 0.006 (−0.021, 0.001)

IPW −0.015 0.006 (−0.027, −0.004)

EB −0.016 0.006 (−0.027, −0.004)

Abbreviations: ATT, average treatment effect of the treated; EB, entropy
balancing results; IPW, inverse probability weighted results; PSM, propensity
score matched results; UN, unadjusted results.

F IGURE 4 Each point represents the adjusted absolute standardized mean difference (x-axis) between
thoracoscopic and open lung resection patients. The covariates in the plot (y-axis) are included into each model.
The red dotted line marks an absolute standardized mean difference of 0.05 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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this process is quite useful for constructing balancing weights for estimating causal effects. Using
properties of dual optimization, we identify a doubly robust estimator for 𝜏ATE and the optimally
weighted average treatment effect (Crump et al., 2006) in Theorem 1 and Corollary 1. We also
show that the dual interpretation of improved CBPS (Fan et al., 2016) is doubly robust in Theorem
2. In Theorem 3, we present the conditions for which the balancing weights produced by (11) are
the same as the weights produced by (31) suggested by Chan et al. (2015). When the true balance
functions are unknown, we can use nonparametric methods similar to those suggested by Hirano
et al. (2003) and Chan et al. (2015) within our framework to achieve global efficiency.

In the simulation studies we conducted, we observed that the balancing weights that are typ-
ically used to estimate 𝜏OWATE had the best performance for estimating 𝜏ATE when Assumption 3
is satisfied. We also observed that including additional constraints as in (8) sometimes had better
performance than estimators that require fewer constraints, like CBPS. When we assume a lin-
ear conditional average treatment effect, our dual interpretation of iCBPS performed better than
the analogous GMM estimator. We then apply our framework to a real dataset of lung resection
patients. Here, we demonstrate how the choice of balancing method can have a critical impact
on the results of a study.

There are several limitations to our proposed framework. First, each sampling unit's treatment
assignment is assumed to be independent from the treatment assignment of the other sampling
units. This assumption is sometimes called the no interference assumption. Health outcomes
research is rich in observational data from the emergence of the electronic health record. While
numerous in size, these datasets are more complex with patients being clustered within regions,
hospitals, clinics, and/or practicing physicians. These are all factors that need to be accounted
for in some way. How to extend these methods to clustered data settings is currently under inves-
tigation. Second, linear equality constraints are often quite stringent. If a particular covariate is
difficult to balance, our proposed frameworkwill sometimes fail to find the appropriate balancing
weights. Zubizarreta (2015) propose using stable balancing weights which minimize the Euclid-
ian distance subject to linear inequality constraints placed on the weighted sample moments of
the covariate distribution. Inmore recent work,Wang and Zubizarreta (2020) have combined this
interval constrained optimization approach with calibration estimators. There is also the issue
where the balance functions that generate either the outcome or treatment assignment are high
dimensional. This problem is not examined in the presentedwork.Ning et al. (2018) propose using
an augmented approach with the CBPSs of Imai and Ratkovic (2013) and Fan et al. (2016) in the
spirit of Robins et al. (1994) and Farrell (2015). Their proposed methodology boasts compelling
results as the dimension of covariate distribution increases. It is possible that our approach could
be extended using some of the methods proposed by Ning et al. (2018).

In addition to addressing someof the limitations identified in the previous paragraph, in future
work we would also like to expand these methods to incorporate multivalued treatment assign-
ments. Thiswould entailmodifying theHorvitz–Thompson estimator and also requires extending
the constraint matrix A and target margins b to facilitate covariate balance between all pairwise
combinations of the treatment assignments. Finally, we would like to further investigate methods
for generalizing causal effect estimates to a target population, which would involve estimating q
prior to estimating p.
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APPENDIX TECHNICAL PROOFS

Proofs for all Theorems, Lemmas, Propositions, and Corollaries presented in this article are
available online at http://www.interscience.wiley.com/journal/sjs.

APPENDIX R PACKAGE AND SIMULATION CODE

The R package used to fit balancing weights as the generalized projection of Bregman dis-
tance is still in development with a working version available at https://github.com/kevjosey/
cbal. The code used to conduct the simulation study in Section 5 is available at the followingURL:
https://github.com/kevjosey/cbal-sim. The code for replicating the study by Bhagat et al. (2017)
is available from the authors upon request.
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