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Abstract—Humpback whale behavior, population distribution
and structure can be inferred from long term underwater passive
acoustic monitoring of their vocalizations. Here we develop auto-
matic approaches for classifying humpback whale vocalizations
into the two categories of song and non-song, employing machine
learning techniques. The vocalization behavior of humpback
whales was monitored over instantaneous vast areas of the Gulf
of Maine using a large aperture coherent hydrophone array
system via the passive ocean acoustic waveguide remote sensing
technique over multiple diel cycles in Fall 2006. We use wavelet
signal denoising and coherent array processing to enhance the
signal-to-noise ratio. To build features vector for every time
sequence of the beamformed signals, we employ Bag of Words
approach to time-frequency features. Finally, we apply Support
Vector Machine (SVM), Neural Networks, and Naive Bayes to
classify the acoustic data and compare their performances. Best
results are obtained using Mel Frequency Cepstrum Coefficient
(MFCC) features and SVM which leads to 94% accuracy and
72.73% F1-score for humpback whale song versus non-song
vocalization classification, showing effectiveness of the proposed
approach for real-time classification at sea.

Index Terms—bioacoustic, ocean acoustic, remote sensing,
humpback whale, vocalization, SVM, Neural Networks, Bag of
Words, wavelet, song, nonsong, passive acoustic, classification,
beamforming, array processing

I. INTRODUCTION

Marine mammal vocalizations are associated with a variety

of purposes such as echolocation, sexual display while mating,

singing while migrating to breeding and feeding grounds, com-

munication, as well as contact calls for coordinated movement

during group feeding and other activities [1], [2]. Humpback

whale vocalizations can be divided into two classes, song [3],

[4] and non-song [5], [6]. Song vocalizations are sequences

of calls that are structured and organized into repeatable

pattern of phrases [3] with short inter-pulse intervals [5].

Humpback whale songs are regarded as breeding displays

by males in mating grounds [4], and the whales have been

observed to carry their tunes into feeding grounds [7]. The

non-song vocalizations that include feeding cries, bow-shaped

and downsweep or meow moans are suited for night time

communication among humpback individuals and coordination

during group feeding activities, have larger and highly variable

inter-pulse intervals [1], [5], [8]. In Fig. 1, the logarithm of

power spectrogram for sample song and non-song vocaliza-

tions are shown. Fig. 1 (a) shows part of a nonsong sequence

while Fig. 1 (b) shows song vocalizations.

Here we classify humpback whale vocalizations recorded on

a large-aperture densely-populated coherent hydrophone array

system containing 160 elements during an experiment in the

Gulf of Maine (GOM) in Fall 2006. These vocalizations have

been previously analyzed using the Passive Ocean Acoustic

Waveguide Remote Sensing (POAWRS) technique and applied

to study marine mammals behavior and distributions, and their

temporospatial correlation to prey species behavior and distri-

bution in the GOM feeding ground [1], [5], [8], [9]. The large

volume of underwater acoustic data recorded were previously

manually labeled after semi-automatic processing and audio-

visual inspection of tens of thousands of beamformed time-

frequency spectrograms, which is a time-consuming process,

demanding significant human interaction, and typical in anal-

ysis of large acoustic datasets [10].

Machine learning techniques can help to analyze the large

amount of acoustic data efficiently and within a significantly

reduced time frame. In [11], the performance of Mel Fre-

quency Cepstrum Coefficients (MFCC), the linear prediction

coding (LPC) coefficients, and Cepstral coefficients for rep-

resenting humpback whale vocalizations were explored. And

then K-means clustering was used to cluster units and sub-

units of humpback whale vocalizations into 21 and 18 clusters

respectively. In [5], temporal and spatial statistics of humpback

whales song and non-song calls in the Gulf of Maine were

investigated. Subclassification of humpback whale downsweep

moan calls into 13 sub-groups were accomplished using K-

means clustering after pitch-tracking and time-frequency fea-

ture extraction. In [12], temporal-spatial and time-frequency

characteristics of fin whale vocalizations in the Norwegian Sea

were studied and found to comprise of 5 distinct call types.

Several classifiers including SVM, Decision Tree, Logistic

Regression, and CNN were later developed and tested in [13]

to automatically extract the five fin whale call types. In [14],

blue whale calls were classified using neural network with fea-

tures derived from short-time Fourier and wavelet transforms.

In [15], an automatic detection and classification of baleen
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(a)

(b)

Fig. 1. Log-transformed normalized power spectrogram for (a) nonsong and (b) song calls.

whale calls system was developed using pitch tracking and

quadratic discriminant function analysis. Echolocation clicks

of odontocetes were classified by exploiting cepstral features

and Gaussian mixture models in [16], while in [17], whale call

classification was done using Convolutional Neural Networks

and transfer learning on time-frequency features. Fish sounds

were classified using random forest and SVM in [18].

In this study, we develop automatic methods for classifying

humpback whale vocalizations into two classes, song and non-

song. We use signals of 70 seconds duration as the input

to classifiers. This duration corresponds to hydrophone array

signal recording time frame in each file, determined from past

experiments to be a suitable observation time frame for distin-

guishing acoustic signals from a large variety of underwater

sound sources, as well as for distinguishing humpback whale

song from non-song calls [5]. To summarize the statistics of

features in one time period, we employ Bag of Words (BoW)

method which has already been used in different applications

such as speech analysis [19] and video classification [20].

Finally, we apply Support Vector Machine (SVM), Neural

Networks, and Naive Bayes to classify the acoustic data and

compare their performances.

II. MATERIALS AND METHODS

In this section, we describe the dataset and approaches we

use for the task of classifying humpback whale song and non-

song vocalizations, illustrated in Fig. 2. We explain each part

of this workflow in the following subsections.

A. Dataset

The Gulf of Maine 2006 Experiment dataset [1], [8] was

acquired in Fall 2006 in this important North Atlantic ma-

rine mammal feeding ground containing large populations of

spawning fish, the Atlantic herring [21], [22], [23]. Acoustic

recordings of whale vocalizations were acquired using a large-

aperture densely-populated coherent hydrophone array with

160 elements [24], [25] towed by a research vessel along

designated tracks in Franklin Basin, north of Georges Bank.

The acoustic data is sampled at 8000 Hz per element. The mid-

frequency (MF) sub-aperture, consisting of 64 equally spaced

Fig. 2. General workflow of proposed approach.

hydrophones with inter-element spacing of 0.75 m was used

to analyze the humpback whale calls. The water depth ranged

from 180 m to 250 m at the array locations. The array tow

depth was roughly 105 m and tow speed was roughly 2 m/s.

Previous analysis in [1] and [5] provided the labeled set

of humpback whale vocalization signals for this experiment.

There the acoustic pressure-time series measured by sensors

across the coherent hydrophone array were converted to two-

dimensional beam-time series by beamforming. A total of 64

beams were formed spanning 360 degree horizontal azimuth

about the receiver array for data from the MF sub-aperture.

Each beam-time series was converted to a beamformed spec-

trogram by short-time Fourier transform (sampling frequency

8000 Hz, frame 2048 samples, overlap 3/4, Hann window).
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Significant sounds present in the beamformed spectrograms

were automatically detected by first applying a pixel in-

tensity threshold detector [26] followed by pixel clustering,

and verified by visual inspection. Beamformed spectrogram

pixels with local intensity values that stood 5.6 dB above

the background were grouped using a clustering algorithm

according to a nearest-neighbor criteria that determines if the

pixels can be grouped into one or more significant sound

signals. Humpback whale vocalization signal detections were

verified and labeled as song or non-song manually by visual

inspection and listening to the sounds [1], [5], [8].

Here we build the samples for song versus non-song

classification task using the following procedure. Each 70

seconds duration beamformed pressure-time series signal in

bearings containing humpback whale vocalizations are first

gathered [5]. Samples with song labels are those that contain

some song vocalizations within the 70 seconds duration beam-

formed pressure-time series, while non-song samples are those

which do not contain any song vocalization in that duration.

A total of 1193 recorded acoustic data files each containing

70 s duration of coherent hydrophone array observation are

analyzed here. These files all contain humpback whale vocal-

izations, some of which originate from multiple and distinct

bearing directions. Subsequently, after beamforming we obtain

1788 labeled samples, of which 199 are labeled as song and

1589 are labeled as non-song. This subset of data corresponds

to roughly 24 hours of coherent hydrophone array observation.

B. Preprocessing

Underwater acoustic data collected by hydrophones contain

different sources of sound that include biological, geophysical

and of man-made origins [27]. The ambient noise which

is always present in the background in seas and oceans is

often due to breaking waves, turbulence and rain [27]. Other

sources of ocean sound include nearby and distant ships,

offshore piling and geophysical prospecting activities, fish

grunts, marine mammal vocalizations, and natural geological

sounds, such as seafloor earthquakes and volcanic activities

. Underwater sound signals undergo both spreading and ab-

sorption losses that are dependent on signal frequency. As

a result, the recorded background sound is also frequency-

dependent. In order to mitigate these effects and improve the

classification performance, signal preprocessing is necessary.

We first apply a bandpass filter with passband frequency range

between 20 Hz and 800 Hz. Then to decrease the size of

data, we down-sample the signal 4 times, so the new sampling

frequency is 2000 Hz. In order to reduce the background noise,

symlet4 wavelet denoising with soft thresholding for every

signal channel (hydrophone) is exploited [28].

We employ delay and sum array beamforming to amplify

signals in relative bearing directions containing humpback

whale vocalizations while simultaneously suppressing signals

from other directions. The Signal-to-Noise Ratio (SNR) gain

from beamforming when using the n hydrophone array com-

pared to using only one hydrophone is 10log10 n = 18 dB,

where n = 64 [1]. So using a large densely-populated array

of hydrophones enables us to detect whale vocalizations from

greater distances. The relative bearing (horizontal azimuth

of source, which here is humpback whale, with respect to

the hydrophone array) was previously determined by high-

resolution beamforming and included in the GOM dataset.

The time delay of signal arrival between two successive

hydrophones is computed using the following equation:

t =
c

d
sin θ (1)

where c = 1500 m/s is the speed of sound propagation in the

water, d is the distance between two successive hydrophones in

meters, and θ is the relative bearing. After preprocessing, the

spectrogram still contains noise elements. To further enhance

the signal, we apply a two dimensional Gaussian filter on the

two-dimensional spectrogram. The visual spectrogram results

from different stages of preprocessing are illustrated in Fig. 3.

C. Feature extraction

For the humpback whale song vs non-song vocalization

classification task, since both temporal and spectral compo-

nents are important, we use features that have information

about both time and frequency. We exploit two types of

features, power spectrogram and MFCC. For spectrogram, a

hanning window of size 512 samples with 50 percent overlap

is used.

In order to construct a fixed-length feature vector for every

70 s duration beamformed pressure-time series sample, we

use different statistical measures. Approaches using simple

statistics such as minimum, maximum and and average value

of time-frequency features have been used previously in video

classification [29] as well as in acoustic data classification

[5], [12]. Here we exploit Bag of Words (BoW) method to

build a fixed-length feature vector representation of an input

time series with variable length according to the following

procedure. First extract feature vector for every time-step

(using MFCC or power spectrogram or other methods). We

denote the tth time step feature vector of the ith sample by

f
(i)
t . For the ith sample S(i), with total number of T time

steps we have the following:

S(i) = [f
(i)
1 , f

(i)
2 , ..., f

(i)
t , ..., f

(i)
T ] (2)

Let the total number of samples in the dataset be N . Then

the whole dataset denoted by D, can be represented as follows:

D = [S(1), S(2), ..., S(i), ..., S(N)] (3)

After constructing D, we perform a clustering method with

total number of clusters equal to K on the dataset D. At the

end, we build the feature vector of dimension K for every

sample, S(i). We denote this feature vector by F (i), and the

jth element of this feature vector by h
(i)
j . So we have:

F (i) = [h
(i)
1 , h

(i)
2 , ..., h

(i)
j , ..., h

(i)
K ] (4)

Note that in contrast to f
(i)
t which is a vector of any

dimension (based on the feature extraction method, such as
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(a)

(b)

(c)

(d)

Fig. 3. Effect of different preprocessing steps on log of power spectrogram. (a) is for a sample hydrophone, (b) is for the same hydrophone after wavelet
denoising, (c) is after beamforming using 64 hydrophones, and (d) is after smoothing using 2 dimensional Gaussian filter.

MFCC or spectrogram), h
(i)
j is a scalar that signifies the

number of f
(i)
t s belonging to the jth cluster

At the end, feature vectors are normalized by dividing each

element of F (i) by the total number of time steps, T , in that

sequence.

D. Classification

With the labeled samples, we employ supervised learning

approaches. We examined several classifiers including Support

Vector Machine (SVM), Neural Networks (NN), and Gaussian

Naive Bayes (GNB). SVM is based on finding maximum

margin, uses a convex cost function, and it always reaches

the global minimum of the cost function [30]. Multi-layer

perceptron NN can model non-linear classification. Compared

to SVM, NN parameters optimization is not convex and the

solution is not guaranteed to obtain the global minimum of

the cost function. Learning the parameters is done by back-

propagation method. Although it is non-convex, NN can model

highly non-linear and complex structures. Using effective

learning algorithms for NNs and also large volume datasets,

NNs have been used widely in different machine learning

applications [31]. Naive Bayes (NB) classifier is based on

probabilistic model and Bayes’ theorem assuming that features

are independent. In Gaussian Naive Bayes (GNB) classifier, it

is assumed that each class follows a Gaussian distribution [32].

III. EXPERIMENTS

In this section, we explain the parameters and setup for

our approach and evaluate the performance of the methods

we considered for humpback whale song versus nonsong

vocalization classification.

A. Experimental Setup

We divide the dataset into training and test data, where 200

samples were selected randomly for test data, and parameters

are chosen using 5-fold cross validation on training data. For

wavelet denoising, the value of threshold is selected to be

0.1. For K-means clustering in BoW method, the number of

clusters, K, is set to 50. For MFCC, we tried different values

for number of Discrete Cosine Transform (DCT) coefficients,

and the performance was relatively robust for different values

of this parameter, so to obtain the best result we set this

parameter to 13. In classification, for C-SVM, we used third

degree polynomial kernel, and C=10. For NN, 2 hidden layer

with 10 neurons in each layer, Rectified Linear Unit (ReLU)

activation function, and weight decay of 0.001 were used.

Adam optimizer [33] with learning rate of 0.01, and batch

size of 200 was exploited to train the neural network.

B. Classification results

In this section, we investigate and compare the humpback

whale song versus nonsong vocalization classification perfor-

mance. To evaluate the results, we calculate accuracy and
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TABLE I
RESULT FOR DIFFERENT FEATURES AND CLASSIFIERS

Classifier PSD MFCC Acc(%) AUC(%) F1(%)

SVM
� × 92.00 80.75 61.90

× � 94.00 90.39 72.73

� � 93.00 85.13 69.57

GNB
� × 68.00 87.24 39.62

× � 68.50 81.39 37.62

� � 67.50 80.78 38.10

NN
� × 91.00 91.07 55.00

× � 92.50 94.27 70.59

� � 94.00 92.14 70.00

receiver operating characteristic (ROC) curve, and area under

ROC curve (AUC) as the measures. Since our dataset is imbal-

anced, we also report the F1-score which provides insights on

associated errors. Besides applying the classifiers on MFCC

and Power Spectrogram Density (PSD) separately, we also

investigate to see if there are improvements in performance

by combining MFCC and PSD. We concatenated PSD and

MFCC feature vectors to build the combined feature vector

(concatenating the output of BoW for each feature). Table I

shows the results when using PSD, MFCC, and both together

as the features.

Fig. 4 shows ROC curves for different classifiers and

features. As can be noted from both the numerical results

and ROC curves, using MFCC as the feature usually leads to

superior performance over PSD. Also in terms of AUC, NN

performs better compared to SVM and Naive Bayes. Because

the dataset is imbalanced, F1 score is a better measurement to

evaluate the performance in this case. When considering F1-

score, the best results are achieved when using MFCC features

and SVM classifier. The Combination of PSD and MFCC did

not show significant improvement.

IV. CONCLUSION

In this study, we presented several machine learning ap-

proaches to address the problem of humpback whale vocal-

ization classification into the two classes of song and non-

song. We examined different preprocesing and classifiers to

improve the results. Our analysis demonstrates the potential

of machine learning approaches for real-time classification in

field experiments applied to bio-acoustics and marine mammal

vocalization analysis. Future work will involve investigating

other preprocessing techniques to enhance the quality of sig-

nals and also applying the classification approaches developed

and trained here to other coherent hydrophone array datasets

from various undersea regions of the world to ascertain gen-

eralization of the proposed methods.
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Fig. 4. ROC curves for different classifiers using MFCC and PSD features.
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