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Abstract: A large variety of sound sources in the ocean, including biological, geophysical,

and man-made, can be simultaneously monitored over instantaneous continental-shelf scale regions

via the passive ocean acoustic waveguide remote sensing (POAWRS) technique by employing a

large-aperture densely-populated coherent hydrophone array system. Millions of acoustic signals

received on the POAWRS system per day can make it challenging to identify individual sound

sources. An automated classification system is necessary to enable sound sources to be recognized.

Here, the objectives are to (i) gather a large training and test data set of fin whale vocalization

and other acoustic signal detections; (ii) build multiple fin whale vocalization classifiers, including

a logistic regression, support vector machine (SVM), decision tree, convolutional neural network

(CNN), and long short-term memory (LSTM) network; (iii) evaluate and compare performance of

these classifiers using multiple metrics including accuracy, precision, recall and F1-score; and (iv)

integrate one of the classifiers into the existing POAWRS array and signal processing software.

The findings presented here will (1) provide an automatic classifier for near real-time fin whale

vocalization detection and recognition, useful in marine mammal monitoring applications; and (2) lay

the foundation for building an automatic classifier applied for near real-time detection and recognition

of a wide variety of biological, geophysical, and man-made sound sources typically detected by the

POAWRS system in the ocean.

Keywords: fin whale; vocalization; classification; neural networks; 20 Hz; CNN; LSTM; passive ocean

acoustic waveguide remote sensing; POAWRS; marine mammal; decision tree; logistic regression;

support vector machine; chirp

1. Introduction

A large-aperture densely-populated coherent hydrophone array system typically detects hundreds

of thousands to millions of acoustic signals in the 10 Hz to 4000 Hz frequency range for each day of

observation in a continental shelf ocean via the passive ocean acoustic waveguide remote sensing

(POAWRS) technique [1,2]. The acoustic signal detections include both broadband transient and

narrowband tonal signals from a wide range of natural and man-made sound sources [3–7], such as
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marine mammal vocalizations [1,2,8–11], fish grunts, ship radiated sound [12,13], and seismic airgun

signals [14]. Here, we focus our efforts on developing automatic classifers for fin whale vocalizations

detected in the Norwegian and Barents Seas during our Norwegian Sea 2014 Experiment (NorEx14) [1].

The fin whale vocalization signals have been previously detected, identified and manually labeled via

semiautomatic analysis followed by visual inspection.

A total of approximately 170,000 fin whale vocalizations have been identified and extracted from

the coherent hydrophone array recordings of NorEx14 [1]. The main types of fin whale vocalizations

observed were the 20 Hz pulse, the 18–19 Hz backbeat pulse, the 130 Hz upsweep pulse, and the

30–100 Hz downsweep chirp [1,15–18]. Typical spectrograms for each of these fin whale vocalizations

are displayed in Figure 1.
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Figure 1. Spectrograms for the fin whale (A) 20 Hz pulse (single), (B) 20 Hz pulse (doublet),

(C) backbeat, (D) 130 Hz upsweep, and (E) 30–100 Hz downsweep chirp, observed during NorEx14

using a coherent hydrophone array [1].

One of the challenges of developing an automatic classifier for near real-time fin whale

vocalization detection from acoustic spectrograms, is the ability to differentiate fin whale vocalizations

from other biological and man-made acoustic sound sources. Figure 2 displays examples of several

common acoustic signals and sound sources observed during the Norwegian Sea Experiment 2014

(NorEx14) [1] in the frequency range of fin whale vocalizations, which include seismic airgun,

ship tonal, and humpback whale vocalization signals. Unfortunately, many of these signals have

overlapping features, such as bandwidth, with specific types of fin whale vocalizations that may

cause ambiguity in identification. As an example, Figure 3 compares the pitch-tracks for two

types of humpback whale vocalizations with the fin whale 130 Hz upsweep and 30–100 Hz

downsweeps. As indicated in Figure 3, the humpback whale vocalizations appear to have some similar

time–frequency characteristics as the fin whale 130 Hz upsweep and 30–100 Hz downsweeps, and it

may be challenging to correctly classify these two types of fin whale vocalizations from humpback
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whales vocalizing in the same region, depending on the classification method utilized. Therefore,

a robust classification system is necessary to enable the fin whale 20 Hz pulse, 130 Hz upsweep,

backbeat pulse, and 30–100 downsweep chirp vocalizations to be recognized and differentiated from

other acoustic sound sources.
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Figure 2. Plot (A) displays a spectrogram containing three seismic airgun signals, a ship tonal, two fin

whale 20 Hz pulse (doublets), and two fin whale 130 Hz upsweeps observed off the coast of Alesund,

Norway on 20 February 2014. As displayed in plot (A), the seismic airgun signal overlaps within

the same frequency range as the 20 Hz pulse and 130 Hz upsweep, while the ship tonal overlaps

within the same frequency range as the 130 Hz upsweep. Plot (B) displays several humpback whale

vocalizations observed off the coast of Lofoten, Norway on 5 March 2014. As displayed in plot (B),

the two specified humpback vocalizations overlap within the same frequency range as the 130 Hz

upsweep and 30–100 Hz downsweep (See Figure 3).

Here, a large training data set of fin whale vocalization and other acoustic signal detections

are gathered after manual inspection and labeling. The fin whale vocalizations were identified

by first clustering all the detected acoustic signals, on a specific observation day, using various

time–frequency features and unsupervised clustering algorithms described in Section 2.2. Each cluster

was then manually inspected to positively label a cluster as containing fin whale vocalization detections.

This was accomplished by visually reviewing the spectrograms and time–frequency characteristics

associated with the detected acoustic signals from each cluster. As a final step, each cluster identified

as containing fin whale vocalization detections was filtered manually to eliminate non-fin whale

vocalization detections [1]. This approach gave us the capability to analyze and identify marine

mammal vocalizations that have not been previously documented or observed, by associating

bearing-time trajectories of unknown acoustic sound sources with known acoustic sound sources.
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However, manual filtering is not a viable method of identifying fin whale vocalizations for real-time

applications given the long time duration needed for the analysis and limited number of trained

individuals with experience to visually identify different types of fin whale vocalizations from

spectrograms. Therefore, it is essential to develop an automatic classifier for real-time fin whale

vocalization detection applications.
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Figure 3. Pitch-track comparisons between several common types of humpback whale and fin

whale vocalizations observed during the NorEx14. A pitch-track describes the time variation of

the fundamental frequency in the signal. The pitch-tracks for humpback call 1, humpback call 2,

and the fin whale 130 Hz upsweep were extracted from POAWRS detections observed off the coast

of Lofoten, Norway on 5 March 2014. The fin whale 30–100 Hz downsweeps were extracted from

POAWRS detections observed off the coast of Alesund, Norway on 20 February 2014 and off the coast

of Lofoten, Norway on 7 March 2014.

Multiple classifiers, including a logistic regression, SVM, decision tree [19], CNN [20–22],

and LSTM network [23], are built and tested for identifying fin whale vocalizations from the enormous

amount of acoustic signals detected by POAWRS per day. Here, the CNN and LSTM classifiers are

trained using beamformed spectrogram images as inputs to classify each detected acoustic signal, while

logistic regression, SVM and decision tree classifiers are trained using 12 features extracted from each

detected acoustic signal in a beamformed spectrogram. The performance of the classifiers are evaluated

and compared using multiple metrics including accuracy, precision, recall and F1-score. The last step

includes integrating one of the classifiers into the existing POAWRS array and signal processing

software to provide an automatic classifier for near real-time fin whale monitoring applications.

The classifiers developed here can enable near real-time identification of fin whale vocalization signal

types since the classification run time is found to be on the order of seconds, given tens to hundreds

of thousands of input signals received by the coherent hydrophone array. The fin whale vocalization

classifier presented, here, will lay the foundation for building an automatic classifier for near real-time

detection and identification of various other biological, geophysical, and man-made sound sources in

the ocean.
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Automatic classification approaches, including machine learning, can help to efficiently and

rapidly classify ocean acoustic signals according to sound sources in ocean acoustic data sets within

significantly reduced time frames. Various automatic classification techniques have been applied for

ocean biological sensing from animal vocalizations and sounds received on both single hydrophone

and coherent hydrophone arrays [9,24,25]. In [26], the performance of Mel Frequency Cepstrum

Coefficients (MFCC), the linear prediction coding (LPC) coefficients, and Cepstral coefficients for

representing humpback whale vocalizations were explored, and then K-means clustering was used

to cluster units and subunits of humpback whale vocalizations into 21 and 18 clusters, respectively.

The temporal and spatial statistics of humpback whales song and non-song calls in the Gulf of Maine,

observed using a large-aperture coherent hydrophone array, were quantified over instantaneous

continental shelf scale regions in [9]. Subclassification of humpback whale downsweep moan calls into

13 sub-groups were accomplished using K-means clustering after beamformed spectrogram analysis,

pitch-tracking and time–frequency feature extraction. Automatic classifiers were further developed

in [24] to distinguish humpback whale song sequences from nonsong calls in the Gulf of Maine by first

applying Bag of Words to build feature vectors from beamformed time-series signals, calculating both

power spectral density and MFCC features, and then employing and comparing the performances of

Support Vector Machine (SVM), Neural Networks, and Naive Bayes in the classification. Identification

of individual male humpback whales from their song units was investigated in [27], via extracting

Cepstral coefficients for features and then applying SVM for classification. In [28], blue whale calls were

classified using neural network with features derived from short-time Fourier and wavelet transforms.

In [29], an automatic detection and classification system for baleen whale calls was developed using

pitch tracking and quadratic discriminant function analysis. Echolocation clicks of odontocetes were

classified by exploiting cepstral features and Gaussian mixture models in [30], while in [31], whale

call classification was accomplished using CNNs and transfer learning on time–frequency features.

Fish sounds were classified using random forest and SVM in [32].

Here, the automatic classification and machine learning algorithms are applied to large-aperture

coherent hydrophone array data, where the input to the classifiers are beamformed data in the form of

beamformed frequency-time spectrograms or extracted features, or beamformed time-series, spanning

all 360 degrees horizontal azimuth about the coherent hydrophone array. The output of the classifier

therefore provides identification of fin whale call types spatially distributed across multiple bearings

from the receiver array. The identified fin whale vocalization bearing-time trajectories are required for

spatial localization and horizontal positioning of fin whales [1].

2. Materials and Methods

2.1. Measurement of Fin Whale Vocalizations Using a Coherent Hydrophone Array

The underwater recordings of fin whale vocalizations analyzed here are drawn from the NorEx14,

conducted by a collaborative team from the Massachusetts Institute of Technology, Northeastern

University, NOAA-Northeast Fisheries Science Center, Naval Research Laboratory, Penn State

University and the Woods Hole Oceanographic Institution in the United States, as well as the Institute

of Marine Research-Bergen (IMR) in Norway. The NorEx14 was conducted from 18 February to

8 March 2014, in conjunction with the IMR survey of spawning populations of Atlantic herring off the

Alesund coast, the Atlantic cod off the Lofoten peninsula, and the capelin off the Northern Finnmark

region [33,34]. The twofold objectives of the NorEx14 were to (i) image and monitor the population

distributions of these large fish shoals from diverse species instantaneously over wide areas of their

spawning grounds, using the Ocean Acoustic Waveguide Remote Sensing (OAWRS) and imaging

system [33,35–37] from which fish group behavioral patterns can be quantified, and (ii) observe

marine mammal vocalizations and infer their temporal–spatial distributions over wide areas using the

POAWRS technique, [1,2,9,11] combined with visual observations for species confirmation. The marine
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mammal vocalization data, that include fin whale vocalizations obtained from POAWRS sensing, were

partially processed at sea and further analyzed in post-processing.

In NorEx14, recordings of underwater sound were acquired using a horizontal coherent

hydrophone array [38] towed at an average speed of 4 knots (~2 m/s) along designated tracks

for 8–24 h per day. To minimize the effect of tow ship noise on the recorded acoustic data, the coherent

hydrophone array was towed approximately 280–330 m behind the research vessel so as to confine this

noise to the forward endfire direction of the array, which is the forward direction parallel to the array

axis. The tow ship noise in directions away from the forward endfire was negligible after coherent

beamforming. The water depth ranged from 100 m to 300 m at the array locations, and the array tow

depth varied from 45 to 70 m in NorEx14.

The multiple nested subapertures of the array contain a total of 160 hydrophones spanning a

frequency range from below 10 Hz to 4000 Hz for spatially unaliased sensing. The mean sensitivity of

each hydrophone is a constant in this frequency range. A fixed sampling frequency of 8000 Hz was

used so that acoustic signals with frequency contents up to 4000 Hz were recorded without temporal

aliasing. The ultra low-frequency (ULF) subaperture of the array consisting of 64 equally spaced

hydrophones with inter-element spacing of 3 m, was used here to collect fin whale vocalizations with

frequency content below 250 Hz. The horizontal beamwidth of the array is a function of the array

aperture length L, steering angle φ, as well as center frequency fc and bandwidth B of the signal [39–41].

The 1 dB angular width β1dB(φ, fc) [10] of the receiver array for the fin whale 20 Hz pulse and 130 Hz

upsweep vocalizations are provided in Table 1. The steering angle φ is measured as the horizontal

azimuthal angle from array broadside. The bearing estimation errors are significantly smaller by a

factor of roughly 1/5 for the fin whale 130 Hz upsweep signals in comparison to the 20 Hz pulse

signals after beamforming with the ULF subaperture.

Table 1. POAWRS receiving array 1-dB angular width β1dB(φ, fc) at broadside (φ = 0) and endfire

(φ = π/2), given ULF aperture length L, as a function of center frequency fc for a given fin whale

call type. The amplitude weighted average frequency values in Table 2 of [1] were used as the center

frequency values. A Hanning spatial window is applied in the beamforming.

Fin Whale fc L β1dB(φ = 0) β1dB(φ = π/2)
Call Type (Hz) (m) (deg) (deg)

20 Hz pulse 21.5 189 10 19.5

130 Hz upsweep 128.7 189 1.7 8

Physical oceanography was monitored by sampling water column temperature and salinity with

expendable bathythermographs (XBTs) and conductivity–temperature–depth (CTD) sensors at regular

intervals of a couple of hours each day. The water column sound speed profile measured in the three

distinct regions of the Norwegian Sea are provided in [42].

The detection of long-range propagated sounds is significantly enhanced by spatial beamforming

and spectrogram analysis which filters the background noise that is outside of the beam and frequency

band of the fin whale vocalizations. The high gain [39,43] of the coherent 64-hydrophone ULF

subaperture, of up to 10 log10 64 = 18 dB, enabled detection of fin whale vocalizations up to two orders

of magnitude more distant in range in the shallow water environment than a single omnidirectional

hydrophone, which has no array gain (see Figure 2 of [1]). The actual array gain, which may be smaller

than the full 18 dB array gain, is dependent on noise coherence and vocalization wavelength relative

to array aperture length. For example, the array gain for the 20 Hz pulse is 5.3 dB, while the array gain

for the 130 Hz upsweep is 13.7 dB due to the difference in wavelengths of the signals.

The POAWRS coherent hydrophone array employed in NorEx14 detected significant sounds from

a wide range of underwater acoustic sources including marine mammal vocalizations from diverse

baleen and toothed whale species in the frequency range from 10 Hz up to 4 kHz, and sounds from a

large number of diesel–electric surface ships and other powered ocean vehicles [12]. Here the analysis
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is focused on the detection and classification of fin whale vocalizations between the 10–200 Hz

frequency range. Concurrent ship-based visual observations conducted during our experiment

provides confirmation of the presence of fin whales.

2.2. Fin Whale Vocalization Detection and Identification

Acoustic pressure–time series measured by sensors across the receiver array were converted to

two-dimensional beam-time series by discrete Fourier transform [44]. A total of 64 beams were formed

spanning 360 degree horizontal azimuth about the receiver array for data from the ULF subaperture.

Each beam-time series was converted to a beamformed spectrogram by short-time Fourier transform

(sampling frequency = 8000 Hz, frame = 2048 samples, overlap = 3/4, Hann window). Significant

sounds present in the beamformed spectrograms were automatically detected by first applying a pixel

intensity threshold detector [45] followed by pixel clustering, and verified by visual inspection [2,8,9,12].

Beamformed spectrogram pixels with local intensity values that are 5.6 dB above the background are

grouped using a clustering algorithm according to a nearest-neighbour criteria that determines if the

pixels can be grouped into one or more significant sound signals. Each individual detected signal

is next characterized by its pitch track [29,46,47] representing the time variation of the fundamental

frequencies. The pitch-track is estimated using a time–frequency peak detector from a signal’s detected

and clustered pixel intensity values in the beamformed spectrogram.

The time–frequency characteristics of each individual detected signal is determined from its

pitch-track. The pitch-track for a signal contains a time series t = (t1, t2, ..., ti), a frequency series

f = ( f1, f2, ..., fi), and an amplitude series A = (A1, A2, ..., Ai) describing the time-variation of the

fundamental frequency in the signal [29,46,47]. Eight features are extracted from each signal. They

are (1) minimum frequency (Hz), fL; (2) maximum frequency (Hz), fU ; (3) amplitude weighted

average frequency (Hz), f ; (4) mean instantaneous bandwidth (Hz), B; (5) relative instantaneous

bandwidth, B/ f ; (6) duration (s), τ = ti − t1; (7) slope from first-order polynomial fit (Hz/s),
d f
dτ ;

and (8) curvature from second-order polynomial fit (Hz/s2),
d2 f

dτ2 . The slope and curvature are obtained

from second-order nonlinear curve fit to the vocalization traces obtained via pitch-tracking [2,9].

The time–frequency characteristics extracted via pitch-tracking are applied for identifying fin

whale vocalizations. First, a combination of extracted features from pitch-tracking, orthogonalized

via principal component analysis (PCA) [48], were used to optimize the vocalization classification

employing k-means [49] and Bayesian-based Gaussian mixture model clustering approaches [50].

The number of clusters can be determined via Bayesian information criterion (BIC) [51].

Clusters containing fin whale vocalization types were positively identified and labeled using the

cluster-averaged time–frequency features, and verified by visual inspection of all pitch tracks grouped

into clusters, as well as select spectrograms. The bearing-time trajectories of each closely associated

series of vocalizations were also taken into account to ensure consistent classification [9].

2.3. Algorithms for Automatic Fin Whale Vocalization Classification

Multiple classification algorithms were considered for identifying the 20 Hz pulse (single),

20 Hz pulse (doublet), 130 Hz upsweep, backbeat pulse, and 30–100 Hz downsweep chirps from

other acoustic signals. The classification algorithms include logistic regression, SVM, decision tree,

CNN, and LSTM. A comprehensive review of these classification algorithms, their theoretical limits,

and performance bounds can be found in [19] for logistic regression, SVM, and decision tree; [20–22]

for CNN; and [23] for LSTM.

All of the classifiers were implemented via Matlab on a single Intel Xeon processor with

4 cores operating at 3.7 GHz and 64 GB of RAM, equipped with a NVIDIA Quadro K620 2GB GPU.

The training data for the logistic regression, SVM, and decision tree classifiers were split into training

(70%) and validation (30%) data using Matlab functions. The Matlab functions also automatically

perform hyperparameter optimization for these classifiers to prevent overfitting and underfitting.

Hyperparameters optimized by Matlab in these classifiers are provided in [52].
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The CNN architecture consisted of an input layer with dimensions of the image size (194 × 79),

three sets of n convolutional layers with m filters, each followed by batch normalization and ReLU

activation functions. The n and m are hyperparameters, where the bounds for n is 1 to 3 and the

bounds for m is 9 to 32. Each of these three sets was followed by a 2 by 2 max pooling layer. Finally, we

used a fully connected layer, softmax layer, and classification layer in the output. The hyperparameters

were optimized to be n = 2 and m = 22.

The LSTM architecture consisted of an input layer with dimensions of the image size (194 ×N),

where N is the number of time indices determined by the time duration of the acoustic signal. The max

size of N was set to 79 due to memory constraints. The hidden unit ranged from 100 to 3000 and was

optimized to 500. We used a fully connected layer, softmax layer, and classification layer in the output.

The runtimes for training the logistic regression, SVM, and decision tree classifiers were on the

order of a few minutes, whereas the classification of test data completed in a second. For the CNN and

LSTM classifiers, the training runtimes were on the order of several hours, while the classification of

test data completed on the order of a few seconds. The test data comprises of roughly 10 h of coherent

hydrophone array recording where the signal detections are classified on the order of a few seconds

or less for fin whale vocalization types. Incoming POAWRS data files of roughly 1 min duration will

require much less time, making real-time classification attainable.

2.4. Training and Test Data Set

The CNN and LSTM classifiers are trained and tested using beamformed spectrogram images

of acoustic signal detections as inputs, whereas logistic regression, SVM, and decision tree classifiers

are trained and tested using 12 features extracted from each acoustic signal detection in beamformed

spectrograms. Note that the SVM classifier can also be trained using images [53–55] as input, such as

beamformed spectrogram images, and will be investigated in future work.

Each of the classification algorithms were used to develop a fin whale vocalization classifier (ref).

The training and test data sets for each classifier were extracted from a subset of POAWRS detections

observed during the NorEx14, and outlined in Tables 2 and 3. Each POAWRS detection in the training

and test data set was visually inspected, verified, and given a classification label between 1 and 6, where

the six different classes are defined as (1) 20 Hz pulse (single), (2) 20 Hz pulse (doublet), (3) 130 Hz

upsweep, (4) backbeat pulse, (5) 30–100 Hz downsweep chirp, and (6) non-fin whale vocalization.

Note that only the POAWRS detections between the frequency range 10–200 Hz will be utilized for

this analysis, since the fin whale vocalizations identified in Figure 1 are within this frequency range.

As displayed in Table 2, the training data set was extracted from observation days on

19–20 February 2014, 26 February 2014, and 5 March 2014 during the NorEx14. The observation

days on 19–20 February 2014 were chosen because there were a variety of different types of fin whale

vocalizations present. There were also a variety of acoustic sound sources within the same frequency

range as the fin whale vocalizations observed, such as the humpback whale vocalizations, seismic

airgun signals, and ship tonals. The training data extracted from the observation day on 26 February

2014 contained significant amounts of fin whale 130 Hz upsweeps, whereas the observation day on

5 March 2014 contained humpback whale vocalizations (labeled as class 6). The training data from

26 February 2014 and 5 March 2014 were added to increase the number of training data examples for

those two types of specific vocalizations and improve overall classification performance.

As displayed in Table 3, the test data set was extracted from the observation day on 21 February

2014 during the NorEx14. As with the training data set, this observation day was chosen because

there was a variety of different types of fin whale vocalizations and acoustic sound sources within

the same frequency range as the fin whale vocalizations observed. The bearing-time trajectories

for 21 February 2014 are displayed in Figure 4 and show a total of 43,794 POAWRS detections,

between the 10 and 200 Hz frequency range, in an approximate nine hour window of passive acoustic

monitoring. In addition, only 3033 out of the 43,794 POAWRS detections have been identified as fin

whale vocalizations. Visual inspection of Figure 4 shows a dense amount of acoustic signals arriving
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from a wide range of bearings relative to the coherent hydrophone array, which presents a potentially

challenging classification environment for the five classification algorithms that will be tested here.

Unfortunately, there were no 30–100 Hz downsweep chirps observed on this specific day. However, we

still have the ability to evaluate if there are false alarms due to any acoustic signals (such as humpback

whale vocalizations) being misclassified as a 30–100 Hz downsweep chirp.

Table 2. Training data set was extracted from a subset of POAWRS detections within the 10–200 Hz

frequency range, observed off the coast of Alesund, Norway on 19–20 February 2014; off the coast of

Northern Finnmark, Norway on 26 February 2014; and off the coast of Lofoten, Norway on 5 March

2014. Note that the total number of non-fin whale (Class 6) detections is significantly larger when

going up to the 4 kHz frequency range since this training set is only a subset of the overall POAWRS

detections on each day. (* The number of calls could not be confidently estimated (NA, not accessible)

for the 20 Hz pulse (doublet), downsweep chirps, and backbeats measured off the coast of the Northern

Finnmark region on 26 February 2014 due to multiple known and unknown marine mammal species

vocalizing in close proximity and in the same frequency band).

Training
(Class 1) (Class 2) (Class 3)

(Class 4)
(Class 5) (Class 6)

Day
Audio

Data
20 Hz 20 Hz 130 Hz

Backbeat
Downsweep Non-fin

(h)
Set

Pulse Pulse Pulse
Chirps Whale

(Single) (Doublet) Upsweep

19 Feb 21
No. of calls 4575 1235 574 426 0 109,980

% trained 100 100 100 100 0 100

20 Feb 22.4
No. of calls 6880 1002 1454 325 39 95,663

% trained 100 100 100 100 100 100

26 Feb 6.3
No. of calls 10,768 * NA 8666 * NA * NA 18,096

% trained 0 0 64 0 0 0

05 Mar 6.1
No. of calls 881 6 337 1 0 31,936

% trained 0 0 0 0 0 12

Total No. trained 11,455 2237 7546 751 39 209,555

Table 3. Test data set was extracted from a subset of POAWRS detections within the 10 to 200 Hz

frequency range and observed off the coast of Alesund, Norway on 21 February 2014. It should be

noted that the total number of non-fin whale (Class 6) detections is significantly larger when going up

to the 4 kHz frequency range since this data set is only a subset of the overall POAWRS detections on

21 February 2014.

Testing
(Class 1) (Class 2) (Class 3)

(Class 4)
(Class 5) (Class 6)

Day
Audio

Data
20 Hz 20 Hz 130 Hz

Backbeat
Downsweep Non-fin

(h)
Set

Pulse Pulse Pulse
Chirps Whale

(Single) (Doublet) Upsweep

21 Feb 21.6
No. of calls 985 1041 836 171 0 40,761

% tested 100 100 100 100 0 100

Total No. tested 985 1041 836 171 0 40,761

2.4.1. Feature Data for Logistic Regression, SVM, and Decision Tree Classifiers

For each acoustic signal in the training and test data sets (see Tables 2 and 3), twelve features

were extracted to train and test the logistic regression, SVM, and decision tree classifiers. For ten of

the features, the time–frequency characteristics of each individual acoustic signal are estimated by

using its pitch-track. As mentioned in Section 2.2, the pitch-track for a signal contains a time series

t = (t1, t2, ..., ti), a frequency series f = ( f1, f2, ..., fi), and an amplitude series A = (A1, A2, ..., Ai)

describing the time-variation of the fundamental frequency in the signal [29,46,47]. The ten features
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are (1) minimum frequency (Hz), fL; (2) maximum frequency (Hz), fU ; (3) average frequency

(Hz), f A; (4) amplitude weighted average frequency (Hz), f ; (5) maximum bandwidth (Hz), BU ;

(6) mean instantaneous bandwidth (Hz), B; (7) relative instantaneous bandwidth, B/ f ; (8) duration (s),

τ = ti − t1; (9) slope from first order polynomial fit (Hz/s),
d f
dτ ; and (10) curvature from second order

polynomial fit (Hz/s2),
d2 f

dτ2 . The last two features are (11) a rough estimate of the mean instantaneous

SNR, ISNR, and (12) total number of time–frequency pixels that the detected acoustic signal from the

beamformed spectrogram occupies, Px. It is worth noting that eight of the twelve features were used

in the time–frequency characterization of the fin whale vocalizations in Section 2.2. The other four

features were included to potentially improve fin whale classification performance.

3 4 5 6 7 8 9 10 11 12 13 14

150

200

250

300

350

400

450

500

550

Time (CET)

B
e
a
ri
n
g
 F

ro
m

 T
ru

e
 N

o
rt

h
 (

d
e
g
)

(A) Alesund: 21 Feb. 2014

 

 
Left

Right

Array

Figure 4. Bearing-time trajectories of acoustic signal detections spanning 360-degree horizontal azimuth

about the POAWRS coherent hydrophone array from true north off the coast of Alesund, Norway on

21 February 2014 within the 10 to 200 Hz frequency range. This comprises a subset of detections for

the day, since there are detections in other frequency sub-bands from 200 Hz to 4000 Hz not shown

here. Blue and red dots correspond to left and right side bearings, respectively, for detections about the

receiver array, before the line array’s left-right bearing ambiguity resolution. The black dots represent

the array heading.

Next, we would like to gain some insights into which of the 12 features, as listed in Section 2.4.1,

extracted from the feature data in the training data set (see Table 2), have the most significant variation

or weight between the six classes defined in Section 2.4. This is accomplished by employing PCA [48]

to understand the relationship between the 12 features and the principal components (PCs) [56,57].

Here, the feature data is given by X = (x1, ..., xN), where xi is a M-dimensional vector measurement

with each dimension corresponding to a given feature (M = 12), N is the observation number
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(N = 231,583), and the PCs are defined as the eigenvalues of the covariance matrix, cov(X). For each

PC, the components of its eigenvector measure the contributions from each of the 12 features.

In Figure 5A, the PCs are normalized (by the sum of the eigenvalues) and ordered from highest to

lowest (i.e., from most to least significant), which shows that PC1–PC3 occupies 99% of the significance

in comparison to PC4–PC12; PC1 occupies 86% of the significance. Figure 5B–D display the normalized

eigenvector components for PC1–PC3, measuring the contributions from each of the original 12 features.

From Figure 5B and the 86% significance of PC1, we find that the frequency information (original

features (1–4)) provides the greatest differences across the training data set investigated. Therefore,

the frequency information may have the most weight in classification performance using the logistic

regression, SVM, and decision tree algorithms.
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Figure 5. Example of applying principal component analysis to the feature data extracted from the

training data set identified in Table 2. (A) Histogram of the significance of the 12 principal components,

where the black diamond line represents the cumulative sum of the significance of the 12 principal

components from most to least significant. (B–D) The relation of the original features to the first,

second, and third most significant principal components respectively.

2.4.2. Image Data for CNN Classifier

For each training and test data set example in Tables 2 and 3, an input image data structure

was constructed to train and test the CNN classifier. The image was constructed by first creating an

M × N matrix padded with zeros, where M is the total number of frequencies used in the beamformed

spectrogram, and N is the number of time indices set by the user. Ideally, we would have set the image

width N to accommodate the largest signal detected; however, for this analysis, N was set to 79, which

equated to the first 5 s of the acoustic signal. This parameter was chosen because the duration of the fin

whale vocalizations identified in Figure 1 are all less than 5 s, and we are also limited by the random

access memory storage capacity in our current computer systems. As a final step, the portion of the

beamformed spectrogram that coincides with the frequency range and the first 5 s of the detected

acoustic signal was inserted into the M × N matrix. Figure 6B shows an example of a CNN input data

image for a single fin whale 20 Hz pulse detection.
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Figure 6. Plot (A) is an example of a beamformed spectrogram containing two fin whale 20 Hz pulses.

Plot (B) and plot (C) are examples of a CNN input data image and LSTM input data sequence for

the first 20 Hz pulse in plot (A). All the CNN images are defined to be 5 s in length due to hardware

limitations, while the length of all the LSTM input data sequences are defined by the duration of each

detected acoustic signal.

2.4.3. Time Series Data for LSTM Classifier

For each training and test data set example in Tables 2 and 3, a data sequence time series was

generated to train and test the LSTM classifier, constructed similarly to the images in Section 2.4.2.

The time series data was constructed by first creating an M × N matrix padded with zeros, where

M is the total number of frequencies used in the beamformed spectrogram, and N is the number of

time indices determined by the time duration of the acoustic signal. As a final step, the portion of the

beamformed spectrogram that coincides with the frequency range and time duration of the detected

acoustic signal was inserted into the M × N matrix. Figure 6C shows an example of a data sequence

time series for a single detected fin whale 20 Hz pulse. For this application, each M × N matrix is

viewed as a sequence containing M features and varies with length.

2.5. Classifier Performance Evaluation

The performance of each classifier will be evaluated and compared using multiple metrics, which

include accuracy, precision, recall, and F1-score. The metrics are defined as follows.

total accuracy =
total number of true positives (all classes)

total number of observations
(1)
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fin accuracy =
total number of true positives (all fin classes)

total number of fin observations
(2)

precision =
true positive (class)

number of predictive positives (class)
(3)

recall =
true positive (class)

number of actual positives (class)
(4)

F1-score = 2 ×
precision × recall

precision + recall
(5)

The total accuracy of the classifier incorporates the true positives from all the classes and quantifies

the overall ratio of correctly classifying all the observations in the test data set. In contrast, the fin

accuracy incorporates the true positives from all the fin whale vocalization classes and quantifies the

overall ratio of correctly classifying all the fin whale vocalization observations in the test data set.

The precision metric is important because it quantifies how well the classifier will avoid false positives

for a specific type of class. The recall metric is important because it quantifies how well the classifier

will predict true positives for a specific type of class. The F1-score is a weighted average of precision

and recall and helps consolidate the two metrics.

3. Results

3.1. Classification Confusion Matrices

The logistic regression, SVM, decision tree, CNN, and LSTM classifiers were trained using the

data set identified in Table 2 and tested using data set identified in Table 3. The results from each of

the five types of fin whale classifiers are provided in the confusion matrices displayed in Tables 4–8.

Each confusion matrix provides the classification results for six types of classes, which are defined as

(1) 20 Hz pulse (single), (2) 20 Hz pulse (doublet), (3) 130 Hz upsweep, (4) backbeat pulse, (5) 30–100 Hz

downsweep chirps, and (6) non-fin whale vocalizations. In addition, the green highlighted numbers

are true positives, and the red highlighted numbers are false positives.

Table 4. Confusion matrix displaying results from the logistic regression classifier. The green

highlighted numbers are true positives, and the red highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 Total

A
ct

u
al

1 889 6 0 0 0 90 985
2 91 900 0 0 0 50 1041
3 0 0 439 0 0 397 836
4 13 1 0 109 0 48 171
5 0 0 0 0 0 0 0
6 174 83 85 315 0 40,104 40,761

Total 1167 990 524 424 0 40,689 43,794
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Table 5. Confusion matrix displaying results from the SVM classifier. The green highlighted numbers

are true positives, and the red highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 Total

A
ct

u
al

1 893 17 0 0 0 75 985
2 70 934 0 0 0 37 1041
3 0 0 785 0 0 51 836
4 14 0 0 142 0 15 171
5 0 0 0 0 0 0 0
6 131 12 150 21 4 40,443 40,761

Total 1108 963 935 163 4 40,621 43,794

Table 6. Confusion matrix displaying results from the decision tree classifier. The green highlighted

numbers are true positives, and the red highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 Total

A
ct

u
al

1 884 11 0 1 0 89 985
2 56 897 0 0 0 88 1041
3 0 0 774 0 0 62 836
4 10 0 0 150 0 11 171
5 0 0 0 0 0 0 0
6 56 2 73 11 2 40,617 40,761

Total 1006 910 847 162 2 40,867 43,794

Table 7. Confusion matrix displaying results from the CNN classifier. The green highlighted numbers

are true positives, and the red highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 Total

A
ct

u
al

1 691 66 10 0 0 218 985
2 162 819 6 0 0 54 1041
3 10 14 703 0 0 109 836
4 8 0 1 93 0 69 171
5 0 0 0 0 0 0 0
6 428 99 275 24 7 39,928 40,761

Total 1299 998 995 117 7 40,378 43,794

Table 8. Confusion matrix displaying results from the LSTM classifier. The green highlighted numbers

are true positives, and the red highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 Total

A
ct

u
al

1 423 32 75 0 0 455 985
2 133 505 18 0 0 385 1041
3 0 1 691 0 0 144 836
4 3 0 2 19 0 147 171
5 0 0 0 0 0 0 0
6 293 55 415 5 0 39,993 40,761

Total 852 593 1201 24 0 41,124 43,794

3.2. Classifier Accuracy

The classifier accuracy results are provided in Table 9. The results were calculated using the

information from each of the confusion matrices displayed in Tables 4–8. The total accuracy metric

(see Equation (1)) represents the total number of correctly classified acoustic signals divided by the

total number of acoustic signals from the test data set in Table 3. Here, the total accuracy results are

all greater than 95% for each of the classifiers investigated, which shows that a great majority of the

43,794 acoustic signals in Table 3 were classified correctly. The fin accuracy results are given in Table 9,

where the fin accuracy (see Equation (2)) represents the total number of correctly classified fin whale
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vocalizations divided by the total number of fin whale vocalizations from the test data set in Table 3.

Here, the fin accuracy results show a larger variation than the total accuracy results. The SVM classifier

had the largest value of approximately 91%, whereas the LSTM classifier had the smallest value of 54%.

The SVM and decision tree classifiers all had fin accuracy values greater than 89%, and both values

were approximately within 1 percent from each other. The precision, recall and F1-score metrics will

now be used in the next section to measure how well individual fin whale call types are classified from

other fin whale and non-fin vocalizations, since both the total accuracy and fin accuracy metrics do not

capture those individual classification quantities.

Table 9. Classifier accuracy results.

Accuracy
Logistic

SVM
Decision

CNN LSTM
Regression Tree

Total 0.969 0.986 0.987 0.964 0.951

Fin 0.771 0.908 0.897 0.760 0.540

3.3. Classifier Precision, Recall, and F1-Score

The precision and recall results are provided in Tables 10 and 11. The results were calculated

using the information from each of the confusion matrices displayed in Tables 4–8. As described in

Section 2.5, the precision metric quantifies how well the classifier will avoid predicting a false positive,

while the recall metric quantifies how well the classifier will predict a true positive in regards to a

specific class or type of fin whale vocalization. The F1-score results are provided in Table 12 and

were calculated using both the precision and recall results. The F1-score results are used to evaluate

and compare the performance between the logistic regression, SVM, decision tree, CNN, and LSTM

classifiers in identifying a specific class or type of fin whale vocalization. For each class or type of fin

whale vocalization in Table 13, a classifier was ranked between 1 to 5, where a classifier with a rank of

1 had the largest F1-score, whereas a classifier with a rank of 5 had the smallest F1-score. The overall

classifier ranking is calculated by summing up each column in Table 13 and ranking each classifier by

the lowest total score.

As discussed in Section 2.4, there were no 30–100 Hz downsweep chirps in the test data set

chosen for this analysis. Consequently, the precision, recall, F1-score, and performance ranking

results for each of the five types of classifiers are listed as non-applicable (NA) for the 30–100 Hz

downsweep chirp (Class 5) (see Tables 10–13). This can be attributed to the calculated precision and

recall results having either a NaN or 0 value for the 30–100 Hz downsweep chirp (Class 5) calculations

(see Equations (3)–(5)). However, we still evaluated if there were false alarms due to any acoustic

signals (such as humpback whale vocalizations) being misclassified as a 30–100 Hz downsweep chirp

(Class 5). As displayed in each classifier confusion matrix (see Tables 4–8), the number of false alarms

in classifying detections as the 30–100 Hz downsweep chirp (Class 5) were all less than 7, which shows

that approximately less than 0.02% of the non-fin whale (Class 6) vocalizations were misclassified as a

30–100 Hz downsweep chirp (Class 5).

According to the Table 13, the decision tree classifier had the best overall ranking with a minimum

total score of 6. As displayed in Table 12, the F1-score results for the decision tree classifier were all

greater than approximately 89% for the fin whale vocalization classes. The overall classifier rankings

between the decision tree and SVM classifiers were fairly close with a total score of 6 for the decision

tree classifier and a total score of 9 for the SVM classifier (see Table 13). As displayed in Table 12,

the F1-scores from both of these classifiers were all greater than 85% for the fin whale vocalization

classes and less than 6% from each other.
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The logistic regression and CNN classifiers both had a total score of 18 for their overall classifier

rankings. These results can be attributed to low F1-score values for the fin whale vocalization classes,

which ranged from 37% to 89% for logistic regression and 61 to 80% for CNN, and were primarily

caused by either a fin whale vocalization being misclassified as a non-fin whale (Class 6) vocalization

or vice versa. As an example, using the logistic regression classifier results, the F1-score for the fin

whale 130 Hz upsweep was 0.646, which was low due to the poor recall value of 0.525. The recall

results can be explained by viewing the confusion matrix in Table 4, which shows that approximately

50% of the 130 Hz upsweeps (Class 3) were misclassified as non-fin whale (Class 6) vocalization. Next,

the F1-score for the fin whale backbeat (Class 4) was 0.366, which was substantially low due to the

poor precision value of 0.257. The precision results can also be explained by viewing the confusion

matrix in Table 4, which shows that approximately 73% of the predicted backbeats from the logistic

regression classifier were actually non-fin whale (Class 6) vocalizations. Therefore, by using the same

methodology, the results from the CNN classifier shows approximately 33% of the predicted 20 Hz

pulses (single) (Class 1) were actually non-fin whale (Class 6) vocalizations and 40% of the backbeats

(Class 3) were misclassified as non-fin whale (Class 6) vocalizations.

The LSTM classifier had the worst overall ranking with a maximum total score of 24, where

the F1-scores ranged between 20 and 68% for the fin whale vocalization classes. Here, the results

from the LSTM classifier shows approximately 46% of the 20 Hz pulses (single) (Class 1), 37% of the

20 Hz pulses (doublet) (Class 2), and 86% of the backbeats (Class 3) were misclassified as non-fin

whale (Class 6) vocalizations. The results also show that approximately 35% of the predicted 130 Hz

upsweeps (Class 3) were actually non-fin whale (Class 6) vocalizations.

Table 10. Classifier precision results.

Class
Logistic

SVM
Decision

CNN LSTM
Regression Tree

1 0.762 0.806 0.879 0.532 0.497

2 0.909 0.970 0.986 0.821 0.852

3 0.838 0.840 0.914 0.707 0.575

4 0.257 0.871 0.926 0.795 0.792

5 NA NA NA NA NA

6 0.986 0.996 0.994 0.989 0.973

Table 11. Classifier recall results.

Class
Logistic

SVM
Decision

CNN RNN
Regression Tree

1 0.903 0.907 0.898 0.702 0.429

2 0.865 0.897 0.862 0.787 0.485

3 0.525 0.939 0.926 0.841 0.827

4 0.637 0.830 0.877 0.544 0.111

5 NA NA NA NA NA

6 0.984 0.992 0.997 0.980 0.981
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Table 12. Classifier F1-score results.

Class
Logistic

SVM
Decision

CNN LSTM
Regression Tree

1 0.826 0.853 0.888 0.605 0.461

2 0.886 0.932 0.920 0.803 0.618

3 0.646 0.887 0.920 0.768 0.678

4 0.366 0.850 0.901 0.646 0.195

5 NA NA NA NA NA

6 0.985 0.994 0.995 0.984 0.977

Table 13. Classifier performance rankings.

Class
Logistic

SVM
Decision

CNN LSTM
Regression Tree

1 3 2 1 4 5

2 3 1 2 4 5

3 5 2 1 3 4

4 4 2 1 3 5

5 NA NA NA NA NA

6 3 2 1 4 5

Total 18 9 6 18 24

4. Discussion

4.1. Automatic Classifiers for Near Real-Time Fin Whale Applications

4.1.1. Decision Tree Classifier

The decision tree classifier may be a good potential candidate for near real-time fin whale

vocalization detection application, because its F1-score results were all above 89% for fin whale

vocalization classes and it was ranked number 1 from the results in Tables 12 and 13 for classifying fin

whale vocalization detections. The set of 12 features for each acoustic signal detection is automatically

calculated as a subroutine in our POAWRS processing software right after signal detection from

beamformed spectrogram analysis, and therefore available for input to the classification algorithms.

As an example for demonstrating the feasibility for using a decision tree classifier for near

real-time fin whale detection applications, we will again use the POAWRS detections from the NorEx14

on 21 February 2014 (see Table 3). Figure 7A displays the bearing-time trajectory results for all the

acoustic signals detected between the 10 to 200 Hz frequency range, and, again, the results visually

emphasize the significant amount of POAWRS detections on this observation day. Figure 7B displays

the bearing-time trajectory results from the fin whale vocalization detections that were manually

labeled and visually verified by the research team (which we can treat as providing “ground truth”),

whereas Figure 7C only displays the fin whale vocalization detections that were identified by the

decision tree classifier. Note that it took the research team approximately 2 full days to visually inspect

and verify all the fin whale vocalization detections in each spectrogram from the test data set in Table 3,

whereas it only took less than one second for the decision tree classifier to classify all 43,794 detections.

A comparison of the data displayed in Figures 4B,C reveals that roughly 8% (250) of the fin whale

vocalization detections were misclassified as non-fin whale (Class 6) detections by the decision tree

classifier, and therefore, were not included in Figure 4C. In addition, roughly 0.4% (144) of the non-fin

whale (Class 6) detections were misclassified as a specific type of fin whale vocalization by the decision

tree classifier, and therefore, were included in Figure 4C. Interestingly, most of the misclassified 144
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non-fin whale (Class 6) detections in Figure 4C appear like random noise in contrast to the denser tracks

formed by the correctly classified fin whale vocalization detections. Therefore, misclassified non-fin

whale (Class 6) detections may potentially be removed by an existing density-based spatial clustering

algorithm, such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [58].

The above analysis demonstrates the use of a decision tree classifier for rapid fin whale

vocalization classification using 12 features extracted from each detection after beamformed

spectrogram analysis of coherent hydrophone array data. Note that the volume of non-fin whale

vocalization detections are typically larger by a factor of ten or more in the 10 Hz to 200 Hz

frequency range, and arise due to other oceanic sound sources, such as other marine mammal species

vocalizations, fish grunts, ship-radiated sound, other man-made sound sources, as well as unidentified

sources. For simultaneously classifying these large categories of biological, geophysical and man-made

sound sources, further training and testing with the five classifier approaches examined here, as well

as other approaches will be neccessary in the future. Seasonal and regional trends and differences

in the variety and abundance of ocean acoustic sound sources will also impact the performances of

the classifiers.

As a final note, the bearing-time trajectories were used as one of the features to manually label

the fin whale detections displayed in Figure 4B, but they were not included as a feature to train and

test the decision tree classifier, SVM or logistic regression classifiers. Future work will incorporate the

bearing-time trajectories of fin whale vocalization detections as potential feature to see if there is any

increase in classification accuracy for each of the algorithms discussed here.
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Figure 7. Fin whale vocalization classification results for the NorEx14 on 21 February 2014 (Alesund)

using a decision tree classifier. Plot (A) displays the bearing-time trajectories of all acoustic signal

detections between the 10 and 200 Hz frequency range. Blue and red dots correspond to left and

right side bearings respectively for detections about the receiver array, before the line array’s left-right

bearing ambiguity resolution. The black dots represent the array heading. Plot (B) displays the

bearing-time trajectories of fin whale vocalization detections that were manually labeled, whereas plot

(C) displays the fin whale vocalization detections that were identified by the decision tree classifier.
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4.1.2. Neural Network Classifiers

As displayed in Table 12, the F1-scores from both the SVM and decision tree classifiers are all

greater than 85% for the fin whale vocalization classes, whereas the F1-scores for the CNN and LSTM

classifiers ranged from 61 to 80% and 20 to 68%. Note that the reader should not conclude from

this comparison that conventional classification algorithms (SVM and decision tree) are better than

neural network classifiers (CNN and LSTM) for identifying fin whale vocalizations in beamformed

spectrograms. Specifically, the performance results of the CNN and LSTM classifiers are preliminary,

given that the CNN and LSTM classifier’s performance results may improve by modifying their input

data structures or by optimizing the algorithm parameters. For example, the input data image for the

CNN classifier and the input data sequence for the LSTM classifier were modified to only include the

portion of the beamformed spectrogram that coincides with the detected acoustic signal as indicated

in Figure 8b,c. The rest of the input image (CNN) or input data sequence (LSTM) that does not coincide

with the detected acoustic signal is padded with zeros. This modification was performed to the CNN

and LSTM input data structures to potentially increase classification performance by isolating each

acoustic detected signal from the other acoustic signals contained in the input image (CNN) or input

data sequence (LSTM).

The F1-score results from the CNN and LSTM classifiers using the modified input data structures

are displayed in Table 14, which includes the prior F1-scores from Table 12 for comparison. Here, the

modification to the CNN input data structures improved the F1-scores for the fin whale vocalization

classes by roughly 11–26% for the CNN classifier, which significantly impacted the overall ranking

of the CNN classifier as displayed in Table 15. Now, the overall rankings for the decision tree and

CNN (using the modified input data structure) classifiers were fairly close with a total score of 7

for the decision tree classifier and a total score of 9 for the CNN classifier. As displayed in Table 14,

the F1-scores from both of these classifiers were all greater than 85% for the fin whale vocalization

classes and less than 3% from each other. In addition, the modification to the LSTM input data

structures improved the F1-scores for the fin whale vocalization classes by approximately 11–67%

for the LSTM classifier, which significantly increased the classification performance (see Table 14).

Here, the F1-scores for the LSTM (using the modified input data structure) classifier were all greater

than 78%.

The previous example was just one proposed method to potentially increase the classification

performance for both the CNN and LSTM classifiers for identifying fin whale vocalizations in

beamformed spectrograms. Further research is required to investigate modifying other CNN and LSTM

input data structure parameters such as the time duration, where we can utilize the information from

the periodic nature and combinations of specific types of fin whale vocalizations to potentially increase

classification performance. In addition, further research is required to investigate the optimization

of the CNN and LSTM algorithm parameters, such as the number of hidden layers in the network,

to potentially increase classification performance.

Table 14. Fin whale classifier F1-score results (including results from the CNN and LSTM classifiers

with modified input data structures).

Class
Logistic

SVM
Decision

CNN
CNN

LSTM
LSTM

Regression Tree Modified Modified

1 0.826 0.853 0.888 0.605 0.859 0.461 0.794

2 0.886 0.932 0.920 0.803 0.909 0.618 0.820

3 0.646 0.887 0.920 0.768 0 .905 0.678 0.784

4 0.366 0.850 0.901 0.646 0.910 0.195 0.866

5 NA NA NA NA NA NA NA

6 0.985 0.994 0.995 0.984 0.995 0.977 0.991
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Table 15. Classifier performance rankings (Using the F1-scores from the CNN and LSTM classifiers

with modified input data structures).

Class
Logistic

SVM
Decision CNN LSTM

Regression Tree Modified Modified

1 4 3 1 2 5

2 4 1 2 3 5

3 5 3 1 2 4

4 5 4 2 1 3

5 NA NA NA NA NA

6 4 2 1 1 3

Total 22 13 7 9 20
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Figure 8. Plot (A) is an example of a beamformed spectrogram containing two fin whale 20 Hz pulses.

Plot (B) and plot (C) are examples of a modified CNN input data image with zero padding and modified

LSTM input data sequence with zero padding for the first 20 Hz pulse in plot (A). All the modified

CNN images are defined to be 5 s in length due to hardware limitations, whereas the length of all the

modified LSTM input data sequences are defined by the duration of each detected acoustic signal.

4.2. Building an Automatic Classifier for Near Real-Time Detection of Various Biological, Geophysical,
and Man-Made Sound Sources

Ideally, we would like to build a classification system to identify every type of underwater

acoustic signal detected during the NorEx14. The fin whale classifier developed in this journal article

will provide a foundation and framework from which we will incorporate new classes of acoustic
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signals from training data acquired through future analyses. As an example, we identified and labeled

8952 detections of seismic airgun signals (see Figure 2) contained in the original training data set in

Table 2, which were originally labeled as non-fin whale (Class 6) detections. In addition, we identified

and labeled 822 detections of seismic airgun signals contained in the original test data set in Table 3,

which were originally labeled as non-fin whale (Class 6) detections. Subsequently, we created a new

class using the labeled seismic airgun signal detections known as Class 7. The updated training data set

was then used to retrain the decision tree classifier. The results from the decision tree classifier, given

the updated labels, is provided in the confusion matrix displayed in Table 16, and the performance

metrics displayed in Table 17. The results show that the decision tree classifier’s F1-score results were

above 88% for all the classes. Furthermore, the decision tree classifier performance for classifying

the seismic airgun signal detections (Class 7) was very good, with approximately a precision of 97%,

a recall of 99%, and an F1-score of 98%. This example demonstrates the feasibility of adding and

training new classes to the fin whale classifier to provide a fuller awareness of the acoustic sound

sources in the ocean environment.

Table 16. Confusion matrix displaying results from the decision tree fin whale classifier, given a new

seismic airgun signal class (Class 7). The green highlighted numbers are true positives, and the red

highlighted numbers are false positives.

Prediction
Class 1 2 3 4 5 6 7 Total

A
ct

u
al

1 875 18 0 1 0 91 0 985
2 59 876 0 0 0 106 0 1041
3 0 0 765 0 0 71 0 836
4 10 0 0 151 0 10 0 171
5 0 0 0 0 0 0 0 0
6 58 14 110 11 3 39,721 22 39,939
7 0 0 0 0 0 1 821 822

Total 1002 908 875 163 3 40,000 2 43,794

Table 17. Decision tree classifier performance results, given a new seismic airgun signal class (Class 7).

Class Precision Recall F1-Score
Total Fin

Accuracy Accuracy

1 0.873 0.888 0.881

0.987 0.879

2 0.965 0.842 0.899

3 0.874 0.915 0.894

4 0.926 0.883 0.904

5 NA NA NA

6 0.993 0.995 0.994

7 0.974 0.999 0.986

5. Conclusions

We considered five different types of classification algorithms to identify fin whale vocalizations:

logistic regression, SVM, decision tree, CNN, and LSTM. The goal was to develop a fin whale classifier

for near real-time fin whale detection applications. Each classifier was trained and tested using

POAWRS detections from the NorEX14 data set. Each detection was categorized as either a specific

type of fin whale vocalization or a non-fin whale vocalization. Further analysis will be required to

identify the best classification approach for fin whale vocalizations due to challenges such as the

limited size of the data set, which does not include the seasonal and regional differences in the acoustic

signals detected. However, the decision tree classifier was ranked number 1 out of the five classifiers

and has F1-score results all greater than 89% from the current data set used.
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The demonstrated performance of the decision tree classifier suggest that it is an excellent

candidate to be applied for near-real time classification of fin whale detections for the Norwegian

and Barents Seas. Ultimately, the fin whale classifier developed in this journal article will provide a

framework for future development, such as incorporating new classes of acoustic signals from future

collections of training data, as was shown here by incorporating detections of seismic airgun signals.

Author Contributions: Data analysis and interpretation was conducted primarily by H.A.G., with contributions
from T.C., A.G., J.M.T., W.H., D.T., and P.R.; H.A.G. wrote the paper and edited by P.R.; research was directed by
P.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by United States Office of Naval Research grant number N00014-17-1-2476
and United States National Science Foundation grant number OCE-1736749.

Acknowledgments: This research was also supported by the Norwegian Institute of Marine Research—Bergen.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN convolutional neural network

LSTM long short-term memory

POAWRS passive ocean acoustic waveguide remote sensing technique

PC principal component

PCA principal component analysis

SVM support vector machine

References

1. Garcia, H.A.; Zhu, C.; Schinault, M.E.; Kaplan, A.I.; Handegard, N.O.; Godø, O.R.; Ahonen, H.; Makris, N.C.;

Wang, D.; Huang, W.; et al. Temporal–spatial, spectral, and source level distributions of fin whale

vocalizations in the Norwegian Sea observed with a coherent hydrophone array. ICES J. Mar. Sci. 2018, 76,

268–283. [CrossRef]

2. Wang, D.; Garcia, H.; Huang, W.; Tran, D.D.; Jain, A.D.; Yi, D.H.; Gong, Z.; Jech, J.M.; Godø, O.R.;

Makris, N.C.; et al. Vast assembly of vocal marine mammals from diverse species on fish spawning

ground. Nature 2016, 531, 366–370. [CrossRef] [PubMed]

3. Wenz, G.M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 1962, 34, 1936–1956.

[CrossRef]

4. Cato, D. Ambient sea noise in waters near Australia. J. Acoust. Soc. Am. 1976, 60, 320–328. [CrossRef]

5. Pine, M.K.; Wang, D.; Porter, L.; Wang, K. Investigating the spatiotemporal variation of fish choruses to help

identify important foraging habitat for Indo-Pacific humpback dolphins, Sousa chinensis. ICES J. Mar. Sci.

2017, 75, 510–518. [CrossRef]

6. Cato, D.; McCauley, R.; Rogers, T.; Noad, M. Passive acoustics for monitoring marine animals-progress

and challenges. In Proceedings of the ACOUSTICS, Christchurch, New Zealand, 20–22 November 2006;

Volume 2006, pp. 453–460.

7. Matsumoto, H.; Bohnenstiehl, D.R.; Tournadre, J.; Dziak, R.P.; Haxel, J.H.; Lau, T.K.; Fowler, M.;

Salo, S.A. Antarctic icebergs: A significant natural ocean sound source in the S outhern H emisphere.

Geochem. Geophys. Geosystems 2014, 15, 3448–3458. [CrossRef]

8. Wang, D.; Huang, W.; Garcia, H.; Ratilal, P. Vocalization source level distributions and pulse compression

gains of diverse baleen whale species in the Gulf of Maine. Remote. Sens. 2016, 8, 881. [CrossRef]

9. Huang, W.; Wang, D.; Ratilal, P. Diel and Spatial Dependence of Humpback Song and Non-Song Vocalizations

in Fish Spawning Ground. Remote. Sens. 2016, 8, 712. [CrossRef]

10. Tran, D.D.; Huang, W.; Bohn, A.C.; Wang, D.; Gong, Z.; Makris, N.C.; Ratilal, P. Using a coherent hydrophone

array for observing sperm whale range, classification, and shallow-water dive profiles. J. Acoust. Soc. Am.

2014, 135, 3352–3363. [CrossRef]



Remote Sens. 2020, 12, 326 23 of 25

11. Gong, Z.; Jain, A.D.; Tran, D.; Yi, D.H.; Wu, F.; Zorn, A.; Ratilal, P.; Makris, N.C. Ecosystem scale acoustic

sensing reveals humpback whale behavior synchronous with herring spawning processes and re-evaluation

finds no effect of sonar on humpback song occurrence in the Gulf of Maine in Fall 2006. PLoS ONE

2014, 9, e104733. [CrossRef]

12. Huang, W.; Wang, D.; Garcia, H.; Godø, O.R.; Ratilal, P. Continental Shelf-Scale Passive Acoustic Detection

and Characterization of Diesel-Electric Ships Using a Coherent Hydrophone Array. Remote. Sens. 2017, 9, 772.

[CrossRef]

13. Zhu, C.; Garcia, H.; Kaplan, A.; Schinault, M.; Handegard, N.; Godø, O.; Huang, W.; Ratilal, P. Detection,

localization and classification of multiple mechanized ocean vessels over continental-shelf scale regions with

passive ocean acoustic waveguide remote sensing. Remote. Sens. 2018, 10, 1699. [CrossRef]

14. Seri, S.G.; Zhu, C.; Schinault, M.; Garcia, H.; Handegard, N.O.; Ratilal, P. Long Range Passive Ocean Acoustic

Waveguide Remote Sensing (POAWRS) of Seismic Air-gun Signals Received on a Coherent Hydrophone

Array. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019.

15. Watkins, W.A.; Tyack, P.; Moore, K.E.; Bird, J.E. The 20-Hz signals of finback whales (B alaenopteraphysalus).

J. Acoust. Soc. Am. 1987, 82, 1901–1912. [CrossRef] [PubMed]

16. Clark, C.; Gagnon, G. Low-frequency vocal behaviors of baleen whales in the North Atlantic: Insights from

Integrated Undersea Surveillance System detections, locations, and tracking from 1992 to 1996. J. Underw.

Acoust. (USN) 2004, 52, 48.

17. Simon, M.; Stafford, K.M.; Beedholm, K.; Lee, C.M.; Madsen, P.T. Singing behavior of fin whales in the

Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 2010, 128, 3200–3210.

[CrossRef] [PubMed]

18. Castellote, M.; Clark, C.W.; Lammers, M.O. Fin whale (Balaenoptera physalus) population identity in the

western Mediterranean Sea. Mar. Mammal Sci. 2012, 28, 325–344. [CrossRef]

19. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.

20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]

21. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation

applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

22. Orr, G.B.; Müller, K.R. Neural Networks: Tricks of the Trade; Springer: Berlin, Germany, 2003.

23. Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. In Advances in Neural Information

Processing Systems; MIT Press: Cambridge MA, USA, 1997; pp. 473–479.

24. Mohebbi-Kalkhoran, H.; Zhu, C.; Schinault, M.; Ratilal, P. Classifying Humpback Whale Calls to Song

and Non-song Vocalizations using Bag of Words Descriptor on Acoustic Data. In Proceedings of the 2019

18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA,

16–19 December 2019.

25. Shamir, L.; Yerby, C.; Simpson, R.; von Benda-Beckmann, A.M.; Tyack, P.; Samarra, F.; Miller, P.; Wallin, J.

Classification of large acoustic datasets using machine learning and crowdsourcing: Application to whale

calls. J. Acoust. Soc. Am. 2014, 135, 953–962. [CrossRef]

26. Pace, F.; Benard, F.; Glotin, H.; Adam, O.; White, P. Subunit definition and analysis for humpback whale call

classification. Appl. Acoust. 2010, 71, 1107–1112. [CrossRef]

27. Mazhar, S.; Ura, T.; Bahl, R. Vocalization based individual classification of humpback whales using support

vector machine. In Proceedings of the OCEANS 2007, Vancouver, BC, Canada, 29 September–4 October 2007;

pp. 1–9.

28. Bahoura, M.; Simard, Y. Blue whale calls classification using short-time Fourier and wavelet packet

transforms and artificial neural network. Digit. Signal Process. 2010, 20, 1256–1263. [CrossRef]

29. Baumgartner, M.F.; Mussoline, S.E. A generalized baleen whale call detection and classification system.

J. Acoust. Soc. Am. 2011, 129, 2889–2902. [CrossRef] [PubMed]

30. Roch, M.A.; Klinck, H.; Baumann-Pickering, S.; Mellinger, D.K.; Qui, S.; Soldevilla, M.S.; Hildebrand, J.A.

Classification of echolocation clicks from odontocetes in the Southern California Bight. J. Acoust. Soc. Am.

2011, 129, 467–475. [CrossRef] [PubMed]

31. Zhang, L.; Wang, D.; Bao, C.; Wang, Y.; Xu, K. Large-Scale Whale-Call Classification by Transfer Learning on

Multi-Scale Waveforms and Time-Frequency Features. Appl. Sci. 2019, 9, 1020. [CrossRef]

32. Malfante, M.; Mars, J.I.; Dalla Mura, M.; Gervaise, C. Automatic fish sounds classification. J. Acoust. Soc. Am.

2018, 143, 2834–2846. [CrossRef]



Remote Sens. 2020, 12, 326 24 of 25

33. Makris, N.C.; Godø, O.R.; Yi, D.H.; Macaulay, G.J.; Jain, A.D.; Cho, B.; Gong, Z.; Jech, J.M.; Ratilal, P.

Instantaneous areal population density of entire Atlantic cod and herring spawning groups and group size

distribution relative to total spawning population. Fish Fish. 2019, 20, 201–213. [CrossRef]

34. Duane, D.; Cho, B.; Jain, A.D.; Godø, O.R.; Makris, N.C. The Effect of Attenuation from Fish Shoals on

Long-Range, Wide-Area Acoustic Sensing in the Ocean. Remote. Sens. 2019, 11, 2464. [CrossRef]

35. Makris, N.C.; Ratilal, P.; Symonds, D.T.; Jagannathan, S.; Lee, S.; Nero, R.W. Fish population and behavior

revealed by instantaneous continental shelf-scale imaging. Science 2006, 311, 660–663. [CrossRef]

36. Makris, N.C.; Ratilal, P.; Jagannathan, S.; Gong, Z.; Andrews, M.; Bertsatos, I.; Godø, O.R.; Nero, R.W.;

Jech, J.M. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 2009, 323,

1734–1737. [CrossRef]

37. Jagannathan, S.; Bertsatos, I.; Symonds, D.; Chen, T.; Nia, H.T.; Jain, A.D.; Andrews, M.; Gong, Z.; Nero, R.;

Ngor, L.; et al. Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems. Mar. Ecol.

Prog. Ser. 2009, 395, 137–160. [CrossRef]

38. Becker, K.; Preston, J. The ONR five octave research array (FORA) at Penn State. In Proceedings of the

OCEANS 2003, San Diego, CA, USA, 22–26 September 2003; Volume 5, pp. 2607–2610.

39. Johnson, D.H.; Dudgeon, D.E. Array Signal Processing: Concepts and Techniques; Prentice Hall: Englewood

Cliffs, NJ, USA, 1992.

40. Makris, N.C.; Avelino, L.Z.; Menis, R. Deterministic reverberation from ocean ridges. J. Acoust. Soc. Am.

1995, 97, 3547–3574. [CrossRef]

41. Ratilal, P.; Lai, Y.; Symonds, D.T.; Ruhlmann, L.A.; Preston, J.R.; Scheer, E.K.; Garr, M.T.; Holland, C.W.;

Goff, J.A.; Makris, N.C. Long range acoustic imaging of the continental shelf environment: The Acoustic

Clutter Reconnaissance Experiment 2001. J. Acoust. Soc. Am. 2005, 117, 1977–1998. [CrossRef] [PubMed]

42. Jain, A.D. Instantaneous Continental-Shelf Scale Sensing of Cod with Ocean Acoustic Waveguide Remote

Sensing (OAWRS). Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015.

43. Kay, S.M. Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory; Prentice Hall: Upper Saddle

River, NJ, USA, 1998.

44. Wang, D.; Ratilal, P. Angular Resolution Enhancement Provided by Nonuniformly-Spaced Linear

Hydrophone Arrays in Ocean Acoustic Waveguide Remote Sensing. Remote. Sens. 2017, 9, 1036. [CrossRef]

45. Sezan, M.I. A peak detection algorithm and its application to histogram-based image data reduction.

Comput. Vision Graph. Image Process. 1990, 49, 36–51. [CrossRef]

46. Wang, C.; Seneff, S. Robust pitch tracking for prosodic modeling in telephone speech. In Proceedings of

the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (Cat. No.00CH37100),

Istanbul, Turkey, 5–9 June 2000; Volume 3, pp. 1343–1346.

47. Shapiro, A.D.; Wang, C. A versatile pitch tracking algorithm: From human speech to killer whale

vocalizations. J. Acoust. Soc. Am. 2009, 126, 451–459. [CrossRef]

48. Jolliffe, I. Principal Component Analysis, 2nd ed.; Wiley Online Library: New York, NY, USA, 2002; pp. 11–31.

49. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means

clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892.

[CrossRef]

50. Richard, O.D.; Peter, E.H.; David, G.S. Pattern Classification; A Wiley-Interscience: New York. NY, USA.

2001; pp. 373–378.

51. Hirose, K.; Kawano, S.; Konishi, S.; Ichikawa, M. Bayesian information criterion and selection of the number

of factors in factor analysis models. J. Data Sci. 2011, 9, 243–259.

52. Matlab. Fitcecoc: Fit Multiclass Models for Support Vector Machines or other Classifiers. 2014. Available online:

https://www.mathworks.com/help/stats/fitcecoc.html (accessed on 20 December 2019).

53. Anthony, G.; Greg, H.; Tshilidzi, M. Classification of images using support vector machines. arXiv 2007,

arXiv:0709.3967.

54. Del Val, L.; Izquierdo-Fuente, A.; Villacorta, J.; Raboso, M. Acoustic biometric system based on preprocessing

techniques and linear support vector machines. Sensors 2015, 15, 14241–14260. [CrossRef]

55. Amiriparian, S.; Gerczuk, M.; Ottl, S.; Cummins, N.; Freitag, M.; Pugachevskiy, S.; Baird, A.; Schuller, B.W.

Snore Sound Classification Using Image-Based Deep Spectrum Features. In Proceedings of the INTERSPEECH,

Stockholm, Sweden, 20–24 August 2017; pp. 3512–3516.



Remote Sens. 2020, 12, 326 25 of 25

56. Ben-Hur, A.; Guyon, I. Detecting stable clusters using principal component analysis. In Functional Genomics;

Humana Press: Totowa, NJ, USA, 2003; pp. 159–182.

57. Malhi, A.; Gao, R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans.

Instrum. Meas. 2004, 53, 1517–1525. [CrossRef]

58. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. Density-based spatial clustering of applications with noise.

Int. Conf. Knowl. Discov. Data Min. 1996, 240, 6.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Materials and Methods
	Measurement of Fin Whale Vocalizations Using a Coherent Hydrophone Array
	Fin Whale Vocalization Detection and Identification
	Algorithms for Automatic Fin Whale Vocalization Classification
	Training and Test Data Set
	Feature Data for Logistic Regression, SVM, and Decision Tree Classifiers
	Image Data for CNN Classifier
	Time Series Data for LSTM Classifier

	Classifier Performance Evaluation

	Results
	Classification Confusion Matrices
	Classifier Accuracy
	Classifier Precision, Recall, and F1-Score

	Discussion
	Automatic Classifiers for Near Real-Time Fin Whale Applications
	Decision Tree Classifier
	Neural Network Classifiers

	Building an Automatic Classifier for Near Real-Time Detection of Various Biological, Geophysical, and Man-Made Sound Sources

	Conclusions
	References

