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Abstract 

This paper discusses a novel algorithm to automatically identify the position of a smartphone 

inside a moving vehicle, so as to detect whether it is being used by the driver or just a passenger 

of the car.  This detection has applications to the prevention of distracted driving and can be used 

to automatically disable phone features such as texting when the phone is located in the driver's 

seat. The challenges in the smartphone localization problem come from the need to entirely use 

only accelerometers and gyroscopes already available on a typical phone, and the need to allow 

for any unknown 3-dimensional orientation of the phone while being carried by the driver or 

passenger of the car.  First, the phone’s real-time orientation is determined by identifying the 

vehicle’s longitudinal and vertical axes in the phone reference frame.  This provides the rotational 

matrix for conversion of accelerations and angular velocities measured on the phone to 

accelerations and angular velocities about the car axes.  Next, the front-to-back pitching dynamics 

of the car during deceleration and the side-to-side roll dynamics during turning are characterized 

to detect whether the phone is in the driver’s seat.  The characterization of the roll and pitch 

dynamics are formalized using cross-covariances of sensor signals and a machine learning 
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algorithm.  Both simulations and extensive experiments are used to show that the developed system 

can accurately determine if the phone is being carried by the driver.  The developed technology 

can be extremely useful for iPhones and other smartphones which can currently only detect 

whether the phone is on a moving car, but cannot detect whether it is being used by a driver or a 

passenger. 

 

Keywords: Smartphone, phone location, distracted driving, smartphone sensors, support vector 

machine. 

 

1. Introduction 

Distracted driving from phone use is a major cause of vehicular accidents in the United States. The 

National Safety Council recently estimated that 26% of vehicular accidents involve phone usage 

or texting while driving [1], and recent research estimated that nearly half of teen drivers engaged 

in texting while driving [2]. This research also found that phone usage while driving was correlated 

with other risky driving behavior such as not wearing a seat belt and driving under the influence 

of alcohol. Thus, there is a clear need to discourage phone use while driving, and one approach to 

the problem is to automatically disable certain phone features (such as texting) while the user is 

actively driving. Automatic phone disabling requires the phone to first decide if it is in a moving 

vehicle and to second decide if it is in the driver seat position. The first decision is relatively 

straightforward based on GPS speed data, while the second decision concerning phone location 

inside the vehicle is more challenging. 

Previous research has been published reporting methods to detect if the phone is in the driver's 

position [3]–[8]. Wang and colleagues [3] report a left/right localization method by comparing the 
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phone's accelerometer data to a reference accelerometer placed in the center of the vehicle (a small 

accessory plugged into the cigarette lighter port). Based on the measured centripetal acceleration 

during a turn, the system can determine if the phone is on the passenger or driver side of the 

reference, though no method is presented to differentiate between front and back. In [4], the authors 

use a very similar centripetal acceleration approach, but two phones are required, which must be 

carefully synchronized to within 100ms of each other. This requirement limits the practical 

application of such a system. Front and back position of the phone is determined by analyzing the 

signature pattern of road bumps on accelerometer data. An entirely different approach in [5] 

utilizes acoustic ranging to localize the phone inside the car by sending timed high frequency beeps 

from the car's audio system speakers. This approach requires a Bluetooth connection to the vehicle. 

Bo et al. [6] employed a machine learning approach to determine which side of the car the user 

enters and then use acceleration data during road bump events to determine if the phone is in the 

front or the rear. The authors also attempt to identify abnormal texting behavior (i.e. fast, 

intermittent typing may indicate texting while driving). The authors report an 87% recognition 

accuracy using a Naive Bayes classifier, though it is unclear how generalizable the algorithm is. 

Chu et al. [7] also use a machine learning approach, and train several support vector machines to 

recognize micro-motions related to driving, such as pressing the car pedal and entering the vehicle 

on the left hand side. The overall accuracy is 85%, but the approach fails depending on how the 

phone is carried, for instance by a woman in a purse. 

The current generation Apple iPhone can detect when the user is in a moving car and will 

automatically turn off notifications. Patent filings assigned to Apple indicate that Apple has 

proposed to detect if the phone is being used by the driver based on a simple speed threshold and 

additional image processing from the phone's camera [8]. However, the phone's user may have 
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privacy concerns with granting camera access to the phone while driving. 

Thus, none of the systems in literature provide a reliable system that only utilizes the sensors 

already on the smartphone. The most practical and ideal detection scheme of the phone's location 

inside the moving vehicle would have the following characteristics: 

 

• The system should require no external hardware beyond the accelerometer, gyroscope 

and GPS sensors already available on the phone itself. 

• The system should require no wireless connection to any other existing hardware on the 

vehicle, such as through Bluetooth. 

• The system should require no special instrumentation of the car at all. 

 

This paper will present a novel algorithm for determining the location of a smartphone inside 

a moving vehicle using only the motion signals from phone's  three-axis gyroscope,  accelerometer 

and GPS. This method relies on an understanding of the vehicle's pitch and roll dynamics [9]. As 

will be shown through simulation and experiments, when the car decelerates, the nose of the car 

will pitch downward, rotating about the vehicle pitch center. Thus, the front seat positions 

experience a downward motion while the rear seat positions experience an upward motion. The 

opposite is true while accelerating. Likewise, while turning, the vehicle tends to roll towards the 

outside of the turn about the roll center. While turning left, the left seat positions experience an 

upward motion, and the right seat positions experience a downward motion. The opposite is true 

during a right turn. 

In combination, the pitch and roll dynamics offer the ability to uniquely identify seat position 

relative to the pitch and roll centers via motion signals recorded by the phone's IMU, in particular 
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the accelerometer and gyroscope. Once these signals are transformed into the vehicle's coordinate 

frame, features extracted in real-time from a moving window of motion data can be used for 

classification of the phone’s location. This paper utilizes a linear support vector machine (SVM) 

to classify these features and identify if the phone is in the driver, the front passenger, the rear left 

passenger, or rear right passenger position. The feasibility of this approach is presented first 

through simulation and then through extensive experimental data. 

Compared to previous research and available commercial technology, the main contributions 

of this paper are as follows: 

1. The derivation of a method to identify seat position inside a moving vehicle based on the 

pitch and roll dynamics of a vehicle.  Real-time data and knowledge of vehicle dynamics 

is exploited for the first time for this task in literature.  

2. The development of a new method to transform the motion signals recorded in the phone's 

frame of reference to the vehicle's frame of reference. 

3. The development of a completely self-contained system that only uses sensors already 

available on the phone. 

4. Simulation and experimental demonstrations of the feasibility to classify the phone's seat 

position inside a moving vehicle using a machine learning algorithm based only on features 

extracted from a real-time moving window of motion data. 

 

The remainder of this paper is organized as follows. In Section 2, the pitch and roll dynamics of 

a moving vehicle are presented. Section 3 presents a method to determine the orientation of the 

phone relative to the vehicle, necessary to transform the measured motion signals from the phone 

to the vehicle's coordinate frame of reference. Simulation studies are presented in Section 4, 
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followed by experimental results in Section 5. Finally, seat position classification using a linear 

support vector machine is presented in Section 6. 

 

 

2. Vehicle Dynamic Model  

The classification algorithm developed in this paper relies on the pitch and roll dynamic 

behaviors of the vehicle [9]. Half car models for pitch and roll dynamics for preliminary simulation 

evaluations are presented in this section. The coordinate system for the car is defined as forward 

longitudinal (+𝑥), left lateral (+𝑦), and up  vertical(+𝑧).  The rotational angles are roll 𝜙 about the 

𝑥 axis and pitch 𝜃 about the 𝑦 axis. 

The free body diagram for the vehicle roll model is shown in Fig. 1. Here, the vehicle rotates 

about the roll center due to the lateral acceleration caused by turning and by lateral translation. The 

suspension force is modeled as a linear spring and damper with deflection 𝑧(𝑡) = (
ℓ𝑤

2
) 𝑠𝑖𝑛(𝜙), 

spring constant k, and damping coefficient b as follows: 

 

𝐹𝑆(𝑡) = 𝑘 (
ℓ𝑤

2
) 𝑠𝑖𝑛(𝜙) + 𝑏 (

ℓ𝑤

2
) 𝜙̇𝑐𝑜𝑠(𝜙)      (1) 

 where 𝐹𝑆 is the suspension force, 𝜙 is the roll angle,  ℓ𝑤 is the track width of the vehicle, 𝑘 is the 

suspension stiffness and 𝑏 is the damping coefficient.   

The lateral acceleration is treated as a force input at the center of gravity (CG) in the moment 

balance equation taken about the roll center.  This couples the roll dynamics to the lateral dynamics 

through the lateral acceleration 𝑎𝑦 term: 
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(𝐼ₓₓ + 𝑚ℎ²)𝜙̈ = 𝑚𝑎𝑦ℎ𝑐𝑜𝑠(𝜙) + 𝑚𝑔ℎ𝑠𝑖𝑛(𝜙) − 𝑘 (
ℓ𝑤

2

2
) 𝑠𝑖𝑛(𝜙) − 𝑏 (

ℓ𝑤
2

2
) 𝜙̇𝑐𝑜𝑠(𝜙) (2) 

 

where (𝐼𝑥𝑥 + 𝑚ℎ2) is the moment of inertia taken at the roll center, ℎ is the distance from the roll 

center to the CG, 𝑚 is the vehicle mass and 𝑔 is the gravitational constant.  More detailed 

simulation models for roll dynamics can be found in other papers from this journal, such as [14], 

[15] and [16].  However, the model presented here is adequate for the roll dynamics in order to 

evaluate in simulations how the lateral motion and acceleration of the car cause roll and how these 

signals influence the accelerometer and gyroscope signals read by the sensors on the phone.  

Extensive experimental evaluations of the developed algorithm using measurements on real car 

maneuvers will later be presented to serve as a more reliable indicator of the developed algorithm’s 

effective performance. 

A similar equation results for the vehicle pitch dynamics if the variables in (1) and (2) are 

redefined according to Fig. 2 with the appropriate substitutions of 𝐼𝑦𝑦 for 𝐼𝑥𝑥 and the longitudinal 

acceleration 𝑎𝑥 for 𝑎𝑦.  In this case, the equation relating the pitch dynamics to the longitudinal 

acceleration and deceleration is given by 

(𝐼𝑦𝑦 + 𝑚ℎ²)𝜃̈ = 𝑚𝑎𝑥ℎ𝑐𝑜𝑠(𝜃) + 𝑚𝑔ℎ𝑠𝑖𝑛(𝜃) − 𝑘 (
ℓ𝑓

2+ℓ𝑟
2

2
) 𝑠𝑖𝑛(𝜃) − 𝑏 (

ℓ𝑓
2+ℓ𝑟

2

2
) 𝜃̇𝑐𝑜𝑠(𝜃) (3) 

where, 𝜃 is the pitch angle, (𝐼𝑦𝑦 + 𝑚ℎ2) is the moment of inertia taken at the pitch center, ℎ is the 

height from the pitch center to the CG, 𝑚 is the vehicle mass, 𝑘 is the suspension stiffness, 𝑏 is 

the damping coefficient, ℓ𝑓 is the distance from the CG to the front tires, ℓ𝑟 is the distance from 

the CG to the rear tires and 𝑔 is the gravitational constant.   
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Fig. 1. Free body diagram for vehicle roll. 

 

Fig. 2. Free body diagram for vehicle pitch 

 

 

3. Real-Time Estimation of Phone to Vehicle Orientation 

The smartphone user may carry the phone in his/her pocket, in a purse, on a display stand in 

the car or they may be holding it in their hands.  Thus the orientation of the phone with respect to 

the car can be completely arbitrary and all three Euler angles of rotation can be unknown.  Since 

the motion signals recorded by the phone must be transformed from the phone coordinate frame 

to the vehicle coordinate frame, real-time knowledge of the orientation of the phone relative to the 



9 

 

vehicle is required.  

There are several possible approaches to finding the orientation of the phone, two of which are 

presented next, and their relative advantages and limitations discussed.  Please note that orientation 

can be parameterized a number of ways, the three primary methods being Euler angles, 

quaternions, or the 3x3 direction cosine matrix (DCM). A complete discussion of the merits and 

drawbacks of these three parameterizations is outside the scope of this paper, but the DCM (also 

known as the rotation matrix) is used here, mainly because it avoids singularity issues of other 

parameterizations. A full treatment of orientation parameterizations may be found in [10]. 

One potential method to estimate the phone orientation relative to the car is to first estimate 

the orientation of the phone relative to earth, and then the orientation of the vehicle relative to 

earth. Call these orientation DCMs (or rotation matrices)  𝑅𝑒𝑎𝑟𝑡ℎ
𝑝ℎ𝑜𝑛𝑒

 and 𝑅𝑒𝑎𝑟𝑡ℎ
𝑐𝑎𝑟 , respectively, where 

𝑅𝑎
𝑏 refers to the DCM between frames a and b. Once these are known, the orientation of the phone 

relative to the car can be determined as: 

 

𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

= (𝑅𝑒𝑎𝑟𝑡ℎ
𝑐𝑎𝑟 )𝑇𝑅𝑒𝑎𝑟𝑡ℎ

𝑝ℎ𝑜𝑛𝑒
    (4) 

 

𝑅𝑒𝑎𝑟𝑡ℎ
𝑐𝑎𝑟  is relatively straightforward to estimate using GPS course information available on the 

phone, which reports the direction of travel of the vehicle. A typical method to estimate 𝑅𝑒𝑎𝑟𝑡ℎ
𝑝ℎ𝑜𝑛𝑒

 

would be to utilize measurements of two known inertial directions, such as the gravity vector with 

the accelerometer and earth's magnetic field, which is locally a constant vector, with the 

magnetometer. These can then be optimally fused with gyroscope measurements using, for 

instance, a Kalman Filter. The main problem with this approach is that the presence of unknown 

magnetic disturbances, such as steel components in the car, can badly corrupt the magnetic 
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measurement. 

Here, a simpler approach is used to directly determine 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 without needing to transform to 

the earth frame first. At any given time, the accelerometer measurement is the vector sum of gravity 

and the vehicle acceleration: 

 

𝑎⃗𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑎⃗𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝑎⃗𝑣𝑒ℎ𝑖𝑐𝑙𝑒    (5) 

 

While braking, the dominant components of the measured acceleration will be gravity plus the 

longitudinal deceleration of the vehicle, with smaller components being road vibrations and the 

roll/pitch transient dynamics. Thus, while braking, the measurement can be approximated as: 

 

𝑎⃗𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  = 𝑎⃗𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝑎⃗𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙     (6) 

 

While stopped (as determined by GPS) or by averaging acceleration data over a long period of 

time, a good measurement of 𝑎⃗𝑔𝑟𝑎𝑣𝑖𝑡𝑦 is available. This can then be subtracted from the total 

measured acceleration during a brake maneuver to determine the longitudinal acceleration. Thus, 

the gravity measurement gives the direction of the vehicle z-axis, while the longitudinal 

acceleration during braking gives the vehicle x-axis. From these, 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 can be estimated using a 

static attitude determination algorithm such as TRIAD [10], presented next.  

Let {𝑣1, 𝑣2, 𝑣3} be the representation of an orthonormal set of vectors in the vehicle's frame, 

and let the representation of these same vectors in the phone's frame be denoted as {𝑝1, 𝑝2, 𝑝3}. 

Since 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 is the rotation matrix that defines the orientation of the phone to the car, then: 
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𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

= [𝑝1 𝑝2 𝑝3][𝑣1 𝑣2 𝑣3]𝑇     (7) 

 

It is assumed that the terrain is flat, i.e. there is no significant road gradient.  Let 𝑟𝑔,𝑐 =

[0 0 −1]𝑇 represent the gravity vector in the vehicle frame and 𝑟𝑔,𝑝 represent a measurement 

of the gravity vector in the phone frame. Likewise, let 𝑟𝑥,𝑐 = [1 0 0]𝑇   represent the 

longitudinal axis of the vehicle and 𝑟𝑥,𝑝 be a measurement of the vehicle's longitudinal direction 

in the phone's frame obtained during a braking maneuver, as explained above. 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 can now be 

determined from (7) by creating the following sets of orthonormal reference and body vectors: 

 

𝑣1  =  𝑟𝑔,𝑐       ,      𝑣2 =  
𝑣1× 𝑟𝑥,𝑐

‖𝑣1×𝑟𝑥,𝑐‖
        and    𝑣3  =  𝑣2 ×  𝑣1    (8) 

 

𝑝1  =  
𝑟𝑔,𝑝

‖𝑟𝑔,𝑝‖
    ,    𝑣2 =  

𝑝1× 𝑟𝑥,𝑝

‖𝑝1×𝑟𝑥,𝑝‖
     and      𝑝3  =  𝑝2 ×  𝑝1    (9) 

Experimental Verification: 

To demonstrate the use of the above method, accelerometer and gyroscope data from a 

smartphone was collected at 100Hz during normal driving with the phone in three different 

orientations, as shown in Fig. 3. 
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(a) Experimental data with phone oriented in the forward longitudinal direction 

 

 

(b) Experimental data with phone oriented obliquely in the horizontal plane 
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(c) Experimental data with phone oriented at an approximate 45-degree vertical 

angle in 3-dimensional space 

Fig. 3. Three experiments to demonstrate the phone orientation estimation procedure using the measured acceleration during braking events as a 

reference for the vehicle longitudinal axis. The event can be detected as braking by the decrease in speed, available from the phone's GPS data 

(purple line in the data plots). 

 

TABLE I 

EXAMPLE DCM ESTIMATES FOR THREE PHONE ORIENTATIONS 

ID 𝑟𝑔,𝑝 𝑟𝑥,𝑝 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 (experimental) 𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

 (expected) 

A [
0.04
0.02

−0.99
] [

0.00
0.30
0.00

] [
0.02 1.00 0.02

−1.00 0.02 −0.05
−0.05 −0.02 1.00

] [
0.0 1.00 0.0

−1.00 0.0 0.0
0.0 0.0 1.00

] 

B [
0.00
0.00

−1.00
] [

−0.24
0.22
0.00

] [
−0.74 0.67 0.00
−0.67 −0.74 0.00
0.00 0.00 1.00

] [
−0.707 0.707 0.00
−0.707 −0.707 0.00

0.00 0.00 1.00
] 

C [
−0.07
−0.71
−0.70

] [
0.01
0.28

−0.28
] [

−0.03 0.70 −0.71
−1.00 0.03 0.07
0.07 0.71 0.70

] [
0.0 0.707 −0.707

−1.00 0.0 0.0
0.0 0.707 0.707

] 
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In Fig. 3A, the orientation of the phone relative to the car was visually aligned such that the 

phone's y-axis was aligned with the vehicle's x-axis, and the phone's z-axis was vertical. The vector 

𝑟𝑔,𝑝 = [0.04 0.02 −0.99]𝑇 was determined by taking the mean accelerometer measurement 

when the vehicle speed measurement was 0. The vector 𝑟𝑥,𝑝 = [0.0 0.30 0.00]𝑇 was 

determined by subtracting 𝑟𝑔,𝑝 from the mean accelerometer measurement during the brake 

maneuver at 12s. Equation (7) gives a very reasonable estimate of the phone orientation as: 

    𝑅𝑐𝑎𝑟
𝑝ℎ𝑜𝑛𝑒

= [
0.02 1.00 0.02

−1.00 0.02 −0.05
−0.05 −0.02 1.00

]      (9) 

The above approach to estimating the phone orientation was repeated on two additional 

orientations, shown in Fig. 3 (b) and Fig. 3 (c) with results summarized in Table I. In experiment 

B, the phone was placed horizontal with the display up on the center console, rotated 135 degrees 

clockwise about the vertical axis, as measured with a 45-degree triangle referenced against the 

vehicle console surface. In experiment C, the phone was placed in the vehicle cup holder at a 

vertical angle of 45 degrees, measured with an inclinometer application on the phone. The +x axis 

of the phone was visually oriented with the -y axis of the vehicle. As seen from a comparison of 

the third and fourth columns of Table I, in all three experiments, the method provides very good 

estimates of the phone orientation relative to the vehicle. It should be noted that the small 

differences between the entries in columns 3 and 4 are likely due to the phone not exactly being at 

45o orientations in case B and case C, since these orientations were only done visually or 

approximately. 

 

4. Simulation Studies  
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The objective of this section is to evaluate the pitch angular velocity and vertical acceleration 

responses of the vehicle during braking and the roll angular velocity and vertical accelerations 

during turning.  The nature of these responses, as measured by the sensors on the smartphone, will 

depend on the location of the phone inside the car.  As we shall see, the nature of these responses 

can serve as a reliable indicator of the phone location and whether it is located in the driver seat of 

the car. 

Fig. 4 shows the simulation response of the car to a series of step changes in longitudinal 

acceleration. At 𝑡 = 1𝑠, the brakes and a longitudinal deceleration of 0.4𝑔 are applied until 𝑡 =

5𝑠. At 𝑡 = 8𝑠, an acceleration of 0.4𝑔 is applied until 𝑡 = 12𝑠. The top part of Fig. 4 shows the 

vertical acceleration and the pitch angular rate at the front seats of the car.  The bottom part of Fig. 

4 shows the vertical acceleration and the pitch rate at the rear seats of the car.  The step response 

shows an underdamped oscillatory behavior in both sensor signals. Clearly, the vertical 

accelerations in the front and back are equal but opposite in direction.  On the other hand, the pitch 

angular rate (as measured by a gyroscope) is the same in both the front and rear seats of the car 
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during braking/ acceleration. 

 

 

Fig. 4: Simulated response to several step changes in longitudinal acceleration. At t=1s, the brakes and a 

longitudinal deceleration of 0.4g are applied until t=5s. At t=8s, an acceleration of 0.4g is applied until 

t=12s. The top plot shows the pitch rate and the vertical acceleration for the front seats, and the bottom 

plot shows the pitch rate and the vertical acceleration for the rear seats. 

In order to capture the differences in the vertical acceleration behavior at the front and back 

seats, integrating the vertical acceleration twice shows the rear vertical position is positive when 

the pitch angle is positive, and the opposite behavior for the front vertical position. This suggests 

a useful feature for front/back classification would be the correlation of the vertical-axis 

accelerometer data integrated twice with the pitch-axis gyroscope data integrated once during 

periods with longitudinal acceleration, as summarized in Table II below. Likewise, a useful feature 

for left/right classification would be the correlation of the vertical-axis accelerometer data 

integrated twice with the roll-axis gyroscope data integrated once during a turn. However, 
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integrating accelerometer signals twice and gyroscope signals once is non-trivial due to the 

presence of bias errors in the sensor signals.  These bias errors are inevitable and time-varying so 

that they will always exist and cannot be compensated fully.   Careful high and low pass filtering 

could solve some of these bias and integration-drift issues, but nonetheless, trying to 

experimentally calculate vertical displacements and comparing to pitch and roll angles is not an 

easy approach. 

 

 

TABLE II 

RELATIONSHIPS BETWEEN PITCH AND ROLL ANGLES VS. VERTICAL DISPLACEMENT. 

Position 𝑎𝑥 𝜙𝑝𝑖𝑡𝑐ℎ = ∫ 𝑔𝑦 𝑧 = ∬ 𝑎𝑧 

Front 

> 0 

(accelerating) 

< 0 > 0 

< 0 (braking) > 0 < 0 

Rear 

> 0 < 0 < 0 

< 0 > 0 > 0 

Position 𝑎𝑦 𝜙𝑟𝑜𝑙𝑙 = ∫ 𝑔𝑥 𝑧 = ∬ 𝑎𝑧 

Left 

> 0 (left turn) > 0 > 0 

< 0 (right turn) < 0 < 0 

Right 

> 0 > 0 < 0 

< 0 < 0 > 0 
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A more desirable approach is to find classification features in the accelerometer and gyroscope 

signals that don't require integration at all.  Careful inspection again of the data in Fig. 4 shows 

that the oscillatory responses for front and back acceleration are 180-degrees out of phase. Further, 

when comparing the acceleration responses to the pitch rate at each location, it is clear that there 

is a phase lag between these signals and the phase lag is different at the front and rear seats of the 

car.  This phase lag could therefore be a useful classification feature. Hence, the signal cross 

covariance between these two sensor signals is utilized, in which the signal means are subtracted 

from two signals and the cross correlation is calculated as follows [11]: 

 

𝑐𝑥𝑦 = {
∑ (𝑥𝑛+𝑚 − 𝑥̅)(𝑦𝑛 − 𝑦̅)𝑁−𝑚−1

𝑛=0 , 𝑚 ≥ 0
𝑐𝑥𝑦(−𝑚), 𝑚 < 0

     (10) 

where 𝑥 is the first sensor signal (from the accelerometer), 𝑦 is the second sensor signal (from the 

gyroscope) and 𝑚 is the size of the lag, in terms of number of samples, which is being used to 

calculate the cross-correlation. 

 

The cross covariances between vertical acceleration and pitch-axis angular rate are shown in 

Fig. 5 for the simulation data of Fig. 4, for a range of lag values. It can be seen that the cross-

covariance decreases with time lag for the sensor signals on the front seats of the car.  On the other 

hand, the cross-covariance increases with time lag for the sensor signals in the rear seats of the car.  

The clear difference between the cross covariances for front and rear and their different behavior 

with time lag suggest that this could be a useful classification feature that can be reliably used to 

detect phone location.  The same signal-processing approach can also be exploited with the roll 

gyroscope signal and vertical accelerometer signal to determine location being on the left or right 

side of the car.  This simulation section has suggested a signal-processing approach for front-back 
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and right-left classification of the phone location. In the following section, this signal-processing 

approach is applied to experimental data and its performance in a number of experimental car 

maneuvers is evaluated. 

 

Fig. 5: Cross covariance of vertical acceleration to pitch-axis angular rate of simulated data. 

 

5. Experimental Results 

Experiments are performed to verify whether the cross-covariance between the vertical 

accelerometer and the pitch or roll gyroscope signals can reliably identify the location of the 

smartphone in the car.  In particular, the cross-covariance with the pitch gyroscope and its variation 

with time lag is used to identify whether the phone is in the front or rear seats of the car.  The 

cross-covariance with the roll gyroscope and its variation with time lag is used to identify whether 

the phone is in the left or right sides of the car. 

A smartphone (Apple iPhone 6S) was used to collect data in a car while being used at different 
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seat locations in the car.  A sampling rate of 100 Hz was used and the data collected was entirely 

from the sensors only on the phone.  The driving took place alongside normal day time traffic on 

urban roads and the speeds varied but were kept to less than 35 mph (16 m/s).  

 

Fig. 6: Example raw accelerometer and gyroscope data taken during city street driving for back right 

passenger. 

The phone was placed in each of four positions (driver, front passenger, back left passenger, 

back right passenger) for two data sets of 5 minutes each for all four seat positions. Thus a total of 

40 minutes of data was obtained.  To keep the phone from shifting, it was secured to the vehicle 

carpet using hook and loop strap. For the front seat positions, the phone was secured to the vehicle 

carpet approximately under the driver’s left or front passenger’s right knee, thus midway between 

the dash and the front seat in the longitudinal direction. For the rear seat positions, the phone was 

secured to the vehicle carpet where the back of the seat attaches to the vehicle frame, roughly 

approximating the left pants pocket position of the left rear passenger and right pants pocket of the 

right rear passenger.   An example section of data is shown in Fig. 6. Zoomed in sections of 

experimental data are shown in Fig. 7 for front and rear positions while braking and in Fig. 8 for 



21 

 

left and right positions while turning. For the pitching oscillations near 2.5 Hz in Fig. 7, the phase 

difference between the pitch-axis angular rate and vertical acceleration is clearly evident. As 

expected, the two signals have a phase difference of 90 degrees, while the sign of the accelerometer 

is opposite when comparing front to rear seat positions. For a 2.5 Hz oscillation, a 90 degree phase 

difference suggests the cross covariances should have a peak or valley near a lag of 10 samples for 

a 100 Hz sampling frequency. 

 

Fig. 7: Example accelerometer and gyroscope data taken during city street driving for front and rear 

positions, with gravity removed from the accelerometer signal. The signals are from two different braking 

events at the moment the vehicle comes to a complete stop and returns to a horizontal position. The 90 

degree phase difference between the pitch axis gyroscope and vertical accelerometer signals is evident, 

while the accelerometer signal has the opposite sign comparing front to rear. 
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Fig. 8.: Example vertical accelerometer and roll axis gyroscope data taken during city street driving for 

left and right positions, with gravity removed from the accelerometer signal. The signals are from two 

different turning events. The 90 degree phase difference between roll axis gyroscope and vertical 

accelerometer signals is evident, while the accelerometer signal has opposite sign comparing left to right. 

 

The cross covariances for vertical acceleration to pitch-axis angular velocity and vertical 

acceleration to roll-axis angular velocity are shown in Fig. 9 for a five minute data set of each seat 

position. The raw data was first low pass filtered prior to computing the cross covariances. Fig. 9 

clearly shows that each seat position has a unique combination of cross covariances. As expected, 

the cross covariances have peaks and valleys near a lag of 10 samples. The experimental data 

follows the same overall behavior as the simulated cross covariances in Fig. 5. This indicates that 

the cross covariance is a good choice as a classification feature. 

After experimental verification of the basic behavior of cross-covariance of the accelerometer-

gyroscope pairs with phone location inside the car, a systematic algorithm for automatically 
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detecting phone location is developed in the next section. 

6. Experimental Results on Automatic Phone Location Identification using a 

Support Vector Machine  

The experimental results of the previous section verified that there is a clear and reliable 

relationship between phone location and the cross-covariance of accelerometer-gyroscope paired 

data.  The next step is to develop and implement an automatic location identification algorithm 

that makes use of these cross-covariances.  This section develops a machine learning algorithm 

consisting of a support vector machine for performing this automatic location identification. 

Fig. 9 shows cross-covariances of experimental data for the 4 different locations of the phone.  

In each set of data, the cross-covariances between pitch gyroscope and vertical accelerometer and 

between roll gyroscope and vertical accelerometer are shown.  In each data set 5 minutes of driving 

data is used.  It can be seen that the slopes of the two cross-covariances are unique in the 4 different 

phone locations.  For example, in the driver seat location, the pitch gyroscope cross-covariance 

has a negative slope while the roll gyroscope cross-covariance has a positive slope around the zero 

lag point.  Likewise, there is a unique combination of positive and negative slopes for the 4 

different locations. 

Ideally, the phone should recognize its location inside the vehicle in a much shorter period than 

5 minutes, so the same data was divided up into shorter 45 second long sections, overlapping by 

15 seconds. For each window, the two cross covariances were calculated, and a linear slope was 

fit to the cross-covariance curves in the 𝑙𝑎𝑔 = ±5 region. Fig. 10 shows the cross-covariance 

slopes for each of these 45 second samples. The plot shows good feature separation for use in a 

linear classifier. 
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Fig. 9: Normalized cross covariances for experimental driving data. Each data set represents 5 minutes of 

driving. Blue curves are cross covariance of vertical acceleration and pitch-axis angular rate. Red curves 

are cross covariance of vertical acceleration and roll-axis angular rate. Each seat position has a clearly 

unique pattern of cross-covariances and its variation with time lag. 

The above features were used as training inputs to a multi-class classifier made up of two 

binary support vector machines (SVM)  [12]. The SVM fits the maximum margin hyperplane in 

the feature space (see Fig. 10) by maximizing the distance between the hyperplane and the nearest 

data points. In the case of a 2-dimensional feature space, the hyperplane is a line. The data here 

consisted of 77 labelled 45 second samples of driving data. The SVM was trained using all the 

data and validated using k-fold cross validation, which is preferred over a simple random 

separation of the data into single train and single test sets [13]. In k-fold cross validation, the 77 
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samples are randomly divided into k groups, or folds. One fold is held out, and the remaining k-1 

folds are used to train an SVM. This process is then repeated a total of k times, such that each 

group gets used once as the test group. The overall accuracy of the SVM trained using all of the 

data is estimated by taking the mean accuracy of the k SVMs. Common choices for k are 5 and 10. 

As k gets larger, the computational cost increases, as more models must be trained, but the 

estimated performance approaches the true performance [13]. The limit for k is n, where n is the 

number of labelled data samples. In this case, the validation scheme is referred to as leave-one-out 

cross validation, as only one sample is held out to test, and n SVMs are trained. 

 

Fig. 10: Feature data used to train the SVM classifier. Data has been normalized to have zero mean 

and standard deviation of one. Each marker represents a 45-second-long experimental data set of city 

driving. The x-axis is the fitted slope of the cross covariance of vertical acceleration and pitch-axis 
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angular velocity. The y-axis is the fitted slope of the cross covariance of vertical acceleration and roll-axis 

angular velocity. The dashed lines represent the SVM decision boundaries. 

Here, the accuracy of the classification for the vehicle experimental data was found to be 100% 

under both 5-fold and 10-fold cross validation, meaning that each binary SVM (left/right and 

front/rear) predicted the held-out fold with 100% accuracy for all 5 and 10 training rounds, 

respectively. Finally, experimental validation was also performed using leave-one-out cross 

validation, and the classification accuracy was again found to be 100% on all 77 folds. The dashed 

lines in Fig. 10 are the maximum margin hyperplanes for the two binary SVMs. 

 

7. Conclusions  

This paper presented a novel method for the localization of a smartphone inside a vehicle using 

the motion data gathered by the IMU in the phone. Unlike previous work, the method requires no 

external hardware, no wireless communication with the vehicle, and no access to the phone's 

camera. It only uses the sensors already available on the phone. 

First, the orientation of the phone relative to the car is determined, which can be done without 

relying on the error-prone magnetometer. Based on the vehicle dynamics measured by the phone, 

it was shown that using the cross covariances of vertical acceleration to the pitch-axis angular 

velocity and vertical acceleration to the roll-axis angular velocity provides a viable classification 

feature for determining which seat the phone is in. A total of 40 minutes of driving data was 

collected and used to train two binary support vector machines to differentiate between front/rear 

and left/right seat positions. The support vector machines achieved 100% accuracy on the 40 

minute data set, validated using 5-fold, 10-fold, and leave-one-out cross validation. The 100% 
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accuracy with experimental data shows that the developed system works extremely reliably. 

Distracted driving due to phone usage is a major cause of vehicular accidents in the US, and 

there is a clear need for algorithms that can detect when a phone user is driving and automatically 

disable distracting features. Current phone apps are only able to detect whether the phone is in a 

moving car and then disable the use of texting during car motion.  However, these apps are unable 

to detect whether the phone is being used by the driver or merely by a passenger of the car. The 

technology developed in this paper could thus be a very valuable tool for correctly disabling texting 

features only for the driver of the vehicle. 

A limitation of the technology developed in this paper is that the orientation of the phone is 

assumed to be constant.  If the orientation varies during use, then the developed signal processing 

algorithms will still work, but only if the change in orientation is slow, so that the orientation 

computation algorithm can recompute the lateral and longitudinal acceleration components 

correctly. It is also assumed that the terrain is flat.  Significant road gradients can therefore result 

in errors. 
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