
  

  

Abstract— This paper explores the challenges in developing 
an inexpensive on-bicycle sensing system to track vehicles at a 
traffic intersection.  In particular, opposing traffic with vehicles 
that can travel straight or turn left are considered.  The 
estimated vehicle trajectories can be used for collision 
prevention between bicycles and left-turning vehicles. A 
compact solid-state 2-D low-density Lidar is mounted at the 
front of a bicycle to obtain distance measurements from vehicles. 
Vehicle tracking can be achieved by clustering based approaches 
for assigning measurement points to individual vehicles, 
introducing a correction term for position measurement 
refinement, and by exploiting data association and interacting 
multiple model Kalman filtering approaches for multi-target 
tracking. The tracking performance of the developed system is 
evaluated by both simulation and experimental results.  Two 
types of scenarios that involve straight driving and left turning 
vehicles are considered.  Experimental results show that the 
developed system can successfully track cars in these scenarios 
accurately in spite of the low measurement density of the sensor. 

I. INTRODUCTION 

There were 818 bicyclists deaths within the US in 2015. 
An additional estimated 45,000 bicyclists were injured in 
crashes [1]. According to a study of crash data over 10 years 
in Minneapolis, 41% of bicyclist-motorist crashes happen at 
intersections, and another 40% occur within 50 feet of 
intersections [2]. The most common bicyclist pre-crash 
maneuver is bicyclist riding across an intersection (46%) [2]. 
The “left hook” is one of the most prevalent bike-car crash 
types (19%) [3]. This paper focuses on tracking opposing 
direction vehicles at a traffic intersection and identifying 
collision danger from any of these vehicles turning left. 

According to a report by IEEE Spectrum (January 2017), 
bicycles are probably the most difficult detection problem that 
autonomous vehicle systems face [4]. Cyclists are vulnerable 
on roads because they are difficult to detect and predict by both 
human motorists and autonomous vehicles. The situation is 
especially complicated when it comes to intersections where 
the traffic is complex involving multiple types of maneuvers. 
Research and development on vehicle-to-vehicle (V2V) and 
vehicle-to-infrastructure (V2I) networks are ongoing, in which 
researchers have also tried to bring the bicycles into the system 
(V2B) [5]. However, to fully deploy these “V2X” technologies 
on all cars and achieve high real-world penetration among all  
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cars operating on the road, the deployment could take many 
years or even decades. On the other hand, it is possible to 
immediately address the problem by using inexpensive 
collision prevention technology on the bicycle’s side. Previous 
work on bicycle-based collision systems has focused only on 
tracking rear vehicles behind the bicycle [6]. 

In this paper, it is proposed to develop an on-bike Lidar 
based compact sensing system, which estimates kinematic 
states of vehicles in opposing direction traffic and provides 
visual and/or audio warnings to both the motorists and the 
cyclists under dangerous situations at traffic intersections (Fig. 
1). The estimation should be good enough so that when it is 
integrated with a proper warning triggering metric, both false 
positive and false negative rates are low.  

A lot of previous research has been conducted on cars 
using Lidar sensors for collision avoidance, autonomous 
driving and simultaneously localization and mapping 
(SLAM). However, most of the related work is done using 
relatively high-resolution Lidar sensors, where the horizontal 
angular resolution is normally better than 1˚. It is impractical 
to implement such high-density Lidar systems on a bicycle 
where size, weight and cost (here we consider a cost of a few 
hundred dollars, instead of tens of thousands of dollars in 
autonomous driving systems) are crucial and computational 
power is limited. Also, as a collision avoidance system instead 
of an autonomous driving system, the need for differentiating 
different types of targets is not necessary, which justifies the 
possibility of using inexpensive low-resolution sensors 
suitable for a bicycle. 

 

 
Fig. 1. A bicycle with a Lidar and two opposing traffic vehicles at a traffic 

intersection 

 

II. SENSOR SETUP AND OBJECTIVE 

The sensor used in this project is the LeddarTech® Vu8 
solid-state 2-D low resolution Lidar. It has 8 segments/beams 
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and a horizontal field of view of 48˚. Therefore, the angular 
uncertainty of each segment/beam is 48˚/8 = 6˚, which is a 
high uncertainty and makes the estimation problem 
challenging, as demonstrated later. The sensor is mounted 
stationary at the front of a bicycle, oriented 33˚ to the left as 
shown in Fig. 2. Data from the sensor is processed by a 
Teensy 3.5 microprocessor located on the bicycle.  

 

  
Fig. 2. The LeddarTech® Vu8 mounted on a bicycle 

While the sensor field of view is limited, under the setup 
here the sensor can obtain measurement points from opposing 
vehicles no matter whether the traffic intersection has one, 
two, or three lanes in each direction, as shown in Fig. 3. 

 

     

 
Fig. 3. Sensor coverage in different lane configurations at a traffic 

intersection (1 lane, 2 lanes and 3 lanes of opposing traffic with sensor 
range set to be 30 m) 

With the stated sensor setup, the preliminary objective of 
this paper is to estimate trajectories of opposing vehicles that 
may go straight or turn left. If a left-turning vehicle causes 
danger to the bicyclist, while the bicyclist is crossing a traffic 
intersection, the event will be predicted and an auditory/visual 
warning will be provided to the involved motorist (from an 
automatic electronic horn on the on-bike system). 

  

III. OVERVIEW OF TRACKING SYSTEM DESIGN 

A flow chart of the overall tracking system design is 
shown in Fig. 4. First, clustering is applied to raw 
measurements to detect vehicles and obtain approximate initial 
positions of vehicles. A correction term for each measured 
position is introduced to account for the laser reflection 

location on the vehicle to improve the position measurement 
quality. The corrected position measurements are then input to 
the data association module, in which either a nonlinear 
Kalman filter update of a tracked target, or initialization of a 
new target, will happen. The components in Fig. 4. will be 
discussed in the rest of the paper. Specifically, approaches to 
computing measured positions of vehicles, and approaches to 
estimating states of each vehicle, will be discussed in section 
IV and section V, respectively. 

 

 
Fig. 4. Flowchart overview of the tracking system  

 

IV. DETECTION OF VEHICLES 

A. Clustering for Assigning Measurement Points to Target 
Vehicles 
Due to the extremely low angular resolution (6o) of the 

sensor, there is a high ambiguity in the problem of which 
measurement point is obtained from which target (“target” and 
“vehicle” are used interchangeably in this article). It is 
expected that only one or two measurement points will be 
obtained from a vehicle when the vehicle is more than 20 
meters away. Also, the intrinsic characteristics of raw 
measurement points in polar coordinates make the 
measurement uncertainty vary as the measured distance varies. 
A clustering algorithm is used to assign raw measurement 
points to targets. To evaluate the distance or dissimilarity 
between any pair of measurement points, the smaller value of 
two distances: the Mahalanobis distance and the Euclidean 
distance, is used (1):  
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where pi and pj are positions of measurement points i and j, Rmi 
and Rmj are the corresponding covariance matrices, Nm is the 
number of measurement points from a sensor sampling, KEuc is 
a weighting parameter.  

Under this distance measure, two measurement points are 
“similar” if:  

a) they are likely to originate from the same part of a target 
(described by small Mahalanobis distance, mainly for targets 
far from the sensor), or  

b) they are likely to originate from different parts of a 
target (described by small Euclidean distance, mainly for 
targets close to the sensor).  

For example, if a front corner of a vehicle (far from the 
sensor) occupies two adjacent beams of the sensor, these two 



  

measurement points have small Mahalanobis distance (they 
have relatively high uncertainty) but relatively large Euclidean 
distance (the centers of them are far from each other, note that 
a target does not need to fully occupy the two beams for the 
two measurement points to be obtained). In the case where a 
vehicle is close to the sensor, there can be several measurement 
points from different parts of the vehicle but the Euclidean 
distances between them are relatively small. 

A proximity matrix {aij
2} is formed based on (1) and input 

to an agglomerative hierarchical clustering algorithm with 
complete linkage. The number of clusters is determined by 
cutting the dendrogram at a certain inter-cluster distance level 
M, which ensures that the distance between any pair of 
measurement points within each cluster is less than M: 

 ,,, CppMpp jiji ∈∀<−  (2) 
where C is any cluster. Fig. 5 demonstrates the situation where 
4 measurement points are assigned to 2 clusters/targets. In this 
case, p1 and p2 are considered “similar” and they form a cluster, 
same for p3 and p4. But the two clusters are separated because 
the distance between them is greater than M.  

 
Fig. 5. Dendrogram of hierarchical clustering for assigning measurement 

points to targets/vehicles 

B. Obtaining Corrected Position Measurements of Vehicles 
After the clustering phase, measurement points have been 

assigned to vehicles, with the number of clusters being the 
number of detected targets/vehicles. For each vehicle, we are 
interested in finding a representative point whose kinematic 
states can approximate the vehicle’s kinematic states. The idea 
of tracking a vehicle by finding its center based on its geometry 
is not practical here, since detailed geometric information of 
any target is hardly available due to the low sensor angular 
resolution. If the center of measurement points (in the same 
cluster) is simply taken to represent the center of a vehicle, this 
“center” will have undesired motion created by vehicle 
moving from one sensor segment to another (again because of 
the low angular resolution), which does not represent the 
maneuver of the vehicle. It is therefore proposed to track a 
virtual point (call it the “closest point”) with the minimum 
longitudinal and lateral distances of any vehicle (note that this 
virtual point may not be on the vehicle, see Fig. 6), and use its 
estimated kinematic states to represent the vehicle’s states.  

To track the “closest point”, we first compute its initial 
position using raw measurement points, and then introduce a 
correction term ε for further possible improvement based on 
its approximate dynamic model. 

For any target (cluster), its initial position measurement is 
obtained by finding the point with the minimum longitudinal 
distance (pmx) and the point with the minimum lateral distance 
(pmy) from all points in the cluster.  

 
Fig. 6. The “closest point” and the ε vector 

The initial position measurement and its covariance are 
computed as 
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It is challenging to accurately and continuously obtain the 

closest point position measurements. For example, for an 
opposing vehicle, the y component of pmy may not reflect the 
minimum lateral distance because at some point pmy could be 
actually obtained from the front of the vehicle and a beam 
closer to the left corner of the vehicle (which could provide a 
“better” lateral distance) does not return a reading due to its 
large incident angle. However, at some point in the past, some 
beam should hit the left corner and that measurement could 
reflect the minimum lateral distance. Therefore, we try to find 
a way to retain this type of minimum distance information for 
a period of time. A 2-D correction term ε, which is a vector 
that connects a measurement point and the closest point of a 
vehicle (Fig. 6), is introduced to refine the initial 
measurements using the information from historical 
measurements.  

Specifically, each measurement point pi = (pix, piy)T, 
i=1,2,…,N (N is the number of measurement points from a 
vehicle) is attached with a vector εi. Each component of εi,  εix 
and εiy, has one of the two flags attached, “valid” or “invalid”. 
We “initialize” the two components of ε in the following way:  
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Here xmin and ymin are the minimum longitudinal distance (x 
component of pmx in (3)) and the minimum lateral distance (y 
component of pmy in (3)) obtained by inspecting all the 
measurement points from the same target. After a component 
is initialized, its flag will be set to “valid”. If pi = pmx,  εix is 
valid or pi = pmy, εiy is valid, the corresponding component εix / 
εiy will not be initialized. Instead they will be “propagated” 
based on their dynamic equations discussed below.  

To derive the dynamic equation of ε, we analyze the sliding 
motion of a laser reflection point. Here we assume that a) the 
reflection surface of any measurement point is a line in 2-D 
and that b) the relative velocity between the sensor and a target 



  

is perpendicular to a reflection surface. In other words, 
vehicles are assumed to have rectangular shapes and zero slip 
angles (with respect to the sensor frame). Also, when 
analyzing the dynamics of ε, the laser beam is approximated 
as a “narrow beam” with “small width”.  

In Fig. 7, a vehicle’s position change in time interval Δt (Δt 
should be “small” and in practice, equal to the sensor sampling 
time) is shown (with the vehicle being represented by part of a 
rectangle), where (v, ψ) is the velocity vector of the vehicle, ψ1 
is the orientation of the vehicle, and θ is the azimuth angle of 
a laser beam. From the geometry, we can compute Δεx and Δεy 
(the change of the ε vector in Δt) as: 

,sin)]tan()cos()[sin( 1111 ψψθψψψψε −−+−∆−=∆ tvx
 (6) 

.cos)]tan()cos()[sin( 1111 ψψθψψψψε −−+−∆=∆ tvy
 (7) 

In (6) and (7), v and ψ are in the vehicle state vector being 
estimated, ψ1 can be approximated by ψ using the assumption 
that vehicles have zero slip angles with respect to the sensor 
frame, yielding the dynamic equation: 
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It can be verified that (8) is applicable for ψ ∈[0, 2π). Since 
(8) is approximated, after initialized, the ε vector attached to a 
beam will only be propagated by its dynamic equation in a 
short period of time (< 0.5 second), after which it will be 
discarded (set to be “invalid”) if it does not get initialized 
again.  

Using the computed ε vectors, the corrected closest point 
position measurement can be computed as 
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(9) 

where εx(pmx) and εy(pmy) are the corresponding ε components 
of pmx and pmy. Note that εx(px) and εy(py) are used only when 
they are valid and they bring the measurement closer to the 
prediction. Invalid εx or εy will be substituted by zero in (9). 
This “correction” of position measurements based on the 
computed ε vectors is used for targets without significant 
turning motion. For targets with significant turning motion, 
(8) is less effective and it may degrade the measurement 
quality, therefore the “correction” is disabled. This can be 
done by setting εx(px) and εy(py) to be zeros in (9).  
 

 
Fig. 7. Sliding motion of a laser reflection point on a surface of a vehicle 

The ε information is useful in the sense that it retains 
information about the closest point position from the historical 
values of the lidar sensor measurements.  
 

V. STATE ESTIMATION 

A. Data Association 
Data association is required when multiple targets are 

tracked simultaneously. The data association problem is the 
problem of associating new measurements to existing tracks. 
There are many data association approaches in the literature 
[7], with different optimality and computational complexity. 
Here the global nearest neighbor filter (GNN) is applied 
because it is considered sufficient for this application and its 
computational complexity is relatively low.  

Specifically, for each target from a new sampling, its 
statistical distance to each existing track is computed:  
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where Nt is the number of targets being tracked until the last 
sampling, No is the number of new measurements (targets 
detected in a new sampling), rij is the measurement residual 
and Sij is the corresponding residual covariance: 
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zi is a measurement from a new target i, and ̂zj is a predicted 
position of an existed track j. H is from the output equation 
which will be discussed later, Pj is the state covariance of the 
existed track j, and Ri is the measurement uncertainty. Before 
applying GNN, a gating test, which is based on the 
Mahalanobis distances, is done to eliminate unlikely 
observation-to-track paring. The term ln(|Sij|) is used for 
penalizing tracks with high prediction uncertainty. Therefore, 
it ensures that tracks with missing measurement updates, and 
resulting larger covariance matrices, do not “steal” 
measurements from higher quality tracks [7]. Once all the 
distances are computed, a measurement-to-track assignment 
matrix {dij

2} is formed. The objective of GNN is to find a 
globally optimized assignment {xij}, which minimizes the total 
distance of all the matches: 
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The assignment problem can be solved by applying the Kuhn-
Munkres or the Auction algorithm [7].  

B. Extended Kalman Filter Design 
After solving the data association problem, the 

measurement update for each track is carried out by an 
extended Kalman filter under the interacting multiple model 
framework [8] (IMM-EKF). Two dynamic models are 
employed, a constant turn model with polar velocity [9] 
(CTP) and a constant velocity model with zero turn rate (non-
turning model). The state vector for estimating each vehicle’s 
maneuver contains five states, including the position of the 
vehicle (the closest point) in Cartesian coordinates, the 
velocity vector in polar coordinates and the turn rate:  

[ ] .,,,, TvyxX ψψ =  (13) 
The constant turn model with polar velocity can be 

described by its state space equation in discrete time: 
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While w13,k and w15,k are used for modeling processing noise, 
nonzero values of w11,k, w12,k, and w14,k can be used for taking 
into account the model uncertainty. 

The constant velocity model is described as: 

).,0(~),,,,,(
,0

,
,

,)sin(
,)cos(

,2,25,24,23,22,21,2

1

,241

,231

,221

,211

k
T

kkkkkk

k

kkk

kkk

kkkkk

kkkkk

QNwwwwww

w
wvv

wtvyy
wtvxx

=

=

+=

+=

+∆+=

+∆+=

+

+

+

+

+

ψ

ψψ

ψ

ψ



 
(15) 

Similar to the CTP model, here w23,k and w24,k are used for 
modeling processing noise, nonzero values of w21,k and w22,k 
can be used for taking into account the model uncertainty. 

At this point, position measurements (in Cartesian 
coordinates) of the closest point of vehicles have already been 
obtained from the previous stage, therefore, the measurement 
equation is linear: 
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VI. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Results 
The simulation study is based on multiple MATLAB 

scripts and functions developed for this project. Several 
specific scenarios at a traffic intersection with different 
opposing vehicle trajectories are simulated. Here the 
scenarios with an opposing vehicle going straight / turning left 
are shown (Fig. 8). In the shown simulation scenarios, the 
initial velocity of the bicycle is set to be 3 m/s. The initial 
velocity of straight-going vehicles is set to be 10 m/s, with 
some acceleration and deceleration. The initial velocity of 
left-turning vehicles is set to be 8 m/s. Scenarios where 
multiple vehicles are present are also simulated (e.g. 
combining (a)(b) in Fig. 8).  

 Simulation results are shown in Fig. 9. All the magenta 
parts of the estimation indicate that the estimation is based on   
a single measurement point without the “ε” information and 
therefore with low fidelity. All the cyan parts indicate that 
significant turning motion is detected from the target vehicle. 
The blue ellipses indicate the uncertainty of the position 
estimation with 99% confidence. The two red dashed lines in 

each trajectory estimation figure indicate the sensor 
horizontal field of view.  

 

 
Fig. 8. Vehicle maneuver simulation scenarios: a) opposing vehicle going 

straight, b) opposing vehicle turning left 

 
Fig. 9. Simulation results: trajectory estimation and velocity estimation, a) 

opposing vehicle going straight, b) opposing turning left 

 
Fig. 10. On-road experimental test results: trajectory estimation and velocity 

estimation, a) opposing vehicle going straight b) opposing vehicle turning 
left 



  

In all the scenarios, at the beginning there are magenta 
parts, meaning the estimation error could be relatively large. 
Also, the uncertainty ellipses (of position estimation) are 
relatively large, matching the estimation error. As the vehicle 
comes closer, the magenta parts are gone, meaning more 
information is now being obtained from the measurements 
(the “ε” values are valid and more than one measurement 
point is obtained from the vehicle). The uncertainty ellipses 
also become smaller. Despite the large angular measurement 
uncertainty of the sensor, the estimated trajectories and 
velocities are smooth and they match the true values pretty 
well. For scenarios with multiple vehicles, the estimation 
performance is similar to the performance of the single 
vehicle scenarios in Fig. 8, when there is no severe occlusion 
between vehicles. 

B. Experimental Results 
Experiments are conducted for similar scenarios as in the 

simulation study. Results from controlled experiments are 
similar to results from the simulation study. In Fig. 10, results 
from the same scenarios are shown. These results are 
generated by on-road experimental tests with real-world 
uncontrolled vehicles. In the scenario with left-turning 
vehicles, vehicles have larger lateral and longitudinal 
distances (than in simulation) because the bicycle can only 
stay at the boundary of a traffic intersection during testing 
(instead of going into an intersection and creating a dangerous 
situation).  

The on-road test results show similar patterns as the 
simulation results. The raw measurements associated to a 
vehicle are plotted for comparison with the estimation. Since 
the “mean” of the raw measurements are from centers of 
beams, they show “discontinuous” patterns due to the low 
angular resolution. Despite this, continuous estimation is 
achieved by the designed tracking system.  

 

VII. CONCLUSIONS 

This paper described the development of an inexpensive 
on-bicycle sensing system which estimates trajectories of 
opposing direction vehicles at traffic intersections. Despite 
the low measurement density of the proposed Lidar sensor, 
vehicle tracking was achieved by clustering based approaches 
for assigning measurement points to individual target 
vehicles, novel estimation approaches for determining the 
longitudinal and lateral positions of a vehicle using new 
system models, and by exploiting data association and 
interacting multiple model Kalman filtering approaches for 
the multi-target tracking problem. Simulation results and on-
road test results were shown to demonstrate the tracking 
performance.  
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