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Abstract

This paper focuses on the challenges in observer design for nonlinear systems which are non-monotonic. A class of
nonlinear systems is considered in which the process dynamics and output equations are both composed of nonlinear vector
functions of scalar combinations of the states. The nonlinear functions are assumed to be differentiable with bounded deriv-
atives. An observer design algorithm that requires solving just a single linear matrix inequality for exponentially convergent
state estimation is developed. The developed algorithm works effectively when the involved nonlinear functions are mono-
tonic. However, it fails when all or even some of the system functions are non-monotonic. Both numerical computation and
analytical results show that the observer design LMI has no feasible solutions when either all output functions or all process
dynamics functions are non-monotonic. Further, other constant gain LMI-based observer design methods from literature also
fail when the involved nonlinear functions are all non-monotonic, no matter how small the Lipschitz constant or the Jacobian
bounds of the nonlinearities. This limitation has not previously been recognized in observer design literature. To overcome
this limitation, a hybrid observer that switches between multiple constant observer gains is developed that can provide global
asymptotic stability for systems with non-monotonic nonlinear functions. Hybrid observers with switched gains enable ex-
isting observer design methods to be utilized for non-monotonic nonlinear functions with finite local extrema. The application
of the developed hybrid observer to two motion estimation applications, one a vehicle position tracking problem on roads and
another a piston position estimation problem for an industrial actuator, are demonstrated.
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overcome this obstacle, many research papers have
addressed high-gain observers with time-varying parameter
adaptation, and a number of different switched-gain

1. Introduction

Observer design for nonlinear systems continues to be
a topic of significant research interest. Two major
approaches to nonlinear observer design include the high
gain observer approach (Khalil H. K., 2015) (Khalil &
Praly, 2014) and the linear matrix inequality (LMI) based
design approach (Zemouche, et al., Nov 2017). The high-
gain observer approach is used for systems in triangular
form or any system that can be transformed into a triangular
structure (Khalil H. K., 2015). The advantage of the high
gain methodology is that it always guarantees the existence
of an exponentially convergent observer, thanks to the
tuning of only one parameter that should be chosen large
enough (Boizot, Busvelle, & Gauthier, 2010). Although the
practicability of high-gain observer in output feedback
control has been nicely analyzed by Khalil’s work (Khalil
H. K., 2015) (Khalil & Praly, 2014), the use of a large gain
and the consequent sensitivity to noise as well as high
frequency model uncertainty remains a drawback. To

schemes (Khalil & Ahrens, 2009), (Boizot, Busvelle, &
Gauthier, 2010), (Andrieu, Praly, & Astolfi, 2009).

The LMI-based observer design approaches have been
developed in the literature by a number of different authors
for different classes of nonlinear systems. For example,
LMI-based observer design methods have been developed
for systems with Lipschitz nonlinearities (Zemouche, et al.,
Nov 2017), (Rajamani R. , 1998), differentiable nonlinear
systems with locally bounded Jacobians (Wang, Rajamani,
& Bevly, April 2017), systems with nonlinearities satisfying
an incremental quadratic inequality (Acikmese &
M.Corless, 2005), and for monotonic nonlinear systems
(Arcak & P. Kokotovic, 2001). Each new LMI technique
aims to provide a better way to get less conservative LMI
conditions compared to previous results for the class of
systems under consideration. Despite recent theoretical
advances in this field (Zemouche, et al., Nov 2017),
(Oueder, Farza, Abdennour, & M’Saad, 2012), the search
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for a single widely-applicable powerful observer design
method still remains open. A recent result of importance
develops an observer design method which is a bridge
between the LMI-based and the high-gain design methods
(Zemouche, Zhang, Mazenc, & Rajamani, August 2019).
Varying gain observers (in which the observer gain varies
with parameters of the plant) for linear parameter varying
systems (Bara, Daafouz, Kraatz, & Ragot, 2001) and for
nonlinear parameter varying systems (Wang, Rajamani, &
Bevly, April 2017) have also been explored under the LMI
observer design framework.

While the above results from literature represent signif-
icant progress in developing viable observer design tech-
niques, this paper demonstrates that the above LMI design
techniques fall short when it comes to actual application to
practical nonlinear systems. In particular, this paper shows
that when the nonlinear functions are non-monotonic
(whether in the process dynamics or in the output equa-
tions), none of the existing LMI design methods may yield
feasible solutions. This constitutes a major shortcoming of
all existing LMI-based methods that has not been explicitly
recognized in literature. Further, previous approaches for
converting a differentiable non-monotonic function to a
monotonic function by subtraction of a linear function of
states, are also shown in this paper to not succeed in ena-
bling feasible observer solutions. Here, the monotonicity of
a function refers to its being either a non-decreasing or a
non-increasing function of its scalar argument.

Where do non-monotonic nonlinear functions arise?
This is a valid question, since the casual reader might won-
der if practical nonlinear functions encountered in the real
world are usually monotonic. It turns out that many nonlin-
ear functions encountered in modern applications are non-
monotonic. For instance, robotic multi-link systems involve
complex combinations of trigonometric functions which are
non-monotonic, especially if the range of involved joint ro-
tations are sufficiently large (Rajamani R. , 1998). State-of-
charge estimation in batteries often involves non-monotonic
output functions, when the outputs are either measured load
cell force (Poloni, Figueroa-Santos, Siegel, &
Stefanopoulou, 2018) or sometimes even measured terminal
voltage (Tian, Fang, & Chen, 2019). Tracking of other ve-
hicles on urban roads in autonomous vehicles often involves
nonlinear dynamic models (Jeon, Zemouche, & Rajamani,
2019). Estimation of piston position in industrial actuators
using magnetic sensors also involves nonlinear non-mono-
tonic output functions (Madson & Rajamani, 2017).

The contributions of this paper are: the presentation of
observer design LMIs for nonlinear systems with represen-
tation in the form of functions of scalar state combinations,
the demonstration of infeasibility to solutions for these ob-
server design LMIs when the nonlinear functions are all
non-monotonic, the demonstration of continued infeasibility
with standard linear subtraction conversion methods, the de-
velopment of hybrid observer design methods that provide
global stability for non-monotonic systems, and the applica-
tion of the developed hybrid observer techniques for two
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practical applications, namely vehicle tracking on roads and
piston position estimation in industrial actuators.

2. Observer Design for Systems with Nonlinear
Functions of Scalar Variables

In this section, we develop an observer design method for
a class of nonlinear systems in which the process dynamics
and outputs both have vector nonlinear functions, with their
components being functions of scalar variables. The class
of systems is given by the following plant equations

x=Ff(x)+guw (M
y(x) = h(x) @
with
f1(E1x) hy(C1x)
fx) = { : }and h(x) = { : } (3)
fr(Erx) b (Cinx)

where x € R", y € R™, F € R"*", ET € R", f;:R - R,
i=1,2,..,rand g(y,u): R™*% - R™ . Thus, each of the
f; functions is a function of different scalar variables E;x.
Also, C/ € R", hj:R —» Rand j = 1,2,...,m . There are m
outputs, but all of them are functions of different scalar var-
iables C;x. Note that the control input u is decoupled from
f(x), although the control input could be coupled to the
state by replacing f(x) with f(x, u) if the control input and
the Jacobian df /0x are both bounded, in spite of the pres-
ence of the control input in f(x, u), as done for example in
(Acikmese & M.Corless, 2005).

We also assume that the functions f(x) and h(x) sat-
isfy the following conditions:

a .
o <M< — <N <4w, j=1...m @&

6(C]'X) -

ofi

_ <
®©<Us a(Ex)

<V, < 4o, i=12,...,1 (5
Define the diagonal matrices of the bounds as: M =

diag(M,M,, ...,M,,), N =diag(N;,N,,...,N,,), U=

diag(Uy,U,, ..., U,) and V = diag(V;, V5, ..., V).

Note that equation (1) can certainly represent nonlinear
systems in which each function f; (E;x) is a nonlinear func-
tion of a scalar linear combination of the states. Further,
Ff(x) can represent linear combinations of nonlinear func-
tions f;(E;x). The reason it is necessary to consider func-
tions of only scalar variables (and combinations of such
functions) is because a monotonic function is properly de-
fined in this manuscript as being either a non-decreasing or
non-increasing function of its scalar argument.

Let the state observer be given by

£=Ff@® +g0w + L[y — h(CR)] ©)

where C € R™*" and CT = [C] CT]. Note that there
is a minor abuse of notation in using h(Cx) instead of
h(Cyx, Cyx, ..., Cpx), but provides more compact writing.
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1 1 1 1
—5CT(M™N + N"M)C =S ET(VTU + UTV)E + 0P PF + - (ETUT +E"VT) —PL+=(C™M" +C"N")

1
FTP + 5 (VE + UE) -1 0 <o ®
1
-LTp +§(NC + MC) 0 -1
Box L.
Let the estimation error be ¥ = x — X. Then the esti- - ATre. _
mation error dynamics obtained by subtracting equation (6) [h(x, »-M Cx] [h(x, X)-N Cx] =<0 (13)

from equation (1) are given by:
X¥ = Ff(x,®) — Lh(x,%) @)
for f(x, %) = f(x) — f(&) and h(x, %) = h(Cx) — h(CR).

Theorem 1. If the LMI (8) in Box I has a feasible solution
that yields an observer gain L and a symmetric positive def-
inite matrix P > 0, then the observer of equation (6) using
this observer gain is globally exponentially stable with a
convergence rate of at least o/2.

Proof. Consider the Lyapunov function candidate V =
T P%, with P > 0. Substituting from equation (7),

V =fTFTPx — R"L"Px + " PFf — " PLh , or

0 PF -PL|[%
FTP 0 0 Hf] 9
0 o Ilf

~LTP

VZ[J?T f’T ET]

Using the differential mean value theorem, the output func-
tion difference is

h(x,%) = {hi(cix) — hi(Cif)} =

ohy :
9(€1x) z1=2y 00 0 (10)
: 0 o
0 . 0 (Cx - Cx)
hm
0 Wm0, _7

where z; = C;x. Then, using the lower and upper Ja-

oh;

cobian bounds of — in equation (10),
h(x,%) — MCx =

| om Ohm ~ NGE))
diag {6(C1x) - U G . M,, } Cx
and
h(x,%) — NC% =

. dhy _ Ohum _ - (12)
diag {6(Clx) o U e . N, } Cx

From (11) and (12), due to M; being a lower bound and N;
being an upper bound in each of the diagonal terms in the
diagonal matrices, it follows that
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Equation (13) can be rewritten in matrix form as

- CTMTNC —CTMT)" [ x ]
T S\T -
[T A(x, %) ][ _NC | ] hx, %) <0 (14)
Since M and N can also be switched in (14), a symmetric
form of the constant matrix in (14) is

[O'S(CTMTNC +CTNTME) —0S(CTMT +CTND) (o
—0.5(MC + NC) I

Similarly, for the difference f(x,%) = f(x) — f(%), it can
be shown that the corresponding symmetric matrix is

0.5(ETUTVE + ETVTUE) —0.5(ETUT + ETVT)

—0.5(UV + VE) I ] (16)

Combining matrices (15) and (16) into a larger matrix form,
the constraint (20) in Box II on the nonlinear functions
f(x,%) and h(x, %) and their Jacobian bounds is obtained.

Replacing the condition V < 0 with the condition V +
oP < 0 ensures that the estimation error has an exponential
convergence rate of at least /2, as described in Chapter 4
of (Khalil H., 2001). Using the S-procedure Lemma (Boyd,
Ghaoui, Feron, & Balakrishnan, 1994), V40P <0 ifand
only if there exists € > 0 such that V + gP < €V, where V;
is defined in equation (20) in Box II. Hence, equation (21)
in Box III is obtained. Absorbing € into the P matrix on the
left-hand side of equation (21), the LMI of equation (8) then
follows. m

It should be noted that Theorem 1 is an observer design
method for global exponential stability and is only a suffi-
cient condition.

The following corollaries of Theorem 1 are presented
below for the special cases where either only the process
dynamics or only the output equations are nonlinear. In
these cases, lower dimensional LMIs can be obtained in
place of the LMI (8).

Corollary 1.1. Consider the case where the process dynam-
ics are linear (Ff(x) = Ax) and the ouputs are nonlinear.
In this case, if an observer gain L and a symmetric positive
definite matrix P > 0 that satisfy equation (22) in Box IV
can be obtained, then the observer with this gain is globally
exponentially stable.

Proof. The estimation error dynamics in this case are

X = A% — Lh(x,%) (17)
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Vv, =
MTN+NTM vTy +UTv £ ETUT + ETYT CTMT + CTNT
2 2 2 P
& AT ( VE + UE) 1 . [ fl <o 0
NC + MC h
( ) 0 1
Box II.
L oP PF —PLI[*
[T fT RT][FTP 0 o [|f|<
-L'P 0 0 Ilp
1 1 1 1
ECT(MTN + NTM)C +5ET(VTU +UTV)E —E(ETUT +ETVT) —E(CTMT +C™NT) @)
1
€ —3 (VE + UE) 1 0
1
—3 (NC +MC) 0 1
Box III.
[ C"TMTNC + CTNTMC C™MT + CTNT
ATP + PA — > + oP —PL+—2
<0 (22)
r MC + NC
-L'P +——— -1
2
Box IV.
ETUTVE + ETVTUE ETUT + ETYT
—CTLTP - PLC — > +0P PF+ >
UE +VE <0 (23)
FTp+—— -1
2
Box V.
Using the same Lyapunov function as in Theorem 1, ATP 4+ PA —P L]
V =xTP% + %" Px —-L"P
ZfTATPX hTLTPx+ TPAX—XTPLh or CTMTNC+CTNTMC CTMT"l'CTNT
<e 2 2
; - ATP+PA —PL MC + NC
= | T T —
ve=lgr arl[t” Il (18) - I
The output difference function in matrix form is Absorbing 1/€ into the matrix P to define a new positive
V= # R3] definite matrix and adding the term +oP to the (1,1) term
(1:7_ M;C NC + g’TJICVT Mc  CTMT + CTNT above for a minimum convergence rate of ¢/2, the final
> % (19) observer design LMI is obtained as equation (22) specified
MC + NC [fz(x, f)] <0 in the Corollary. m
-— I
2

Using the S-Procedure Lemma (Boyd, Ghaoui, Feron, &
Balakrishnan, 1994) again, with V < €V, yields the LMI
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Corollary 1.2. Consider the case where the process dynam-
ics are nonlinear and the outputs are linear ( y = Cx). In
this case, if an observer gain L that satisfies equation (23) in
Box V can be obtained, then the observer with this gain is
globally exponentially stable.

Proof. The estimation error dynamics in this case are
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¥ =Ff(x,®) — LCX (24)

Using the same Lyapunov function as in Theorem 1,
V=x"Px+%"Px=fTF"P% —x"C"L"PX + " PFf —
ZTPLCX, or in matrix form
y _r1wr zr1[~CTLTP —PLC PF [9?]
— T T ~
v=ir [Tt o 117 25)
The output difference function in matrix form is
v, = [xT f(x, )]
ETUTVE + ETVTUE
2
UE +VE
2

ETUT + ETVT

T el

Using the S-Procedure Lemma (Boyd, Ghaoui, Feron, &
Balakrishnan, 1994) again, with V < eV, yields the LMI

[—CTLTP —PLC PF

FTp 0
ETUTVE + ETVTUE  ETUT + ETVT
2 B 2
<€ UE + VE

Absorbing 1/€ into the matrix P to define a new positive
definite matrix and adding the term +oP to the (1,1) term
above for a minimum convergence rate of ¢/2, the final
observer design LMI is obtained as equation (23) specified
in the Corollary. m

3. Non-Existence of a Constant Observer Gain
Solution for Non-Monotonic Systems

3.1 Non-existence for all non-monotonic functions

Theorem 2. If ALL of the output functions h;(C;x), j =
1,2,...,m as well as the process dynamic nonlinear func-
tions f;(E;x) i = 1,2, ...,r are non-monotonic, then a con-
stant gain observer that satisfies the observer design LMI (8)
does not exist.

Proof. A necessary condition for (8) to be satisfied is that
1 1
—ECT(MTN +NTM)C — EET(VTU +UTV)E+oP <0 (27)

If all nonlinear functions are non-monotonic, then M < 0,
N>0,U<0and V> 0. Hence, a solution to equation
(27), and therefore to equation (8), can never exist.

3.2 Non-existence for non-monotonic outputs

Consider the case where the process dynamics are linear
and the output equations have non-monotonic nonlinear
functions, as in Corollary 1.1.

Theorem 3. If ALL of the output functions h;(C;x), i =
1,2, ...,m are non-monotonic, and if the open-loop system
is not already asymptotically stable, then a constant gain ob-
server that satisfies the design LMI (22) does not exist.
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Proof. For this system where the process dynamics are
linear and the outputs are described by nonlinear equations,
Corollary 1.1 for observer design applies. Hence, if the LMI
(22) were feasible, a globally exponentially stable observer
would result. For (22) to be feasible, a necessary condition
is that its (1,1) element be negative definite, or

CTMTNC + CTNTMC
2

If all the output functions are non-monotonic, then M; < 0
and N; > 0. This implies M'TN < 0and N"M < 0.

Since CTMTNC + CTNTMC <0, and P >0, this
implies ATP + PA < 0. For ATP 4+ PA to be negative
definite, A must exponentially stable, which contradicts the
assumptions of the Theorem. Hence, a constant gain
observer that satisfies (22) cannot exist.

O

ATP + PA — +oP <0 (28)

3.3 Non-existence for non-monotonic process dynamics

Consider the case where the process dynamics are
nonlinear and the output measurement equations are linear.

Theorem 4. If ALL of the process dynamics functions
fi(E;x), i = 1,2, ...,n are non-monotonic, and if the output
C matrix is not full rank, then a constant gain observer that
satisfies the observer design LMI (8) does not exist.

Proof. For this system where the process dynamics are
nonlinear and the output equations are linear, h(x) = Cx
and M = N = [. Then the LMI (8) can be rewritten as (30)
in Box VL.

If all the process dynamics functions f;(E;x) are non-
ofi
0(Eix)
values. Hence U; < 0 and V; > 0. This implies that the

diagonal matrices UTV < 0 and VTU < 0.
For equation (30) to be satisfied, a necessary condition is

monotonic, then takes both positive and negative

1 ETUTVE + ETVTUE
—3¢C¢ - 2

+0P <0 (29)

Since ETUTVE + ETVTUE <0 and P > 0, this implies
--cTc <o,

This implies that C is full rank, which contradicts the
assumptions of the Theorem. Hence, a constant gain

observer that satisfies the observer design LMI (8) cannot
exist. W

Corollary 3.1: If the system under consideration has
nonlinear process dynamics and a linear output equation,
and is a single output system, then a constant gain observer
does not exist if the output function is non-monotonic.

Interpretation and Relation to Unobservability: The
proof of this Corollary follows directly from Theorem 3.
Further, the non-existence result is easy to interpret in the
case of the single output system. If the output nonlinear
function is non-monotonic, then it has both positive and
negative values of the derivative with respect to its
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r 1 1 1 1
—ECTC - EET(VTU + UTV)E + 6P PF + E(ETUT + ETVvT) —PL+ E(CT +C7)
1
FTP + E(VE + UE) —I 0 <0 (30)
1
—L'P + E(C +0) 0 -1
Box VI
[ CTMTNC + CTNTMC CTMT + CTNT
ATP + PA — > +o0P —-PL+——mFF—
<
rp 4 MCHNC ; =0 G1)
2

o on
This implies that for A—LMC to be

asymptotically stable, L has to change signs with the sign of
ah

a(cx)’

Hence, the non-existence result can be easily understood for

argument.
or else the open-loop matrix A must already be stable.

L oh
this single output system. Further, note that when )

changes sign, it also goes through a value of zero, implying
local loss of observability at one point in the operating
domain of the system. Thus, the lack of a stabilizing
observer gain for this non-monotonic system agrees with the
loss of observability that occurs at the zero-slope point of
the output nonlinear function.

3.4 Non-existence for partially non-monotonic outputs

The previous two sub-sections showed that a stabilizing
constant observer gain does not exist for the cases where
either all output functions, or all process dynamic functions
are non-monotonic. This sub-section presents examples to
show that a stabilizing observer gain may not exist even if
only SOME of the outputs have nonmonotonic functions.

Example 1. Consider the special case where the plant
equations are

X =Ax + Bu (32)

y = h(Cox) (33)

with CI' € R™ and h: R - R™ . Thus, there are m outputs,
but all of them are functions of the same single scalar vari-
able Cyx.

In this case, the observer design condition is (31) in Box
VII. Now, since CTC is a rank one matrix (due to all rows
of C being the same (),

CTMTNC + CTNTMC .
= D M, |cic, (34)
i

2

Now Y,; M;N; is a scalar and could be positive or negative,
depending on how many output functions are non-
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Box VIL

monotonic and have negative values of M; and positive val-
ues of N;. If Y;; M;N; turns out to be negative, even if only
some of the output functions are non-monotonic, then

CTMTNC + CTNTMC .
- - ZMiNi CTCy <0 (35)
i

Hence
CTMTNC + CTNTMC

ATP + PA —
2

=>ATP+PA<0

+ 0P <0

which again would require A itself to be exponentially sta-
ble, which would contradict the assumptions of Theorem 3.
Hence, a constant observer gain may not exist, even if only
some of the output functions are non- monotonic.

Example 2. Consider the 3" order system with
Ci=la b clandC,=[d e f].

Without loss of generality, let the first output function be
monotonic with m; = 0 and n; > 0. Let the second output
function be non-monotonic with m, < 0 and n, > 0, with
myn, = —1. Then

—d? = —
C™MTNC +Cc'NTMc |4 Tde ~df
5 =|—de —e? -—ef
—df —ef —f?
It is easy to see that there are many values of d, e and f such
TyT TnT
that w < 0. This would again make the as-

sumptions of Theorem 3 invalid, even though only one of
the two output functions is non monotonic.

3.5 Non-Existence of a Constant Gain with Other LMI-
Based Methods of Nonlinear Observer Design

It can be shown that the following popular methods of ob-
server design for nonlinear systems from literature all fail to
yield a solution with a constant observer gain for systems
with all non-monotonic nonlinear functions:
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a) Observer design method of Arcak and Kokotovic using
the Circle Criterion (Arcak & P. Kokotovic, 2001)

b) Observer design method of Phanomcheong, et al for
bounded Jacobian nonlinear systems (Phanomchoeng,
Rajamani, & Piyabongkarn, May 2011)

c¢) High gain observer design method, when the output
function is non-monotonic, as demonstrated in (Boizot,
Busvelle, & Gauthier, 2010).

As for the extended Kalman filter (EKF), it is not
related to the non-existence results as introduced in this
paper because the EKF uses a time-varying observer gain,
instead of a constant one.

Another popular method of nonlinear observer design
is through transformation to a normal form under which the
observer design can be done simply with eigenvalue
assignment with a constant observer gain. However, it is
also important to note that in the original coordinates, the
gain may not be constant because it depends on the (left)
inverse of the state transformation Jacobian, which is not
constant if the coordinate transformation is not constant.

Further, finding a nonlinear transformation to put the
nonlinear system under a normal form is not an easy task in
general, and sometimes requires solvability of a set of
partial differential equations. We recognize that normal-
form-based methods are useful for observer design, but the
use of the switched gain approach proposed in this
manuscript does not require any transformation of the
system nor any changes to the structure of the LMI
conditions obtained with a constant observer gain. We need
only to switch between regions of monotonicity.

4. No Benefits from Conversion to Monotonicity
by Linear Subtraction

A non-monotonic function that has a bounded Jacobian
can be converted to a monotonic function by subtracting a
linear function of the states from it. This conversion aspect
has been described in previous observer design results from
literature (Arcak & P. Kokotovic, 2001). This section shows
that such a conversion does not help in observer design.
Consider a system with nonlinear output functions and lin-
ear process dynamics as follows:

X = Ax + Bu (36)

y = h(Cx) (37)

with C € R™*", and h: R = R. Let the original nonlinear
output functions be non-monotonic so that the diagonal ma-
trices satisfy M < 0 and N > 0. The original observer de-
sign LMI (as derived in Corollary 1.1) is (22) in box IV.

Conversion to a monotonic nonlinear function:

Let p(Cx) = h(Cx) — MCx. Then 2 =22  _m
0z 0zlz=cyx
Then, it is easy to see that
d¢
0 — <N-M (38)
Zlz=cx
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Therefore Z—f > 0 and hence all the functions in ¢(Cx) are
monotonic. Can we use the new nonlinear function ¢ (Cx)
to re-define the output? Rewrite the original output as

y = MCx + h(Cx) — MCx = MCx + ¢(Cx) 39)
Rewrite the plant dynamics as

x=(A—-LMC)x + LMCx + Bu (40)
and the observer as

%=(A—-LMC)X + LMCX + Bu 1)
+L(h(Cx) — h(C%))

Then, the estimation error dynamics are
X =(A—-LMO)% + L(¢p(Cx) — ¢p(CR)) (42)
with ¢ (Cx) being a monotonic function.

The new observer design LMI uses (A — LMC) instead of
A. Also, the lower Jacobian bound of ¢(Cx) is 0 and the
upper Jacobian bound is N — M because of the monotonic-
ity of the new output. Then the new observer design LMI,
by applying equation (22) is (45) in Box VIII.

This requires (A — LMC)"P + P(A — LMC) + 6P < 0
as a necessary condition. Hence (A — LMC) needs to be an
asymptotically stable matrix, with M < 0.

Theorem 5. The observer design for the new system (39)-
(40) in which the nonlinear function has been converted to
a monotonic function continues to be infeasible, if it was
infeasible for the original system before conversion.

Proof. By using the Schur complements Lemma, the ob-
server LMI (45) for the system (39)-(40) is equivalent to

(A — LMC)TP + P(A — LMC) + oP
Ten—wT — .
+(=PL+ S (P + 8 0) <0 e,
2 2
T
ATP+PA+PLLTP - T (X)) TP —

PL (@) C +2CT(N = M)T(N = M)C +0P <0

(43)

On the other hand, the original observer design LMI for the
untransformed system (36)-(37), using equation (22), is
equivalent to (46) in Box IX.

C"TMTNC + C"NTMC

ATP + PA - 5 +oP
TwyT TnT
+(=PL+ ) (<P + ) <0 e
2
T
ATP+ PA+PLLTP — CT (*2%) L7P —

44
PL (@) C +2CT(N = M)T(N = M)C + 0P <0

Thus, inequality (43) turns out to be completely equivalent
to inequality (44). m

Hence the conversion of the non-monotonic output
function to a monotonic one by subtracting a linear term did
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not help. A constant gain observer continues to be infeasi-
ble, if the original function is non-monotonic.

5. Hybrid Observer Design Using Switched Gains and
Switched Lyapunov Functions

For the plant with nonlinear process dynamics and
nonlinear output equations, as given in (1)-(3), consider a
hybrid observer with two constant-gain regions, as shown in
Figure 1, with no loss of generality. Let the observer be
designed with an observer gain L, in region 1 and L, in
region 2. Let the two observers be designed to be
exponentially stable in each of the two regions using the
following two LMIs: (52) in Box X for all y < yayitcn + €,
and (53) in Box XI for all y = ysyiten — €. Here Ygypiten 18
the nominal switching point between the two regions and
the variable € is the hysteresis added to the switching to
ensure a minimum dwell time after each switch.

Note that a nonlinear function on a compact set has
finite local extrema and can always therefore be represented
using piecewise monotonic functions. Hence, the observer
can be designed using a finite set of piecewise regions with
the monotonicity being ensured in each region.

Theorem 6. Let P;, L, and P,, L, be the Lyapunov function
matrices and observer gain matrices in regions 1 and 2
respectively, chosen so as to satisfy equations (52) and (53).
Let 0, and g, be the minimum exponential convergence
rates in the two regions. Choose a value of 7 such that the
following equations are satisfied:

i (N — M)CT
(A—LMC)TP+ P(A—LMC)+ 0P —PL+-——"—
(N — M)C 2 =<0 (45)
—-I'p +—n -1
2
Box VIII.
CTMTNC + CTNTMC CTMT + CTNT
ATP + PA - 5 +toP —PLt————
<
MC + NC =0 (46)
—I'P+— -1
2
Box IX.

y = Yswitch +e

V, = #TP, %

V, = ¥ P,%

Observer gain Ly Observer gain L,

Y =< Yswitch — €

Fig. 1: Hybrid Observer

Proof. Without loss of generality, consider a switching
from region 1 to region 2. Let the switching occur at time
tg. Then, according to the assumption in the theorem, the
switch back cannot occur before t; + 7. At the time of
switching, the value of the Lyapunov function in region 1 is

Vl(ts) = f(ts)’rplf(ts)
and in region 2 is
VZ (ts) = f(ts)szf(ts) .

Since the convergence rate in region 2 is at least o5,

Py = P,e™ "% 47) )
d Vo (t) < —a,Va(8) (49)
an
~ Integrating both sides to obtain a relationship between
P, = Pe ™ (48) V,(ts + 7) and V,(t,), it can be shown that
Then, if the switching between regions does not occur faster Vy(ts + 1) < Vy(ty)e ™2 (50)
than 7, the hybrid observer system will be globally ) o
asymptotically stable. Equation (50) implies
Note: 1t is always possible to find a 7 > 0 sufficiently large X(ts + TP X (ts + 1) < X(6) P %(ts)e ™™
such that both equations (47) and (48) are satisfied. But, according to equation (47), P, = P,e~"°2. Hence
Vo (ts + 1) < Vi(ts) (51)
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r 1 1 1 1
—SCTMTN + N'M)C = SET(VTU + UTV)E + 0Py PoF + = (ETUT +ETVT)  —PiLy +5(CTMT + CTNT)]
1
FTPl +E(VE+UE) -1 0 |S 0 (52)
1 |
—L€P1+E(NC+MC) 0 -1 J
Box X.

F 1 1 1 1
—5CT(MTN + NTM)C = S ET(VTU + UTV)E + 6oPy PoF +5 (ETUT + ETVT)  —Pyly +5(CTM" + c™T|

1
FTP, + (VE + UE) -1 0 <0 (53)
1
~L5P; +5 (NC + MC) 0 =1 |
Box XI.

Subsequently, for all t > ¢, + 1, V,(t) further keeps
decreasing exponentially with an exponential time constant
of at least 0,, as long as the system remains in region 2.

After each switch, the Lyapunov function always
decreases to a value below the value at the time of transition
and subsequently continues decreasing exponentially.
Hence, the values of the Lyapunov function candidate at
consecutive switching points tg, and t,, can be related by

VZ (tsz) = aVl (tsl) (54)

where 0 < a < 1. Hence, after k switches with a minimum
dwell time 7 after each switch, we have

Vj(tsk) = ak_lvl(tsl) (55)

where V; can be V; or V,, depending on k being even or odd.
Equation (55) for the repeated decay of the Lyapunov
function at consecutive switching points, together with the
exponential decay that occurs in each region when there is
no switching, ensures that the Lyapunov function converges
to zero (Goebel, R.G.Sanfelice, & A.R.Teel, 2012). Hence
the estimation error also converges asymptotically to zero.

While Theorem 6 considered only two regions, the
proof holds for switching from any region to any other
region, as long as the minimum dwell constraint is met. In
order to meet the dwell time constraint, hysteresis can be
introduced into the switching region, as shown in Figure 1
with the parameter € which provides different points for
switching into and out of an observer gain region. While the
proposed switching algorithm works well for the
applications studied in this paper, there are no switching
results necessarily available for all cases of switching when
the switching instant is not known apriori. Literature on the
design of switching observers and on the stability analysis
of switched hybrid systems with adequate dwell time is
available in (Liberzon, 2003), (Alessandri & Coletta, 2001),
(Alessandri, Baglietto, & Battistelli, 2005), and (Goebel,
R.G.Sanfelice, & A.R.Teel, 2012).
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6. Application to Vehicle Tracking on Highways
and Local Roads

This section develops a nonlinear observer for an
autonomous vehicle to estimate motion variables of other
vehicles on a road, based on measurements from an on-
board radar sensor (Rajamani R. , 2012). The estimation
algorithm uses a vehicle tracking algorithm based on a
single model to represent all possible vehicle motions
involving both longitudinal and lateral maneuvers. By using
a single vehicle model, stability of the state observer can be
guaranteed and the real-time computational effort in
estimating trajectories of multiple vehicles on the road is
reduced in comparison with switched model approaches,
such as the interacting multiple model (IMM) approach.

Since the proposed vehicle model is nonlinear, an effec-
tive nonlinear observer design technique is required to en-
sure a stable observer. The observer design LMIs developed
in this paper, together with the hybrid observer technique
are used for the nonlinear observer design.

6.1 Observer design

A bicycle model is used for each tracked vehicle with
X being its relative longitudinal position, Y its relative lat-
eral position, and Y the yaw angle of vehicle, as shown in
Fig. 2. The variables X and Y are measured by a radar track-
ing sensor. The vehicle motion model uses the states:

x=[X Y ¥ 1" (56)

Under the assumption that the derivative of the steering
angle is zero, then the process dynamics are

¥ Vcos(Y)
v Vsin(y)

il=1 V (57)
;{} ller tan(Sf)

4 0
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where [, and [, are distances to front and rear tires from

c.g. of vehicle, &, is steering angle of front wheels, V is

total velocity at c.g. of vehicle. We assume V is a constant
or slowly varying.

Yy

Fig. 2. Vehicle motion model
The output matrix is

1 0 0 O
01 0 0

Thus, the process dynamics are nonlinear while the output
equations are linear. It is also clear that f;() and f,() are
functions of the state variable ¥ while f5() is a function of
the state variable §;. The Jacobian is found to be

C= [ (58)

—Vsin(y)
o _ VVCOS(I/)) 59)
d(E;x) LTL sec?(5y)
0

where E;, =E,=[0 0 1 O0],andE;=[0 0 0 1].
Using the observer

x=Ff(&)+L(Cx —CR) (60)

it is found that for the limited operating range 0 < i < 90°,
the functions f;(E;x) are monotonic. Hence, it is possible
to find a constant observer gain matrix L for the operating
range 0 < ¥ < 90°. However, it is impossible to find a
constant gain matrix L that makes the observer stable for the
entire operating range 0 < ¥ < 360°. Hence a switched
gain hybrid observer is developed for two different
operating regimes as follows

Gain L; for the operating range 0’ <1 < 80,
—-10" < 6 < 10™:

42.1703  —23.6081

_ | —51.8942  41.5463
L= —121.0412 86.8002 (61)

—1.7662 1.2666

Gain L, for the operating range 60° < 1 < 140°, —10° <
5]—" < 100:

46.4268  3.2988

| 84042  5.0011
la=1_752145 —68793 (62)

—1.1358 —0.1039
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V is assumed as 10m/s. It can be seen that the two gains
overlap over 20 degrees of yaw angle regime.

6.2 Simulation results

The following simulation scenario is utilized. The ve-
hicle is driving with 10m/s constant velocity and performs
the following maneuvers:

1) Straight driving for 5 seconds

ii) Left turning until vehicle yaw angle becomes
120 degrees

iii) Straight driving with its yaw angle

The observer gain is switched at 60 degrees of the estimated
yaw angle. Initially, the vehicle estimates are located at
(0,0) and oriented with 0 degree yaw angle. We assume that
vehicle itself is located at (-5,-5) and oriented with 30 de-
gree. The region of the initial condition is determined to be
either 0 < 1 < 80° or 60 < Y < 140° by ad-hoc compu-
tation of the initial direction of the vehicle from the first few
samples of measurements. Whether the target vehicle is
traveling parallel or perpendicular to the ego vehicle deter-
mines its initial condition region.

Vehicle trajectory estimation 1

100 E
05
80 5
=~
T 5
£ 60 = 0
S
>~ =S
40 “S
20 5 08
%
<3
0
-1
0 50 100 0 10 20
X [m] Time [sec]
Vehicle yaw angle estimation
150 10
Truth
----- Estimates
100 5
— B
5 .
S &
S 50 = 0
2 =
0 ]
-50 -10
0 10 20 0 10 20

Time [sec] Time [sec]

Fig. 3. Simulation results with a switched gain approach

The hybrid observer with the switched gain method
provides very good estimation performance, as seen in Fig.
3. The estimated and actual values for both the vehicle tra-
jectory and for vehicle orientation track each other very
closely. The estimation error converges to zero from the
initial condition error and is subsequently very small during
straight driving, increasing slightly only during the turning
motion as shown in Fig. 3.

Next, consider the case where a single gain observer is
utilized instead of the hybrid observer. The single gain for
the first regime from the above observer is utilized for the
entire range of vehicle operation in Fig. 4. It can be seen
that the yaw angle error increases as vehicle yaw angle
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increases to be away from the operating range for which the
observer was originally designed, as shown in Fig. 4. The
error grows significantly after the first 15 seconds when the
orientation exceeds the observer’s stable operating regime.

These simulation results clearly show both the stability
of the switched gain observer and also its superiority com-
pared to a constant gain observer.

Vehicle trajectory estimation 1

100

o
o

80

Estimation error [m]

£ 0 — s
>~ a0
2 0.5
0
A
0 50 100 0 10 20
X [m] Time [sec]
Vehicle yaw angle estimation
150 10
100 5
)
o L
S
£ w s
< =, 0
=,
0 = o5
-50 10
0 10 20 0 10 20
Time [sec| Time [sec]

Fig. 4. Simulation results without a switched gain approach

7. Application to Magnetic Position Estimation in
Industrial Actuators

This section focuses on a different motion estimation
problem, one about estimating the position of a moving
piston inside an industrial piston-cylinder actuator.
Magnetic position estimation offers an excellent
inexpensive and non-contacting method of obtaining piston
position on such actuators, including on pneumatic
cylinders, hydraulic actuators and IC engines. In magnetic
position estimation, a magnet is placed on the moving
object, such as the moving piston shown in Fig. 5
(Movahedi, Zemouche, & Rajamani, 2019). A sensor board
containing one or more magnetic sensors is placed on the
outside cylinder, again as shown in Fig. 5. Such magnetic
sensors are inexpensive (as low as $1 each when purchased
in large quantities). At the same time, they enable non-
contact estimation of position of the piston. Traditional
sensors such as potentiometers and LVDTs require the
sensor to be connected co-axially to the moving piston. This
requires significant installation effort, results in contacting
motion and in shear loads on the sensor during operation,
often resulting in sensor failure. Furthermore,
potentiometers and LVDTs can be significantly more
expensive than the low-cost magnetic sensors considered in
this paper.

The variation of the magnetic field with piston position
is shown in Fig. 6 for an example electrohydraulic actuator

Preprint submitted to Automatica 11

with a magnet installed on its piston. The model for the
position estimation dynamic system for the EHA when
using two magnetic sensor outputs can be represented as:

X =Ax + Bu
Y1] _ [hl(Clx)] (63)
Y2 h,(Cox)
z 010
wherex=[v],A= 0 0 1landC1=C2=[100].
a 0 0O

with z, v and a being the position, velocity and acceleration
of the piston. Note that the output equations in (63) are
highly nonlinear functions of the position z. The functions
h;(C;x) and h,(C; x) were defined using polynomial curves
to fit the experimentally measured data of Fig. 6. These
functions are seen to be not only nonlinear but also non-
monotonic with both positive and negative slopes.

Magnetic Sensor Board

Cylinder
]\ Piston

Magnet

Fig. 5. Sensor Configuration for position estimation of EHA

1
0.8
0.6
0.4
0.2

o

Magnetic Field

-0.2

0.4 \ i
06 \ i

0.8 L0

o 0 40 60 e 10 120 140 160 180 200
Position (mm)
Fig. 6. Non-monotonic measurement functions of magnetic sensors, after
removal of hysteresis

From the theoretical results in section II (Corollary 1.1),
we have seen that if both output functions are non-mono-
tonic, we cannot find a feasible solution to the observer de-
sign LMI (22). With the monotonicity requirement in mind,
the position range of 0 — 203 mm can be divided piecewise
into different regions in a manner that in each region at least
one of the output functions is a monotonic function of posi-
tion. Such a piecewise division of the position range into
regions R, to Rq4is shown in Fig. 7. Note that the boundaries
of the regions lie near the slope change points (of one or the
other output function). For example, R, is a narrow region
in which the slope of the output y; is close to zero. In this
region, only the output y, will be used by the observer, since
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Y, is monotonic in this region. Regions R; and R; lie on
either side of R, and both of these regions can utilize both
outputs y; and y,, since they are monotonic in these regions.

.

N Ly Sensori
0.8 F i/ \ _;' T === Sensoréi2

0.6 X i 5

0.4 _"I § i b
0.2 i

0F_. NS e

Magnetic Field
1
i
I
N

0.2
0.4 5 i
0.6 LY i

0.8r - r

0 20 40 60 80 100 120 140 160 180 200
Position (mmy)
Fig. 7. Creating regions around slope-change points of output functions

It should be noted that we have the liberty of relying on
only one of the output measurements in the narrow regions
with zero slope, because even with one output the system is
still observable, although the result of estimation might not
be as accurate as the case when we use both outputs. Hence,
the width of these regions was kept narrow so as to minimize
regions with use of only 1 output by the observer. It is ideal
to have these regions to be as narrow as possible, but in prac-
tice their width is determined by the accuracy of the meas-
urement models. For example, if we anticipate a considera-
ble horizontal uncertainty or shift in the output functions, we
are forced to sacrifice the estimation accuracy for the sake of
stability by widening the low observability regions.

A switched gain observer can be developed using the re-
gions defined in Fig. 7 (Movahedi, Zemouche, & Rajamani,
2019). The switched gain observer uses different gains in
each of the discrete piecewise regions. Since each region R;
through Ry, has monotonic output function properties, a con-
stant stabilizing observer gain exists in each of these regions.
As the operating region changes, the observer gains switch
in value accordingly using a finite state machine of the type
shown in Fig. 1.

One obstacle that could affect the performance of this
piecewise nonlinear observer is the initial condition. If we
pick the initial condition to be in the wrong region (with the
wrong observer gain), it might result in a divergence of the
observer estimates. However, thanks to the specific shape of
output functions for this application, there is an easy solution
that can remedy this shortcoming. From Fig. 6, since there is
a one-to-one relationship between the position and the or-
dered pair that is constructed by the two output functions y;
and y,, we can identify the correct region for the initial con-
dition accurately.

8. Conclusions

This paper considered the design of observers for non-
linear systems and the aspect of how observers can be
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designed in nonlinear systems which are non-monotonic.
The plant considered is one in which the process dynamics
and output equations are both composed of nonlinear vector
functions of scalar combinations of the states. The nonlin-
ear functions are assumed to be differentiable with bounded
derivatives. An observer design algorithm that requires
solving just a single linear matrix inequality for exponen-
tially convergent state estimation was developed. The de-
veloped algorithm worked effectively when the involved
nonlinear functions were monotonic. Since each component
of the nonlinear functions was a function of a scalar varia-
ble, it could be analyzed as being either monotonic or non-
monotonic.

The developed observer design method was seen to fail
in yielding an observer solution when all or sometimes even
some of the system functions were non-monotonic. Analyt-
ical results were presented to show that no solutions exist to
the observer design LMIs when either all output functions
or all process dynamics functions are non-monotonic. Fur-
ther, other observer design methods from literature also fail
when the involved nonlinear functions are non-monotonic.
This relationship between the nonlinear functions being
non-monotonic and the feasibility of solutions to the ob-
server design LMIs has not previously been recognized in
observer design literature. Previous observer design results
in literature have focused on the size of the Lipschitz con-
stant or on the size of the Jacobian bounds in influencing the
existence of a stabilizing observer gain. The result in this
paper shows that these LMI-based observer design methods
will not succeed for a full non-monotonic system, no matter
how small the Lipschitz constant or the Jacobian bounds of
the nonlinearity.

Finally, a hybrid observer technique that switches be-
tween multiple constant observer gains was developed that
can provide global asymptotic stability for systems with
non-monotonic nonlinear functions. The need for hybrid
observers with switched gains becomes important for such
non-monotonic systems. The global stability of the hybrid
observer was established when there is sufficient dwell time
in each locally stable constant gain observer region.

The application of the developed hybrid observer to two
different motion estimation problems was presented. One
motion estimation problem involved tracking of vehicles on
a road using radar sensors and handled a plant with nonlin-
ear process dynamics. Another estimation problem in-
volved a position estimation problem for an industrial actu-
ator using a magnetic sensor and handled a plant with non-
linear output equations. Both applications demonstrated
that while a constant gain observer could not be globally
stable in either case, a hybrid observer can perform well and
be globally stable.
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