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Abstract 

This paper focuses on the challenges in observer design for nonlinear systems which are non-monotonic.  A class of 
nonlinear systems is considered in which the process dynamics and output equations are both composed of nonlinear vector 
functions of scalar combinations of the states.  The nonlinear functions are assumed to be differentiable with bounded deriv-
atives.  An observer design algorithm that requires solving just a single linear matrix inequality for exponentially convergent 
state estimation is developed.  The developed algorithm works effectively when the involved nonlinear functions are mono-
tonic.  However, it fails when all or even some of the system functions are non-monotonic.  Both numerical computation and 
analytical results show that the observer design LMI has no feasible solutions when either all output functions or all process 
dynamics functions are non-monotonic.  Further, other constant gain LMI-based observer design methods from literature also 
fail when the involved nonlinear functions are all non-monotonic, no matter how small the Lipschitz constant or the Jacobian 
bounds of the nonlinearities.  This limitation has not previously been recognized in observer design literature.  To overcome 
this limitation, a hybrid observer that switches between multiple constant observer gains is developed that can provide global 
asymptotic stability for systems with non-monotonic nonlinear functions.  Hybrid observers with switched gains enable ex-
isting observer design methods to be utilized for non-monotonic nonlinear functions with finite local extrema. The application 
of the developed hybrid observer to two motion estimation applications, one a vehicle position tracking problem on roads and 
another a piston position estimation problem for an industrial actuator, are demonstrated.  
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1. Introduction 

Observer design for nonlinear systems continues to be 
a topic of significant research interest. Two major 
approaches to nonlinear observer design include the high 
gain observer approach (Khalil H. K., 2015) (Khalil & 
Praly, 2014) and the linear matrix inequality (LMI) based 
design approach (Zemouche, et al., Nov 2017).  The high-
gain observer approach is used for systems in triangular 
form or any system that can be transformed into a triangular 
structure (Khalil H. K., 2015). The advantage of the high 
gain methodology is that it always guarantees the existence 
of an exponentially convergent observer, thanks to the 
tuning of only one parameter that should be chosen large 
enough (Boizot, Busvelle, & Gauthier, 2010). Although the 
practicability of high-gain observer in output feedback 
control has been nicely analyzed by Khalil’s work (Khalil 
H. K., 2015) (Khalil & Praly, 2014), the use of a large gain 
and the consequent sensitivity to noise as well as high 
frequency model uncertainty remains a drawback.  To 
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overcome this obstacle, many research papers have 
addressed high-gain observers with time-varying parameter 
adaptation, and a number of different switched-gain 
schemes (Khalil & Ahrens, 2009), (Boizot, Busvelle, & 
Gauthier, 2010), (Andrieu, Praly, & Astolfi, 2009). 

The LMI-based observer design approaches have been 
developed in the literature by a number of different authors 
for different classes of nonlinear systems.  For example, 
LMI-based observer design methods have been developed 
for systems with Lipschitz nonlinearities (Zemouche, et al., 
Nov 2017), (Rajamani R. , 1998), differentiable nonlinear 
systems with locally bounded Jacobians (Wang, Rajamani, 
& Bevly, April 2017), systems with nonlinearities satisfying 
an incremental quadratic inequality (Acikmese & 
M.Corless, 2005), and for monotonic nonlinear systems 
(Arcak & P. Kokotovic, 2001).  Each new LMI technique 
aims to provide a better way to get less conservative LMI 
conditions compared to previous results for the class of 
systems under consideration. Despite recent theoretical 
advances in this field (Zemouche, et al., Nov 2017), 
(Oueder, Farza, Abdennour, & M’Saad, 2012), the search 
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for a single widely-applicable powerful observer design 
method still remains open. A recent result of importance 
develops an observer design method which is a bridge 
between the LMI-based and the high-gain design methods 
(Zemouche, Zhang, Mazenc, & Rajamani, August 2019). 
Varying gain observers (in which the observer gain varies 
with parameters of the plant) for linear parameter varying 
systems (Bara, Daafouz, Kraatz, & Ragot, 2001) and for 
nonlinear parameter varying systems (Wang, Rajamani, & 
Bevly, April 2017) have also been explored under the LMI 
observer design framework. 

While the above results from literature represent signif-
icant progress in developing viable observer design tech-
niques, this paper demonstrates that the above LMI design 
techniques fall short when it comes to actual application to 
practical nonlinear systems.  In particular, this paper shows 
that when the nonlinear functions are non-monotonic 
(whether in the process dynamics or in the output equa-
tions), none of the existing LMI design methods may yield 
feasible solutions. This constitutes a major shortcoming of 
all existing LMI-based methods that has not been explicitly 
recognized in literature. Further, previous approaches for 
converting a differentiable non-monotonic function to a 
monotonic function by subtraction of a linear function of 
states, are also shown in this paper to not succeed in ena-
bling feasible observer solutions. Here, the monotonicity of 
a function refers to its being either a non-decreasing or a 
non-increasing function of its scalar argument. 

Where do non-monotonic nonlinear functions arise?  
This is a valid question, since the casual reader might won-
der if practical nonlinear functions encountered in the real 
world are usually monotonic. It turns out that many nonlin-
ear functions encountered in modern applications are non-
monotonic.  For instance, robotic multi-link systems involve 
complex combinations of trigonometric functions which are 
non-monotonic, especially if the range of involved joint ro-
tations are sufficiently large (Rajamani R. , 1998).  State-of-
charge estimation in batteries often involves non-monotonic 
output functions, when the outputs are either measured load 
cell force (Polóni, Figueroa-Santos, Siegel, & 
Stefanopoulou, 2018) or sometimes even measured terminal 
voltage (Tian, Fang, & Chen, 2019).  Tracking of other ve-
hicles on urban roads in autonomous vehicles often involves 
nonlinear dynamic models (Jeon, Zemouche, & Rajamani, 
2019).  Estimation of piston position in industrial actuators 
using magnetic sensors also involves nonlinear non-mono-
tonic output functions (Madson & Rajamani, 2017). 

The contributions of this paper are: the presentation of 
observer design LMIs for nonlinear systems with represen-
tation in the form of functions of scalar state combinations, 
the demonstration of infeasibility to solutions for these ob-
server design LMIs when the nonlinear functions are all 
non-monotonic, the demonstration of continued infeasibility 
with standard linear subtraction conversion methods, the de-
velopment of hybrid observer design methods that provide 
global stability for non-monotonic systems, and the applica-
tion of the developed hybrid observer techniques for two 

practical applications, namely vehicle tracking on roads and 
piston position estimation in industrial actuators.  

2. Observer Design for Systems with Nonlinear 
Functions of Scalar Variables 

In this section, we develop an observer design method for 
a class of nonlinear systems in which the process dynamics 
and outputs both have vector nonlinear functions, with their 
components being functions of scalar variables.  The class 
of systems is given by the following plant equations 

𝑥̇𝑥 = 𝐹𝐹𝐹𝐹(𝑥𝑥) + 𝑔𝑔(𝑦𝑦,𝑢𝑢) (1) 

𝑦𝑦(𝑥𝑥) = ℎ(𝑥𝑥)  (2) 

with 

𝑓𝑓(𝑥𝑥) = �
𝑓𝑓1(𝐸𝐸1𝑥𝑥)

⋮
𝑓𝑓𝑟𝑟(𝐸𝐸𝑟𝑟𝑥𝑥)

� and ℎ(𝑥𝑥) = �
ℎ1(𝐶𝐶1𝑥𝑥)

⋮
ℎ𝑚𝑚(𝐶𝐶𝑚𝑚𝑥𝑥)

� (3) 

where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛,  𝑦𝑦 ∈ 𝑅𝑅𝑚𝑚, 𝐹𝐹 ∈ 𝑅𝑅𝑛𝑛 x 𝑟𝑟, 𝐸𝐸𝑖𝑖𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛, 𝑓𝑓𝑖𝑖:𝑅𝑅 → 𝑅𝑅, 
𝑖𝑖 = 1,2, … , 𝑟𝑟 and 𝑔𝑔(𝑦𝑦,𝑢𝑢):𝑅𝑅𝑚𝑚 x 𝑞𝑞 → 𝑅𝑅𝑛𝑛 .  Thus, each of the 
𝑓𝑓𝑖𝑖 functions is a function of different scalar variables 𝐸𝐸𝑖𝑖𝑥𝑥.    
Also, 𝐶𝐶𝑗𝑗𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛, ℎ𝑗𝑗:𝑅𝑅 → 𝑅𝑅 and 𝑗𝑗 = 1,2, … ,𝑚𝑚 .  There are 𝑚𝑚 
outputs, but all of them are functions of different scalar var-
iables 𝐶𝐶𝑗𝑗𝑥𝑥.  Note that the control input 𝑢𝑢 is decoupled from 
𝑓𝑓(𝑥𝑥), although the control input could be coupled to the 
state by replacing 𝑓𝑓(𝑥𝑥) with 𝑓𝑓(𝑥𝑥,𝑢𝑢) if the control input and 
the Jacobian 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 are both bounded, in spite of the pres-
ence of the control input in 𝑓𝑓(𝑥𝑥,𝑢𝑢), as done for example in 
(Acikmese & M.Corless, 2005). 

We also assume that the functions 𝑓𝑓(𝑥𝑥) and ℎ(𝑥𝑥) sat-
isfy the following conditions: 

−∞ < 𝑀𝑀𝑗𝑗 ≤
𝜕𝜕ℎ𝑗𝑗

𝜕𝜕�𝐶𝐶𝑗𝑗𝑥𝑥�
≤ 𝑁𝑁𝑗𝑗 < +∞,         𝑗𝑗 = 1, … . ,𝑚𝑚 (4) 

−∞ < 𝑈𝑈𝑖𝑖 ≤
𝜕𝜕𝑓𝑓𝑖𝑖

𝜕𝜕(𝐸𝐸𝑖𝑖𝑥𝑥)
≤ 𝑉𝑉𝑖𝑖 < +∞,          𝑖𝑖 = 1,2, … . , 𝑟𝑟 (5) 

Define the diagonal matrices of the bounds as: 𝑀𝑀 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑚𝑚),  𝑁𝑁 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑚𝑚), 𝑈𝑈 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑟𝑟) and 𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑟𝑟). 

Note that equation (1) can certainly represent nonlinear 
systems in which each function 𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥) is a nonlinear func-
tion of a scalar linear combination of the states.  Further, 
𝐹𝐹𝐹𝐹(𝑥𝑥) can represent linear combinations of nonlinear func-
tions 𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥).  The reason it is necessary to consider func-
tions of only scalar variables (and combinations of such 
functions) is because a monotonic function is properly de-
fined in this manuscript as being either a non-decreasing or 
non-increasing function of its scalar argument. 

Let the state observer be given by 

𝑥𝑥�̇ = 𝐹𝐹𝐹𝐹(𝑥𝑥�) + 𝑔𝑔(𝑦𝑦,𝑢𝑢) + 𝐿𝐿[𝑦𝑦 − ℎ(𝐶𝐶𝑥𝑥�)] (6) 

where 𝐶𝐶 ∈ 𝑅𝑅𝑚𝑚 x 𝑛𝑛, and 𝐶𝐶𝑇𝑇 = [𝐶𝐶1𝑇𝑇 … 𝐶𝐶𝑚𝑚𝑇𝑇 ]. Note that there 
is a minor abuse of notation in using ℎ(𝐶𝐶𝐶𝐶) instead of 
ℎ(𝐶𝐶1𝑥𝑥,𝐶𝐶2𝑥𝑥, … ,𝐶𝐶𝑚𝑚𝑥𝑥), but provides more compact writing.  
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Let the estimation error be 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥�.  Then the esti-
mation error dynamics obtained by subtracting equation (6) 
from equation (1) are given by: 

𝑥𝑥�̇ = 𝐹𝐹𝑓𝑓(𝑥𝑥, 𝑥𝑥�) − 𝐿𝐿ℎ�(𝑥𝑥, 𝑥𝑥�) (7) 

for 𝑓𝑓(𝑥𝑥, 𝑥𝑥�) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥�) and ℎ�(𝑥𝑥, 𝑥𝑥�) = ℎ(𝐶𝐶𝐶𝐶) − ℎ(𝐶𝐶𝑥𝑥�). 

Theorem 1.  If the LMI (8) in Box I has a feasible solution 
that yields an observer gain 𝐿𝐿 and a symmetric positive def-
inite matrix 𝑃𝑃 > 0, then the observer of equation (6) using 
this observer gain is globally exponentially stable with a 
convergence rate of at least 𝜎𝜎/2. 
Proof.  Consider the Lyapunov function candidate 𝑉𝑉 =
𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑃, with 𝑃𝑃 > 0.  Substituting from equation (7), 

𝑉̇𝑉 = 𝑓𝑓𝑇𝑇𝐹𝐹𝑇𝑇𝑃𝑃𝑥𝑥� − ℎ�𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑓𝑓 − 𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃ℎ� , or 

𝑉̇𝑉 = [𝑥𝑥�𝑇𝑇 𝑓𝑓𝑇𝑇 ℎ�𝑇𝑇] �
0 𝑃𝑃𝑃𝑃 −𝑃𝑃𝑃𝑃
𝐹𝐹𝑇𝑇𝑃𝑃 0 0
−𝐿𝐿𝑇𝑇𝑃𝑃 0 0

� �
𝑥𝑥�
𝑓𝑓
ℎ�
� (9) 

Using the differential mean value theorem, the output func-
tion difference is 

ℎ�(𝑥𝑥, 𝑥𝑥�) = �
⋮

ℎ𝑖𝑖(𝐶𝐶𝑖𝑖𝑥𝑥) − ℎ𝑖𝑖(𝐶𝐶𝑖𝑖𝑥𝑥�)
⋮

� =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ℎ1

𝜕𝜕(𝐶𝐶1𝑥𝑥)
�
𝑧𝑧1=𝑧̅𝑧1

0 0 0

⋮ ⋱ ⋱ 0
0 ⋱ 0
0 ⋯ 0 𝜕𝜕ℎ𝑚𝑚

𝜕𝜕(𝐶𝐶𝑚𝑚𝑥𝑥)
�
𝑧𝑧𝑚𝑚=𝑧̅𝑧𝑚𝑚⎦

⎥
⎥
⎥
⎥
⎤

(𝐶𝐶𝐶𝐶 − 𝐶𝐶𝑥𝑥�)  
(10) 

where 𝑧𝑧𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑥𝑥.  Then, using the lower and upper Ja-
cobian bounds of 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕(𝐶𝐶𝑗𝑗𝑥𝑥)
 in equation (10), 

ℎ�(𝑥𝑥, 𝑥𝑥�) −𝑀𝑀𝑀𝑀𝑥𝑥� = 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝜕𝜕ℎ1
𝜕𝜕(𝐶𝐶1𝑥𝑥)

�
𝑧𝑧=𝑧𝑧1

− 𝑀𝑀1, … ,  𝜕𝜕ℎ𝑚𝑚
𝜕𝜕(𝐶𝐶𝑚𝑚𝑥𝑥)

�
𝑧𝑧=𝑧𝑧𝑚𝑚

− 𝑀𝑀𝑚𝑚 � 𝐶𝐶𝑥𝑥�  (11) 

and 

ℎ�(𝑥𝑥, 𝑥𝑥�) − 𝑁𝑁𝑁𝑁𝑥𝑥� = 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � 𝜕𝜕ℎ1
𝜕𝜕(𝐶𝐶1𝑥𝑥)

�
𝑧𝑧=𝑧𝑧1

− 𝑁𝑁1, … ,  𝜕𝜕ℎ𝑚𝑚
𝜕𝜕(𝐶𝐶𝑚𝑚𝑥𝑥)

�
𝑧𝑧=𝑧𝑧𝑚𝑚

− 𝑁𝑁𝑚𝑚  � 𝐶𝐶𝑥𝑥�  (12) 

From (11) and (12), due to 𝑀𝑀𝑖𝑖 being a lower bound and 𝑁𝑁𝑖𝑖 
being an upper bound in each of the diagonal terms in the 
diagonal matrices, it follows that 

�ℎ�(𝑥𝑥, 𝑥𝑥�) −𝑀𝑀𝑀𝑀𝑥𝑥��𝑇𝑇�ℎ�(𝑥𝑥, 𝑥𝑥�) − 𝑁𝑁𝑁𝑁𝑥𝑥�� ≤ 0 (13) 

Equation (13) can be rewritten in matrix form as 

[𝑥𝑥�𝑇𝑇 ℎ�(𝑥𝑥, 𝑥𝑥�)𝑇𝑇] �𝐶𝐶
𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 −𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇

−𝑁𝑁𝑁𝑁 𝐼𝐼
�
𝑇𝑇
� 𝑥𝑥�
ℎ�(𝑥𝑥, 𝑥𝑥�)� < 0  (14) 

Since 𝑀𝑀 and 𝑁𝑁 can also be switched in (14), a symmetric 
form of the constant matrix in (14) is 

�0.5(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀) −0.5(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇)
−0.5(𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁) 𝐼𝐼 �  (15) 

Similarly, for the difference 𝑓𝑓(𝑥𝑥, 𝑥𝑥�) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥�), it can 
be shown that the corresponding symmetric matrix is 

�0.5(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈) −0.5(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇)
−0.5(𝑈𝑈𝑈𝑈 + 𝑉𝑉𝑉𝑉) 𝐼𝐼 �   (16) 

Combining matrices (15) and (16) into a larger matrix form, 
the constraint (20) in Box II on the nonlinear functions 
𝑓𝑓(𝑥𝑥, 𝑥𝑥�) and ℎ�(𝑥𝑥, 𝑥𝑥�) and their Jacobian bounds is obtained.  

Replacing the condition 𝑉̇𝑉 ≤ 0 with the condition 𝑉̇𝑉 +
𝜎𝜎𝜎𝜎 < 0 ensures that the estimation error has an exponential 
convergence rate of at least 𝜎𝜎/2 , as described in Chapter 4 
of (Khalil H. , 2001).  Using the S-procedure Lemma (Boyd, 
Ghaoui, Feron, & Balakrishnan, 1994), 𝑉̇𝑉 + 𝜎𝜎𝜎𝜎 < 0 if and 
only if there exists 𝜖𝜖 > 0 such that 𝑉̇𝑉 + 𝜎𝜎𝜎𝜎 ≤ 𝜖𝜖𝑉𝑉1 where 𝑉𝑉1 
is defined in equation (20) in Box II.  Hence, equation (21) 
in Box III is obtained. Absorbing 𝜖𝜖 into the 𝑃𝑃 matrix on the 
left-hand side of equation (21), the LMI of equation (8) then 
follows. ∎ 

It should be noted that Theorem 1 is an observer design 
method for global exponential stability and is only a suffi-
cient condition. 

The following corollaries of Theorem 1 are presented 
below for the special cases where either only the process 
dynamics or only the output equations are nonlinear.  In 
these cases, lower dimensional LMIs can be obtained in 
place of the LMI (8). 

Corollary 1.1.  Consider the case where the process dynam-
ics are linear (𝐹𝐹𝐹𝐹(𝑥𝑥) = 𝐴𝐴𝐴𝐴) and the ouputs are nonlinear.   
In this case, if an observer gain 𝐿𝐿 and a symmetric positive 
definite matrix 𝑃𝑃 > 0 that satisfy equation (22) in Box IV 
can be obtained, then the observer with this gain is globally 
exponentially stable.  

Proof.  The estimation error dynamics in this case are  

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� − 𝐿𝐿ℎ�(𝑥𝑥, 𝑥𝑥�) (17) 

⎣
⎢
⎢
⎢
⎢
⎡−

1
2
𝐶𝐶𝑇𝑇(𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀)𝐶𝐶 −

1
2
𝐸𝐸𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 + 𝜎𝜎𝜎𝜎 𝑃𝑃𝑃𝑃 +

1
2

(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇) −𝑃𝑃𝑃𝑃 +
1
2

(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇)

𝐹𝐹𝑇𝑇𝑃𝑃 +
1
2

(𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈) −𝐼𝐼 0

−𝐿𝐿𝑇𝑇𝑃𝑃 +
1
2

(𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀) 0 −𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎤

≤ 0 (8) 

Box I. 
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Using the same Lyapunov function as in Theorem 1, 

𝑉̇𝑉 = 𝑥𝑥�̇𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑥𝑥�̇ 
    = 𝑥𝑥�𝑇𝑇𝐴𝐴𝑇𝑇𝑃𝑃𝑥𝑥� − ℎ�𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑥𝑥� − 𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃ℎ� , or 

𝑉̇𝑉 = [𝑥𝑥�𝑇𝑇 ℎ�𝑇𝑇] �𝐴𝐴
𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −𝑃𝑃𝑃𝑃
−𝐿𝐿𝑇𝑇𝑃𝑃 0

� �𝑥𝑥�ℎ�� (18) 

The output difference function in matrix form is 

𝑉𝑉1 = [𝑥𝑥�𝑇𝑇 ℎ�(𝑥𝑥, 𝑥𝑥�)𝑇𝑇] 

�

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2 −

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2

−
𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁

2
𝐼𝐼

� � 𝑥𝑥�
ℎ�(𝑥𝑥, 𝑥𝑥�)� < 0 (19) 

Using the S-Procedure Lemma (Boyd, Ghaoui, Feron, & 
Balakrishnan, 1994) again, with 𝑉̇𝑉 < 𝜖𝜖𝑉𝑉1 yields the LMI 

�𝐴𝐴
𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −𝑃𝑃𝑃𝑃
−𝐿𝐿𝑇𝑇𝑃𝑃 0

�

< 𝜖𝜖 �

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

−
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2

−
𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁

2
𝐼𝐼

� 

Absorbing 1/𝜖𝜖 into the matrix 𝑃𝑃 to define a new positive 
definite matrix and adding the term +𝜎𝜎𝜎𝜎 to the (1,1) term 
above for a minimum convergence rate of 𝜎𝜎/2 , the final 
observer design LMI is obtained as equation (22) specified 
in the Corollary. ∎ 
 
Corollary 1.2.  Consider the case where the process dynam-
ics are nonlinear and the outputs are linear ( 𝑦𝑦 = 𝐶𝐶𝐶𝐶).   In 
this case, if an observer gain 𝐿𝐿 that satisfies equation (23) in 
Box V can be obtained, then the observer with this gain is 
globally exponentially stable. 
Proof.  The estimation error dynamics in this case are 

𝑉𝑉1 = 

[𝑥𝑥�𝑇𝑇 𝑓𝑓𝑇𝑇 ℎ�𝑇𝑇]

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐶𝐶𝑇𝑇 �

𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀
2

�𝐶𝐶 + 𝐸𝐸𝑇𝑇 �
𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉

2
�𝐸𝐸 −�

𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇

2
� −�

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2
�

−�
𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈

2
� 𝐼𝐼 0

−�
𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀

2
� 0 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

�
𝑥𝑥�
𝑓𝑓
ℎ�
� ≤ 0 (20) 

Box II. 

[𝑥𝑥�𝑇𝑇 𝑓𝑓𝑇𝑇 ℎ�𝑇𝑇] �
𝜎𝜎𝜎𝜎 𝑃𝑃𝑃𝑃 −𝑃𝑃𝑃𝑃
𝐹𝐹𝑇𝑇𝑃𝑃 0 0
−𝐿𝐿𝑇𝑇𝑃𝑃 0 0

� �
𝑥𝑥�
𝑓𝑓
ℎ�
� ≤ 

𝜖𝜖

⎣
⎢
⎢
⎢
⎢
⎡
1
2
𝐶𝐶𝑇𝑇(𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀)𝐶𝐶 +

1
2
𝐸𝐸𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 −

1
2

(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇) −
1
2

(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇)

−
1
2

(𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈) 𝐼𝐼 0

−
1
2

(𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀) 0 𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎤

 

(21) 

Box III. 

�
𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

+ 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃 +
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2

−𝐿𝐿𝑇𝑇𝑃𝑃 +
𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁

2
−𝐼𝐼

� ≤ 0 (22) 

Box IV. 

�
−𝐶𝐶𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃 −

𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈
2

+ 𝜎𝜎𝜎𝜎 𝑃𝑃𝑃𝑃 +
𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇

2

𝐹𝐹𝑇𝑇𝑃𝑃 +
𝑈𝑈𝑈𝑈 + 𝑉𝑉𝑉𝑉

2
−𝐼𝐼

� ≤ 0 (23) 

Box V. 
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𝑥𝑥�̇ = 𝐹𝐹𝑓𝑓(𝑥𝑥, 𝑥𝑥�) − 𝐿𝐿𝐿𝐿𝑥𝑥� (24) 

Using the same Lyapunov function as in Theorem 1,  
𝑉̇𝑉 = 𝑥𝑥�̇𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑥𝑥�̇ = 𝑓𝑓𝑇𝑇𝐹𝐹𝑇𝑇𝑃𝑃𝑥𝑥� − 𝑥𝑥�𝑇𝑇𝐶𝐶𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑓𝑓 −
𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥�, or in matrix form 

𝑉̇𝑉 = [𝑥𝑥�𝑇𝑇 𝑓𝑓𝑇𝑇] �−𝐶𝐶
𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃
𝐹𝐹𝑇𝑇𝑃𝑃 0

� �
𝑥𝑥�
𝑓𝑓� (25) 

The output difference function in matrix form is 

𝑉𝑉1 = [𝑥𝑥�𝑇𝑇 𝑓𝑓(𝑥𝑥, 𝑥𝑥�)𝑇𝑇] 

�

𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈
2

−
𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇

2

−
𝑈𝑈𝑈𝑈 + 𝑉𝑉𝑉𝑉

2 𝐼𝐼
� � 𝑥𝑥�
𝑓𝑓(𝑥𝑥, 𝑥𝑥�)� < 0 (26) 

Using the S-Procedure Lemma (Boyd, Ghaoui, Feron, & 
Balakrishnan, 1994) again, with 𝑉̇𝑉 < 𝜖𝜖𝑉𝑉1 yields the LMI 

�−𝐶𝐶
𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃
𝐹𝐹𝑇𝑇𝑃𝑃 0

�

< 𝜖𝜖 �

𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈
2

−
𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇

2

−
𝑈𝑈𝑈𝑈 + 𝑉𝑉𝑉𝑉

2
𝐼𝐼

� 

Absorbing 1/𝜖𝜖 into the matrix 𝑃𝑃 to define a new positive 
definite matrix and adding the term +𝜎𝜎𝜎𝜎 to the (1,1) term 
above for a minimum convergence rate of 𝜎𝜎/2 , the final 
observer design LMI is obtained as equation (23) specified 
in the Corollary. ∎ 

3. Non-Existence of a Constant Observer Gain 
Solution for Non-Monotonic Systems 

3.1  Non-existence for all non-monotonic functions 

Theorem 2.  If ALL of the output functions ℎ𝑗𝑗(𝐶𝐶𝑗𝑗𝑥𝑥), 𝑗𝑗 =
1,2, … ,𝑚𝑚 as well as the process dynamic nonlinear func-
tions 𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥) 𝑖𝑖 = 1,2, … , 𝑟𝑟 are non-monotonic, then a con-
stant gain observer that satisfies the observer design LMI (8) 
does not exist. 

Proof.  A necessary condition for (8) to be satisfied is that 

−
1
2
𝐶𝐶𝑇𝑇(𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀)𝐶𝐶 −

1
2
𝐸𝐸𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 + 𝜎𝜎𝜎𝜎 < 0 (27) 

If all nonlinear functions are non-monotonic, then 𝑀𝑀 < 0, 
𝑁𝑁 > 0, 𝑈𝑈 < 0 and 𝑉𝑉 > 0.  Hence, a solution to equation 
(27), and therefore to equation (8), can never exist. 

3.2  Non-existence for non-monotonic outputs 

Consider the case where the process dynamics are linear 
and the output equations have non-monotonic nonlinear 
functions, as in Corollary 1.1. 

Theorem 3.  If ALL of the output functions ℎ𝑖𝑖(𝐶𝐶𝑖𝑖𝑥𝑥), 𝑖𝑖 =
1,2, … ,𝑚𝑚 are non-monotonic, and if the open-loop system 
is not already asymptotically stable, then a constant gain ob-
server that satisfies the design LMI (22) does not exist. 

Proof.  For this system where the process dynamics are 
linear and the outputs are described by nonlinear equations, 
Corollary 1.1 for observer design applies. Hence, if the LMI 
(22) were feasible, a globally exponentially stable observer 
would result.  For (22) to be feasible, a necessary condition 
is that its (1,1) element be negative definite, or 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀

2
+ 𝜎𝜎𝜎𝜎 < 0 (28) 

If all the output functions are non-monotonic, then 𝑀𝑀𝑖𝑖 < 0 
and 𝑁𝑁𝑖𝑖 > 0.  This implies 𝑀𝑀𝑇𝑇𝑁𝑁 < 0 and 𝑁𝑁𝑇𝑇𝑀𝑀 < 0. 

Since 𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀 ≤ 0, and 𝑃𝑃 > 0, this 
implies 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 < 0. For 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 to be negative 
definite, 𝐴𝐴 must exponentially stable, which contradicts the 
assumptions of the Theorem.  Hence, a constant gain 
observer that satisfies (22) cannot exist. 
     

3.3  Non-existence for non-monotonic process dynamics 

Consider the case where the process dynamics are 
nonlinear and the output measurement equations are linear.   

Theorem 4.  If ALL of the process dynamics functions 
𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥), 𝑖𝑖 = 1,2, … ,𝑛𝑛 are non-monotonic, and if the output 
𝐶𝐶 matrix is not full rank, then a constant gain observer that 
satisfies the observer design LMI (8) does not exist. 
Proof.  For this system where the process dynamics are 
nonlinear and the output equations are linear, ℎ(𝑥𝑥) = 𝐶𝐶𝐶𝐶 
and 𝑀𝑀 = 𝑁𝑁 = 𝐼𝐼.  Then the LMI (8) can be rewritten as (30) 
in Box VI. 

If all the process dynamics functions 𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥) are non-
monotonic, then 𝜕𝜕𝑓𝑓𝑖𝑖

𝜕𝜕(𝐸𝐸𝑖𝑖𝑥𝑥)
 takes both positive and negative 

values.  Hence 𝑈𝑈𝑖𝑖 < 0 and 𝑉𝑉𝑖𝑖 > 0.  This implies that the 
diagonal matrices  𝑈𝑈𝑇𝑇𝑉𝑉 < 0 and 𝑉𝑉𝑇𝑇𝑈𝑈 < 0. 

For equation (30) to be satisfied, a necessary condition is  

−
1
2
𝐶𝐶𝑇𝑇𝐶𝐶 −

𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈
2

+ 𝜎𝜎𝜎𝜎 ≤ 0 (29) 

Since 𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇𝑈𝑈𝑈𝑈 < 0 and 𝑃𝑃 > 0, this implies 
−1

2
𝐶𝐶𝑇𝑇𝐶𝐶 < 0. 

This implies that 𝐶𝐶 is full rank, which contradicts the 
assumptions of the Theorem.  Hence, a constant gain 
observer that satisfies the observer design LMI (8) cannot 
exist. ∎ 

Corollary 3.1: If the system under consideration has 
nonlinear process dynamics and a linear output equation,  
and is a single output system, then a constant gain observer 
does not exist if the output function is non-monotonic. 

Interpretation and Relation to Unobservability: The 
proof of this Corollary follows directly from Theorem 3.  
Further, the non-existence result is easy to interpret in the 
case of the single output system. If the output nonlinear 
function is non-monotonic, then it has both positive and 
negative values of the derivative with respect to its 
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argument.  This implies that for 𝐴𝐴 − 𝐿𝐿 𝜕𝜕ℎ
𝜕𝜕(𝐶𝐶𝐶𝐶)

𝐶𝐶 to be 
asymptotically stable, 𝐿𝐿 has to change signs with the sign of 
𝜕𝜕ℎ

𝜕𝜕(𝐶𝐶𝐶𝐶)
, or else the open-loop matrix 𝐴𝐴 must already be stable.  

Hence, the non-existence result can be easily understood for 
this single output system.  Further, note that when 𝜕𝜕ℎ

𝜕𝜕(𝐶𝐶𝐶𝐶)
 

changes sign, it also goes through a value of zero, implying 
local loss of observability at one point in the operating 
domain of the system.  Thus, the lack of a stabilizing 
observer gain for this non-monotonic system agrees with the 
loss of observability that occurs at the zero-slope point of 
the output nonlinear function. 

3.4  Non-existence for partially non-monotonic outputs 

The previous two sub-sections showed that a stabilizing 
constant observer gain does not exist for the cases where 
either all output functions, or all process dynamic functions 
are non-monotonic. This sub-section presents examples to 
show that a stabilizing observer gain may not exist even if 
only SOME of the outputs have nonmonotonic functions.   

 
Example 1.  Consider the special case where the plant 
equations are 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (32) 

𝑦𝑦 = ℎ(𝐶𝐶0𝑥𝑥) (33) 

with 𝐶𝐶0𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 and ℎ:𝑅𝑅 → 𝑅𝑅𝑚𝑚 .  Thus, there are 𝑚𝑚 outputs, 
but all of them are functions of the same single scalar vari-
able 𝐶𝐶0𝑥𝑥. 

In this case, the observer design condition is (31) in Box 
VII. Now, since 𝐶𝐶𝑇𝑇𝐶𝐶 is a rank one matrix (due to all rows 
of 𝐶𝐶 being the same 𝐶𝐶0), 

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

= ��𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖
𝑖𝑖

� 𝐶𝐶0𝑇𝑇𝐶𝐶0 (34) 

Now ∑ 𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖  is a scalar and could be positive or negative, 
depending on how many output functions are non-

monotonic and have negative values of 𝑀𝑀𝑖𝑖 and positive val-
ues of 𝑁𝑁𝑖𝑖.  If ∑ 𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖  turns out to be negative, even if only 
some of the output functions are non-monotonic, then  

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

= ��𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖
𝑖𝑖

� 𝐶𝐶0𝑇𝑇𝐶𝐶0 ≤ 0 (35) 

Hence 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀

2
+ 𝜎𝜎𝜎𝜎 < 0 

⇒ 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 < 0 

which again would require 𝐴𝐴 itself to be exponentially sta-
ble, which would contradict the assumptions of Theorem 3. 
Hence, a constant observer gain may not exist, even if only 
some of the output functions are non- monotonic. 

Example 2.  Consider the 3rd order system with 

𝐶𝐶1 = [𝑎𝑎 𝑏𝑏 𝑐𝑐] and 𝐶𝐶2 = [𝑑𝑑 𝑒𝑒 𝑓𝑓]. 

Without loss of generality, let the first output function be 
monotonic with 𝑚𝑚1 = 0 and 𝑛𝑛1 > 0.  Let the second output 
function be non-monotonic with 𝑚𝑚2 < 0 and 𝑛𝑛2 > 0, with 
𝑚𝑚2𝑛𝑛2 = −1.  Then 

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

= �
−𝑑𝑑2 −𝑑𝑑𝑑𝑑 −𝑑𝑑𝑑𝑑
−𝑑𝑑𝑑𝑑 −𝑒𝑒2 −𝑒𝑒𝑒𝑒
−𝑑𝑑𝑑𝑑 −𝑒𝑒𝑒𝑒 −𝑓𝑓2

� 

It is easy to see that there are many values of 𝑑𝑑, 𝑒𝑒 and 𝑓𝑓 such 
that 𝐶𝐶

𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁+𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

≤ 0.  This would again make the as-
sumptions of Theorem 3 invalid, even though only one of 
the two output functions is non monotonic. 

3.5 Non-Existence of a Constant Gain with Other LMI-
Based Methods of Nonlinear Observer Design 

It can be shown that the following popular methods of ob-
server design for nonlinear systems from literature all fail to 
yield a solution with a constant observer gain for systems 
with all non-monotonic nonlinear functions: 

⎣
⎢
⎢
⎢
⎢
⎡−

1
2
𝐶𝐶𝑇𝑇𝐶𝐶 −

1
2
𝐸𝐸𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 + 𝜎𝜎𝜎𝜎 𝑃𝑃𝑃𝑃 +

1
2

(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇) −𝑃𝑃𝑃𝑃 +
1
2

(𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑇𝑇)

𝐹𝐹𝑇𝑇𝑃𝑃 +
1
2

(𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈) −𝐼𝐼 0

−𝐿𝐿𝑇𝑇𝑃𝑃 +
1
2

(𝐶𝐶 + 𝐶𝐶) 0 −𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎤

≤ 0 (30) 

Box VI. 

�
𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

+ 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃 +
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2

−𝐿𝐿𝑇𝑇𝑃𝑃 +
𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁

2
−𝐼𝐼

� ≤ 0 (31) 

Box VII. 

 



Preprint submitted to Automatica  7 13 December 2019 

a) Observer design method of Arcak and Kokotovic using 
the Circle Criterion (Arcak & P. Kokotovic, 2001) 

b) Observer design method of Phanomcheong, et al for 
bounded Jacobian nonlinear systems (Phanomchoeng, 
Rajamani, & Piyabongkarn, May 2011) 

c) High gain observer design method, when the output 
function is non-monotonic, as demonstrated in (Boizot, 
Busvelle, & Gauthier, 2010). 
As for the extended Kalman filter (EKF), it is not 

related to the non-existence results as introduced in this 
paper because the EKF uses a time-varying observer gain, 
instead of a constant one. 

Another popular method of nonlinear observer design 
is through transformation to a normal form under which the 
observer design can be done simply with eigenvalue 
assignment with a constant observer gain. However, it is 
also important to note that in the original coordinates, the 
gain may not be constant because it depends on the (left) 
inverse of the state transformation Jacobian, which is not 
constant if the coordinate transformation is not constant. 

Further, finding a nonlinear transformation to put the 
nonlinear system under a normal form is not an easy task in 
general, and sometimes requires solvability of a set of 
partial differential equations. We recognize that normal-
form-based methods are useful for observer design, but the 
use of the switched gain approach proposed in this 
manuscript does not require any transformation of the 
system nor any changes to the structure of the LMI 
conditions obtained with a constant observer gain. We need 
only to switch between regions of monotonicity. 

4. No Benefits from Conversion to Monotonicity 
by Linear Subtraction 
A non-monotonic function that has a bounded Jacobian 

can be converted to a monotonic function by subtracting a 
linear function of the states from it.  This conversion aspect 
has been described in previous observer design results from 
literature (Arcak & P. Kokotovic, 2001). This section shows 
that such a conversion does not help in observer design.  
Consider a system with nonlinear output functions and lin-
ear process dynamics as follows: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (36) 

𝑦𝑦 = ℎ(𝐶𝐶𝐶𝐶)      (37) 

with 𝐶𝐶 ∈ 𝑅𝑅𝑚𝑚 x 𝑛𝑛, and ℎ:𝑅𝑅 → 𝑅𝑅.    Let the original nonlinear 
output functions be non-monotonic so that the diagonal ma-
trices satisfy 𝑀𝑀 < 0 and 𝑁𝑁 > 0. The original observer de-
sign LMI (as derived in Corollary 1.1) is (22) in box IV. 

Conversion to a monotonic nonlinear function: 

Let 𝜙𝜙(𝐶𝐶𝐶𝐶) = ℎ(𝐶𝐶𝐶𝐶) −𝑀𝑀𝑀𝑀𝑀𝑀.  Then 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝑧𝑧=𝐶𝐶𝐶𝐶

− 𝑀𝑀 
Then, it is easy to see that 

0 ≤  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=𝐶𝐶𝐶𝐶

≤ 𝑁𝑁 −𝑀𝑀 (38) 

Therefore 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≥ 0 and hence all the functions in 𝜙𝜙(𝐶𝐶𝐶𝐶) are 

monotonic.  Can we use the new nonlinear function 𝜙𝜙(𝐶𝐶𝐶𝐶) 
to re-define the output?  Rewrite the original output as 

𝑦𝑦 = 𝑀𝑀𝑀𝑀𝑀𝑀 + ℎ(𝐶𝐶𝐶𝐶) −𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜙𝜙(𝐶𝐶𝐶𝐶) (39) 

Rewrite the plant dynamics as 

𝑥̇𝑥 = (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑥𝑥 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐵𝐵 (40) 

and the observer as 

𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑥𝑥� + 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥� + 𝐵𝐵𝐵𝐵  
        +𝐿𝐿(ℎ(𝐶𝐶𝐶𝐶) − ℎ(𝐶𝐶𝑥𝑥�))  (41) 

Then, the estimation error dynamics are  

𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑥𝑥� + 𝐿𝐿(𝜙𝜙(𝐶𝐶𝐶𝐶) − 𝜙𝜙(𝐶𝐶𝑥𝑥�)) (42) 

with 𝜙𝜙(𝐶𝐶𝐶𝐶) being a monotonic function. 

The new observer design LMI uses (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿) instead of 
𝐴𝐴.  Also, the lower Jacobian bound of 𝜙𝜙(𝐶𝐶𝐶𝐶) is 0 and the 
upper Jacobian bound is 𝑁𝑁 −𝑀𝑀 because of the monotonic-
ity of the new output.  Then the new observer design LMI, 
by applying equation (22) is (45) in Box VIII. 

This requires (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝑀𝑀𝐶𝐶) + 𝜎𝜎𝜎𝜎 < 0 
as a necessary condition.  Hence (𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿) needs to be an 
asymptotically stable matrix, with 𝑀𝑀 < 0. 

Theorem 5.  The observer design for the new system (39)-
(40) in which the nonlinear function has been converted to 
a monotonic function continues to be infeasible, if it was 
infeasible for the original system before conversion. 

Proof.  By using the Schur complements Lemma, the ob-
server LMI (45) for the system (39)-(40) is equivalent to 

(𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 
+ �−𝑃𝑃𝑃𝑃 + 𝐶𝐶𝑇𝑇(𝑁𝑁−𝑀𝑀)𝑇𝑇

2
� �−𝐿𝐿𝑇𝑇𝑃𝑃 + (𝑁𝑁−𝑀𝑀)

2
𝐶𝐶� ≤ 0 , i.e. 

 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐿𝐿𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇 �𝑁𝑁+𝑀𝑀
2
�
𝑇𝑇
𝐿𝐿𝑇𝑇𝑃𝑃 −

𝑃𝑃𝑃𝑃 �𝑁𝑁+𝑀𝑀
2
�𝐶𝐶 + 1

4
𝐶𝐶𝑇𝑇(𝑁𝑁 −𝑀𝑀)𝑇𝑇(𝑁𝑁 −𝑀𝑀)𝐶𝐶 + 𝜎𝜎𝜎𝜎 ≤ 0  

(43) 

On the other hand, the original observer design LMI for the 
untransformed system (36)-(37), using equation (22), is 
equivalent to (46) in Box IX. 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀

2
+ 𝜎𝜎𝜎𝜎 

         + �−𝑃𝑃𝑃𝑃 + 𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇+𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2
� �−𝐿𝐿𝑇𝑇𝑃𝑃 + 𝑀𝑀𝑀𝑀+𝑁𝑁𝑁𝑁

2
� ≤ 0 , i.e. 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝐿𝐿𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇 �𝑁𝑁+𝑀𝑀
2
�
𝑇𝑇
𝐿𝐿𝑇𝑇𝑃𝑃 −

𝑃𝑃𝑃𝑃 �𝑁𝑁+𝑀𝑀
2
�𝐶𝐶 + 1

4
𝐶𝐶𝑇𝑇(𝑁𝑁 −𝑀𝑀)𝑇𝑇(𝑁𝑁 −𝑀𝑀)𝐶𝐶 + 𝜎𝜎𝜎𝜎 ≤ 0  

(44) 

Thus, inequality (43) turns out to be completely equivalent 
to inequality (44). ∎ 

Hence the conversion of the non-monotonic output 
function to a monotonic one by subtracting a linear term did 
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not help.  A constant gain observer continues to be infeasi-
ble, if the original function is non-monotonic. 

5. Hybrid Observer Design Using Switched Gains and 
Switched Lyapunov Functions 

For the plant with nonlinear process dynamics and 
nonlinear output equations, as given in (1)-(3), consider a 
hybrid observer with two constant-gain regions, as shown in 
Figure 1, with no loss of generality.  Let the observer be 
designed with an observer gain 𝐿𝐿1 in region 1 and 𝐿𝐿2 in 
region 2.  Let the two observers be designed to be 
exponentially stable in each of the two regions using the 
following two LMIs: (52) in Box X for all 𝑦𝑦 ≤ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝜖𝜖, 
and (53) in Box XI for all 𝑦𝑦 ≥ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ − 𝜖𝜖. Here 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ is 
the nominal switching point between the two regions and 
the variable 𝜖𝜖 is the hysteresis added to the switching to 
ensure a minimum dwell time after each switch. 

Note that a nonlinear function on a compact set has 
finite local extrema and can always therefore be represented 
using piecewise monotonic functions. Hence, the observer 
can be designed using a finite set of piecewise regions with 
the monotonicity being ensured in each region.  

Theorem 6.  Let  𝑃𝑃1, 𝐿𝐿1 and 𝑃𝑃2, 𝐿𝐿2 be the Lyapunov function 
matrices and observer gain matrices in regions 1 and 2 
respectively, chosen so as to satisfy equations (52) and (53).  
Let 𝜎𝜎1 and 𝜎𝜎2 be the minimum exponential convergence 
rates in the two regions.  Choose a value of 𝜏𝜏 such that the 
following equations are satisfied: 

𝑃𝑃1 ≥ 𝑃𝑃2𝑒𝑒−𝜏𝜏𝜎𝜎2  (47) 

and 

𝑃𝑃2 ≥ 𝑃𝑃1𝑒𝑒−𝜏𝜏𝜎𝜎1  (48) 

Then, if the switching between regions does not occur faster 
than 𝜏𝜏, the hybrid observer system will be globally 
asymptotically stable. 

Note: It is always possible to find a 𝜏𝜏 > 0 sufficiently large 
such that both equations (47) and (48) are satisfied. 

𝑦𝑦 ≥ 𝑦𝑦𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠ℎ + 𝜖𝜖

𝑦𝑦 ≤ 𝑦𝑦𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠ℎ − 𝜖𝜖

𝑉𝑉1 = 𝑥𝑥�𝑇𝑇𝑃𝑃1𝑥𝑥�

Observer gain 𝐿𝐿1

𝑉𝑉2 = 𝑥𝑥�𝑇𝑇𝑃𝑃2𝑥𝑥�

Observer gain 𝐿𝐿2

 

Fig. 1: Hybrid Observer 

 

Proof.  Without loss of generality, consider a switching 
from region 1 to region 2.  Let the switching occur at time 
𝑡𝑡𝑠𝑠.  Then, according to the assumption in the theorem, the 
switch back cannot occur before 𝑡𝑡𝑠𝑠 + 𝜏𝜏. At the time of 
switching, the value of the Lyapunov function in region 1 is 

𝑉𝑉1(𝑡𝑡𝑠𝑠) = 𝑥𝑥�(𝑡𝑡𝑠𝑠)𝑇𝑇𝑃𝑃1𝑥𝑥�(𝑡𝑡𝑠𝑠) 

and in region 2 is 

𝑉𝑉2(𝑡𝑡𝑠𝑠) = 𝑥𝑥�(𝑡𝑡𝑠𝑠)𝑇𝑇𝑃𝑃2𝑥𝑥�(𝑡𝑡𝑠𝑠) . 

Since the convergence rate in region 2 is at least  𝜎𝜎2, 

𝑉̇𝑉2(𝑡𝑡) ≤ −𝜎𝜎2𝑉𝑉2(𝑡𝑡) (49) 

Integrating both sides to obtain a relationship between 
𝑉𝑉2(𝑡𝑡𝑠𝑠 + 𝜏𝜏) and 𝑉𝑉2(𝑡𝑡𝑠𝑠), it can be shown that 

𝑉𝑉2(𝑡𝑡𝑠𝑠 + 𝜏𝜏) ≤ 𝑉𝑉2(𝑡𝑡𝑠𝑠)𝑒𝑒−𝜏𝜏𝜎𝜎2  (50) 

Equation (50) implies 

𝑥𝑥�(𝑡𝑡𝑠𝑠 + 𝜏𝜏)𝑇𝑇𝑃𝑃2𝑥𝑥�(𝑡𝑡𝑠𝑠 + 𝜏𝜏) ≤ 𝑥𝑥�(𝑡𝑡𝑠𝑠)𝑇𝑇𝑃𝑃2𝑥𝑥�(𝑡𝑡𝑠𝑠)𝑒𝑒−𝜏𝜏𝜎𝜎2  

But, according to equation (47), 𝑃𝑃1 ≥ 𝑃𝑃2𝑒𝑒−𝜏𝜏𝜎𝜎2 . Hence 

𝑉𝑉2(𝑡𝑡𝑠𝑠 + 𝜏𝜏) ≤ 𝑉𝑉1(𝑡𝑡𝑠𝑠) (51) 

�
(𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐿𝐿) + 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃 +

(𝑁𝑁 −𝑀𝑀)𝐶𝐶𝑇𝑇

2

−𝐿𝐿𝑇𝑇𝑃𝑃 +
(𝑁𝑁 −𝑀𝑀)𝐶𝐶

2
−𝐼𝐼

� ≤ 0 (45) 

Box VIII. 

�
𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 −

𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇𝑀𝑀𝑀𝑀
2

+ 𝜎𝜎𝜎𝜎 −𝑃𝑃𝑃𝑃 +
𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇

2

−𝐿𝐿𝑇𝑇𝑃𝑃 +
𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁

2
−𝐼𝐼

� ≤ 0 (46) 

Box IX. 
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Subsequently, for all 𝑡𝑡 ≥ 𝑡𝑡𝑠𝑠 + 𝜏𝜏,  𝑉𝑉2(𝑡𝑡) further keeps 
decreasing exponentially with an exponential time constant 
of at least 𝜎𝜎2, as long as the system remains in region 2. 

After each switch, the Lyapunov function always 
decreases to a value below the value at the time of transition 
and subsequently continues decreasing exponentially. 
Hence, the values of the Lyapunov function candidate at 
consecutive switching points 𝑡𝑡𝑠𝑠1  and 𝑡𝑡𝑠𝑠2  can be related by 

𝑉𝑉2(𝑡𝑡𝑠𝑠2) ≤ 𝛼𝛼𝛼𝛼1(𝑡𝑡s1) (54) 

where 0 ≤ 𝛼𝛼 < 1. Hence, after 𝑘𝑘 switches with a minimum 
dwell time 𝜏𝜏 after each switch, we have 

𝑉𝑉𝑗𝑗(𝑡𝑡𝑠𝑠𝑘𝑘) ≤ 𝛼𝛼𝑘𝑘−1𝑉𝑉1(𝑡𝑡s1) (55) 

where 𝑉𝑉𝑗𝑗 can be 𝑉𝑉1 or 𝑉𝑉2, depending on 𝑘𝑘 being even or odd.  
Equation (55) for the repeated decay of the Lyapunov 
function at consecutive switching points, together with the 
exponential decay that occurs in each region when there is 
no switching, ensures that the Lyapunov function converges 
to zero (Goebel, R.G.Sanfelice, & A.R.Teel, 2012).  Hence 
the estimation error also converges asymptotically to zero. 

While Theorem 6 considered only two regions, the 
proof holds for switching from any region to any other 
region, as long as the minimum dwell constraint is met.  In 
order to meet the dwell time constraint, hysteresis can be 
introduced into the switching region, as shown in Figure 1 
with the parameter ϵ which provides different points for 
switching into and out of an observer gain region.  While the 
proposed switching algorithm works well for the 
applications studied in this paper, there are no switching 
results necessarily available for all cases of switching when 
the switching instant is not known apriori.  Literature on the 
design of switching observers and on the stability analysis 
of switched hybrid systems with adequate dwell time is 
available in (Liberzon, 2003), (Alessandri & Coletta, 2001), 
(Alessandri, Baglietto, & Battistelli, 2005), and (Goebel, 
R.G.Sanfelice, & A.R.Teel, 2012).  

6. Application to Vehicle Tracking on Highways 
and Local Roads 

This section develops a nonlinear observer for an 
autonomous vehicle to estimate motion variables of other 
vehicles on a road, based on measurements from an on-
board radar sensor (Rajamani R. , 2012). The estimation 
algorithm uses a vehicle tracking algorithm based on a 
single model to represent all possible vehicle motions 
involving both longitudinal and lateral maneuvers. By using 
a single vehicle model, stability of the state observer can be 
guaranteed and the real-time computational effort in 
estimating trajectories of multiple vehicles on the road is 
reduced in comparison with switched model approaches, 
such as the interacting multiple model (IMM) approach.  

Since the proposed vehicle model is nonlinear, an effec-
tive nonlinear observer design technique is required to en-
sure a stable observer.  The observer design LMIs developed 
in this paper, together with the hybrid observer technique 
are used for the nonlinear observer design. 

6.1 Observer design 

A bicycle model is used for each tracked vehicle with 
𝑋𝑋 being its relative longitudinal position, 𝑌𝑌 its relative lat-
eral position, and 𝜓𝜓 the yaw angle of vehicle, as shown in 
Fig. 2.  The variables 𝑋𝑋 and 𝑌𝑌 are measured by a radar track-
ing sensor.  The vehicle motion model uses the states: 

𝑥𝑥 = [𝑋𝑋 𝑌𝑌 𝜓𝜓 𝛿𝛿𝑓𝑓 ]𝑇𝑇 (56) 

Under the assumption that the derivative of the steering 
angle is zero, then the process dynamics are 

⎣
⎢
⎢
⎢
⎡ 𝑋̇𝑋𝑌̇𝑌
𝜓̇𝜓
𝛿𝛿𝑓̇𝑓⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓)
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓)
𝑉𝑉

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
tan�𝛿𝛿𝑓𝑓�

0 ⎦
⎥
⎥
⎥
⎤

 (57) 

⎣
⎢
⎢
⎢
⎢
⎡−

1
2𝐶𝐶

𝑇𝑇(𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀)𝐶𝐶 −
1
2𝐸𝐸

𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 + 𝜎𝜎1𝑃𝑃1 𝑃𝑃1𝐹𝐹 +
1
2

(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇) −𝑃𝑃1𝐿𝐿1 +
1
2

(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇)

𝐹𝐹𝑇𝑇𝑃𝑃1 +
1
2

(𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈) −𝐼𝐼 0

−𝐿𝐿1𝑇𝑇𝑃𝑃1 +
1
2

(𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀) 0 −𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎤

≤ 0 (52) 

Box X. 

⎣
⎢
⎢
⎢
⎢
⎡−

1
2𝐶𝐶

𝑇𝑇(𝑀𝑀𝑇𝑇𝑁𝑁 + 𝑁𝑁𝑇𝑇𝑀𝑀)𝐶𝐶 −
1
2𝐸𝐸

𝑇𝑇(𝑉𝑉𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑉𝑉)𝐸𝐸 + 𝜎𝜎2𝑃𝑃2 𝑃𝑃2𝐹𝐹 +
1
2

(𝐸𝐸𝑇𝑇𝑈𝑈𝑇𝑇 + 𝐸𝐸𝑇𝑇𝑉𝑉𝑇𝑇) −𝑃𝑃2𝐿𝐿2 +
1
2

(𝐶𝐶𝑇𝑇𝑀𝑀𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑁𝑁𝑇𝑇)

𝐹𝐹𝑇𝑇𝑃𝑃2 +
1
2

(𝑉𝑉𝑉𝑉 + 𝑈𝑈𝑈𝑈) −𝐼𝐼 0

−𝐿𝐿2𝑇𝑇𝑃𝑃2 +
1
2

(𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀) 0 −𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎤

≤ 0 (53) 

Box XI. 
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where fl  and rl  are distances to front and rear tires from 

c.g. of vehicle, fδ  is steering angle of front wheels, 𝑉𝑉 is 
total velocity at c.g. of vehicle. We assume 𝑉𝑉 is a constant 
or slowly varying. 

 
Fig. 2.  Vehicle motion model 

The output matrix is 

𝐶𝐶 = �1 0 0 0
0 1 0 0 � (58) 

Thus, the process dynamics are nonlinear while the output 
equations are linear.  It is also clear that 𝑓𝑓1( ) and 𝑓𝑓2( ) are 
functions of the state variable 𝜓𝜓 while 𝑓𝑓3( ) is a function of 
the state variable 𝛿𝛿𝑓𝑓.  The Jacobian is found to be 

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕(𝐸𝐸𝑖𝑖𝑥𝑥) =

⎣
⎢
⎢
⎢
⎡

−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓)
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜓𝜓)
𝑉𝑉

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
sec2�𝛿𝛿𝑓𝑓�

0 ⎦
⎥
⎥
⎥
⎤

 (59) 

where 𝐸𝐸1 = 𝐸𝐸2 = [0 0 1 0], and 𝐸𝐸3 = [0 0 0 1]. 
Using the observer 

𝑥𝑥�̇ = 𝐹𝐹𝐹𝐹(𝑥𝑥�) + 𝐿𝐿(𝐶𝐶𝐶𝐶 − 𝐶𝐶𝑥𝑥�) (60) 

it is found that for the limited operating range 0 < 𝜓𝜓 < 90𝑜𝑜, 
the functions 𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖𝑥𝑥) are monotonic.  Hence, it is possible 
to find a constant observer gain matrix 𝐿𝐿 for the operating 
range 0 < 𝜓𝜓 < 90𝑜𝑜.  However, it is impossible to find a 
constant gain matrix 𝐿𝐿 that makes the observer stable for the 
entire operating range 0 < 𝜓𝜓 < 360𝑜𝑜.  Hence a switched 
gain hybrid observer is developed for two different 
operating regimes as follows 
Gain 𝐿𝐿1 for the operating range 0° ≤ 𝜓𝜓 ≤ 80°, 
−10° ≤ 𝛿𝛿𝑓𝑓 ≤ 10°: 

𝐿𝐿1 = �

42.1703 −23.6081
−51.8942 41.5463
−121.0412 86.8002
−1.7662 1.2666

 �      (61) 

Gain 𝐿𝐿2 for the operating range 60° ≤ 𝜓𝜓 ≤ 140°, −10° ≤
𝛿𝛿𝑓𝑓 ≤ 10°: 

𝐿𝐿2 = �

46.4268 3.2988
8.4042 5.0011

−75.2145 −6.8793
−1.1358 −0.1039

 �      (62) 

𝑉𝑉 is assumed as 10m/s. It can be seen that the two gains 
overlap over 20 degrees of yaw angle regime. 

6.2 Simulation results 
The following simulation scenario is utilized.  The ve-

hicle is driving with 10m/s constant velocity and performs 
the following maneuvers: 

i) Straight driving for 5 seconds 
ii) Left turning until vehicle yaw angle becomes 

120 degrees 
iii) Straight driving with its yaw angle 

The observer gain is switched at 60 degrees of the estimated 
yaw angle.  Initially, the vehicle estimates are located at 
(0,0) and oriented with 0 degree yaw angle. We assume that 
vehicle itself is located at (-5,-5) and oriented with 30 de-
gree. The region of the initial condition is determined to be 
either 0 ≤ 𝜓𝜓 ≤ 80𝑜𝑜 or 60 ≤ 𝜓𝜓 ≤ 140𝑜𝑜 by ad-hoc compu-
tation of the initial direction of the vehicle from the first few 
samples of measurements.  Whether the target vehicle is 
traveling parallel or perpendicular to the ego vehicle deter-
mines its initial condition region. 

 
Fig. 3. Simulation results with a switched gain approach 

The hybrid observer with the switched gain method 
provides very good estimation performance, as seen in Fig. 
3. The estimated and actual values for both the vehicle tra-
jectory and for vehicle orientation track each other very 
closely.  The estimation error converges to zero from the 
initial condition error and is subsequently very small during 
straight driving, increasing slightly only during the turning 
motion as shown in Fig. 3.  

Next, consider the case where a single gain observer is 
utilized instead of the hybrid observer.  The single gain for 
the first regime from the above observer is utilized for the 
entire range of vehicle operation in Fig. 4.  It can be seen 
that the yaw angle error increases as vehicle yaw angle 
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increases to be away from the operating range for which the 
observer was originally designed, as shown in Fig. 4.  The 
error grows significantly after the first 15 seconds when the 
orientation exceeds the observer’s stable operating regime. 

These simulation results clearly show both the stability 
of the switched gain observer and also its superiority com-
pared to a constant gain observer. 

 
Fig. 4. Simulation results without a switched gain approach 

7. Application to Magnetic Position Estimation in 
Industrial Actuators 

This section focuses on a different motion estimation 
problem, one about estimating the position of a moving 
piston inside an industrial piston-cylinder actuator.  
Magnetic position estimation offers an excellent 
inexpensive and non-contacting method of obtaining piston 
position on such actuators, including on pneumatic 
cylinders, hydraulic actuators and IC engines.  In magnetic 
position estimation, a magnet is placed on the moving 
object, such as the moving piston shown in Fig. 5 
(Movahedi, Zemouche, & Rajamani, 2019).  A sensor board 
containing one or more magnetic sensors is placed on the 
outside cylinder, again as shown in Fig. 5.  Such magnetic 
sensors are inexpensive (as low as $1 each when purchased 
in large quantities).  At the same time, they enable non-
contact estimation of position of the piston.  Traditional 
sensors such as potentiometers and LVDTs require the 
sensor to be connected co-axially to the moving piston.  This 
requires significant installation effort, results in contacting 
motion and in shear loads on the sensor during operation, 
often resulting in sensor failure.  Furthermore, 
potentiometers and LVDTs can be significantly more 
expensive than the low-cost magnetic sensors considered in 
this paper. 

The variation of the magnetic field with piston position 
is shown in Fig. 6 for an example electrohydraulic actuator 

with a magnet installed on its piston. The model for the 
position estimation dynamic system for the EHA when 
using two magnetic sensor outputs can be represented as: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 

�
𝑦𝑦1
𝑦𝑦2� = �ℎ1(𝐶𝐶1𝑥𝑥)

ℎ2(𝐶𝐶2𝑥𝑥)� 
(63) 

where 𝑥𝑥 = �
𝑧𝑧
𝑣𝑣
𝑎𝑎
� , 𝐴𝐴 = �

0 1 0
0 0 1
0 0 0

� and 𝐶𝐶1 = 𝐶𝐶2 = [1 0 0].  

with 𝑧𝑧, 𝑣𝑣 and 𝑎𝑎 being the position, velocity and acceleration 
of the piston. Note that the output equations in (63) are 
highly nonlinear functions of the position 𝑧𝑧. The functions 
ℎ1(𝐶𝐶1𝑥𝑥) and ℎ2(𝐶𝐶1𝑥𝑥) were defined using polynomial curves 
to fit the experimentally measured data of Fig. 6. These 
functions are seen to be not only nonlinear but also non-
monotonic with both positive and negative slopes. 

Magnetic Sensor Board

Magnet
Piston

Cylinder

 
Fig. 5. Sensor Configuration for position estimation of EHA 

 
Fig. 6. Non-monotonic measurement functions of magnetic sensors, after 
removal of hysteresis 

From the theoretical results in section II (Corollary 1.1), 
we have seen that if both output functions are non-mono-
tonic, we cannot find a feasible solution to the observer de-
sign LMI (22).  With the monotonicity requirement in mind, 
the position range of 0 – 203 mm can be divided piecewise 
into different regions in a manner that in each region at least 
one of the output functions is a monotonic function of posi-
tion.  Such a piecewise division of the position range into 
regions 𝑅𝑅1 to 𝑅𝑅11is shown in Fig. 7.  Note that the boundaries 
of the regions lie near the slope change points (of one or the 
other output function).  For example, 𝑅𝑅4 is a narrow region 
in which the slope of the output 𝑦𝑦1 is close to zero.  In this 
region, only the output 𝑦𝑦2 will be used by the observer, since 
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𝑦𝑦2 is monotonic in this region.  Regions 𝑅𝑅3 and 𝑅𝑅5 lie on 
either side of 𝑅𝑅4 and both of these regions can utilize both 
outputs 𝑦𝑦1 and 𝑦𝑦2, since they are monotonic in these regions. 

 
Fig. 7. Creating regions around slope-change points of output functions 

It should be noted that we have the liberty of relying on 
only one of the output measurements in the narrow regions 
with zero slope, because even with one output the system is 
still observable, although the result of estimation might not 
be as accurate as the case when we use both outputs. Hence, 
the width of these regions was kept narrow so as to minimize 
regions with use of only 1 output by the observer. It is ideal 
to have these regions to be as narrow as possible, but in prac-
tice their width is determined by the accuracy of the meas-
urement models. For example, if we anticipate a considera-
ble horizontal uncertainty or shift in the output functions, we 
are forced to sacrifice the estimation accuracy for the sake of 
stability by widening the low observability regions.  

A switched gain observer can be developed using the re-
gions defined in Fig. 7 (Movahedi, Zemouche, & Rajamani, 
2019).  The switched gain observer uses different gains in 
each of the discrete piecewise regions.  Since each region 𝑅𝑅1 
through 𝑅𝑅11 has monotonic output function properties, a con-
stant stabilizing observer gain exists in each of these regions.  
As the operating region changes, the observer gains switch 
in value accordingly using a finite state machine of the type 
shown in Fig. 1. 

One obstacle that could affect the performance of this 
piecewise nonlinear observer is the initial condition. If we 
pick the initial condition to be in the wrong region (with the 
wrong observer gain), it might result in a divergence of the 
observer estimates.  However, thanks to the specific shape of 
output functions for this application, there is an easy solution 
that can remedy this shortcoming. From Fig. 6, since there is 
a one-to-one relationship between the position and the or-
dered pair that is constructed by the two output functions 𝑦𝑦1 
and 𝑦𝑦2, we can identify the correct region for the initial con-
dition accurately.   

8. Conclusions 

This paper considered the design of observers for non-
linear systems and the aspect of how observers can be 

designed in nonlinear systems which are non-monotonic.  
The plant considered is one in which the process dynamics 
and output equations are both composed of nonlinear vector 
functions of scalar combinations of the states.  The nonlin-
ear functions are assumed to be differentiable with bounded 
derivatives.  An observer design algorithm that requires 
solving just a single linear matrix inequality for exponen-
tially convergent state estimation was developed.  The de-
veloped algorithm worked effectively when the involved 
nonlinear functions were monotonic.  Since each component 
of the nonlinear functions was a function of a scalar varia-
ble, it could be analyzed as being either monotonic or non-
monotonic. 

The developed observer design method was seen to fail 
in yielding an observer solution when all or sometimes even 
some of the system functions were non-monotonic.  Analyt-
ical results were presented to show that no solutions exist to 
the observer design LMIs when either all output functions 
or all process dynamics functions are non-monotonic.  Fur-
ther, other observer design methods from literature also fail 
when the involved nonlinear functions are non-monotonic.  
This relationship between the nonlinear functions being 
non-monotonic and the feasibility of solutions to the ob-
server design LMIs has not previously been recognized in 
observer design literature.  Previous observer design results 
in literature have focused on the size of the Lipschitz con-
stant or on the size of the Jacobian bounds in influencing the 
existence of a stabilizing observer gain.  The result in this 
paper shows that these LMI-based observer design methods 
will not succeed for a full non-monotonic system, no matter 
how small the Lipschitz constant or the Jacobian bounds of 
the nonlinearity. 

Finally, a hybrid observer technique that switches be-
tween multiple constant observer gains was developed that 
can provide global asymptotic stability for systems with 
non-monotonic nonlinear functions.  The need for hybrid 
observers with switched gains becomes important for such 
non-monotonic systems.  The global stability of the hybrid 
observer was established when there is sufficient dwell time 
in each locally stable constant gain observer region. 

The application of the developed hybrid observer to two 
different motion estimation problems was presented.  One 
motion estimation problem involved tracking of vehicles on 
a road using radar sensors and handled a plant with nonlin-
ear process dynamics.  Another estimation problem in-
volved a position estimation problem for an industrial actu-
ator using a magnetic sensor and handled a plant with non-
linear output equations.  Both applications demonstrated 
that while a constant gain observer could not be globally 
stable in either case, a hybrid observer can perform well and 
be globally stable. 
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