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Abstract— This paper uses an inexpensive laser sensor mounted 

on a rotationally controlled platform to simultaneously search for 
and track vehicles that are behind a bicycle. Vehicles in the 
bicycle’s lane and in the adjacent left lane are both considered. The 
tasks involved are searching both lanes to detect presence of 
vehicles, tracking a vehicle’s trajectory once it has been detected, 
and switching between searching and tracking as needed. A 
rigorous search algorithm that minimizes the number of sensor 
rotational angles needed to search the entire region of interest is 
developed. An error covariance matrix approach is utilized to 
switch between tracking vehicles and searching the region of 
interest. Detailed simulation results are presented to show how the 
developed system handles the absence and presence of vehicles in 
the two lanes and handles different types of lane change 
maneuvers while tracking multiple vehicles. Since the developed 
system uses an inexpensive lightweight sensor that is suitable for 
on-bicycle implementation, it can be used to detect the danger of a 
collision and provide a corresponding horn-like audio alert to the 
motorist.  

 
 

Index Terms—Smart bicycle, collision warning, collision 
prevention, vehicle tracking, estimation. 
 

I. INTRODUCTION 
ICYCLING is a healthy physical activity for all ages. It can 
provide both physical and mental health benefits, including 

reducing the incidence of cancer [1], cutting the risk of heart 
disease by half [2], postponing Alzheimer’s disease [3], [4], and 
promoting mental alertness and memory [5]. As a form of 
transportation for commuting to work, bicycling requires no 
fuel, is three times as efficient as walking, reduces traffic 
congestion, highly reduces the space needed for parking, and 
can provide personal cost savings of up to $8,758 a year 
compared to owning a typical second car [6]. From 2000 to 
2016, the share of people commuting by bicycle has seen 51% 
growth nationwide, and there were a total of 863,979 bicycle 
commuters nationwide in 2016 [7]. 

While bicycle commuting has increased dramatically, very 
little research resources are currently spent on improving 
technology for bicycle safety. To the best of this research team’s 
knowledge, only a few research teams and one company have 
developed sensor systems for bicyclist safety. A magnetometer 
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based system has been developed to identify dangerous 
locations to bicycles due to heavy automotive traffic [8]. A 
Rutgers University team has explored a rear-approaching 
vehicle detection system using computer vision techniques [9]. 
An undergraduate Northeastern University team explored a 
sonar sensor system to monitor vehicles at the rear and front of 
a bicycle [10]. Garmin has developed a rear-collision 
prevention system using radar [11]. The sensor systems 
currently explored for bicycles are simplistic, do not estimate 
car maneuvers or 2-dimensional trajectories and do not require 
a high-performance processor.  

According to the Insurance Institute for Highway Safety, 
there were 3,300 bicyclist fatalities in bicyclist-motorist crashes 
in a five-year period and seventy-four percent of the fatalities 
occurred when the bicyclist was struck by the front of a 
passenger vehicle [12]. Furthermore, the most common 
bicyclist-motorist collision scenario involved a vehicle 
traveling in the same direction as a bicycle and hitting it from 
behind [13]. This rear bicyclist-motorist collision accounts for 
40% of the fatalities [13]. Therefore, a vehicle detection and 
tracking system for rear vehicles is highly valuable and the 
system can be used to predict impending collisions and to 
provide warnings to both the bicyclist and the motorist behind 
the bicycle. In particular, the collision warning system in this 
paper will focus on warning the motorist by sounding a loud 
horn to alert him/her to the presence of the bicycle. 

Tracking of multiple rear vehicles (driving right behind the 
bicycle and in an adjacent lane next to the bicycle), as shown in 
Fig. 1 is beneficial in order to more reliably prevent accidents 
by rear vehicles. For example, a vehicle driving in an adjacent 
lane can change lanes to get behind the bicycle. Then, there may 
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Fig. 1. Multiple vehicle tracking using a laser sensor system on a bicycle. 
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not be enough time to estimate the vehicle motion or warn the 
motorist unless the vehicle has been previously tracked. 
Another possible situation is one which involves a tracked 
vehicle that changes lane to the adjacent lane from the same 
lane as the bicycle and then a second vehicle is found to be 
suddenly approaching right behind the bicycle. In these 
situations, simultaneous search and tracking of multiple rear 
vehicles is necessary. 

Many automotive researchers use LIDAR, radar or vision 
systems, or a combination of these sensors and develop tracking 
algorithms based on each utilized sensor for multiple vehicle 
tracking [14], [15]. A summary of various technologies from 
available bicycle and vehicle safety systems is detailed in Table 
I. Specifically, researchers using expensive high-density 
LIDARs track multiple vehicles based on measurements from a 
full scan set of an area of interest [14]. However, these sensors 
are too big, too expensive, and too difficult to power using 
batteries on a bicycle. Due to the limitations of a bicycle, we 
consider utilizing a low-cost single beam laser sensor ($130) 
mounted on a rotationally controlled platform [16] for tracking 
of multiple rear vehicles. Previously, some researches have 
used the single beam laser sensor for bicycle safety [17 – 19]. 
However, the developed systems are limited to either the 
tracking of only a single vehicle behind the bicycle or need 
additional sensors such as a camera vision system. The laser 
sensor used in this paper is small and light with low power 
consumption (less than 130 mA during an acquisition). 
However, the sensor has only a single laser beam and low 
sampling frequency (270 Hz typical) [16]. Due to the time 
needed for rotational platform operation, algorithm processing 
and data storage, the total sampling frequency will be much 
lower than the sensor sampling frequency. As a result, the 
proposed laser sensor system needs too much time to obtain a 
full scan set of an area of interest.  

Therefore, this paper focuses on the development of an 
intelligent active sensing algorithm for simultaneous search and 
tracking of multiple rear vehicles based on use of the proposed 
laser sensor system. We aim to simultaneously monitor and 
track rear vehicles both in the same lane as the bicycle and in 
the adjacent lane next to the bicycle, as shown in Fig. 1. The 

laser sensor orientation needs to be controlled actively since full 
scanning is not suitable and too slow for the proposed laser 
sensor system. Furthermore, the active sensing algorithm 
requires to deal with not only low sampling frequency of the 
proposed system, but also a very narrow spread of the laser 
beam (~8 milli-radians). Since the size of the target (vehicle) is 
much larger than the spread of the laser beam, a measured point 
does not provide adequate longitudinal and lateral position of 
the target vehicle. For instance, either lateral or longitudinal 
distance between the sensor and vehicle is uncertain unless the 
measured point is on the exact right corner of the vehicle. In 
order to overcome the low sampling frequency of the system, 
an efficient search method is proposed by defining discretized 
regions of the search area. A Truncated Interacting Multiple 
Model (Truncated IMM) estimator is proposed to estimate 
vehicle motion via measurements from the narrow single beam 
laser sensor. Active sensor control method based on a 
minimization of search area uncertainties and vehicle position 
uncertainties is proposed for simultaneous search and tracking 
of rear vehicles. 

This paper is organized as follows. In Section II, a brief 
review of the work on the tracking of a single rear vehicle 
together with experimental results is provided and the 
challenges with multiple rear vehicle tracking are discussed. In 
Section III, an efficient search method by discretized regions of 
search area and uncertainty minimization is proposed. Vehicle 
motion tracking using a Truncated IMM is proposed in Section 
IV. Then in Section V, active sensor orientation control strategy 
for simultaneous search and tracking by minimization of 
uncertainties is proposed. Results of simulation studies and 
discussions are presented in Section VI. Conclusions are 
presented in Section VII. 

II. CHALLENGES WITH TRACKING OF MULTIPLE REAR 
VEHICLES 

A. Tracking of a Single Rear Vehicle 
The sensor system on a bicycle is required to be inexpensive, 

small and lightweight. In order to meet these constraints, we use 
a low-cost single beam laser sensor mounted on a rotationally 
controlled platform for tracking of a rear vehicle. Since the laser 

TABLE I 
CURRENT SENSOR SYSTEMS EXPLORED FOR BICYCLE SAFETY 

Application Type of detection technology Cost Number of identifiable targets/ 
Field of view (FOV) 

Type of 
notification 

Disadvantages 

Bicycle Safety 
System 

Radar 
(Garmin Varia radar [11]) 

$300 
(with Head unit) 8 targets Visual • Tracks only vehicle longitudinal motion. 

• Does not provide audio alert to the motorist. 

Optical 
(Video camera [9]) $230 - $600 FOV: 38̊  

(varies by lens) Audio 
• Limits in weather and lighting conditions. 
• Requires high-performance processors. 
• Alerts only the bicyclist. 

Vehicle 
Safety System 

Radar 
(Delphi adaptive cruise 

control [14]) 
$2,000 64 targets Visual and 

Audio 

• Too expensive for bicycle application. 
• Difficult to power using batteries on a 

bicycle. 
Optical 

(Mobileye [15]) $850 FOV: 38̊ Visual and 
Audio 

• Too expensive for bicycle application. 
• Limits in weather and lighting conditions. 

LIDAR 
(Google self-driving car [14]) $75,000 FOV: 360̊ Visual and 

Audio 

• Too expensive for bicycle application. 
• Too big, heavy, and difficult to power using 

batteries on a bicycle. 
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sensor can only measure one reflection at a time, the rotational 
orientation of the laser sensor is required to be controlled in 
real-time to continuously focus on the tracked vehicle, as the 
vehicle’s lateral and longitudinal distances keep changing.  

If it is assumed that there is only one vehicle behind the 
bicycle, then a control system for tracking a single vehicle using 
the laser sensor was demonstrated in [17]. The active sensing 
algorithm in [17] used a receding horizon framework for active 
orientation control of the laser sensor and an interacting 
multiple model (IMM) framework for vehicle state estimation. 

The previous estimation and control systems are presented 
here in brief before we discuss the challenge of tracking 
multiple rear vehicles behind the bicycle using a single laser 
sensor. 

In the IMM framework, the constant velocity model and the 
nearly coordinated turn model [20] are used for straight motion 
and turning motion respectively. The state vector is 

  𝑋𝑋 = [𝑥𝑥 𝑦𝑦 𝑣𝑣 𝜃𝜃 𝜔𝜔]𝑇𝑇 (1) 
where (𝑥𝑥,𝑦𝑦), 𝑣𝑣,𝜃𝜃, and 𝜔𝜔 are the vehicle position in Cartesian 
coordinates, speed, orientation, and turn rate in sensor body 
frame. The discrete-time state space equation for the constant 
velocity model is given by 

  𝑋𝑋𝑘𝑘+1 =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥 + 𝑣𝑣∆𝑇𝑇 cos𝜃𝜃
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The discrete-time state space equation for the nearly 
coordinated turn model is given by 

 𝑋𝑋𝑘𝑘+1 =

⎣
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where ∆𝑇𝑇 is the sampling time, and 𝑤𝑤 is the process noise. Each 
process noise is assumed to be zero mean with covariance as 

 𝑄𝑄𝑣𝑣,𝑘𝑘 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��
𝜎𝜎𝑣𝑣𝑣𝑣2 0
0 𝜎𝜎𝑣𝑣𝑣𝑣2

� ,∆𝑇𝑇2𝑎𝑎𝑎𝑎12 , �0 0
0 0�� (4) 

and 

 
𝑄𝑄𝑐𝑐,𝑘𝑘 = 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��
𝜎𝜎𝑣𝑣𝑣𝑣2 0
0 𝜎𝜎𝑣𝑣𝑣𝑣2

� ,∆𝑇𝑇2𝑎𝑎𝑎𝑎22 , �∆𝑇𝑇
3𝑎𝑎𝜔𝜔2 /3 ∆𝑇𝑇2𝑎𝑎𝛼𝛼2/2

∆𝑇𝑇2𝑎𝑎𝛼𝛼2/2 ∆𝑇𝑇2𝑎𝑎𝛼𝛼2
�� (5) 

For the vehicle motion estimation, the IMM operates two 
extended Kalman filters (EKF) using the models in (2) and (3) 
in parallel, and computes state and estimates using suitable 
mixing of the estimates and covariance from the two models. 

The receding horizon controller determines the optimal 
control input to the sensor based on predicted future vehicle 
motion under control input constraints: 

 

𝑢𝑢𝑘𝑘∗ =
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subject to 𝑥𝑥�𝑘𝑘+1 = 𝑓𝑓1,𝑘𝑘(𝑋𝑋𝑘𝑘),  𝑦𝑦�𝑘𝑘+1 = 𝑓𝑓2,𝑘𝑘(𝑋𝑋𝑘𝑘),
𝑥𝑥�𝑘𝑘+1 > 0,
𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈,  𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜙𝜙𝑘𝑘 + 𝑢𝑢𝑘𝑘 ≤ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚

 

(6) 

where 𝑓𝑓1(∙)  and 𝑓𝑓2(∙)  are the vehicle motion model which 
corresponds to 𝑥𝑥  and 𝑦𝑦  respectively, 𝛿𝛿𝑥𝑥  and 𝛿𝛿𝑦𝑦  are distance 
margins which are used to construct reference points on the 
target vehicle, 𝑈𝑈 is a finite set of feasible control inputs and 𝜙𝜙𝑘𝑘 
is the sensor orientation at time 𝑘𝑘. By using (6), we track the 
right front corner (𝑥𝑥,𝑦𝑦)  of the target vehicle by measuring 
alternately distances to the front and side of the vehicle at points 
close to the right front corner. Therefore, the reference point for 
orientation control is changed alternately depending on the 
corresponding selection of which information (longitudinal or 
lateral) is needed. The predicted vehicle motion (𝑥𝑥�𝑘𝑘+1,𝑦𝑦�𝑘𝑘+1) is 
calculated in the IMM framework, as described in [17].  

 
Fig. 2. Experimental results of rear vehicle tracking (red triangle: bicycle). (a) 
A vehicle approaching right behind, (b) A vehicle changing lane to the right, 
(c) A vehicle passing by bicycle, and (d) A vehicle changing lane to the left. 

 
Fig. 3. Sensor implementation and experimental results. (a) Laser sensor system 
on a bicycle, (b) A screenshot of experimental video, and (c) Experimental 
results of on-road test with the laser sensor (red triangle: bicycle). 
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B. Experimental Results 
The active sensing algorithm was successfully demonstrated 

for tracking any single rear approaching vehicle [17]. As shown 
in Fig. 2, it is shown that the low-cost single beam laser sensor 
can be used to detect and track a rear vehicle in situations that 
are commonly encountered with respect to rear vehicles and 
bicycles: i) a vehicle approaching right behind a bicycle, ii) a 
rear vehicle with a lateral offset initially going straight and then 
changing lanes to the right, iii) a rear vehicle with a lateral offset 
passing by a bicycle, and iv) a vehicle right behind a bicycle 
and then changes lanes to the left from behind the bicycle. Also, 
recent on-road tests with the laser sensor system show good 
performance during both scanning and during tracking of a 
vehicle, as shown in Fig. 3. For the tests, small size and low-
power consumption microcontroller (Teensy 3.6) operates all 
the active sensing and tracking algorithm, and data storage. The 
laser sensor is sucessfully controlled to track the vehicle and 
obtains measurements continuously. As a result, the laser 
sensor system estimates vehicle motion well. In this paper, we 
further develop an active sensing algorithm for tracking of 
multiple rear vehicles using the laser sensor system.  

C. Challenges with Multiple Rear Vehicle Tracking 
The single beam laser sensor can measure the distance from 

only a single reflection and needs to be correctly oriented 
towards the vehicle whose distance needs to be measured in 
real-time. Tracking of multiple rear vehicles therefore has 
multiple challenges compared to tracking of a single rear 
vehicle. For single vehicle tracking, after target detection, the 
laser sensor system is only required to continuously focus on 
the target vehicle. However, in order to track multiple vehicles, 
a laser sensor system needs to carry out search and multiple 
vehicle tracking tasks simultaneously. While the sensor system 
tracks a target vehicle in one lane, searching for a new target 
vehicle in another lane also needs to be conducted. Therefore, 
an efficient search method is desired to search for additional 
rear vehicles. Furthermore, for sensor control, it is necessary to 
deal with the questions of where to search for a new target 
vehicle, when to search for a new target vehicle, and which 
target vehicle to measure at what time among multiple target 
vehicles. In order to address these problems, we propose an 
active sensing algorithm for multiple rear vehicle tracking 
based on a minimization of search area uncertainty and a 
minimization of vehicle position uncertainty.  

III. SEARCHING FOR NEW VEHICLES OF INTEREST 
In order to prevent a bicyclist-motorist crash from rear 

vehicles, vehicles from both right behind the bicycle and from 
an adjacent lane next to the bicycle will be monitored in this 
paper.  

Hence, three different sensing missions can arise as follows: 
1) Search all regions of interest in both lanes to identify new 
target vehicles, 2) Track one vehicle and search all regions of 
interest that are not occupied by the tracked vehicle, and 3) 
Track two vehicles.  

In this section, we first show how to conduct the first mission, 
i.e. how to discretize the search area of both lanes for an 

efficient search. Then, we discuss a propagation of uncertainties 
assigned to the discretized regions, and propose a search 
strategy using these uncertainties.  

A. Search Area Discretization for Rear Vehicle Detection 
The area to be monitored can be reduced to narrower zones 

𝑂𝑂1 and 𝑂𝑂2 than its lanes since vehicles on roads occupy most 
lateral space in their lanes, as shown in Fig. 4 (a). Then, the 
search areas 𝑂𝑂1 and 𝑂𝑂2 must be further divided into sub-regions 
for an efficient search. Instead of discretizing each area 
arbitrarily, a variable 𝐶𝐶 is introduced to define sub-regions. 𝐶𝐶 
is the longitudinal distance covered by any specific laser sensor 
orientation 𝜙𝜙, as illustrated in Fig. 4 (b). The max lane length 𝐿𝐿 
is defined based on the maximum range of the laser sensor. 
Finally, sub-regions can be defined using the Algorithm 1 table. 

Fig. 5 describes how Algorithm 1 works for the situation of 
two lanes in which the search area is set from 0 to 25m for the 
lane in which the bicycle is riding, and from 6.25m to 25m for 
the adjacent lane.  First, it is easy to see that 𝐶𝐶 is maximized in 
the lane right behind the bicycle with the sensor orientation 𝜙𝜙1 
shown in Fig. 5. The space covered by 𝜙𝜙1 is defined as a first 

 
Fig. 4. Search area. (a) Reduced search area, and (b) Longitudinal distance 𝐶𝐶 
covered by sensor orientation in bicycle body fixed coordinates. 
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sub-region Ω1. Then, without considering Ω1, 𝐶𝐶 is maximized 
next with a sensor orientation 𝜙𝜙2 as shown in Fig. 5. Similar to 
the first sub-region case, we define a second sub-region Ω2. By 
doing this iteratively, the search area is discretized into sub-
regions Ω1,Ω2,⋯Ω6. 

Lemma 1: If an area of interest is defined as a rectangle, 𝐶𝐶 is 
maximized when 𝜙𝜙 is chosen so that the laser sensor aims at the 
top left point of the area of interest. 

Proof: Let the minimum and maximum lateral distances, and 
minimum and maximum longitudinal distances of the 
rectangular area from a sensor be denoted as (𝑦𝑦𝑙𝑙𝑙𝑙,𝑦𝑦𝑢𝑢𝑢𝑢), and 
(𝐿𝐿0, 𝐿𝐿). Then, 𝐶𝐶 can be described by two cases that the line of 
sight of the sensor crosses i) the left edge of the rectangular 
area, and ii) the top edge of the rectangular area: 

 

𝐶𝐶 =

�
𝐿𝐿 − 𝑦𝑦𝑙𝑙𝑙𝑙

tan𝜙𝜙
, tan−1 �𝑦𝑦𝑙𝑙𝑙𝑙

𝐿𝐿
� ≤ 𝜙𝜙 ≤ tan−1 �𝑦𝑦𝑢𝑢𝑢𝑢

𝐿𝐿
�

𝑦𝑦𝑢𝑢𝑢𝑢
tan𝜙𝜙

− 𝑦𝑦𝑙𝑙𝑙𝑙
tan𝜙𝜙

, tan−1 �𝑦𝑦𝑢𝑢𝑢𝑢
𝐿𝐿
� ≤ 𝜙𝜙 ≤ tan−1 �𝑦𝑦𝑢𝑢𝑢𝑢

𝐿𝐿0
�
  (7) 

From (7), 𝐶𝐶 is maximized when 𝜙𝜙 is equal to tan−1(𝑦𝑦𝑢𝑢𝑢𝑢 𝐿𝐿⁄ ). 
This implies that 𝜙𝜙  which aims at the top left point of the 
rectangular area maximizes 𝐶𝐶 at each iteration.                             ∎ 

Lemma 2: By applying algorithm 1 successively on the areas 
of interest 𝑂𝑂1 and 𝑂𝑂2 in Fig. 4 (a), the residual area Ο is always 
a single rectangle after each iteration. 

Proof: At the first iteration, it is easy to see that maximized 

𝐶𝐶 is same as the longitudinal distance of 𝑂𝑂1. Then, residual area 
Ο becomes the same as 𝑂𝑂2 which is a single rectangle.  

From Lemma 1, Ω𝑖𝑖 is always defined from the most left part 
of Ο, and the residual area is always a single rectangle after each 
iteration.                                                                                       ∎ 

Theorem 1: Algorithm 1 provides the minimum number of 
sensor orientations which fully cover the areas of interest 𝑂𝑂1 
and 𝑂𝑂2 in Fig. 4 (a).  

Proof: It is straight forward to see that a smaller search area 
can be covered by less or equal number of sensor orientations 
compared to a larger search area unless the search area is a set 
of disconnected areas (Even though the search area is small, 
more number of sensor orientation may be required if the search 
area consists of disconnected areas which are far from each 
other).  

Let Ο𝑖𝑖 be defined as the residual area to be covered after 𝑖𝑖th 
iteration of Algorithm 1. Also, let Ο𝑖𝑖′ be defined as the residual 
area to be covered and Ω𝑖𝑖′ be defined as the sub-region defined 
after 𝑖𝑖th iteration by any arbitrary method. Ο𝑖𝑖  and Ο𝑖𝑖′  decrease 
monotonically with iterations.  

At the first iteration, it is obvious that Algorithm 1 provides 
the minimum number of sensor orientations (one) which fully 
cover the area 𝑂𝑂1 , as shown in Fig. 5. Let Ω1  and Ω1′  be 
identical as 𝑂𝑂1 and let us focus on the area 𝑂𝑂2. 

Since Algorithm 1 sets the largest possible space to be 
covered as a sub-region at the second iteration (Lemma 1), Ο2 
is always less than or equal to Ο2′ , i.e., Ω2 ≥ Ω2′ . Ο2 is equal to 
Ο2′  only if Ω2 and Ω2′  are identical. If Ω2 and Ω2′  are identical, 
we again have the result that Ο3 is always less than or equal to 
Ο3′ . If Ω2′  is not identical to Ω2 , three cases need to be 
considered as shown in Fig. 6:  

Case 1: Let us consider the case Ω2′  is entirely overlapped 

Fig. 5. Illustration of defining sub-regions for search. 

Fig. 6. Cases with Ω2 ≠ Ω2′ . (a) Ω2′  is entirely overlapped with Ω2, (b) Ω2′  is 
partially overlapped with Ω2, and (c) Ω2′  is not overlapped with Ω2. 
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with Ω2 as shown in Fig. 6 (a). Ο3 is always less than Ο3′  since 
Ω2′ ∪ Ω3′  is less than Ω2 ∪ Ω3  even if  Ω3′  is defined its 
maximum from Lemma 1.  

Case 2: Let us consider the case Ω2′  is partially overlapped 
with Ω2 as shown in Fig. 6 (b). Ο3 is always less than Ο3′  since 
i) Ω2′ ∪ Ω3′  is less than Ω2 ∪ Ω3 even though  Ω3′  covers all area 
left to the Ω2′ , and ii) Ω2′ < Ω2 and Ω3′ < Ω3 if Ω3′  is defined its 
maximum on the right-side area of the Ω2′  from Lemma 1.  

Case 3: Let us consider the case Ω2′  is not overlapped with 
Ω2 as shown in Fig. 6 (c). Ο3 is always less than or equal to Ο3′  
since Ω2′ ≤ Ω3 and Ω3′ ≤ Ω2.  

Sequentially, it is always true that 
 Ο𝑖𝑖 ≤ Ο𝑖𝑖′ , ∀𝑖𝑖 = 1,2,⋯ (8) 

Hence, Lemma 2 and (8) imply that Algorithm 1 provides the 
minimum number of sensor orientations which fully cover the 
area of interest 𝑂𝑂1 and 𝑂𝑂2 in Fig. 4 (a).                                                ∎ 

Scanning using the sensor orientations 𝜙𝜙1,⋯ ,𝜙𝜙6 obtained in 
Fig. 5 enables target vehicle detection via use of a small discrete 
number of sensing directions that covers all the area of interest. 
However, we next propose a more general framework, so as to 
search and track vehicles simultaneously. 

It should be noted that full scanning is highly inefficient. A 
complete scan over the area of interest requires controlling the 
orientation of the laser sensor from 0 to 33 degrees. Hence, full 
scanning with 1 degree resolution will take more than five times 
as many samples as the proposed discretized region search 
method to conduct a search task over the area of interest. 

B. Search Strategy using Search Area Uncertainty 
Unlike single vehicle tracking, the sensor system is required 

to search for a second target vehicle while also tracking a first 
vehicle. We formulate this search problem as an uncertainty 
minimization problem. Uncertainties 𝑆𝑆1,⋯ , 𝑆𝑆𝑛𝑛 are assigned to 
sub-regions Ω1,Ω2,⋯Ω𝑛𝑛  defined by Algorithm 1 (𝑛𝑛  is the 
number of sub-regions). These uncertainties depend 
respectively on how long ago each region was searched. 

Without a search action, the uncertainties of each region keep 
increasing over time (time update). Once the sensor examines a 
region, the uncertainty of the region decreases based on fraction 
of the region searched (measurement update).  

The time update for the uncertainty in a specific region [21] 
is utilized as follows for uncertainty propagation: 

 𝑆𝑆𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴𝑆𝑆𝑘𝑘|𝑘𝑘 (9) 
where 𝑆𝑆𝑘𝑘|𝑘𝑘 = �𝑆𝑆1,𝑘𝑘|𝑘𝑘, 𝑆𝑆2,𝑘𝑘|𝑘𝑘,⋯𝑆𝑆𝑛𝑛,𝑘𝑘|𝑘𝑘�

𝑇𝑇
, 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛  represents 

the state transition matrix. A diagonal matrix with elements 
greater than 1 is simply utilized for the state transition matrix. 
Therefore, the uncertainties increase as the uncertainties 
propagate through time. A specific sub-region such as the one 
right behind a bicycle is required to be monitored more often 
for the safety of the bicyclist. This can be dealt with by using a 
larger value of the element corresponding to the specific sub-
region in the state transition matrix 𝐴𝐴.  

We propose the following measurement update step: 

 𝑆𝑆𝑖𝑖,𝑘𝑘+1|𝑘𝑘+1 = �𝑆𝑆𝑖𝑖,𝑘𝑘+1|𝑘𝑘
−1 + 𝛿𝛿𝑖𝑖,𝑘𝑘𝑅𝑅𝑖𝑖,𝑘𝑘−1�

−1
, 

                                                   𝑖𝑖 = 1,⋯ ,𝑛𝑛 
(10) 

by modifying the covariance update equation in the Kalman 

filter by using the matrix inversion lemma [22]. 

 𝛿𝛿𝑖𝑖,𝑘𝑘 = �1, if the region is examined
0, otherwise  (11) 

 𝑅𝑅𝑖𝑖,𝑘𝑘 = 𝑒𝑒𝜆𝜆�1−𝐶𝐶𝑖𝑖,𝑘𝑘/𝐿𝐿𝑖𝑖�
𝐿𝐿𝑖𝑖
𝐶𝐶𝑖𝑖,𝑘𝑘

 (12) 

where 𝜆𝜆 is a positive constant for a penalty when its sub-region 
is not fully searched. 𝐿𝐿𝑖𝑖 is the full longitudinal distance of the 
𝑖𝑖𝑡𝑡ℎ sub-region. 𝐶𝐶𝑖𝑖,𝑘𝑘 is the longitudinal distance covered by the 
sensor in the 𝑖𝑖𝑡𝑡ℎ sub-region at time 𝑘𝑘. 𝛿𝛿𝑖𝑖,𝑘𝑘 is an indicator if the 
sensor examines the 𝑖𝑖𝑡𝑡ℎ  sub-region at time 𝑘𝑘 . Therefore, the 
uncertainty of a sub-region remains the same as the time update 
if the sensor does not examine the sub-region ( 𝛿𝛿𝑖𝑖,𝑘𝑘 = 0 ). 
Otherwise, the uncertainty decreases based on the fraction of 
the sub-region searched 𝑅𝑅𝑖𝑖,𝑘𝑘 . Therefore, the measurement 
update equation can be used as a cost function to find a best 
sensor orientation to minimize uncertainties. Also, using the 
measurement update step, the uncertainty of search area can be 
updated systematically at any sensor orientation, even while the 
sensor system tracks a vehicle. The sensor orientation is 
required to be determined to conduct search task and the 
uncertainties are used to find which region needs to be searched. 

Finally, the search task for control of sensor orientation is 
done so as to minimize the uncertainty of the entire search area. 
The following optimization problem is constructed for sensor 
orientation control: 
𝑢𝑢𝑠𝑠,𝑘𝑘
∗ = arg min

𝑢𝑢𝑘𝑘
∑ �𝑆̂𝑆𝑖𝑖,𝑘𝑘+1|𝑘𝑘

−1 + 𝛿𝛿𝑖𝑖,𝑘𝑘𝑅𝑅𝑖𝑖,𝑘𝑘−1�
−1𝑛𝑛

𝑖𝑖=1 + 𝛽𝛽𝑢𝑢𝑘𝑘2  

subject to 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈,  𝜙𝜙𝑘𝑘 + 𝑢𝑢𝑘𝑘 ∈ Φ𝑘𝑘  
(13) 

where  𝑆̂𝑆𝑖𝑖,𝑘𝑘+1|𝑘𝑘 is computed by using the prediction step in (9), 
𝛽𝛽 is a weighting factor on input, and Φ𝑘𝑘 is a finite set of feasible 
sensor orientation at time 𝑘𝑘.  

IV. TRACKING OF VEHICLE MOTION 
A single beam laser sensor provides limited target vehicle 

information:  
 It is difficult to measure accurately both longitudinal and 

lateral distances at the same time, unless the laser beam 
reflects from the exact right front corner position of the 
vehicle.  

 It is also difficult to determine whether the reflected laser 
beam is from the front or side of the vehicle. 

The sensor system is controlled to measure alternately the 
distances to the front and side near the right front corner of the 
vehicle to acquire the longitudinal and lateral distances.  

In this section, we introduce a finite state machine for the 
determination of laser beam reflection location. Then, we 
propose a Truncated IMM estimator to estimate vehicle motion 
using a single laser measurement. Also, an error covariance 
matrix from the Truncated IMM is used to define tracked 
vehicle position uncertainty.  

A. Determination of Reflection Location 
In order to determine the reflection location of the laser 

beam, a finite state machine is utilized with two states: A Front 
state and a Side state, as shown in Fig. 7. The vehicle shape is 
assumed to be rectangular. Previous and current distance 
measurements are used for the decision of the state transition.  
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It is noted that every reflection from side or front of the vehicle 
is not always detectable since it is possible that the incidence 
angle is too large to reflect enough intensity of the beam to the 
sensor. Also, it is noted that only one measurement is obtained 
at a time since the narrow single beam laser sensor is utilized. 
ℎ𝑘𝑘 in Fig. 7 is an indicator on whether the measurement is from 
the target vehicle or not at time 𝑘𝑘.  

 ℎ𝑘𝑘 = �1, if measurement is from vehicle
0, otherwise   (14) 

A measurement is assumed to be from the vehicle if the distance 
between the measurement and estimated vehicle position is 
within a threshold. 

As shown in Fig. 7, the state transition occurs when the 
measurement is obtained at only one of either current or 
previous samples. If two measurements are obtained in a row, 
the decision differs based on the value of the current state. A 
transition from Front to Side occurs when the subtraction 
between the projections of the distance measurement to 
longitudinal axis 𝑥𝑥𝑘𝑘𝑚𝑚 at previous and current time is negative: 

 𝑥𝑥𝑘𝑘−1𝑚𝑚 − 𝑥𝑥𝑘𝑘𝑚𝑚 < 0 (15) 
A transition from Side to Front is based on the comparison 
between the slope from two measurements and the estimated 
orientation of the vehicle: 

 tan−1 �
𝑦𝑦𝑘𝑘−1𝑚𝑚 − 𝑦𝑦𝑘𝑘𝑚𝑚

𝑥𝑥𝑘𝑘−1𝑚𝑚 − 𝑥𝑥𝑘𝑘𝑚𝑚
� > 𝜃𝜃𝑢𝑢𝑢𝑢,𝑘𝑘 (16) 

where 𝑦𝑦𝑘𝑘𝑚𝑚  is the projection of the distance measurement to 
lateral axis and 𝜃𝜃𝑢𝑢𝑢𝑢,𝑘𝑘  is sum of estimated vehicle orientation 
and its error margin at time 𝑘𝑘. When two measurements are not 
available in a row, a transition from Front to Side can occur 
under following condition:  

 𝜙𝜙𝑘𝑘 < 𝜙𝜙𝑢𝑢𝑢𝑢 (17) 
A left turn maneuver and passing maneuver often lead to a 
situation where the sensor cannot measure target vehicle 
position two times in a row. However, a passing maneuver does 
not require the state transition because the sensor cannot obtain 
a reflection from the front of the vehicle due to large incidence 
angle. Condition (17) can distinguish between left turn and 
passing maneuvers. We set 𝜙𝜙𝑢𝑢𝑢𝑢 as a maximum incidence angle 
to reflect enough intensity of laser beam to sensor. 

For the situation of a vehicle approaching right behind a 
bicycle, one additional rule is used for the state transition: The 
state transition from Front to Side occurs when measurement is 
obtained with the sensor orientation less than or equal to 0°, and 
then 𝑦𝑦𝑘𝑘𝑚𝑚 is assumed to be zero. From this, the sensor system 
tracks the center of a target vehicle when the target vehicle 
approaches right behind the bicycle. Also, this improves the 
robustness of the tracking since it is easier to measure the center 
rather than the right front corner of the vehicle in the situation.  

B. Truncated IMM for Vehicle Motion Estimation 
Since the spread of the laser beam is very narrow compared 

to the size of the target vehicle, the laser sensor measurement 
does not provide adequate spatial information of the target. For 
example, even if the sensor measures distance from a target 
vehicle, the measured point can significantly differ from the 
right corner position of the vehicle. Therefore, it is difficult to 
estimate both longitudinal and lateral vehicle motion with only 
a single laser measurement. 

For this multiple vehicle tracking problem, we propose a 
Truncated IMM that combines PDF truncation approach with a 
IMM estimator. Since the vehicle motion has two distinct 
maneuvers: straight motion and turning motion, it is difficult to 
describe the vehicle motion accurately by using only one linear 
model. Hence, we use two models to describe the vehicle 
motion and utilize a IMM to estimate the vehicle motion using 
two models (straight motion and turning motion models). 
Furthermore, physical constraints on the vehicle motion can be 
found by using predicted vehicle motion and sensor orientation, 
in addition to the distance measurement. In order to incorporate 
the constraints, PDF truncation is utilized with the IMM. The 
use of PDF truncation also provides better (truncated) error 
covariance of the vehicle motion including a better model of the 
vehicle position uncertainty. The vehicle position uncertainty is 
used to control sensor orientation for tracking and to determine 
whether a tracking task or a search task requires to be 
conducted. We first introduce the PDF truncation procedure 
briefly and then discuss the physical constraints in detail. 

In the PDF truncation, we truncate pdf which is assumed to 
be Gaussian at the constraint edges. Then, the state estimation 
is computed as the mean of the truncated pdf. 

Suppose that at time 𝑘𝑘, we have the state estimate 𝑋𝑋�𝑘𝑘 with 
the error covariance 𝑃𝑃𝑘𝑘 and the 𝑠𝑠 scalar state constraints: 

  𝑎𝑎𝑗𝑗,𝑘𝑘 ≤ 𝜑𝜑𝑗𝑗,𝑘𝑘
𝑇𝑇 𝑋𝑋𝑘𝑘 ≤ 𝑏𝑏𝑗𝑗,𝑘𝑘,  𝑗𝑗 = 1,⋯ , 𝑠𝑠 (18) 

where 𝑎𝑎𝑗𝑗,𝑘𝑘 < 𝑏𝑏𝑗𝑗,𝑘𝑘 . This is two-sided constraint on the linear 
function of the state 𝜑𝜑𝑗𝑗,𝑘𝑘

𝑇𝑇 𝑋𝑋𝑘𝑘.  
We define 𝑋𝑋�𝑗𝑗,𝑘𝑘 as the state estimate after enforcement of the 

first 𝑗𝑗  constraints of (18), and 𝑃𝑃�𝑗𝑗,𝑘𝑘  as the covariance of 𝑋𝑋�𝑗𝑗,𝑘𝑘 . 
First, we initialize 

 
𝑗𝑗 = 0 

 𝑋𝑋�𝑗𝑗,𝑘𝑘 = 𝑋𝑋�𝑘𝑘 
𝑃𝑃�𝑗𝑗,𝑘𝑘 = 𝑃𝑃𝑘𝑘 

(19) 

From Schur decomposition of 𝑃𝑃�𝑗𝑗,𝑘𝑘 , orthogonal matrix 𝑇𝑇  and 
diagonal matrix 𝑊𝑊 are obtained: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑃𝑃�𝑗𝑗,𝑘𝑘 (20) 

 
Fig. 7. State diagram for determination of reflection location on a vehicle. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

Gram-Schmidt orthogonalization is utilized to find the 
orthogonal matrix 𝜌𝜌 ∈ ℝ𝑛𝑛×𝑛𝑛 that satisfies 

 
𝜌𝜌𝑊𝑊1/2𝑇𝑇𝑇𝑇𝜑𝜑𝑗𝑗,𝑘𝑘

= ��𝜑𝜑𝑗𝑗,𝑘𝑘
𝑇𝑇 𝑃𝑃�𝑗𝑗,𝑘𝑘𝜑𝜑𝑗𝑗,𝑘𝑘�

1/2 0 ⋯ 0� 
(21) 

Now, the following transformation is conducted: 
 𝜉𝜉𝑗𝑗,𝑘𝑘 = 𝜌𝜌𝑊𝑊−1/2𝑇𝑇𝑇𝑇�𝑋𝑋𝑘𝑘 − 𝑋𝑋�𝑗𝑗,𝑘𝑘� (22) 

From (20) - (22), it can be shown that 𝜉𝜉𝑗𝑗,𝑘𝑘 has zero mean and 
identity covariance matrix. Also, the lower and upper bounds in 
(18) are transformed as follows:  

𝑐𝑐𝑗𝑗,𝑘𝑘 =
𝑎𝑎𝑗𝑗,𝑘𝑘 − 𝜑𝜑𝑗𝑗,𝑘𝑘

𝑇𝑇 𝑋𝑋�𝑗𝑗,𝑘𝑘

�𝜑𝜑𝑗𝑗,𝑘𝑘
𝑇𝑇 𝑃𝑃�𝑗𝑗,𝑘𝑘𝜑𝜑𝑗𝑗,𝑘𝑘�

1/2 ≤ [1 0 ⋯ 0]𝜉𝜉𝑗𝑗,𝑘𝑘 (23) 

𝑑𝑑𝑗𝑗,𝑘𝑘 =
𝑏𝑏𝑖𝑖,𝑘𝑘 − 𝜑𝜑𝑗𝑗,𝑘𝑘

𝑇𝑇 𝑋𝑋�𝑗𝑗,𝑘𝑘

�𝜑𝜑𝑗𝑗,𝑘𝑘
𝑇𝑇 𝑃𝑃�𝑗𝑗,𝑘𝑘𝜑𝜑𝑗𝑗,𝑘𝑘�

1/2 ≥ [1 0 ⋯ 0]𝜉𝜉𝑗𝑗,𝑘𝑘 (24) 

Then, after enforcement of the first normalized scalar 
constraints in (23) and (24), the mean and variance of the 
transformed state estimate 𝜉𝜉𝑖𝑖+1,𝑘𝑘  are computed as 

 
𝜉𝜉𝑗𝑗+1,𝑘𝑘 = [𝜈𝜈 0 ⋯ 0]𝑇𝑇 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑗𝑗+1,𝑘𝑘� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎2, 1,⋯ ,1) 
(25) 

with 

 

𝜈𝜈 = 𝛼𝛼�exp�−𝑐𝑐𝑗𝑗,𝑘𝑘
2 /2� − exp�−𝑑𝑑𝑗𝑗,𝑘𝑘

2 /2�� 

𝜎𝜎2 = 𝛼𝛼 �
exp�−𝑐𝑐𝑗𝑗,𝑘𝑘

2 /2� �𝑐𝑐𝑗𝑗,𝑘𝑘 − 2𝜇𝜇�
− exp�−𝑑𝑑𝑗𝑗,𝑘𝑘

2 /2� �𝑑𝑑𝑗𝑗,𝑘𝑘 − 2𝜇𝜇�
�  

+𝜈𝜈2 + 1 

(26) 

where 

 𝛼𝛼 =
√2

√𝜋𝜋�erf�𝑑𝑑𝑗𝑗,𝑘𝑘/√2� − erf�𝑐𝑐𝑗𝑗,𝑘𝑘/√2��
 (27) 

and error function erf(∙) is defined as 

 erf(𝑡𝑡) =
2
√𝜋𝜋

� exp(−𝜁𝜁2)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 (28) 

By taking the inverse of the transformation of (22), we obtain 
the mean and variance of the state estimate which first 
constraint is enforced: 

 
𝑋𝑋�𝑗𝑗+1,𝑘𝑘 = 𝑇𝑇𝑊𝑊1/2𝜌𝜌𝑇𝑇𝜉𝜉𝑗𝑗+1,𝑘𝑘 + 𝑋𝑋�𝑗𝑗,𝑘𝑘 

𝑃𝑃�𝑗𝑗+1,𝑘𝑘 = 𝑇𝑇𝑊𝑊1/2𝜌𝜌𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑗𝑗+1,𝑘𝑘�𝜌𝜌𝑊𝑊1/2𝑇𝑇𝑇𝑇 
(29) 

After repeating the process above 𝑠𝑠  times (𝑗𝑗 = 1,⋯ , 𝑠𝑠 ), we 
obtain the final constrained state estimate and covariance: 

 
𝑋𝑋�𝑘𝑘 = 𝑋𝑋�𝑠𝑠,𝑘𝑘 
𝑃𝑃�𝑘𝑘 = 𝑃𝑃�𝑠𝑠,𝑘𝑘 

(30) 

More details for the PDF truncation procedure can be found in 
[22].  

Fig. 8 illustrates the entire procedure of the use of the 
Truncated IMM-EKF. In the mode-matching filtering step, two 
models: constant velocity model in (2) and nearly coordinated 
turn model in (3) are utilized. Measurement update is conducted 
only for the states when its corresponding measurements are 
available. The measurement noise is assumed to be zero mean 
and to have covariances 𝜎𝜎𝑥𝑥2  and 𝜎𝜎𝑦𝑦2  for the longitudinal and 
lateral distance measurements respectively. More details for the 
theory behind the IMM can be found in [23]. 

As mentioned earlier, the physical constraints on the vehicle 
position can be obtained by using sensor orientation and 
measured or predicted vehicle motion. Predictions of vehicle 

motion for each mode can be computed by using the initial 
conditions from Mixing step in Fig. 8 and its models as 

 𝑋𝑋�𝑘𝑘|𝑘𝑘−1
𝑙𝑙 = 𝑓𝑓𝑙𝑙�𝑋𝑋�𝑘𝑘−1|𝑘𝑘−1

0𝑙𝑙 �, 𝑙𝑙 = 1,⋯𝑟𝑟 (31) 
where 𝑟𝑟 is the number of modes utilized. Finally, the predicted 
vehicle motion can be obtained by using mode probability 𝜇𝜇: 

  𝑋𝑋�𝑘𝑘|𝑘𝑘−1 = ∑ 𝑋𝑋�𝑙𝑙𝑘𝑘|𝑘𝑘−1𝜇𝜇𝑙𝑙,𝑘𝑘−1𝑟𝑟
𝑙𝑙=1   (32) 

Let us consider the case that a laser sensor is controlled to 
obtain longitudinal distance. If the measurement from the front 
of the vehicle is available, 𝑥𝑥 is directly updated by using 𝑥𝑥𝑘𝑘𝑚𝑚. 
The lateral position of the vehicle is bounded by the line of sight 
of laser sensor, as shown in Fig. 9. Then, PDF truncation for 𝑦𝑦 
is conducted by using bounds:  

 �
𝑎𝑎𝑘𝑘 = 𝑦𝑦�𝑘𝑘|𝑘𝑘−1 − 𝛾𝛾𝑦𝑦�𝑦𝑦�𝑘𝑘|𝑘𝑘−1 − 𝑦𝑦𝑘𝑘𝑚𝑚�
𝑏𝑏𝑘𝑘 = 𝑦𝑦�𝑘𝑘|𝑘𝑘−1 + 𝛾𝛾𝑦𝑦�𝑦𝑦�𝑘𝑘|𝑘𝑘−1 − 𝑦𝑦𝑘𝑘𝑚𝑚�

 (33) 

where 𝛾𝛾𝑦𝑦  is a positive weight in (0, 1] for reducing lateral 
vehicle position uncertainty. For the case when lateral distance 
is measured, we conduct PDF truncation for 𝑥𝑥  using 𝑥𝑥�𝑘𝑘  and 
𝑥𝑥𝑘𝑘𝑚𝑚: 

 �
𝑎𝑎𝑘𝑘 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 − 𝛾𝛾𝑥𝑥�𝑥𝑥�𝑘𝑘|𝑘𝑘−1 − 𝑥𝑥𝑘𝑘𝑚𝑚�
𝑏𝑏𝑘𝑘 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝛾𝛾𝑥𝑥�𝑥𝑥�𝑘𝑘|𝑘𝑘−1 − 𝑥𝑥𝑘𝑘𝑚𝑚�

 (34) 

where 𝛾𝛾𝑥𝑥 is a positive weight in (0, 1] for reducing longitudinal 
vehicle position uncertainty.  

If the measurement is not available due to large incident 
angle of laser beam, we can still obtain reasonable bounds using 
predicted vehicle motion. Unlike the case when measurement is 
available, we conduct PDF truncation for 𝑥𝑥 (or 𝑦𝑦) when laser 
sensor aims at front (or side). The large incident angle leads to 
tighter bound for the state. Furthermore, 𝑥𝑥𝑘𝑘𝑚𝑚 and 𝑦𝑦𝑘𝑘𝑚𝑚 in (33) and 
(34) are replaced to 𝑥𝑥𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑦𝑦𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 which are defined as 

 �
𝑥𝑥𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑦𝑦�𝑘𝑘|𝑘𝑘−1/ 𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙𝑘𝑘
𝑦𝑦𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙𝑘𝑘

 (35) 

Equation (35) is from the information that we know the target 
vehicle is not located along the line of sight of laser sensor, and 
is located near the line of sight of laser sensor since the laser 

 
Fig. 8. Overview of vehicle motion estimation using Truncated IMM-EKF. 
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sensor scans near the corner position.  
On the other hand, the laser sensor could fail to aim at desired 

surface of a vehicle due to unexpected vehicle acceleration and 
steering actions. In this case, PDF truncation is very effective 
to correct the estimates of vehicle motion. Let us consider the 
case that a laser sensor is controlled to aim at the front of a 
vehicle, but the line of sight of the laser sensor is in the side of 
the vehicle, as shown in Fig. 10. First, larger process noise 
covariance matrix is used for time update, and then 
measurement update and PDF truncation conducted as follows.  
If lateral distance is measured, 𝑦𝑦  is updated by using the 
measurement and 𝑥𝑥  is corrected by applying PDF truncation 
with following bounds: 

 �
𝑎𝑎𝑘𝑘 = −∞
𝑏𝑏𝑘𝑘 = 𝑥𝑥𝑘𝑘𝑚𝑚  (36) 

Similar to the previous case that measurement is not available, 
PDF truncation is utilized for 𝑦𝑦 instead of 𝑥𝑥 using the following 
bounds: 

 �𝑎𝑎𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣
𝑏𝑏𝑘𝑘 = ∞   

 (37) 

If a laser sensor aims at the front of a vehicle even though the 
sensor is controlled to aim at the side of the vehicle, 𝑦𝑦𝑘𝑘𝑚𝑚 and 
𝑥𝑥𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣 are used for the bounds in (36) and (37) respectively. 

V. STRATEGY FOR SIMULTANEOUS SEARCH AND TRACKING 
The previous method used for single vehicle tracking in (6) 

uses predicted vehicle position and fixed small margins 𝛿𝛿𝑥𝑥 and 
𝛿𝛿𝑦𝑦 to find the sensor orientation control input. It is noted that 
small margins are utilized to ensure that a laser sensor aims 
alternately at either front or side of the vehicle, as it is controlled 
in real-time. However, in the case of multiple vehicle tracking, 
it is difficult to achieve the same effectiveness using fixed small 
margins as in a single vehicle tracking. The margins do not take 

into account vehicle position uncertainty due to simultaneous 
search and tracking. The estimated vehicle position often can 
be different from the actual position in multiple vehicle tracking 
case due to the intermediate search task. Then, the fixed margin 
is too small to provide adequate reference points for sensor 
control to recover tracking performance.  

Hence, the use of predicted vehicle position uncertainty is 
proposed to obtain sensor orientation control inputs, instead of 
using fixed small margins. We use error covariance matrix to 
represent the vehicle position uncertainty. First, the Mixing step 
in Fig. 8 is conducted to compute inputs to each filter from the 
estimates and covariance from each of the filters at the previous 
iteration. Then, time update is conducted in each mode, and 
predicted estimates and predicted error covariance are 
computed as follows:  

 𝑋𝑋�𝑘𝑘+1|𝑘𝑘 = ∑ 𝑋𝑋�𝑙𝑙𝑘𝑘+1|𝑘𝑘𝜇𝜇𝑙𝑙,𝑘𝑘𝑟𝑟
𝑙𝑙=1   (38) 

 
𝑃𝑃𝑘𝑘+1|𝑘𝑘 = ∑ 𝜇𝜇𝑙𝑙,𝑘𝑘−1 �𝑃𝑃𝑘𝑘+1|𝑘𝑘

𝑙𝑙 + �𝑋𝑋�𝑙𝑙𝑘𝑘+1|𝑘𝑘 −𝑟𝑟
𝑙𝑙=1

𝑋𝑋�𝑘𝑘+1|𝑘𝑘��𝑋𝑋�𝑙𝑙𝑘𝑘+1|𝑘𝑘 − 𝑋𝑋�𝑘𝑘+1|𝑘𝑘�
𝑇𝑇�  

(39) 

Vehicle position error covariance 𝑃𝑃�𝑘𝑘+1|𝑘𝑘  consists of elements 
corresponding the position of the vehicle in 𝑃𝑃𝑘𝑘+1|𝑘𝑘 . 𝜅𝜅-sigma 
error ellipse is obtained from 𝑃𝑃�𝑘𝑘+1|𝑘𝑘  easily by using singular 
value decomposition. Finally, as shown in Fig. 11, two 
reference orientations 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘+1

𝑙𝑙𝑙𝑙  and 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘+1
𝑢𝑢𝑢𝑢  for orientation 

control can be computed analytically from tangent lines to the 
error ellipse: 

 
Fig. 9. Illustration of effectiveness of PDF truncation in the case that sensor aims at desired point. 
 

 
Fig. 10. Illustration of effectiveness of PDF truncation in the case that sensor fails to aim at desired point. 
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𝑢𝑢𝑡𝑡,𝑘𝑘
∗ =

⎩
⎪
⎨

⎪
⎧arg min

𝑢𝑢𝑘𝑘
�𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘+1

𝑢𝑢𝑢𝑢 − (𝜙𝜙𝑘𝑘 + 𝑢𝑢𝑘𝑘)�2 ,

if longitudinal distance is desired
arg min

𝑢𝑢𝑘𝑘
�𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘+1

𝑙𝑙𝑙𝑙 − (𝜙𝜙𝑘𝑘 + 𝑢𝑢𝑘𝑘)�2 ,

if lateral distance is desired

 

 subject to 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈,  
                 𝜙𝜙𝑘𝑘 + 𝑢𝑢𝑘𝑘 ∈ Φ𝑘𝑘 

(40) 

Then, vehicles are tracked by controlling sensor orientation to 
alternately obtain longitudinal and lateral distances.  

For simultaneous search and tracking, the laser sensor system 
is controlled to minimize search area and vehicle position 
uncertainties. We quantify the vehicle position uncertainty 
using the concept of entropy [24]:  

 𝐻𝐻 =
1
2

log(2𝜋𝜋𝜋𝜋)2�𝑃𝑃�𝑘𝑘+1|𝑘𝑘� (41) 

If the entropy of the vehicle position uncertainty 𝐻𝐻 is larger 
than a threshold, a laser sensor system tracks the vehicle using 
(40) to minimize the vehicle position uncertainty. Laser sensor 
is controlled to aim at the front and side of the vehicle at least 
once at the tracking. In the case of tracking multiple target 
vehicles, the sensor system first tracks a vehicle which has 
larger 𝐻𝐻. Otherwise, the laser sensor system is controlled by 
using (13) to perform search task.  
 The occlusion situation as shown in Fig. 12 is also 
considered. The sensor orientation occluded by the vehicle is 
computed by using estimated vehicle position and orientation. 
Optimal sensor orientation for search task is computed from the 
finite set of feasible sensor orientation Φ𝑘𝑘 in (13) that the angle 
in the occlusion is excluded. If the sensor orientation for 
tracking from (40) is in the occlusion, the sensor system 
attempts to track another vehicle being tracked or search for a 
new target.  

It is noted that the search area uncertainty is always updated 
by using (10) – (12) whether the sensor system is controlled for 
search or tracking.  

VI. SIMULATION STUDIES AND DISCUSSIONS 
Detailed simulation studies are conducted to verify the 

proposed active sensing algorithm for multiple rear vehicle 
tracking. In this simulation study, we aim to search and track 
vehicles in the lane in which the bicycle is riding and also in an 
adjacent lane next to the bicycle, as shown in Fig. 1.  

Fig. 13 shows animation screenshots in simulation studies of 
three scenarios which require simultaneous search and tracking:  

 First car is driving in adjacent lane. Afterwards, second 
car appears and is driving in the same lane as bicycle. 

 First car is driving in the same lane as bicycle and then 
changes lane to the left. Second car was behind the first 

 
Fig. 11. Reference sensor orientations from vehicle position error covariance. 
 

 
Fig. 12. Occlusion situation. 

 

 
Fig. 13. Animation screenshot in time sequence. (a) Two straight moving vehicles, (b) A left-lane change and a straight moving vehicle, and (c) A right-lane change 
and a straight moving vehicle. 
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car and now goes straight towards the bicycle, and 
 First car is driving in adjacent lane and then changes lane 

to the right. Second car was behind the first car and now 
goes straight in the adjacent lane. 

Both vehicles need to be tracked in all scenarios. The 
function fmincon in MATLAB Optimization Toolbox is used 
to solve the optimization problem for the search task. Search 
region is set from 0 to 25m for the lane which bicycle is riding, 
and from 6.25m to 25m for the adjacent lane. However, the 
sensor system tracks vehicles in the entire region from 0m to 
25m in both lanes. Once tracked vehicle is located in a sub-
region, 𝑅𝑅𝑖𝑖  of its sub-region and of sub-regions behind the 
vehicle are set to 0.1 unless the vehicle changes lane. The sensor 
system stops tracking when the target vehicle passes the 
bicycle. The incidence angle of a laser beam to objects is 
considered in this simulation. A value of 70 degrees which is 
obtained from experiments is utilized as a threshold for 
maximum incident angle to reflect enough intensity of the beam 
to the sensor. Gaussian noise ~𝒩𝒩(0,22 [𝑐𝑐𝑐𝑐]) is added to the 
distance measurements. 2-sigma error ellipse is utilized for 
tracking problem in (40). 𝛾𝛾𝑥𝑥  and 𝛾𝛾𝑦𝑦  are set as 0.5 and 0.7 
respectively. We set the value of 7 as a threshold for entropy of 
the vehicle position uncertainty in (41). For estimation using 
IMM, the following process and measurement noise 

covariances are utilized: σvx= 3, σvy = 5, σa1 = 2000, σa2 = 1000, 
σω = 0.2, σα = 0.3, σx = 15 and σy =15. For IMM, following mode 
transition matrix is used:  

 �0.99 0.01
0.01 0.99�  (42) 

The bicycle is moving with a constant speed of 4m/s. The 
initial conditions for Truncated IMM-EKF are set as  

 [𝑥𝑥0 𝑦𝑦0 𝑣𝑣0 𝜃𝜃0 𝜔𝜔0]𝑇𝑇
= [𝑥𝑥𝑘𝑘𝑚𝑚 0 −15𝑚𝑚/𝑠𝑠 0 0.001]𝑇𝑇   (43) 

if a vehicle is detected at time 𝑘𝑘 in the same lane as bicycle, and  

 [𝑥𝑥0 𝑦𝑦0 𝑣𝑣0 𝜃𝜃0 𝜔𝜔0]𝑇𝑇
= [𝑥𝑥𝑘𝑘𝑚𝑚 3𝑚𝑚 −15𝑚𝑚/𝑠𝑠 0 0.001]𝑇𝑇   (44) 

if a vehicle is detected at time 𝑘𝑘 in adjacent lane.  
First, we conduct simulation studies using an open-loop fixed 

scan range (30 degrees). The sampling frequency of these 
simulations is 100 Hz. Fig. 14 (a), 15 (a), and 16 (a) show that 
vehicle measurements are not available most of the time during 
open-loop scanning, even though high sampling frequency (100 
Hz) and a small scan range (30 degrees) are utilized.  

Simulation studies using the proposed active sensing 
algorithm is conducted, as shown in Fig. 14 (b), 15 (b) and 16 
(b). Lower sampling frequency (40 Hz) is utilized to show the 
far superior effectiveness of the proposed active sensing 

 
(a) 

 
(b) 

Fig. 14. Simulation results with simultaneous tracking of two straight moving 
vehicles (red triangle: bicycle). (a) Open-loop scanning with 30 degrees, and 
(b) Proposed active sensing algorithm using truncated IMM-EKF. 

 
(a) 

 
(b) 

Fig. 15. Simulation results with simultaneous tracking of a left-lane change and 
a straight moving vehicle (red triangle: bicycle). (a) Open-loop scanning with 
30 degrees, and (b) Proposed active sensing algorithm using truncated IMM-
EKF. 
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algorithm compared to the open-loop scanning with higher 
sampling frequency (100 Hz). As shown in Fig. 14 (b), 15 (b) 
and 16 (b), the sensor system successfully tracks vehicles in the 
same lane as bicycle and in adjacent lane during straight 
maneuver and turning maneuvers. The active sensing algorithm 
obtains measurement data continuously and provides good 
estimates of vehicle motions. Also, the results verify that the 
sensor system conducts simultaneous search and tracking, and 
estimates vehicle motions accurately.  

Simulation studies for the senario 3) using a standard Kalman 
filter are also conducted to demonstrate superiority of the 
proposed truncated IMM technique, as shown in Fig. 16 (c). For 

the Kalman filter, the constant velocity model with Cartesian 
velocity is used and is given by 

 �

𝑥𝑥
𝑦𝑦
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦

 �

𝑘𝑘+1

= �

1 0 ∆𝑇𝑇 0
0 1 0 ∆𝑇𝑇
0 0 1 0
0 0 0 1

� �

𝑥𝑥
𝑦𝑦
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦

 �

𝑘𝑘

+ 𝑤𝑤𝑟𝑟,𝑘𝑘 (45) 

where 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑦𝑦 are the longitudinal and lateral velocities, and 
𝑤𝑤𝑟𝑟,𝑘𝑘 is white noise with covariance as 

 𝑄𝑄𝑟𝑟,𝑘𝑘 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎𝑣𝑣𝑣𝑣2 0 ∆𝑇𝑇3𝜎𝜎𝑎𝑎𝑎𝑎2

2
0

0 𝜎𝜎𝑣𝑣𝑣𝑣2 0 ∆𝑇𝑇3𝜎𝜎𝑎𝑎𝑎𝑎2

2
∆𝑇𝑇3𝜎𝜎𝑎𝑎𝑎𝑎2

2
0 ∆𝑇𝑇2𝜎𝜎𝑎𝑎𝑎𝑎2 0

0 ∆𝑇𝑇3𝜎𝜎𝑎𝑎𝑎𝑎2

2
0 ∆𝑇𝑇2𝜎𝜎𝑎𝑎𝑎𝑎2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (46) 

We set σax and σay as same as σa1 and σa1/10. The proposed sensor 
orientation control algorithms with the same parameters are 
used for simulation studies, except the value of the threshold for 
entropy of the vehicle position uncertainty in (41). Since the 
Kalman filter does not incorporate the physical constraints on 
the vehicle motion and utilizes a single model, the vehicle 
position uncertainty is not reduced effectively compared to the 
truncated IMM-EKF. As a result, the value of 7 as the threshold 
for entropy is too small, i.e., the sensor system does not conduct 
search task once the sensor tracks the first vehicle. Thus, we set 
the value of 8 as a threshold for the entropy in simulation 
studies. As shown in Fig. 16 (b) and Fig. 16 (c), the sensor 
orientation control algorithm with the proposed truncated IMM-
EKF provides better measurement data close to the corner 
position and provides better estimation performance compared 
to the algorithm with the Kalman filter. 

If the vehicle performs an extreme left turn maneuver in 
which acceleration and turn rate are very high, then the active 
sensing system can lose track of the left turning vehicle. 
However, in this situation, the active sensing system quickly 
starts to re-search and can detect the vehicle. The active sensing 
system terminates tracked vehicle if measurements are not 
obtained consecutively or vehicle position uncertainty becomes 
too large. The active sensing system always achieves robust 
tracking performance for vehicles changing lane to the same 
lane as the bicycle and for vehicles approaching right behind 
the bicycle which are significant with regard to bicyclist’s 
safety. These vehicle maneuvers can be tracked using smaller 
sensor orientation change and the front of the vehicle during the 
maneuvers is always detectable.  

VII. CONCLUSIONS 
This paper showed how an inexpensive laser sensor mounted 

on a rotationally controlled platform could be used to 
simultaneously search for and track multiple vehicles that are 
behind a bicycle. Vehicles in the bicycle’s lane and in the 
adjacent left lane were both considered. The tasks involved 
included searching both lanes to detect presence of vehicles, 
tracking a vehicle’s trajectory once it has been detected, and 
switching between searching and tracking as needed. A 
rigorous search algorithm that minimized the number of sensor 
rotational angles needed to search the entire region of interest 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Simulation results with simultaneous tracking of a right-lane change 
and a straight moving vehicle (red triangle: bicycle). (a) Open-loop scanning 
with 30 degrees, (b) Proposed active sensing algorithm using truncated IMM-
EKF, and (c) Proposed active sensing algorithm using Kalman filter. 
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was developed. An error covariance matrix approach was 
utilized to switch between tracking vehicles and searching the 
region of interest. Detailed simulation results were presented to 
show how the developed system handles the absence and 
presence of vehicles in the two lanes and handles different types 
of lane change maneuvers while tracking multiple vehicles. 
Since the developed system uses an inexpensive lightweight 
sensor, it is very suitable for on-bicycle implementation and can 
reliably protect the bicycle from rear vehicle collisions by 
predicting impending collisions and providing a warning in the 
form of a loud horn to the motorist behind the bicycle. 
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