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Active Sensing on a Bicycle for Simultaneous
Search and Tracking of Multiple Rear Vehicles

Woongsun Jeon and Rajesh Rajamani

Abstract— This paper uses an inexpensive laser sensor mounted
on a rotationally controlled platform to simultaneously search for
and track vehicles that are behind a bicycle. Vehicles in the
bicycle’s lane and in the adjacent left lane are both considered. The
tasks involved are searching both lanes to detect presence of
vehicles, tracking a vehicle’s trajectory once it has been detected,
and switching between searching and tracking as needed. A
rigorous search algorithm that minimizes the number of sensor
rotational angles needed to search the entire region of interest is
developed. An error covariance matrix approach is utilized to
switch between tracking vehicles and searching the region of
interest. Detailed simulation results are presented to show how the
developed system handles the absence and presence of vehicles in
the two lanes and handles different types of lane change
maneuvers while tracking multiple vehicles. Since the developed
system uses an inexpensive lightweight sensor that is suitable for
on-bicycle implementation, it can be used to detect the danger of a
collision and provide a corresponding horn-like audio alert to the
motorist.

Index Terms—Smart bicycle, collision warning, collision

prevention, vehicle tracking, estimation.

I. INTRODUCTION

BICYCLING is a healthy physical activity for all ages. It can
provide both physical and mental health benefits, including
reducing the incidence of cancer [1], cutting the risk of heart
disease by half [2], postponing Alzheimer’s disease [3], [4], and
promoting mental alertness and memory [5]. As a form of
transportation for commuting to work, bicycling requires no
fuel, is three times as efficient as walking, reduces traffic
congestion, highly reduces the space needed for parking, and
can provide personal cost savings of up to $8,758 a year
compared to owning a typical second car [6]. From 2000 to
2016, the share of people commuting by bicycle has seen 51%
growth nationwide, and there were a total of 863,979 bicycle
commuters nationwide in 2016 [7].

While bicycle commuting has increased dramatically, very
little research resources are currently spent on improving
technology for bicycle safety. To the best of this research team’s
knowledge, only a few research teams and one company have
developed sensor systems for bicyclist safety. A magnetometer
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Fig. 1. Multiple vehicle tracking using a laser sensor system on a bicycle.

based system has been developed to identify dangerous
locations to bicycles due to heavy automotive traffic [8]. A
Rutgers University team has explored a rear-approaching
vehicle detection system using computer vision techniques [9].
An undergraduate Northeastern University team explored a
sonar sensor system to monitor vehicles at the rear and front of
a bicycle [10]. Garmin has developed a rear-collision
prevention system using radar [11]. The sensor systems
currently explored for bicycles are simplistic, do not estimate
car maneuvers or 2-dimensional trajectories and do not require
a high-performance processor.

According to the Insurance Institute for Highway Safety,
there were 3,300 bicyclist fatalities in bicyclist-motorist crashes
in a five-year period and seventy-four percent of the fatalities
occurred when the bicyclist was struck by the front of a
passenger vehicle [12]. Furthermore, the most common
bicyclist-motorist collision scenario involved a vehicle
traveling in the same direction as a bicycle and hitting it from
behind [13]. This rear bicyclist-motorist collision accounts for
40% of the fatalities [13]. Therefore, a vehicle detection and
tracking system for rear vehicles is highly valuable and the
system can be used to predict impending collisions and to
provide warnings to both the bicyclist and the motorist behind
the bicycle. In particular, the collision warning system in this
paper will focus on warning the motorist by sounding a loud
horn to alert him/her to the presence of the bicycle.

Tracking of multiple rear vehicles (driving right behind the
bicycle and in an adjacent lane next to the bicycle), as shown in
Fig. 1 is beneficial in order to more reliably prevent accidents
by rear vehicles. For example, a vehicle driving in an adjacent
lane can change lanes to get behind the bicycle. Then, there may
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TABLEI
CURRENT SENSOR SYSTEMS EXPLORED FOR BICYCLE SAFETY

Application Type of detection technology Cost Number of identifiable targets/  Type of Disadvantages
Field of view (FOV) notification
Radar $300 8 tareets Visual Tracks only vehicle longitudinal motion.
. (Garmin Varia radar [11])  (with Head unit) g * Does not provide audio alert to the motorist.
Bicycle Safety Limits i N dlichs dit
System . . * Limits in weather and lighting conditions.
(Vi de(?g :r::::lra [91) $230 - $600 (vafigs\g 3l§ns) Audio  * Requires high-performance processors.
y * Alerts only the bicyclist.
Radar Visual and Too expensive for bicycle application.
(Delphi adaptive cruise $2,000 64 targets . « Difficult to power using batteries on a
Audio .
control [14]) bicycle.
Vehicle Optical $850 FOV: 38 Visual and + Too expensive for bicycle application.
Safety System (Mobileye [15]) : Audio » Limits in weather and lighting conditions.
. » Too expensive for bicycle application.
LIDAR $75,000 FOV: 360° Visualand -, Too big, heavy, and difficult to power using

(Google self-driving car [14])

Audio batteries on a bicycle.

not be enough time to estimate the vehicle motion or warn the
motorist unless the vehicle has been previously tracked.
Another possible situation is one which involves a tracked
vehicle that changes lane to the adjacent lane from the same
lane as the bicycle and then a second vehicle is found to be
suddenly approaching right behind the bicycle. In these
situations, simultaneous search and tracking of multiple rear
vehicles is necessary.

Many automotive researchers use LIDAR, radar or vision
systems, or a combination of these sensors and develop tracking
algorithms based on each utilized sensor for multiple vehicle
tracking [14], [15]. A summary of various technologies from
available bicycle and vehicle safety systems is detailed in Table
I. Specifically, researchers using expensive high-density
LIDARs track multiple vehicles based on measurements from a
full scan set of an area of interest [14]. However, these sensors
are too big, too expensive, and too difficult to power using
batteries on a bicycle. Due to the limitations of a bicycle, we
consider utilizing a low-cost single beam laser sensor ($130)
mounted on a rotationally controlled platform [16] for tracking
of multiple rear vehicles. Previously, some researches have
used the single beam laser sensor for bicycle safety [17 — 19].
However, the developed systems are limited to either the
tracking of only a single vehicle behind the bicycle or need
additional sensors such as a camera vision system. The laser
sensor used in this paper is small and light with low power
consumption (less than 130 mA during an acquisition).
However, the sensor has only a single laser beam and low
sampling frequency (270 Hz typical) [16]. Due to the time
needed for rotational platform operation, algorithm processing
and data storage, the total sampling frequency will be much
lower than the sensor sampling frequency. As a result, the
proposed laser sensor system needs too much time to obtain a
full scan set of an area of interest.

Therefore, this paper focuses on the development of an
intelligent active sensing algorithm for simultaneous search and
tracking of multiple rear vehicles based on use of the proposed
laser sensor system. We aim to simultaneously monitor and
track rear vehicles both in the same lane as the bicycle and in
the adjacent lane next to the bicycle, as shown in Fig. 1. The

laser sensor orientation needs to be controlled actively since full
scanning is not suitable and too slow for the proposed laser
sensor system. Furthermore, the active sensing algorithm
requires to deal with not only low sampling frequency of the
proposed system, but also a very narrow spread of the laser
beam (~8 milli-radians). Since the size of the target (vehicle) is
much larger than the spread of the laser beam, a measured point
does not provide adequate longitudinal and lateral position of
the target vehicle. For instance, either lateral or longitudinal
distance between the sensor and vehicle is uncertain unless the
measured point is on the exact right corner of the vehicle. In
order to overcome the low sampling frequency of the system,
an efficient search method is proposed by defining discretized
regions of the search area. A Truncated Interacting Multiple
Model (Truncated IMM) estimator is proposed to estimate
vehicle motion via measurements from the narrow single beam
laser sensor. Active sensor control method based on a
minimization of search area uncertainties and vehicle position
uncertainties is proposed for simultaneous search and tracking
of rear vehicles.

This paper is organized as follows. In Section II, a brief
review of the work on the tracking of a single rear vehicle
together with experimental results is provided and the
challenges with multiple rear vehicle tracking are discussed. In
Section 11, an efficient search method by discretized regions of
search area and uncertainty minimization is proposed. Vehicle
motion tracking using a Truncated IMM is proposed in Section
IV. Then in Section V, active sensor orientation control strategy
for simultaneous search and tracking by minimization of
uncertainties is proposed. Results of simulation studies and
discussions are presented in Section VI. Conclusions are
presented in Section VII.

II. CHALLENGES WITH TRACKING OF MULTIPLE REAR
VEHICLES

A. Tracking of a Single Rear Vehicle

The sensor system on a bicycle is required to be inexpensive,
small and lightweight. In order to meet these constraints, we use
a low-cost single beam laser sensor mounted on a rotationally
controlled platform for tracking of a rear vehicle. Since the laser
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Fig. 2. Experimental results of rear vehicle tracking (red triangle: bicycle). (a)
A vehicle approaching right behind, (b) A vehicle changing lane to the right,
(c) A vehicle passing by bicycle, and (d) A vehicle changing lane to the left.

sensor can only measure one reflection at a time, the rotational
orientation of the laser sensor is required to be controlled in
real-time to continuously focus on the tracked vehicle, as the
vehicle’s lateral and longitudinal distances keep changing.

If it is assumed that there is only one vehicle behind the
bicycle, then a control system for tracking a single vehicle using
the laser sensor was demonstrated in [17]. The active sensing
algorithm in [17] used a receding horizon framework for active
orientation control of the laser sensor and an interacting
multiple model (IMM) framework for vehicle state estimation.

The previous estimation and control systems are presented
here in brief before we discuss the challenge of tracking
multiple rear vehicles behind the bicycle using a single laser
Sensor.

In the IMM framework, the constant velocity model and the
nearly coordinated turn model [20] are used for straight motion
and turning motion respectively. The state vector is

X=x y v 6 w]’ (1)
where (x,y),v, 0, and w are the vehicle position in Cartesian
coordinates, speed, orientation, and turn rate in sensor body
frame. The discrete-time state space equation for the constant
velocity model is given by

x + vAT cos 8
y + vAT sin 6
KXi+1 = v
6
0 K
The discrete-time state space equation for the nearly
coordinated turn model is given by

x + 2f{sin (wTAT) cos (0 + wTAT)}
y+ %{sin (wTAT) sin (6 + wTAT
1%
0 + wAT l
w Jk
where AT is the sampling time, and w is the process noise. Each
process noise is assumed to be zero mean with covariance as

+ Wy k (2)

)} | + wei (3)
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Fig. 3. Sensor implementation and experimental results. (a) Laser sensor system
on a bicycle, (b) A screenshot of experimental video, and (c) Experimental
results of on-road test with the laser sensor (red triangle: bicycle).
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For the vehicle motion estimation, the IMM operates two
extended Kalman filters (EKF) using the models in (2) and (3)
in parallel, and computes state and estimates using suitable
mixing of the estimates and covariance from the two models.

The receding horizon controller determines the optimal
control input to the sensor based on predicted future vehicle
motion under control input constraints:

2
arg min ” — tan(¢py, + uy) || ,

Vk+1+6y
g Ri41

if longitudinal distance is desired

2
— tan(¢y, + uy) || © (6

if lateral distance is desired

Zierr = freidr Tierr = forc X)),

J,C\k+1 > 0!

U € U, ¢min = (pk + Uy = (pmax

where f;(+) and f,(-) are the vehicle motion model which
corresponds to x and y respectively, &, and &, are distance
margins which are used to construct reference points on the
target vehicle, U is a finite set of feasible control inputs and ¢,
is the sensor orientation at time k. By using (6), we track the
right front corner (x,y) of the target vehicle by measuring
alternately distances to the front and side of the vehicle at points
close to the right front corner. Therefore, the reference point for
orientation control is changed alternately depending on the
corresponding selection of which information (longitudinal or
lateral) is needed. The predicted vehicle motion (%41, Vx41) 1S
calculated in the IMM framework, as described in [17].

Vk+1
Rp+1+6x

arg min ||
Uk

subject to
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B. Experimental Results

The active sensing algorithm was successfully demonstrated
for tracking any single rear approaching vehicle [17]. As shown
in Fig. 2, it is shown that the low-cost single beam laser sensor
can be used to detect and track a rear vehicle in situations that
are commonly encountered with respect to rear vehicles and
bicycles: i) a vehicle approaching right behind a bicycle, ii) a
rear vehicle with a lateral offset initially going straight and then
changing lanes to the right, iii) a rear vehicle with a lateral offset
passing by a bicycle, and iv) a vehicle right behind a bicycle
and then changes lanes to the left from behind the bicycle. Also,
recent on-road tests with the laser sensor system show good
performance during both scanning and during tracking of a
vehicle, as shown in Fig. 3. For the tests, small size and low-
power consumption microcontroller (Teensy 3.6) operates all
the active sensing and tracking algorithm, and data storage. The
laser sensor is sucessfully controlled to track the vehicle and
obtains measurements continuously. As a result, the laser
sensor system estimates vehicle motion well. In this paper, we
further develop an active sensing algorithm for tracking of
multiple rear vehicles using the laser sensor system.

C. Challenges with Multiple Rear Vehicle Tracking

The single beam laser sensor can measure the distance from
only a single reflection and needs to be correctly oriented
towards the vehicle whose distance needs to be measured in
real-time. Tracking of multiple rear vehicles therefore has
multiple challenges compared to tracking of a single rear
vehicle. For single vehicle tracking, after target detection, the
laser sensor system is only required to continuously focus on
the target vehicle. However, in order to track multiple vehicles,
a laser sensor system needs to carry out search and multiple
vehicle tracking tasks simultaneously. While the sensor system
tracks a target vehicle in one lane, searching for a new target
vehicle in another lane also needs to be conducted. Therefore,
an efficient search method is desired to search for additional
rear vehicles. Furthermore, for sensor control, it is necessary to
deal with the questions of where to search for a new target
vehicle, when to search for a new target vehicle, and which
target vehicle to measure at what time among multiple target
vehicles. In order to address these problems, we propose an
active sensing algorithm for multiple rear vehicle tracking
based on a minimization of search area uncertainty and a
minimization of vehicle position uncertainty.

III. SEARCHING FOR NEW VEHICLES OF INTEREST

In order to prevent a bicyclist-motorist crash from rear
vehicles, vehicles from both right behind the bicycle and from
an adjacent lane next to the bicycle will be monitored in this
paper.

Hence, three different sensing missions can arise as follows:
1) Search all regions of interest in both lanes to identify new
target vehicles, 2) Track one vehicle and search all regions of
interest that are not occupied by the tracked vehicle, and 3)
Track two vehicles.

In this section, we first show how to conduct the first mission,
i.e. how to discretize the search area of both lanes for an
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Fig. 4. Search area. (a) Reduced search area, and (b) Longitudinal distance C
covered by sensor orientation in bicycle body fixed coordinates.
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efficient search. Then, we discuss a propagation of uncertainties
assigned to the discretized regions, and propose a search
strategy using these uncertainties.

A. Search Area Discretization for Rear Vehicle Detection

The area to be monitored can be reduced to narrower zones
0, and O, than its lanes since vehicles on roads occupy most
lateral space in their lanes, as shown in Fig. 4 (a). Then, the
search areas 0; and O, must be further divided into sub-regions
for an efficient search. Instead of discretizing each area
arbitrarily, a variable C is introduced to define sub-regions. C
is the longitudinal distance covered by any specific laser sensor
orientation ¢, as illustrated in Fig. 4 (b). The max lane length L
is defined based on the maximum range of the laser sensor.
Finally, sub-regions can be defined using the Algorithm 1 table.

Fig. 5 describes how Algorithm 1 works for the situation of
two lanes in which the search area is set from 0 to 25m for the
lane in which the bicycle is riding, and from 6.25m to 25m for
the adjacent lane. First, it is easy to see that C is maximized in
the lane right behind the bicycle with the sensor orientation ¢4
shown in Fig. 5. The space covered by ¢, is defined as a first
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Fig. 5. Illustration of defining sub-regions for search.

sub-region (). Then, without considering Q,, C is maximized
next with a sensor orientation ¢, as shown in Fig. 5. Similar to
the first sub-region case, we define a second sub-region (1,. By
doing this iteratively, the search area is discretized into sub-
regions (4, Q,, -+ Q.

Lemma I: If an area of interest is defined as a rectangle, C is
maximized when ¢ is chosen so that the laser sensor aims at the
top left point of the area of interest.

Proof: Let the minimum and maximum lateral distances, and
minimum and maximum longitudinal distances of the
rectangular area from a sensor be denoted as (y;;,, Vyup), and
(L, L). Then, C can be described by two cases that the line of
sight of the sensor crosses i) the left edge of the rectangular
area, and ii) the top edge of the rectangular area:

C =
_ Y -1 (Yip < < -1 (M)
tang’ tan ( L ) - ¢ < tan L @)
Yub _ Vb -1 (Yub) < 4 < -1 (J’Lb)
tang tang¢’ tan ( L ) < ¢ <tan Lo

From (7), C is maximized when ¢ is equal to tan™2(y,,/L).
This implies that ¢ which aims at the top left point of the
rectangular area maximizes C at each iteration. [ ]
Lemma 2: By applying algorithm 1 successively on the areas
of interest 0, and O, in Fig. 4 (a), the residual area O is always
a single rectangle after each iteration.
Proof: At the first iteration, it is easy to see that maximized

iteration. [

Theorem I: Algorithm 1 provides the minimum number of
sensor orientations which fully cover the areas of interest O,
and O, in Fig. 4 (a).

Proof: 1t is straight forward to see that a smaller search area
can be covered by less or equal number of sensor orientations
compared to a larger search area unless the search area is a set
of disconnected areas (Even though the search area is small,
more number of sensor orientation may be required if the search
area consists of disconnected areas which are far from each
other).

Let O; be defined as the residual area to be covered after iy,
iteration of Algorithm 1. Also, let O; be defined as the residual
area to be covered and Q; be defined as the sub-region defined
after iy, iteration by any arbitrary method. O; and O; decrease
monotonically with iterations.

At the first iteration, it is obvious that Algorithm 1 provides
the minimum number of sensor orientations (one) which fully
cover the area O;, as shown in Fig. 5. Let Q; and Q] be
identical as O, and let us focus on the area 0,.

Since Algorithm 1 sets the largest possible space to be
covered as a sub-region at the second iteration (Lemma 1), O,
is always less than or equal to 05, i.e., Q, = Q5. O, is equal to
05 only if Q, and Q) are identical. If 1, and Q) are identical,
we again have the result that O; is always less than or equal to
05 . If Q5 is not identical to Q,, three cases need to be
considered as shown in Fig. 6:

Case 1: Let us consider the case Q5 is entirely overlapped
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with Q, as shown in Fig. 6 (a). O5 is always less than OF since
Q,U Q5 is less than Q, U Q3 even if Qf is defined its
maximum from Lemma 1.

Case 2: Let us consider the case Q5 is partially overlapped
with Q, as shown in Fig. 6 (b). O3 is always less than O since
i) Q5 U Qf is less than Q, U Q3 even though Q} covers all area
left to the O3, and ii) Q) < Q, and Q] < Q5 if QF is defined its
maximum on the right-side area of the Q5 from Lemma 1.

Case 3: Let us consider the case Q) is not overlapped with
Q, as shown in Fig. 6 (c). O3 is always less than or equal to 05
since Q) < Q3 and Q5 < Q,.

Sequentially, it is always true that

0; <0;, Vi=12,- )
Hence, Lemma 2 and (8) imply that Algorithm 1 provides the
minimum number of sensor orientations which fully cover the
area of interest O, and O, in Fig. 4 (a). [ |

Scanning using the sensor orientations ¢4, -*+, ¢¢ obtained in
Fig. 5 enables target vehicle detection via use of a small discrete
number of sensing directions that covers all the area of interest.
However, we next propose a more general framework, so as to
search and track vehicles simultaneously.

It should be noted that full scanning is highly inefficient. A
complete scan over the area of interest requires controlling the
orientation of the laser sensor from 0 to 33 degrees. Hence, full
scanning with 1 degree resolution will take more than five times
as many samples as the proposed discretized region search
method to conduct a search task over the area of interest.

B. Search Strategy using Search Area Uncertainty

Unlike single vehicle tracking, the sensor system is required
to search for a second target vehicle while also tracking a first
vehicle. We formulate this search problem as an uncertainty
minimization problem. Uncertainties Sy, -+-, S, are assigned to
sub-regions (4, Q,, - Q, defined by Algorithm 1 (n is the
number of sub-regions). These uncertainties depend
respectively on how long ago each region was searched.

Without a search action, the uncertainties of each region keep
increasing over time (time update). Once the sensor examines a
region, the uncertainty of the region decreases based on fraction
of the region searched (measurement update).

The time update for the uncertainty in a specific region [21]
is utilized as follows for uncertainty propagation:

Sk+1k = ASkji ©)
where Sy, = [Sl,k|k:52,k|k:"'Sn,k|k]T , A € R™"™ represents
the state transition matrix. A diagonal matrix with elements
greater than 1 is simply utilized for the state transition matrix.
Therefore, the uncertainties increase as the uncertainties
propagate through time. A specific sub-region such as the one
right behind a bicycle is required to be monitored more often
for the safety of the bicyclist. This can be dealt with by using a
larger value of the element corresponding to the specific sub-
region in the state transition matrix A.

We propose the following measurement update step:
- -1
Sik+ipert = (Siieae + OikRin) (10)
i=1,-,n

by modifying the covariance update equation in the Kalman

filter by using the matrix inversion lemma [22].

(1, if the region is examined
Oije = {0, otherwise an
Ry = e’l(l_ci,k/Li)i (12)
’ Cix

where A is a positive constant for a penalty when its sub-region
is not fully searched. L; is the full longitudinal distance of the
ity sub-region. C;  is the longitudinal distance covered by the
sensor in the iy, sub-region at time k. §; ;, is an indicator if the
sensor examines the i;, sub-region at time k. Therefore, the
uncertainty of a sub-region remains the same as the time update
if the sensor does not examine the sub-region (6;, =0).
Otherwise, the uncertainty decreases based on the fraction of
the sub-region searched R;; . Therefore, the measurement
update equation can be used as a cost function to find a best
sensor orientation to minimize uncertainties. Also, using the
measurement update step, the uncertainty of search area can be
updated systematically at any sensor orientation, even while the
sensor system tracks a vehicle. The sensor orientation is
required to be determined to conduct search task and the
uncertainties are used to find which region needs to be searched.
Finally, the search task for control of sensor orientation is
done so as to minimize the uncertainty of the entire search area.
The following optimization problem is constructed for sensor
orientation control:
. A _1n-1
Ugy = argmin Z?:l(si,k1+1|k + 6, Rik)  + Pui
N (13)
subjectto uy € U, ¢y +u, € Py
where S i k+1]k 18 computed by using the prediction step in (9),
B is a weighting factor on input, and @, is a finite set of feasible
sensor orientation at time k.

IV. TRACKING OF VEHICLE MOTION

A single beam laser sensor provides limited target vehicle
information:

1) Itis difficult to measure accurately both longitudinal and
lateral distances at the same time, unless the laser beam
reflects from the exact right front corner position of the
vehicle.

2) Itis also difficult to determine whether the reflected laser
beam is from the front or side of the vehicle.

The sensor system is controlled to measure alternately the
distances to the front and side near the right front corner of the
vehicle to acquire the longitudinal and lateral distances.

In this section, we introduce a finite state machine for the
determination of laser beam reflection location. Then, we
propose a Truncated IMM estimator to estimate vehicle motion
using a single laser measurement. Also, an error covariance
matrix from the Truncated IMM is used to define tracked
vehicle position uncertainty.

A. Determination of Reflection Location

In order to determine the reflection location of the laser
beam, a finite state machine is utilized with two states: A Front
state and a Side state, as shown in Fig. 7. The vehicle shape is
assumed to be rectangular. Previous and current distance
measurements are used for the decision of the state transition.
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Fig. 7. State diagram for determination of reflection location on a vehicle.

(h,=Lh_ =1)

Xy —xp <0

It is noted that every reflection from side or front of the vehicle
is not always detectable since it is possible that the incidence
angle is too large to reflect enough intensity of the beam to the
sensor. Also, it is noted that only one measurement is obtained
at a time since the narrow single beam laser sensor is utilized.
h; in Fig. 7 is an indicator on whether the measurement is from
the target vehicle or not at time k.

W — {1, if measurement is from vehicle (14)

k=10, otherwise

A measurement is assumed to be from the vehicle if the distance
between the measurement and estimated vehicle position is
within a threshold.

As shown in Fig. 7, the state transition occurs when the
measurement is obtained at only one of either current or
previous samples. If two measurements are obtained in a row,
the decision differs based on the value of the current state. A
transition from Front to Side occurs when the subtraction
between the projections of the distance measurement to
longitudinal axis x}* at previous and current time is negative:

X, —xt <0 (15)
A transition from Side to Front is based on the comparison
between the slope from two measurements and the estimated
orientation of the vehicle:

o (YEs T YE

where y;* is the projection of the distance measurement to
lateral axis and 8, is sum of estimated vehicle orientation
and its error margin at time k. When two measurements are not
available in a row, a transition from Front to Side can occur
under following condition:
bx < Pup (17)

A left turn maneuver and passing maneuver often lead to a
situation where the sensor cannot measure target vehicle
position two times in a row. However, a passing maneuver does
not require the state transition because the sensor cannot obtain
a reflection from the front of the vehicle due to large incidence
angle. Condition (17) can distinguish between left turn and
passing maneuvers. We set ¢,,;, as a maximum incidence angle
to reflect enough intensity of laser beam to sensor.

For the situation of a vehicle approaching right behind a
bicycle, one additional rule is used for the state transition: The
state transition from Front to Side occurs when measurement is
obtained with the sensor orientation less than or equal to 0°, and
then y;* is assumed to be zero. From this, the sensor system
tracks the center of a target vehicle when the target vehicle
approaches right behind the bicycle. Also, this improves the
robustness of the tracking since it is easier to measure the center
rather than the right front corner of the vehicle in the situation.

B. Truncated IMM for Vehicle Motion Estimation

Since the spread of the laser beam is very narrow compared
to the size of the target vehicle, the laser sensor measurement
does not provide adequate spatial information of the target. For
example, even if the sensor measures distance from a target
vehicle, the measured point can significantly differ from the
right corner position of the vehicle. Therefore, it is difficult to
estimate both longitudinal and lateral vehicle motion with only
a single laser measurement.

For this multiple vehicle tracking problem, we propose a
Truncated IMM that combines PDF truncation approach with a
IMM estimator. Since the vehicle motion has two distinct
maneuvers: straight motion and turning motion, it is difficult to
describe the vehicle motion accurately by using only one linear
model. Hence, we use two models to describe the vehicle
motion and utilize a IMM to estimate the vehicle motion using
two models (straight motion and turning motion models).
Furthermore, physical constraints on the vehicle motion can be
found by using predicted vehicle motion and sensor orientation,
in addition to the distance measurement. In order to incorporate
the constraints, PDF truncation is utilized with the IMM. The
use of PDF truncation also provides better (truncated) error
covariance of the vehicle motion including a better model of the
vehicle position uncertainty. The vehicle position uncertainty is
used to control sensor orientation for tracking and to determine
whether a tracking task or a search task requires to be
conducted. We first introduce the PDF truncation procedure
briefly and then discuss the physical constraints in detail.

In the PDF truncation, we truncate pdf which is assumed to
be Gaussian at the constraint edges. Then, the state estimation
is computed as the mean of the truncated pdf.

Suppose that at time k, we have the state estimate X), with
the error covariance P), and the s scalar state constraints:

WG S 01X S bjgr j=1,,5 (18)
where a;; < bj;. This is two-sided constraint on the linear
function of the state ¢} , Xy.

We define X; ;. as the state estimate after enforcement of the
first j constraints of (18), and P, as the covariance of Xj
First, we initialize

j=0
Xjje = X (19)
Pjje = Py

From Schur decomposition of Isj_k, orthogonal matrix T and
diagonal matrix W are obtained:

TWTT = 13]-,,c (20)
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Gram-Schmidt orthogonalization is utilized to find the
orthogonal matrix p € R™" that satisfies
pPWHATT g

- [(‘PJT,kF’j,k‘Pj,k)l/z 0
Now, the following transformation is conducted:
Eije = pWYATT (X — X ) (22)
From (20) - (22), it can be shown that ¢; , has zero mean and
identity covariance matrix. Also, the lower and upper bounds in
(18) are transformed as follows:

as e
UGk — PjrXjk

0] (21)

Cj,k = ~—1/2 < [1 0 O]Sj,k (23)
(ﬁDjT.kPj,kQDJ'.k)
by — ‘P'T,k)?‘,k
iy = % >[1 0 01¢; (24)
(QDj,kPj,kq’j,k)

Then, after enforcement of the first normalized scalar
constraints in (23) and (24), the mean and variance of the
transformed state estimate ;.1 are computed as

iy =v 0 - 0]

Cov(fjﬂ,k) =diag(c?1,,1) (25)
with
v = alexp(—c}/2) — exp(—d},/2)]
2 — exp(—cﬁk/Z) (Cj.k - 2'“') ] (26)
o [— exp(~d?,/2) (dj — 214)
+v2 41
where
vz (27)
a =
Vr|erf(d;/v2) — erf(c; . /V2)]
and error function erf(+) is defined as
t
erf(t) = % [ exwc-crac (28)

By taking the inverse of the transformation of (22), we obtain
the mean and variance of the state estimate which first
constraint is enforced:
X1k =TWY2pTE i + X
F)j+1,k = TWl/ZPTCOU(S(jH,k)PW1/2TT
After repeating the process above s times (j = 1,--+,s), we
obtain the final constrained state estimate and covariance:
)Sk - )fs,k (30)
Py = Pgy
More details for the PDF truncation procedure can be found in
[22].

Fig. 8 illustrates the entire procedure of the use of the
Truncated IMM-EKEF. In the mode-matching filtering step, two
models: constant velocity model in (2) and nearly coordinated
turn model in (3) are utilized. Measurement update is conducted
only for the states when its corresponding measurements are
available. The measurement noise is assumed to be zero mean
and to have covariances o7 and o} for the longitudinal and
lateral distance measurements respectively. More details for the
theory behind the IMM can be found in [23].

As mentioned earlier, the physical constraints on the vehicle
position can be obtained by using sensor orientation and
measured or predicted vehicle motion. Predictions of vehicle

(29

1 1 2 2
DG AN . G A Z} | Sensor mesurement
1 2
Hoi i M i
[ Mixing }
o1 0
kal\k—l X,‘__M_l A
01 0
Pk'”’"“ })k—l\k—l
Mode-matching Constraints
filtering - -
EKF EKF Vehicle motion
model 1 model 2 prediction
. . N . Determination of
Xk\k’Pk\k ka’[)k-\k reflection location
Apges g Agis oy
[ PDF truncation
1 pl v2 D2
Xk‘k’})ﬂk X B
Aoty Agp by
[ Combination ]—'Xk\wpk\k

Fig. 8. Overview of vehicle motion estimation using Truncated IMM-EKF.

motion for each mode can be computed by using the initial
conditions from Mixing step in Fig. 8 and its models as
Ripeor = F{(Xlapea), =11 (D)
where r is the number of modes utilized. Finally, the predicted
vehicle motion can be obtained by using mode probability u:
Xklk—l = Yi=1 Xlklk—l#l,k—l (32)
Let us consider the case that a laser sensor is controlled to
obtain longitudinal distance. If the measurement from the front
of the vehicle is available, x is directly updated by using x*.
The lateral position of the vehicle is bounded by the line of sight
of laser sensor, as shown in Fig. 9. Then, PDF truncation for y
is conducted by using bounds:

{ak = }7k|k—1 - Vy|}7k|k—1 - y,’(”|

by = Prjk-1 + Vy|}7k|k—1 - y,’(”|
where y,, is a positive weight in (0, 1] for reducing lateral

(33)

vehicle position uncertainty. For the case when lateral distance
is measured, we conduct PDF truncation for x using X; and

xpt:

{ak = fk|k-1 - Vx|5€k|k—1 - xlTl (34)
by = Xyjk-1 + Vx|5€k|k—1 - xlTl

where v, is a positive weight in (0, 1] for reducing longitudinal
vehicle position uncertainty.

If the measurement is not available due to large incident
angle of laser beam, we can still obtain reasonable bounds using
predicted vehicle motion. Unlike the case when measurement is
available, we conduct PDF truncation for x (or y) when laser
sensor aims at front (or side). The large incident angle leads to
tighter bound for the state. Furthermore, x;* and y;* in (33) and

(34) are replaced to x7" and y?"" which are defined as

X2 = Ppi_1/ tan
{ km y’iclk 1/ br (35)
Vi = X1 tan ¢y
Equation (35) is from the information that we know the target

vehicle is not located along the line of sight of laser sensor, and
is located near the line of sight of laser sensor since the laser
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Fig. 9. Illustration of effectiveness of PDF truncation in the case that sensor aims at desired point.
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Fig. 10. Illustration of effectiveness of PDF truncation in the case that sensor fails to aim at desired point.

sensor scans near the corner position.

On the other hand, the laser sensor could fail to aim at desired
surface of a vehicle due to unexpected vehicle acceleration and
steering actions. In this case, PDF truncation is very effective
to correct the estimates of vehicle motion. Let us consider the
case that a laser sensor is controlled to aim at the front of a
vehicle, but the line of sight of the laser sensor is in the side of
the vehicle, as shown in Fig. 10. First, larger process noise
covariance matrix is used for time wupdate, and then
measurement update and PDF truncation conducted as follows.
If lateral distance is measured, y is updated by using the
measurement and x is corrected by applying PDF truncation
with following bounds:

Ay = —©
{be = 66)
Similar to the previous case that measurement is not available,
PDF truncation is utilized for y instead of x using the following
bounds:

{ak = y}(:ir (37)

bk = o
If a laser sensor aims at the front of a vehicle even though the
sensor is controlled to aim at the side of the vehicle, y;* and

vir

x" are used for the bounds in (36) and (37) respectively.

V. STRATEGY FOR SIMULTANEOUS SEARCH AND TRACKING

The previous method used for single vehicle tracking in (6)
uses predicted vehicle position and fixed small margins §,, and
6, to find the sensor orientation control input. It is noted that
small margins are utilized to ensure that a laser sensor aims
alternately at either front or side of the vehicle, as it is controlled
in real-time. However, in the case of multiple vehicle tracking,
it is difficult to achieve the same effectiveness using fixed small
margins as in a single vehicle tracking. The margins do not take

into account vehicle position uncertainty due to simultaneous
search and tracking. The estimated vehicle position often can
be different from the actual position in multiple vehicle tracking
case due to the intermediate search task. Then, the fixed margin
is too small to provide adequate reference points for sensor
control to recover tracking performance.

Hence, the use of predicted vehicle position uncertainty is
proposed to obtain sensor orientation control inputs, instead of
using fixed small margins. We use error covariance matrix to
represent the vehicle position uncertainty. First, the Mixing step
in Fig. 8 is conducted to compute inputs to each filter from the
estimates and covariance from each of the filters at the previous
iteration. Then, time update is conducted in each mode, and
predicted estimates and predicted error covariance are
computed as follows:

Kies1je = Bier X isajietie
— l ol
Prp1jk = Xi=1Hik-1 {Pk+1|k +[X k+1lk —
o - N T
l
Kiewre) [X kvrie — Kierrjie] }
Vehicle position error covariance 13k+1|k consists of elements
corresponding the position of the vehicle in Pyiq . k-sigma

(3%

(39

error ellipse is obtained from 13k+1|k easily by using singular
value decomposition. Finally, as shown in Fig. 11, two
reference orientations ¢/2 44, and ¢pos .., for orientation

control can be computed analytically from tangent lines to the
error ellipse:
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Fig. 11. Reference sensor orientations from vehicle position error covariance.

Fig. 12. Occlusion situation.

. b 2
arg mln”¢gef,k+1 — (¢px + uk)” )
U
« _ Jiflongitudinal distance is desired

tk =
arg min||¢£l;f_k+1 — (¢p + uk)”Z’
Uk

(40)

if lateral distance is desired
subject to u;, € U,

b +u € Py
Then, vehicles are tracked by controlling sensor orientation to
alternately obtain longitudinal and lateral distances.

For simultaneous search and tracking, the laser sensor system
is controlled to minimize search area and vehicle position
uncertainties. We quantify the vehicle position uncertainty
using the concept of entropy [24]:

1 _
H= Elog(Zne)2|Pk+1|k| 41

If the entropy of the vehicle position uncertainty H is larger
than a threshold, a laser sensor system tracks the vehicle using
(40) to minimize the vehicle position uncertainty. Laser sensor
is controlled to aim at the front and side of the vehicle at least
once at the tracking. In the case of tracking multiple target
vehicles, the sensor system first tracks a vehicle which has
larger H. Otherwise, the laser sensor system is controlled by
using (13) to perform search task.

The occlusion situation as shown in Fig. 12 is also
considered. The sensor orientation occluded by the vehicle is
computed by using estimated vehicle position and orientation.
Optimal sensor orientation for search task is computed from the
finite set of feasible sensor orientation @, in (13) that the angle
in the occlusion is excluded. If the sensor orientation for
tracking from (40) is in the occlusion, the sensor system
attempts to track another vehicle being tracked or search for a
new target.

It is noted that the search area uncertainty is always updated
by using (10) — (12) whether the sensor system is controlled for
search or tracking.

VL

Detailed simulation studies are conducted to verify the
proposed active sensing algorithm for multiple rear vehicle
tracking. In this simulation study, we aim to search and track
vehicles in the lane in which the bicycle is riding and also in an
adjacent lane next to the bicycle, as shown in Fig. 1.

Fig. 13 shows animation screenshots in simulation studies of
three scenarios which require simultaneous search and tracking:

1) First car is driving in adjacent lane. Afterwards, second

car appears and is driving in the same lane as bicycle.

2) First car is driving in the same lane as bicycle and then

changes lane to the left. Second car was behind the first

SIMULATION STUDIES AND DISCUSSIONS

Time:|1.075 Time: 1.725 Time: 2.925 Time: 3.45
15 -10 -5 0 5 10 15 10 -5 0 5 10 15
Time:|1.05 Time: 2.4 Time: 2.85 Time: 3.975
2.
O= === === ========== - Selnlaliallullall et t:‘— ———————————————————————
2 ¥ — - | — | - + _ |- +
25 20 45 -10 5 ©0 5 -20 -15 -10 -5 0 5 10 15 10 5 0 5 10 10 5 0 5 10 15
(b)
Time:|1.225 Time: 2 Time: 2.45 Time: 3.775
2 — |- —I)
0-=-=-=-=---= ———— - "‘Q: ““““““ F—=- - --" TT---------- it
2 — = | ] = -
25 20 -5 -10 -5 0 5 20 <15 10 5 0 5 20 -15 -10 -5 0 5 10 10 = 0 5 10 15
(c)

Fig. 13. Animation screenshot in time sequence. (a) Two straight moving vehicles, (b) A left-lane change and a straight moving vehicle, and (c) A right-lane change

and a straight moving vehicle.
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Fig. 14. Simulation results with simultaneous tracking of two straight moving
vehicles (red triangle: bicycle). (a) Open-loop scanning with 30 degrees, and
(b) Proposed active sensing algorithm using truncated IMM-EKF.

car and now goes straight towards the bicycle, and

3) First car is driving in adjacent lane and then changes lane
to the right. Second car was behind the first car and now
goes straight in the adjacent lane.

Both vehicles need to be tracked in all scenarios. The
function fmincon in MATLAB Optimization Toolbox is used
to solve the optimization problem for the search task. Search
region is set from 0 to 25m for the lane which bicycle is riding,
and from 6.25m to 25m for the adjacent lane. However, the
sensor system tracks vehicles in the entire region from Om to
25m in both lanes. Once tracked vehicle is located in a sub-
region, R; of its sub-region and of sub-regions behind the
vehicle are set to 0.1 unless the vehicle changes lane. The sensor
system stops tracking when the target vehicle passes the
bicycle. The incidence angle of a laser beam to objects is
considered in this simulation. A value of 70 degrees which is
obtained from experiments is utilized as a threshold for
maximum incident angle to reflect enough intensity of the beam
to the sensor. Gaussian noise ~N'(0,22 [cm]) is added to the
distance measurements. 2-sigma error ellipse is utilized for
tracking problem in (40). y, and y, are set as 0.5 and 0.7
respectively. We set the value of 7 as a threshold for entropy of
the vehicle position uncertainty in (41). For estimation using
IMM, the following process and measurement noise
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Fig. 15. Simulation results with simultaneous tracking of a left-lane change and
a straight moving vehicle (red triangle: bicycle). (a) Open-loop scanning with
30 degrees, and (b) Proposed active sensing algorithm using truncated IMM-
EKF.

covariances are utilized: o,,= 3, 0,, = 5, 0., = 2000, ¢,, = 1000,
0,=0.2,0,=0.3,0.= 15 and ¢, =15. For IMM, following mode
transition matrix is used:

[0.99 0.01

0.01 0.99 (42)
The bicycle is moving with a constant speed of 4m/s. The

initial conditions for Truncated IMM-EKEF are set as

[Xo Yo vo 6y wo]” (43)

=[x —15m/s 0 0.001]7
if a vehicle is detected at time k in the same lane as bicycle, and
[Xo Yo vo 6o wol" (44)
=[x 3m —-15m/s 0 0.001]7

if a vehicle is detected at time k in adjacent lane.

First, we conduct simulation studies using an open-loop fixed
scan range (30 degrees). The sampling frequency of these
simulations is 100 Hz. Fig. 14 (a), 15 (a), and 16 (a) show that
vehicle measurements are not available most of the time during
open-loop scanning, even though high sampling frequency (100
Hz) and a small scan range (30 degrees) are utilized.

Simulation studies using the proposed active sensing
algorithm is conducted, as shown in Fig. 14 (b), 15 (b) and 16
(b). Lower sampling frequency (40 Hz) is utilized to show the
far superior effectiveness of the proposed active sensing
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Fig. 16. Simulation results with simultaneous tracking of a right-lane change
and a straight moving vehicle (red triangle: bicycle). (a) Open-loop scanning
with 30 degrees, (b) Proposed active sensing algorithm using truncated IMM-
EKF, and (c) Proposed active sensing algorithm using Kalman filter.

algorithm compared to the open-loop scanning with higher
sampling frequency (100 Hz). As shown in Fig. 14 (b), 15 (b)
and 16 (b), the sensor system successfully tracks vehicles in the
same lane as bicycle and in adjacent lane during straight
maneuver and turning maneuvers. The active sensing algorithm
obtains measurement data continuously and provides good
estimates of vehicle motions. Also, the results verify that the
sensor system conducts simultaneous search and tracking, and
estimates vehicle motions accurately.

Simulation studies for the senario 3) using a standard Kalman
filter are also conducted to demonstrate superiority of the
proposed truncated IMM technique, as shown in Fig. 16 (c). For

the Kalman filter, the constant velocity model with Cartesian
velocity is used and is given by

x 10 AT 0]

y| _lo 1 o ar||y

vl Tlooo 1 offm| P @D
Uyleer OO 0 11I%I,

where v, and v, are the longitudinal and lateral velocities, and
wy | 1s white noise with covariance as

3.2
o2, 0 0 ]
| 0 o2 0 Aoy |
vy
Qr,k = AT3g2 2 | (46)
AMox o AT?62, 0

2

Lo % o s

We set 0, and o,, as same as o,, and a,,/10. The proposed sensor
orientation control algorithms with the same parameters are
used for simulation studies, except the value of the threshold for
entropy of the vehicle position uncertainty in (41). Since the
Kalman filter does not incorporate the physical constraints on
the vehicle motion and utilizes a single model, the vehicle
position uncertainty is not reduced effectively compared to the
truncated IMM-EKF. As a result, the value of 7 as the threshold
for entropy is too small, i.e., the sensor system does not conduct
search task once the sensor tracks the first vehicle. Thus, we set
the value of 8 as a threshold for the entropy in simulation
studies. As shown in Fig. 16 (b) and Fig. 16 (c), the sensor
orientation control algorithm with the proposed truncated IMM-
EKF provides better measurement data close to the corner
position and provides better estimation performance compared
to the algorithm with the Kalman filter.

If the vehicle performs an extreme left turn maneuver in
which acceleration and turn rate are very high, then the active
sensing system can lose track of the left turning vehicle.
However, in this situation, the active sensing system quickly
starts to re-search and can detect the vehicle. The active sensing
system terminates tracked vehicle if measurements are not
obtained consecutively or vehicle position uncertainty becomes
too large. The active sensing system always achieves robust
tracking performance for vehicles changing lane to the same
lane as the bicycle and for vehicles approaching right behind
the bicycle which are significant with regard to bicyclist’s
safety. These vehicle maneuvers can be tracked using smaller
sensor orientation change and the front of the vehicle during the
maneuvers is always detectable.

VII. CONCLUSIONS

This paper showed how an inexpensive laser sensor mounted
on a rotationally controlled platform could be used to
simultaneously search for and track multiple vehicles that are
behind a bicycle. Vehicles in the bicycle’s lane and in the
adjacent left lane were both considered. The tasks involved
included searching both lanes to detect presence of vehicles,
tracking a vehicle’s trajectory once it has been detected, and
switching between searching and tracking as needed. A
rigorous search algorithm that minimized the number of sensor
rotational angles needed to search the entire region of interest
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was developed. An error covariance matrix approach was
utilized to switch between tracking vehicles and searching the
region of interest. Detailed simulation results were presented to
show how the developed system handles the absence and
presence of vehicles in the two lanes and handles different types
of lane change maneuvers while tracking multiple vehicles.
Since the developed system uses an inexpensive lightweight
sensor, it is very suitable for on-bicycle implementation and can
reliably protect the bicycle from rear vehicle collisions by
predicting impending collisions and providing a warning in the
form of a loud horn to the motorist behind the bicycle.
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