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Abstract

Lithium metal penetrations through the liquid-electrolyte-wetted porous separator and
solid electrolytes are a major safety concern of next-generation rechargeable metal batteries. The
penetrations were frequently discovered to occur through only a few isolated channels, as revealed
by “black spots” on both sides of the separator or electrolyte, which manifest a highly localized
ionic flux or current density. Predictions of the penetration time have been infeasible due to the
hidden and unclear dynamics in these penetration channels. Here, using the glass capillary cells,
we investigate for the first time the unexpectedly sensitive influence of channel geometry on the
concentration polarization and dendrite initiation processes. The characteristic time for the
complete depletion of salt concentration on the surface of the advancing electrode, i.e. Sand’s time,
exhibits a nonlinear dependence on the curvature of the channel walls along the axial direction.
While a positively deviated Sand’s time scaling exponent can be used to infer a converging
penetration area through the electrolyte, a negatively deviated scaling exponent suggests that
diffusion limitation can be avoided in expanding channels, such that the fast-advancing tip-
growing dendrites will not be initiated. The safety design of rechargeable metal batteries will

benefit from considering the true local current densities and the conduction structures.

Keywords: Battery separators, Solid electrolytes, Metal penetration channels, Varying cross-

sections, Sand’s time
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Broader context

The high-level operation safety is critically important for both the available Li-ion batteries and
the next-generation rechargeable Li metal batteries. As one of the most important failure modes of
batteries, Li dendrite penetration through a porous separator or solid electrolytes during battery
recharge has plagued the technology for decades. While the general mechanisms of metal dendrite
growth in ideal conditions have received thorough investigations, penetration processes occurred
in practical cells, through localized and isolated conduction paths are yet to be studied.
Understanding the dynamics induced by the intrinsic dynamic heterogeneities of the system offers

a more accurate prediction of dendrite penetration time and better guidance for battery safe design.
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1 Introduction

Owing to the high specific capacity and low redox potential, Li metal anodes are being
developed and optimized for the next-generation rechargeable metal batteries working at higher
areal capacities and higher power densities.'™ In these harsher working conditions, batteries are
prone to develop nonuniform ionic flux in the electrolyte, leading to localized deposition of
metallic Li along electrolyte channels that can cause internal shorts and low cycle life.!> While

7

promising methods of tuning the electrolyte additive,"®’ surface charge of the separator,®’

1012 and  solid-state

functionalities of the artificial solid-electrolyte interphase (SEI) layers,
electrolytes!>!1> have been proposed to control the root-growing whiskers and surface-growing
clusters of lithium metal at under-limiting current densities, there exists no clear solution to block

tip-growing Li dendrites at over-limiting current density in liquid electrolytes, or at the empirical

critical current density (CCD) in solid electrolytes.

Taking liquid electrolytes as the model system, the limiting current density is a system-specific
property determined mainly by the equilibrium concentration (co), interelectrode distance (L),
ambipolar diffusion coefficient (Damb), and transference number of the anion (t,), via the formula'®
Jiim = 22.¢oFDgmp(taL)™ L. In practical cells with a very thin separator or electrolyte layer
between the two electrodes, the theoretical limiting current density can be ~100 mA c¢m™. Practical
current densities (< 10 mA cm™) will not trigger diffusion limitation, but only if the applied total
current were uniformly distributed over the entire geometrical area of the electrolyte or separator.
However, recent studies of failure mechanisms in rechargeable metal batteries showed that metal

penetrations were self-confined within a few isolated microchannels of the porous separator,'’2°

21-26 27,28

or highly localized paths through polymer and ceramic solid electrolytes,
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as revealed by
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the isolated “black spots™ visible on both sides of the separator or electrolyte. The highly localized
penetration spots manifest that the local current density that enabled the penetration must have
been several orders of magnitude higher than the geometrically averaged current density and may
even be higher than the system-specific limiting current density. Accurate understandings of the
concentration polarization dynamics in these isolated electrolyte microchannels are important for
strategies to avoid or stop the fast-advancing tip-growing dendrites in rechargeable metal batteries.
Apparently, the penetration channels were not ideally straight especially for the systems containing

random-porous separators,?’ !

yet the interelectrode distances would not remain fixed due to
mossy growths before Sand’s time.>*’ These irregularities of the electrolyte microchannels, while

appear negligible, can cause substantial deviation of the transport dynamics from the classical

understandings.*

Here, we use our glass capillary cells as a model system to investigate the transport dynamics
in isolated electrolyte microchannels. The good agreement between operando experiments and
mathematical simulations reveals the strong dependence of concentration polarization on the
geometry of the channels, as reflected by the scaling exponent between Sand’s times obtained at
various overlimiting current densities. Our analytical solution to the transport dynamics provides
a novel implicit Sand’s time formula as a function of the applied current density. Depending on
the curvature and electrode advancing velocity, deviation of the Sand’s time scaling varies quite
dramatically. Our results suggest that separators with expanding ionic conduction structures can
delay the concentration depletion at the electrode surface, which can be utilized to avoid the fast-

advancing tip-growing dendrites.
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2 Results

2.1 Current Densities in the Penetration Channels

As motivation, we begin by estimating the current density focused onto the penetration “black
spots” reported in the literature. Table 1 summarizes the ratio between the areas of the black spots
(4p) and the electrode (Ageo). The significantly small ratios lead to dramatic amplification of the
true local current densities that effected the penetrations. More details are available in the
Supplementary Information (Fig. S1). Even by the most conservative estimation, the current
density through the penetration spots (J,) appears to be three orders of magnitude higher than the

original design.

Table 1. Estimation of the penetration current density focused on the “black spots” areas.

Electrolyte Ap/Ageo (%) Jp (MA cm™)

Liquid 0.16-0.7 70-2400
Ceramic 0.06-0.36 30-60

Polymer 0.005-0.16  200-10000

The geometry of electrolyte microchannels depends on the pore structures of the separator or
the grains/domain structures of the solid electrolytes. It also depends on the mechanical
interactions between the metal deposits and the channel walls.**~*” The number of these penetration
channels, including their possible branches, can change along the penetration path, yielding a 3-

dimensional (3D) structure with varying cross-sectional areas along the penetration path. Transport
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dynamics inside precisely controlled ideal microfluidic channels have been investigated
extensively,*®* but that in the more practical irregular channels are to be studied. A very simple
yet mild irregularity can cause significant deviation from the classical understandings,’ which

necessitates a systematic analysis of the dynamics in practice-relevant conditions.

As we previously reported, examining the system-specific limiting current density and the
Sand’s time, i.e. the characteristic time for an electrochemical cell to have the complete
concentration depletion near the electrode surface at an overlimiting current density, provides the
reliable determination of the two physical parameters that control the transport dynamics, i.e.
diffusion coefficient and transference number.’ Our glass capillary cells with the inner diameter as
small as 90 um closely resemble the characteristic geometry of the penetration channels observed
in various experimental cells. Monitoring the transparent cells offers straightforward evidence of
the dynamics, which otherwise are confined within channels buried inside opaque materials of the

separators or solid electrolytes.

2.2 Sand’s Time in Converging Channels

As revealed by the X-ray computer tomography (CT) image of the pulled glass capillary in Fig.
la, the inner diameter (r) versus the axial position (x) can be fitted by a catenary curve,* r(x) =
a cosh(x/a) — b, where a = 70.640 mm and b = 70.595 mm are curve constants. When the
mixed ethylene carbonate and dimethyl carbonate (EC/DMC) solvent is used, lithium metal
electrodes can only be pushed into the tapering part of the pulled glass capillary to form a
symmetrical cell with an interelectrode distance around 5 mm. Within this long-distance, changes

of the inner diameter, from ~ 180 pm (edge) to ~ 90 um (center), are clearly visible (Fig. 1c). When
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triglyme solvent is used instead, the lithium metal electrode can be further pushed toward the center
part. As shown in Figure 1b, the inner wall of the capillary cell within the center 2-mm length is
almost straight (Fig. 1b). We were able to fabricate long cells with both the converging and
expanding parts, as well as short cells with a nearly straight inner wall. A comparative study using
these three types of cells (converging, straight and expanding channels) helps to understand the

deviation of transport dynamics from the classical understandings, due to the geometric effect.
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Figure 1. Setup and method of the capillary cell experiments. (a) X-ray computed tomography
image of a pulled glass capillary. (b) Capillary cells with triglyme electrolyte enable the shorter
interelectrode distance of about 2 mm, where the capillary appears straight. (c) Capillary cells with
the mixed ethylene carbonate and dimethyl carbonate (EC/DMC) electrolyte only allow electrodes
to reach the tapering part of the capillary, leaving an interelectrode distance about 5 mm. (d)
Voltage responses of galvanostatic electrodeposition at over-limiting current densities for the short
but straight capillary cell with triglyme electrolyte and the long but converging capillary cell with
mixed ethylene carbonate and dimethyl carbonate (EC/DMC) electrolyte. Open circles mark the

corresponding Sand’s time for each case.
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When determining the Sand’s time, both the morphological transitions shown in the optical
microscopy images (Fig. 1b, ¢) and the abrupt changes in the voltage responses (Fig. 1d) were
considered. For the EC/DMC system (1M LiPFs in EC/DMC, 1:1 v/v), when the Sand’s time was
reached, the voltage jumps abruptly, followed by a fluctuating plateau; and the corresponding
optical microscopy image shows the transition from mossy to dendritic growth, similar to our
previous report.® For the triglyme system, a similar voltage jump was observed, but without the
fluctuating plateau. The voltage diverges to the safety limit of the battery tester. The growth, in
this case, stopped at the time of the voltage spike. While a clear transition from mossy to dendritic
growth was not observed when using this particular solvent, Sand’s time can still be accurately

determined, which suffices our investigation of the concentration polarization dynamics.

Figure 2 displays the experimental results obtained in cells with converging or straight channels.
Since the experiments always end before reaching the center of the symmetrical capillary cells, the
growths of lithium only occur in the converging part of the channel. The logarithmic plots of
Sand’s time versus current density obtained from long cells with clear converging channels always
yield slopes greater than -1.5, regardless of the choice of electrolyte (Fig. 2a and 2b), but are
consistent with our previous report.’ In contrast, the slope of the data obtained from short straight
cells showed a scaling exponent of -1.94 (Fig. 2¢), very close to the theoretical value (-2) predicted

by the classic Sand’s equation.

The experimental results above suggest that the converging channel results in a positive
deviation of the Sand’s time scaling, where significant shortening of the Sand’s time at low
overlimiting current densities was observed. To verify this observation, an axisymmetric 3-

dimensional (3D) model of the capillary cells, with either a straight line or the catenary curve as

9
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the profile of the inner wall, were established in COMSOL Multiphysics. The effective

electrodiffusion equation was numerically solved within the 3D geometries:

aCl D+D_Z+ - D+D_Z_

E = Dame ) (VCi),Damb = D+Z+ —D_7_ (1)

Here, c; is the concentration of the species i, D; the diffusion coefficient of species i, and Z; the
charge number. Details of the equation and the boundary conditions used in the simulations can
be found in the Methods section and the Supplementary Information (S1-11, Table S1). The
numerical simulation was stopped when the computed concentration at the electrode front reached
the minimum positive value around 0.2 mM to obtain the simulated Sand’s time, as demonstrated
in Figure 2d. Here, to account for the accumulation of mossy Li growths before Sand’s time, we
also included the advancing electrode front to match our experimental observation. The advancing
speed of the electrode front adopted in the simulations was estimated from experimental
observations by dividing the length of mossy growths with the corresponding period of time. The
front of the mossy growths is apparently not flat, and the total flux focused on the tips could yield
a local current density higher than that calculated with respect to the cross-sectional plane of the
electrolyte. But for the concentration polarization dynamics in the electrolyte, it is the latter, based
on the entire cross-sectional area of the electrolyte, that correctly captures the physics. With
everything else identical, simply changing the straight channel to a converging channel shortens
the Sand’s time by 55.4% (from ts=3440 s to ts=1534 s). Using the widely accepted values*'**? of
diffusion coefficient (3x10 cm? s') and Li ion transference number (0.38), the Sand’s times

calculated by the COMSOL models match very well with our experimental results for all cases

10



1  (Fig. 2a-c). Note that the discrete Sand’s time points obtained from simulations fall on straight

2 lines with R? values of 0.997-1.000 in the logarithmic plots.
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data points. (d) Mathematical simulation results of the concentration polarization with the
advancing working electrode front for cells with both the straight and converging channels. The

total volumes and the interelectrode distances (L=5 mm) were set equal for both cells.

2.3 Effects of the Channel Geometry and the Advancing Electrode Front

Although the comparison between the experimentally measured and simulated Sand’s times
strongly suggests that the inner wall curvature of the channel and the advancing electrode front
nicely explain the deviation of the Sand’s time scaling exponent, decoupling these two effects

could better elucidate the transport dynamics inside the channels.

As shown in Fig. 3a, Sand’s times in converging channels are significantly shorter than that in
straight channels even without the advancing electrode. This is true for all overlimiting current
densities, but more so for the relatively lower overlimiting current densities, which yields a
positive deviation of the slope (from -2 to -1.77). As the concentration gradient extends toward the
center of the cell, i.e. the increasingly narrower part of the channel, the absolute number of ions
needs to be depleted decreases, making depletion faster than that in straight channels. It’s
noteworthy that delayed diffusion processes inside the channel with a varying cross-section were

3 and have also been studied in terms of a

considered as a diffusion past an entropy barrier,*
modified Fick-Jacobs equation adopting mathematically convenient effective diffusion

coefficients.** " In our simulations, however, no artificial change of the diffusion coefficient was

adopted.

Curvature effects alone cannot change the Sand’s time properly to match the experimental

results. As observed in experiments, we introduced the advancing electrode front based on the

12



charge and mass conservations, via using a metal porosity (em), to match the lengths of observed
growths. For straight channels, the advancing electrode front significantly delays the Sand’s time
(Fig. 3b). While the salt near the electrode surface is being depleted, the advancing electrode front
counteracts the depletion process and makes the Sand’s time longer. Surprisingly, the effect of the
advancing electrode applies uniformly to all current densities, and the resulting Sand’s time scaling
is not affected. However, for converging channels (Fig. 3¢), the same effect impacts the higher
overlimiting current densities more significantly while extending the Sand’s time for all current

densities. The slope, therefore, deviates more positively (from -1.77 to -1.63).
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Figure 3. Synergistic effects from curvature and electrode growth. (a) Simulation results of the
impact of curvature on the Sand’s time scaling with fixed interelectrode distance. (b) Simulation
results reveal that the advancing electrode front has no effect on the Sand’s time scaling for straight
channels. (¢) Simulation results show that the advancing electrode fronts in the converging channel
further extend the Sand’s time, with a stronger effect for higher current densities. (d) For
converging channels, higher metal porosity, i.e. faster electrode growth toward the counter
electrode, and higher diffusion coefficient are responsible for larger deviation in Sand’s time

scaling exponent.

The verified COMSOL model allows versatile analyses that are hard to be realized in
experiments. It also offers the opportunity to perform a sensitivity analysis on the key physical
parameters. As shown in Fig. 3d, the effects of the diffusion coefficient and the metal porosity (&)
for electrodeposition in converging channels were assessed. Both the higher diffusivity and higher
metal porosity (sparser structure and longer growths) resulted in a more positively deviated Sand’s
time scaling exponent, with a slight nonlinearity. Further analyses revealed that the converging
channel would lower the limiting current, while the advancing electrode front would counteract
the trend, leading to a nonlinear concentration profile at the limiting current density. See more

details in the Supplementary Information (Fig. S2, Eq. S12-22).

2.4 Analytical approximation of the dynamics

The commonly used diffusion equation, Eq (1), assumes constant cross-sectional areas along
the diffusion path. To simplify the dynamics to one-dimensional for possible analytical solutions,

Eq (2) that included variable cross-sectional area A(x) is used instead:

14



10

11

12

13

14

15

16

dc(x,t) 62c+ dA(x) oc
at — mmPgx2 T UMb Aydx dx

2

In general, direct analytical solutions for Eq (2) can hardly be obtained. However, given that the
concentration polarization and metal growths we investigated did not extend too deep toward the
center of the cell (bulk electrolyte), we can introduce an exponential function A(x) = Ayexp (bx)
to approximate the varying cross-sectional area starting from the initial position of the electrode
surface (Figs. 4a and 4b). Therefore, the factor (dA(x)/dx)/A(x) in Eq (2) reduces to a scalar b,
which represents the changing rate of the cross-sectional area along the axial direction. The
approximation equation resembles the simplest advection-diffusion equation and can be solved
analytically to obtain the concentration profile c(x,t). The detailed derivation and solution
procedures of Eq (2) are available in the Supplementary Information Eqs (S23-31). By setting the
concentration at the electrode surface to zero, i.e. c(x = 0,t = tg), an implicit formula for ts as a

function of the applied current density J can be obtained:

tS bZDamth b Dambts COnF
————— | — bt erfi = 3
Dambne"p< 4 S ) JaA -t ©)

where erfc is the complementary error function, J the applied overlimiting current density. The
geometry of the channel, as reflected by the area changing rate b, indeed affects both terms on the

left-hand side.

As revealed in the X-ray CT image of our pulled capillary cells, different interelectrode

distances within the pulled glass capillary result in different curvatures near the electrode.

15
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Therefore, in our simulations, we truncated the catenary curve and used the exponential function
A(x) to obtain the fitted area changing rate b, which then can be used to obtain the analytical Sand’s
time from Eq (3). On the other hand, COMSOL simulations with the truncated catenary curve were
performed to get the simulated Sand’s time. As shown in Fig. 4, our implicit analytical formula
for Sand’s time matches very well with the simulation results, which was ensured by the good
fitting results of the exponential function (Figs. 4a and 4b). Even for the relatively straight cell of

2 mm in length, the exponential function can accurately capture the trend up to 1.5 times the
estimated maximum diffusion length (\/Dgmptmax = 0.7 mm, where Dg,,p 1s the ambipolar

diffusivity and t,,,,, 1s maximum time considered in the COMSOL simulations). With the fitted
area changing rate b, the analytical Sand’s time versus current density for each of the selected cells
was plotted in Fig. 4c to find out the effective analytical scaling exponent. The scaling exponent,
unexpectedly, varies non-monotonically as the interelectrode distance increases from 2 mm to 10
mm, with a maximum value near 5.5 mm (Fig. 4d). The non-monotonic trend is originated in the
non-monotonic variation of changing rate b versus the interelectrode distances. As shown in Figure
S3, the 5.5-mm-long cell exhibit the most significant area changing rate. More generally, however,
an effective Sand’s time scaling exponent (n in ts~J") as a function of the area changing rate b can

be obtained:

n = —0.0006b% — 0.0328b — 2 “4)

The noticeable differences for cells with smaller interelectrode distances (Fig. 4d) are likely caused

by the inaccuracy of A(x) approximations. Including the advancing electrode front in the

16



1 simulations leads to more positive deviation of the scaling exponents for all cases, while the

2 nonmonotonic trend is preserved.
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2.5 Sand’s Time in Expanding Channels

We have demonstrated how the converging channel and the advancing electrode front affect the
concentration polarization dynamics, as reflected by the absolute values and the scaling exponent
of Sand’s time with respect to various overlimiting current densities. Here, we extend our analyses
for expanding channels. Simulations were performed in COMSOL with the same equations and
boundary conditions but with different geometry. To better compare with the symmetrical pulled
glass capillary, an artificial spindle-like symmetrical geometry with expanding channels toward
the center was adopted (Supplementary information, Fig. S4a). In our simulations, the growth of
the metal electrode did not reach the center and stayed only in the expanding part. Apparently,
opposite to the scenario in converging channels, the increasing cross-sectional area in expanding
channels provides extra ions to the electrode surface as it grows toward the center of the cell, which
delays or even avoids the complete concentration depletion at the advancing electrode front. As a
result, both the system-specific limiting current density and the Sand’s time are increased. Such
effects appear more significant at relatively low overlimiting current densities, leading to the
negatively deviated Sand’s time scaling exponent (Fig. 5a). By varying the interelectrode distance
of the spindle-shaped cell, we effectively varied the wall curvature near the electrode (Fig. 5b) as
we did for converging channels in Fig. 4. Here, shorter interelectrode distance represents a faster
area changing rate (scalar b) near the electrode, which resulted in more negatively deviated scaling
exponents. The advancing electrode front further enhanced this effect (Fig. S4b). Compared with
the pulled capillary cell with converging channels toward the center, the steady-state concentration
profile for expanding channels was also nonlinear but was curved in the opposite direction (Fig.
S4c).

18
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The theoretical predictions on the concentration polarization and Sand’s time scaling are
confirmed by experimental results. As shown in the inset of Figure 5c, we managed to push the
working electrode to the center of the pulled capillary cell, such that the channel from the working
electrode (right) to the counter electrode (left) has an expanding geometry. As expected from the
simulation results, the ion depletion inside expanding channels would be delayed and the limiting
current density values significantly increased. Depletion was indeed observed at much higher
current densities ( > 40 mA cm?). The galvanostatic charge curve (Fig. 5¢) shows that the cell
potential starts high, then decreases as the electrode front advances toward the bulk, which can be
attributed to the increasing cross-sectional area of the channel and therefore the decreasing actual
current density. Surprisingly, a recent operando study’' on the Li metal penetration through
LisLa3Zr,012 ceramic solid electrolyte show both a decreasing voltage under the constant-current
polarization, and flourishing (expanding) tree structures along the thickness direction. Consistent
with earlier results using the triglyme-based electrolyte, the complete concentration depletion can
be inferred from the sudden increase of cell potential and the termination of the growth process.
The Sand’s times thus determined were displayed in the logarithmic plot against the current
densities, which yielded a scaling exponent close to -4.19 (Fig. 5d). This negative deviation from
the exponent of -2 for ideally straight channels confirms our theoretical prediction qualitatively.
The noticeable quantitative difference between the simulations and the experiments can be
attributed to the nonlinear metal growth speed (Fig. S5). At such high current densities and
therefore high overpotentials, the electroosmotic instability and convection may have played a
more significant role than in the converging and straight channels where much lower current

densities were applied. The most important implication of the results, however, is that expanding
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electrolyte channels, if can be engineered, can actually alleviate or even avoid the concentration

depletion, such that metal penetration by fast-advancing tip-growing dendrites can be avoided.
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Figure 5. Theoretical and experimental analyses on the concentration polarization in expanding
channels. (a) Comparison of simulation results inside various channel configurations. (d=3.5 mm)
(b) Comparisons between the simulated and analytical Sand’s time scaling for fixed electrode and
advancing electrode cases in expanding channels. (¢) Cell configuration and example galvanostatic
charge curve for the expanding channel. The electrolyte used was 1.0M LiPFs in triglyme and the

current density was 100 mA cm™. The open circle marks the Sand’s time. (d) Logarithmic plot of
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experimental and simulated Sand’s times versus current densities obtained within expanding
channels. For the simulations of the channels with advancing electrode front, the metal deposit

porosity of 0.9 was used for (a) and (b), and 0.978 for (d).

3 Discussions

3.1 Macroscopic converging areas through porous separators

While our pulled capillary cells offer a well-defined system to investigate the subtleties of the
localized transport dynamics in a single channel, penetration in practical batteries would occur in
multiple channels. Interestingly, experimental results in the literature showed that the collective
cross-sectional area of all penetration channels converges along the thickness of the
separator/electrolyte.’> On the other hand, positively deviated Sand’s time scaling exponent
between the cumulative time before penetration and the cycling current density applied to practical

coin cells was repeatedly reported. Choudhury et al.>?

reported a value of -1.84 and -1.35 for a
crosslinked nanoparticle-polymer composite electrolyte and a porous separator, respectively. Lu
et al. reported several deviated values, often less than but close to -1, obtained from multiple

systems with separators: ionic liquid-nanoparticle hybrid system,>*>

salt-reinforced liquid
system,’® and a liquid system with AAO separator.’’” While the physical scenario for concentration
polarization during battery cycling is different from that for one-way polarization, the positive

deviation of the scaling exponent and the converging penetration area toward the counter electrode

coincide with, and may find the ultimate explanations from the insights of our analyses.
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3.2 Penetration paths in solid electrolytes

In contrast, polymer electrolytes without inert porous structures were found to yield scaling
exponents close to -2 between the cumulative time before penetration and the cycling current
density.>¥ 6! The exact value of -2 was reported by Schaefer et al.%? from cells using a freestanding
gel-type electrolyte, but with SiO2 nanoparticles. The volume fraction of the nanoparticles was
controlled to be 0.15, much lower than the inert volume fraction (0.6) of typical porous separators
with porosity around 0.4. According to our results, this nearly perfect scaling exponent suggests
that the collective area of all penetration channels remained constant along the thickness of the
electrolyte layer, which indeed has been revealed by in situ characterization methods.?!%
According to our simulations, the Sand’s time scaling exponent for isolated straight channels is
not affected by the advancement of the electrode surface (Fig. 3b), but the absolute values of the
Sand’s time are significantly extended. Interestingly, earlier reports by both Khurana et al.®® and
Huang et al.®' demonstrated the significant extensions of Sand’s time without the deviation of the
scaling exponent. Still, the positive deviation of the Sand’s time scaling found in similar polymer
electrolyte systems may imply a converging collective area of penetration channels, likely due to

the percolated inert nanoparticles or simply less-conductive domains.?*2¢

Our combined experimental and theoretical analyses offer a clear explanation to the question
pointed out by Rosso et al.’®: why an underlimiting current would induce dendrite penetrations,
which further yield a scaling of -2 between penetration time and the current density, to resemble
the Sand’s time scaling for diffusion-limited dendrite initiation. Initially, when a small current is
applied to an equilibrium system, an underlimiting current density that distributed over the entire

surface of the flat electrode is achieved. As the system is being polarized, local physical
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heterogeneities and dynamic instabilities start to divert the flux onto just a few hot spots. When
the newly formed metal electrode front enters a pore of the separator or the solid electrolytes, the
localized electric field amplifies the flux at the metal electrode tip even further, which would
easily exceed the limiting current density. When this naturally evolved local overlimiting current
density start to polarize the concentration within that microchannel or conduction path, it will
start to follow the classic or our new implicit Sand’s formula to reach diffusion limitation. Once
a dendritic growth is triggered, the system will be short-circuited almost instantly. The
penetration time is dominated by the classic or modified Sand’s time for concentration depletion,

as Schaefer et. al. also observed in their experiments.®?

4 Conclusions

Motivated by the “black spots” observed in short-circuited batteries, we used our special glass
capillary cells to investigate the concentration polarization and metal dendrite penetration through
these electrolyte channels. Our combined experimental and theoretical analyses, together with the
examinations of literature data, showed that an underlimiting current density applied to the entire
surface of the electrode can evolve into an overlimiting current density localized onto just a few
“black spots”. Within the penetration channels that connecting the black spots on both sides of the
separator or electrolyte, the time to trigger metal dendrites scales with the actual local current
density via tg ~ J™. For straight channels or curved channels with a constant cross-sectional area,
the scaling exponent equals -2, as predicted by the classic Sand’s equation. For converging
channels, i.e. with decreasing cross-sectional area, the scaling exponent exhibits a positive
deviation. For expanding channels, i.e. with an increasing cross-sectional area, the scaling

exponent shows a negative deviation. Our results stress that while batteries are designed to avoid
23
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reaching the limiting current density estimated by using the geometrical area of the
electrode/electrolyte, the structural heterogeneities and dynamic instability can lead to highly
localized current density. Such a local current density easily exceeds the limiting current density
to trigger the diffusion-limited, tip-growing, yet fast-advancing metal dendrites through the
isolated electrolyte channels. It is therefore recommended to obtain the Sand’s time scaling to
assess the penetration structure through the separator or electrolyte layers, so that more accurate
penetration time, rather than the ideal Sand’s time, can be obtained for safety designs. Engineering
homogeneous electrolyte, or electrolyte that can enable an effectively expanding conduction
structure, e.g. by improving ion transport in the lateral direction, are favorable options for safety

improvements.
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5 Methods

5.1 Glass capillary cell experiment

Electrochemical cells with the 2-electrode configuration were fabricated in the pulled glass
capillaries. Two electrolyte systems were used: 1.0 M LiPF¢ in EC/DMC, 1:1 v/v (battery grade,
Sigma-Aldrich); and 1.0 M LiPFs in triglyme (LiPF¢ salt, battery-grade > 99.99%; triglyme,
99.5%). For the triglyme system, both components were purchased from Sigma-Aldrich and
mixed and stirred for 12 hours before use. One major difference is that the lubricity of triglyme is
higher than that of the mixed EC/DMC solvent, which allows the lithium metal electrodes to be
pushed further inside the capillary, achieving a shorter distance between them. Since the profile of
the interior capillary wall is close to a catenary curve, it closely approximates a straight line as the
distance between the electrodes decreases. Three experimental cases were compared to analyze
the converging channels: (1) 1.0 M LiPFs in triglyme, with an interelectrode distance, d, of =~ 2
mm. (2) 1.0 M LiPFs in triglyme, d = 4.5 mm. (3) 1.0 M LiPFs in triglyme, d = 5 mm. Cases (1)
and (3) were compared to analyze the effect of the wall curvature, while (1) and (2) were compared
to prove that the effect was not a result of different solvents in the system. For the analysis on the
expanding channels, slightly modified capillary cells, with d = 2 mm but with shifted configuration
was used, so that only the expanding part of the capillary would be included in the system. All the
cell assembly and electrochemical experiments were done inside a glovebox filled with argon gas
with water and oxygen concentration less than 0.5 ppm. Electrochemical testing was done with a
Gamry potentiostat (Reference 600+, Gamry Instruments). Operando imaging was done with an

optical microscope (MU500, AmScope).
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5.2 COMSOL simulation

COMSOL Multiphysics was used to simulate the transport phenomena inside the capillary cells.
More details on the equation and the parameters used in the COMSOL model can be found in the

Supplementary Information (S1-11, Table S1).

A longitudinal cross-section image of the pulled capillary was produced with a micro-CT X-ray
scan (Zeiss Xradia Versa 520 XRM), and the image was digitized into data points that were fitted
with a catenary curve. The fitted curve was used in the COMSOL model when defining the

axisymmetric geometry.
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