
SESHADRI CONSTANTS FOR VECTOR BUNDLES

MIHAI FULGER AND TAKUMI MURAYAMA

Abstract. We introduce Seshadri constants for line bundles in a relative setting. They generalize
the classical Seshadri constants of line bundles on projective varieties and their extension to vec-
tor bundles studied by Beltrametti–Schneider–Sommese and Hacon. There are similarities to the
classical theory. In particular, we give a Seshadri-type ampleness criterion, and we relate Seshadri
constants to jet separation and to asymptotic base loci. Smoothness is generally not part of our
assumptions. Thus we improve on some of the known results already for line bundles.

We give two applications of our new version of Seshadri constants. First, a celebrated result of
Mori can be restated as saying that any Fano manifold whose tangent bundle has positive Seshadri
constant at a point is isomorphic to a projective space. We conjecture that the Fano condition can
be removed. Among other results in this direction, we prove the conjecture for surfaces. Second,
we prove that our Seshadri constants can be used to control separation of jets for direct images of
pluricanonical bundles, in the spirit of a relative Fujita-type conjecture of Popa and Schnell.
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1. Introduction

Let X be a projective scheme over an algebraically closed field, and let L be an ample line bundle
on X. In [Dem92, Section 6], Demailly defined the Seshadri constant ε (L;x) of L at a closed point
x ∈ X by

ε (L;x) := sup
{
t ∈ R≥0

∣∣ π∗c1(L)− tE is nef
}
,

where π is the blow-up of X at x with exceptional divisor E. Seshadri constants have attracted
much attention as interesting invariants that capture subtle geometric properties of both X and L;
see [Laz04a, Chapter 5] and [BDRH+09]. In higher rank, a version of Seshadri constants for ample
vector bundles (of arbitrary rank) appears implicitly in work of Beltrametti–Schneider–Sommese
[BSS93, BSS96], and has been further studied by Hacon [Hac00].

In this paper, we define a new version of Seshadri constants for line bundles in a relative setting,
generalizing both Demailly’s and Hacon’s definitions. One advantage of this version is that it does
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not impose any global positivity conditions on the line bundle or vector bundle in question. We
refer to §3 for the precise definition. In the case of vector bundles V on X, loosely speaking

ε (V;x) := sup

{
t ∈ R

∣∣∣∣ π∗V〈−tE〉 is nef on curves that
meet E properly in at least one point

}
.

Many of the classical properties of Seshadri constants generalize to our new version.

(1) A Seshadri ampleness criterion holds (Theorem 3.11), generalizing [Laz04a, Theorem 1.4.13].
(2) We have homogeneity for vector bundles in the sense that ε (Sm V;x) = m · ε (V;x) (Lemma

3.24) and ε (
⊗m V;x) = m · ε (V;x) (Proposition 3.28). The case of line bundles is trivial.

(3) For ample vector bundles, the Seshadri constant measures asymptotic jet separation (Theorem
5.3). This generalizes Demailly’s result [Dem92, Theorem 6.4], and is new even for Seshadri
constants of line bundles at singular points.

(4) The Seshadri constants satisfy semicontinuity in both a convex geometric sense and in a varia-
tional sense (see §3.5).

(5) For nef vector bundles V, the locus {x ∈ X | ε (V;x) = 0} coincides with the non-ample locus
B+(V) (Proposition 6.9). The line bundle case, due to Nakamaye, can be found in [Nak03,
ELM+09].

(6) For big and nef vector bundles, lower bounds on Seshadri constants lead to lower bounds on the
order of jet separation for adjoint bundles (Proposition 5.7). These generalize the rank 1 case
in [Dem92, Proposition 6.8].

1.1. Examples. We describe our version of the Seshadri constant in some examples.

Example 1.1 (Vector bundles on curves). In [Hac00, Theorem 3.1], Hacon proves that if V is a
vector bundle on a smooth complex projective curve X, then

ε (V;x) = µmin(V)

for all x ∈ X. Here, µmin(V) is the smallest slope in the Harder–Narasimhan filtration of V. We
prove a similar description in positive characteristic by replacing V with iterated Frobenius pullbacks
of V; see Example 3.20.

This example is fundamental to the development of the theory. It helps reduce many results to
the case where X is a smooth projective curve, where they are significantly easier.

Example 1.2 (Toric bundles). In [HMP10, Proposition 3.2], Hering, Mustaţă, and Payne compute
Seshadri constants for nef toric bundles V on smooth toric varieties at the torus invariant points
xσ. They show that ε (V;xσ) is the smallest degree of any summand of the restrictions of V to the
invariant P1’s through xσ.

Example 1.3 (Tangent bundle of homogeneous spaces; see Examples 4.2 and 4.3). Let X be a
homogeneous space (e.g., a rational homogeneous space, or an abelian variety). Then,

ε (TX;x) =


2 if X ' P1;

1 if X ' Pn, where n ≥ 2;

0 otherwise.

Example 1.4 (Picard bundles; see Example 3.22). Let C be a smooth complex projective curve
of genus g ≥ 1, and let d ≥ 2g − 1. On the g-dimensional Picard variety Picd(C) of isomorphism
classes of line bundles of degree d on C, there exists a vector bundle Pd of rank d+ 1− g such that
the fiber over λ ∈ Picd(C) is H0(C, λ). The dual P∨d is ample. Results of [EL92] imply that

ε (P∨d ;λ) ≤ g

d+ 1− g
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for all λ ∈ Picd(C). Furthermore, if g = 2 and d = 3 so that P∨3 is ample of rank 2, then we show
that

ε (P∨3 ;λ) =
1

3

for all λ ∈ Pic3(C) that are not basepoint free. When |λ| is basepoint free with only simple
ramification, we bound the Seshadri constant in the interval

[
3
7 ,

1
2

]
. Conjecturally the Seshadri

constant is 1
2 . The proof makes use of the geometry of P(P∨d ) seen as the symmetric product Cd.

1.2. Applications. Our first application gives new characterizations of projective space. A cele-
brated result of Mori [Mor79] states that if X is an n-fold with ample tangent bundle, then X ' Pn.
Thus, Pn is the only projective manifold with “very positive” tangent bundle. It is natural to ask
if any weaker positivity conditions on TX still ensure that X ' Pn.

Theorem A (see Proposition 4.8 and Corollary 4.12). Let X be a smooth projective variety of
dimension n over an algebraically closed field k. Suppose ε (TX;x0) > 0 for some closed point
x0 ∈ X, and suppose that one of the following conditions holds:

(1) X is Fano;
(2) char k = 0 and x0 is general in the sense of [Keb02, Notation 2.2]; or
(3) dimX = 2.

Then, X is isomorphic to Pn.

The theorem is also inspired by similar results for Seshadri constants of divisors due to Bauer–
Szemberg [BS09], Liu–Zhuang [LZ18], the second author [Mur18], and Zhuang [Zhu18, Zhu17]. They
find characterizations of projective spaces in terms of lower bounds of the form ε (−KX ;x0) > n.
We conjecture that Theorem A holds without any of the additional assumptions (1)–(3).

For (3), we show that the condition ε (TX;x0) > 0 is preserved by smooth blow-downs away from
x0 (in arbitrary dimension). We then use the Enriques classification of minimal surfaces. Parts (1)
and (2) follow from Mori’s work and from [CMSB02], respectively.

Our second application shows that our version of Seshadri constants can be used to control jet
separation of direct images of pluricanonical sheaves, in the spirit of a relative Fujita-type conjecture
of Popa and Schnell [PS14, Conjecture 1.3]. This statement extends a result of Dutta and the second
author [DM19, Theorem A] to vector bundles of higher rank, and to higher-order jets. See Theorem
7.1 and Corollary 7.2 for effective statements that do not mention ε (V;x).

Theorem B (see Theorem 7.1). Let f : Y → X be a surjective morphism of complex projective
varieties, where X is of dimension n. Let (Y,∆) be a log canonical R-pair and let V be a locally
free sheaf of finite rank r ≥ 1 on X such that OP(V)(1) is big and nef. Consider a Cartier divisor
P on Y such that P ∼R k(KY + ∆) for some integer k ≥ 1, and consider a general smooth closed
point x ∈ X \B+(V). If ε (V;x) > k · n+s

m+k(r−1)+1 , then the sheaf

f∗OY (P )⊗OX Sm V ⊗OX (detV)⊗k

separates s-jets at x.

1.3. Moving Seshadri constants. For nef vector bundles V, we can interpret B+(V) as the locus
where Seshadri constants vanish. When V is ample, the asymptotic order of jet separation at x is
in fact equal to ε (V;x). For ample bundles V on complex projective manifolds, lower bounds on
ε (V;x) give information about the jet separation of “adjoint-type” sheaves. These are all powerful
applications of Seshadri constants, with the only drawback that they require strong global positivity
conditions on V like nefness, or even ampleness.

In the line bundle case, on complex projective manifolds, [Nak03] introduced the moving Se-
shadri constant ε (‖L‖;x) of L at x. It is a refinement of ε (L;x), defined in terms of usual
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Seshadri constants of certain ample Fujita approximations of L. If L is a big and nef line bun-
dle, then ε (‖L‖;x) = ε (L;x). While the definition is less intuitive, the applications are compelling.
[ELM+09] proves that the same properties mentioned in the previous paragraph are true of ε (‖L‖;x)
for big line bundles L on complex projective manifolds.

In the forthcoming paper [FM19] we will extend these to arbitrary rank. We will also prove a
version of Theorem B for moving Seshadri constants that does not assume the nefness of V.

Acknowledgments. We thank Harold Blum, Yajnaseni Dutta, Lawrence Ein, Sándor J. Kovács,
Yuchen Liu, Nicholas McCleerey, Mihnea Popa, Valentino Tosatti, and Yifei Zhao for useful discus-
sions. We are especially grateful to Krishna Hanumanthu and the anonymous referee for helpful
comments on a previous draft of this paper. The second author would also like to thank his advisor
Mircea Mustaţă for his constant support and encouragement.

2. Background and notation

Let X be a projective scheme over an algebraically closed field. We denote by Div(X)⊗Z R the
space of R-Cartier R-divisors, where Div(X) is the group of Cartier divisors on X.

2.1. Formal twists of coherent sheaves. We define formal twists of coherent sheaves. See
[Laz04b, Section 6.2] for the case of bundles.

Definition 2.1. Let V be a coherent sheaf on X, and let λ ∈ Div(X)⊗Z R. The formal twist of V
by λ is the pair (V, λ), denoted by V〈λ〉.

When D ∈ Div(X), the formal twist V〈D〉 is set to be the usual twist V ⊗OX(D). The theory of
twisted sheaves has natural pullbacks. In particular, when D is a Q-Cartier Q-divisor and f : X ′ →
X is a finite morphism such that f∗D is actually Cartier, then f∗V〈f∗D〉 is f∗V ⊗OX′(f∗D). The
Chern classes of twisted sheaves are natural for pullbacks.

For tensor powers and symmetric powers, we put V〈λ〉⊗V ′〈λ′〉 := (V⊗V ′)〈λ+λ′〉 and Sn(V〈λ〉) :=
(Sn V)〈nλ〉, respectively. Generally, when we talk about extensions, subsheaves, quotients of twisted
sheaves, or morphisms between twisted sheaves, we understand that the twist is fixed. The exception
is S∗(V〈λ〉) :=

⊕
n≥0 Sn V〈nλ〉.

2.2. Positivity for twisted coherent sheaves. Let PX(V) = ProjOX S∗ V denote the space of 1-
dimensional quotients of (fibers of) V. Usually, we suppress X from the notation. Let ρ : P(V)→ X
denote the natural projection map, and let ξ denote the first Chern class of the relative Serre
OP(V)(1) line bundle.

Definition 2.2. Let V be a coherent sheaf and let λ be an R-Cartier R-divisor on X. Define P(V〈λ〉)
as ρ : P(V)→ X, polarized with the ρ-ample R-Cartier R-divisor OP(V〈λ〉)(1) := OP(V)(1)〈ρ∗λ〉 whose
first Chern class is ξ + ρ∗λ. As above, ξ := c1(OP(V)(1)).

This is in line with the classical formula OP(V⊗OX(D))(1) = OP(V)(1)⊗ ρ∗OX(D).

Definition 2.3. The sheaf V is said to be ample (resp. nef, effective) if the Cartier divisor class ξ
has the same property. This extends formally to twists.

Remark 2.4. For locally free sheaves V on the projective scheme X, the following three conditions
are equivalent (see [Laz04b, Theorem 6.1.10]):

(i) V is ample.
(ii) (Global generation) For every coherent sheaf F , the twist Sm V ⊗ F is globally generated

for m sufficiently large.
(iii) (Cohomological vanishing) For every coherent sheaf F , the groups H i

(
X, Sm V ⊗F

)
vanish

for all i > 0 and all m sufficiently large.
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The equivalence (i) ⇔ (ii) holds for arbitrary coherent sheaves by [Kub70, Theorem 1]. The
implication (iii)⇒ (ii) holds for arbitrary coherent sheaves (see the proof of (ii) ⇒ (iii) in [Laz04b,
Theorem 6.1.10]).

(i) also implies (iii) for locally free sheaves F (use the Leray spectral sequence, the relative
ampleness of OP(V)(1), the projection formula, and cohomology vanishing for OP(V)(m)⊗ ρ∗F as in
the proof for (i)⇒ (ii) in [Laz04b, Theorem 6.1.10]).

Lemma 2.5. Let ρ : Y → X be a morphism of projective schemes, and let L be an ample invertible
sheaf on Y . Let F be a coherent sheaf on X. Then F ⊗ ρ∗

(
L⊗n

)
is ample and globally generated

for all n sufficiently large.

Proof. Let A be a very ample divisor on X such that there exists a surjection
⊕
OX(−A) � F .

Since ampleness and global generation descend to quotients, it is enough to prove the lemma for
F = OX(−A). With the usual arguments of Castelnuovo–Mumford regularity [Laz04a, Theorem
1.8.5], it is enough to prove that if A is a very ample divisor on X, then ρ∗

(
L⊗n

)
is −2-regular with

respect to A, i.e., H i
(
X, ρ∗

(
L⊗n

)
(−(2 + i)A)

)
= 0 for all i > 0 for all n sufficiently large. This is

because in this case ρ∗
(
L⊗n

)
(−2A) is globally generated, hence ρ∗

(
L⊗n

)
(−A) is ample and globally

generated.
Since L is ample, it is in particular also ρ-ample. Hence for n large, we have Riρ∗

(
L⊗n

)
= 0 for

all i > 0. The Leray spectral sequence and the projection formula show that H i
(
X,
(
ρ∗L⊗n

)
(−(2 +

i)A)
)

= H i
(
Y,L⊗n ⊗ ρ∗(−(2 + i)A)

)
. The ampleness of L and Serre vanishing show that these

cohomology groups are 0. �

We can also define big or pseudo-effective coherent sheaves, cf. [BKK+15, Definitions 5.1 and
6.1], but the definitions are more refined. See also Definition 6.8.

3. Definition and properties of Seshadri constants

Notation 3.1. Let ρ : Y → X be a morphism of projective schemes over an algebraically closed
field, and fix a closed point x ∈ X. Let π : BlxX → X be the blow-up at x with Cartier exceptional
divisor E. We then consider the commutative square

Y ′
π′ //

ρ′

��

Y

ρ

��

BlxX π
// X

where Y ′ := BlYx Y and Yx := ρ−1(x). The exceptional divisor of π′ is ρ′∗E. Note that the square
is cartesian when ρ is flat at x. In any event, the π′-ampleness of −ρ′∗E implies that the induced
map Y ′ → Y ×X BlxX is finite.

Let Cρ,x denote the set of irreducible curves on Y that meet Yx, but are not contained in the
support of Yx. Let C′ρ,x denote their strict transforms via π′. Let ξ ∈ N1(Y ). Usually ξ will be
ρ-nef, meaning ξ|Yt is nef for all t ∈ X, or even ρ-ample.

A case that we are particularly interested in is when Y = PX(V) for some coherent sheaf V on X,
often locally free. In this case, ρ : P(V) → X is the bundle map, and ξ = c1(OP(V)(1)). We denote
CV,x := Cρ,x and C′V,x := C′ρ,x.

3.1. Definition and basic properties. We begin by defining the notion of local nefness.

Definition 3.2 (Local nefness). Suppose ξ is ρ-nef. We say that ξ is nef at x if ξ · C ≥ 0 for
all C ∈ Cρ,x. When Y = P(V), we also say that V is nef at x when the same condition holds for
ξ = c1(OP(V)(1)).
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Example 3.3. If a coherent sheaf V is globally generated at x, i.e., H0(X,V) ⊗ OX → V is
surjective at x, then V is nef at x. (Since ρ∗V → OP(V)(1) is surjective, we find that OP(V)(1) is

globally generated along the fiber ρ−1x = P(V(x)). If C is a curve that meets P(V(x)) without
being contained in it, and if y ∈ C ∩ P(V(x)), then we can find an effective representative of ξ that
does not pass through y, hence it does not contain C. It follows that ξ · C ≥ 0.) �

Remark 3.4. If ξ is ρ-nef, then ξ is nef on Y if and only if ξ is nef at all x ∈ X. (One direction is
clear. The other is immediate from the ρ-nefness of ξ.)

We now define the following measure of local nefness at x. We believe these constants were first
defined explicitly for ample locally free sheaves by Hacon [Hac00, p. 769], although they appear
implicitly in the work of Beltrametti, Schneider, and Sommese [BSS93, BSS96].

Definition 3.5. The Seshadri constant of ξ at x is

ε (ξ;x) := inf
C∈Cρ,x

{
ξ · C

multx ρ∗C

}
.

When Y = P(V), put ε (V;x) := ε (OP(V)(1);x). When Cρ,x is empty, set ε (ξ;x) =∞.

Note that the curves in Cρ,x are precisely the irreducible curves C on Y for which multx ρ∗C > 0.

Remark 3.6. The Seshadri constant descends to a well-defined function ε (−;x) : N1(Y )→ R that
is homogeneous and concave, i.e., ε

(
(1− t)ξ + tξ′;x

)
≥ (1− t)· ε (ξ;x) + t· ε (ξ′;x) for all t ∈ [0, 1].

Proposition 3.7. If ξ is ρ-nef, then

ε (ξ;x) = sup
{
t
∣∣ (π′∗ξ − tρ′∗E) · C ′ ≥ 0 for all C ′ ∈ C′ρ,x

}
.

See also [Hac00] for the case of bundles.

Proof. Let C ′ be the strict transform of C on Y ′ via π′. We then have

multx ρ∗C = E · ρ′∗C ′ = ρ′∗E · C ′,

hence (π′∗ξ − tρ′∗E) · C ′ ≥ 0 if and only if ξ·C
multx ρ∗C

≥ t. �

Example 3.8. When ρ is the identity morphism X → X and ξ is nef, then ε (ξ;x) is the classical
Seshadri constant of the divisor class ξ at x; see [Laz04a, Proposition 5.1.5].

Example 3.9. When ρ = π is the blow-up of x and ξ = −E, then ε (ξ;x) = −1. In fact for all
curves C on BlxX that meet E, without being contained in it, we have −E·C

multx π∗C
= −1.

Remark 3.10. Assume that ξ is ρ-nef. We have the following:

(a) ε (ξ;x) ≥ 0 if and only if ξ is nef at x.
(b) If C ′ is an irreducible curve on Y ′ that is contained in the exceptional locus ρ′−1E of π′, then

(π′∗ξ − tρ′∗E) · C ′ = ξ · π′∗C ′ − tE · ρ′∗C ′ ≥ 0

for all t ≥ 0. The inequality is strict if t > 0 and C ′ is not contracted by ρ′, or if C ′ is not
contracted by π′ and ξ is ρ-ample. (Use that ξ is nef on Yx, and that −E is ample on E.)

(c) If ξ is nef, then ε (ξ;x) = sup
{
t ∈ R≥0

∣∣ π′∗ξ − tρ′∗E ∈ Nef1(Y ′)
}

. In particular, if V is nef,
then

ε (V;x) = sup
{
t ∈ R≥0

∣∣ π∗V〈−tE〉 is nef
}
.

(The twisted bundle π∗V〈−tE〉 is nef if and only if π′∗ξ−tρ′∗E is nef on P(π∗V). The irreducible
curves on P(π∗V) are either in C′V,x, are in the exceptional locus of π′, or do not intersect the

support of ρ′∗E. From part (b), and using the nefness of π′∗ξ, we find that the nefness of
π′∗ξ − tρ′∗E can be verified on the curves in C′V,x. The case for general Y and ξ is analogous.)
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As is the case for divisors [Laz04a, Theorem 1.4.13], Seshadri constants can detect whether ξ is
ample.

Theorem 3.11 (Seshadri ampleness criterion). If ξ is ρ-ample, then ξ is ample if and only if

(3.11.1) inf
x∈X

ε (ξ;x) > 0.

In particular, if V is a locally free sheaf on X, then V is ample if and only if infx∈X ε (V;x) > 0.

See also [Laz04a, Example 6.1.20].

Proof. Assume that the infimum in (3.11.1) is positive, but that ξ is not ample. In any case, ξ is nef
by Remarks 3.4 and 3.10.(a). By the Seshadri ampleness criterion for divisors [Laz04a, Theorem
1.4.13], infy∈Y ε (ξ; y) = 0. Hence there exist closed points ym ∈ Y and irreducible curves Cm
through ym with

ξ · Cm <
1

m
multym Cm.

We claim that Cm is not contracted by ρ for infinitely many m. Indeed, suppose that the curves
Cm are contracted by ρ for all m, in which case

(3.11.2) inf
x∈X

inf
y∈Yx

ε
(
ξ|Yx ; y

)
= 0.

Let h be a sufficiently ample divisor class on X such that ξ + ρ∗h is ample. Then, infy∈Y ε (ξ +
ρ∗h; y) > 0, and in particular, inf

x∈X
inf
y∈Yx

ε
(
(ξ+ρ∗h)|Yx ; y

)
> 0. But (ξ+ρ∗h)|Yx = ξ|Yx , contradicting

(3.11.2). This shows the claim.
From the claim, ρ|Cm is finite for all sufficiently large m. Writing xm := ρ(ym), the inequality

multxm ρ∗Cm ≥ multym Cm (see [Ful17, Lemma 2.3]) leads to a contradiction.
Conversely, assume that ξ is ample. Let h be ample on X. Then, ξ−ερ∗h is ample for sufficiently

small ε > 0, and for all C ∈ Cρ,x, since ρ|C is finite,

ξ · C
multx ρ∗C

=
(ξ − ερ∗h) · C

multx ρ∗C
+

ερ∗h · C
multx ρ∗C

≥ ε h · ρ∗C
multx ρ∗C

≥ ε · ε (h;x).

Taking the infimum over all x ∈ X, we see that ξ is ample by the classical Seshadri ampleness
criterion for divisors [Laz04a, Theorem 1.4.13]. �

Remark 3.12. In the case of sheaves, the first part of the previous proof can be adapted to show
the following: If there exists y ∈ P(V(x)) such that 0 ≤ ε (ξ; y) < 1, then ε (V;x) ≤ ε (ξ; y). For
arbitrary ρ and ρ-ample ξ, a similar statement holds with 1 replaced by infy∈Yx ε (ξ|Yx ; y), which is
in any case strictly positive. (The inequality ε (ξ; y) < 1 proves that the Seshadri constant of ξ at
y is not approximated by intersecting with curves in P(V(x)), since ε (ξ|P(V(x)); y) = 1. For curves
in CV,x that pass through y, use the inequality multy C ≤ multx ρ∗C from [Ful17, Lemma 2.3].)

Furthermore, for arbitrary ρ and ρ-ample ξ, we have the following: If there exists y ∈ Yx such
that ε (ξ; y) < 0, then ε (ξ;x) < 0. (If ε (ξ; y) < 0, then there exists C ∈ Cρ,x through y with
ξ · C < 0.) �

One can also characterize Seshadri constants in terms of all varieties intersecting Yx, instead of
just curves.

Proposition 3.13. If ξ is nef, then

(3.13.1) ε (ξ;x) ≤

(
ξdimW · [W ](

dimW
dim ρ(W )

)
·multx ρ(W ) · (ξdimWx′ [Wx′ ])

)1/ dim ρ(W )

,

as W ranges through the subvarieties of Y that meet Yx without being contained in it. In the above,
Wx′ is a fiber over the flat locus of W → ρ(W ).
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If X is a variety and Y = P(V) for a locally free sheaf V of rank r, then in particular by considering
W = Y , we obtain

(3.13.2) ε (V;x) ≤ n

√
sn(V∨)(

n+r−1
n

)
·multxX

,

where sn(V∨) = (ξn+r−1) is the n-th Segre class of V∨ (see [Ful98, §3.1]1). This is a generaliza-

tion of the rank one case ε (L;x) ≤ n

√
(Ln)

multxX
in [Laz04a, Proposition 5.1.9]. A transcendental

generalization is [Tos18, Theorem 4.6].

Example 3.14. Put n := dimX and assume that V is locally free of rank r and nef. When
considering W = ρ−1Z ⊆ P(V) for some subvariety Z ⊆ X of codimension i, we obtain

ε (V;x) ≤

(
ξn−i+r−1 · [ρ∗Z](
n−i+r−1
n−i

)
·multx Z

) 1
n−i

=

(
sn−i(V∨) ∩ [Z](

n−i+r−1
n−i

)
·multx Z

) 1
n−i

,

where sn−i(V∨)∩ [Z] = ξn−i+r−1 · [ρ∗Z] is the evaluation of the Segre class of degree n− i of V∨ on
the fundamental class of Z (see [Ful98, §3.1]). These bounds are similar to the ones appearing in
[Hac00, Theorem 1.5.a].

We thank Valentino Tosatti for suggesting this example.

Remark 3.15 (Relation with other Seshadri constants). With hypotheses as in the previous ex-
ample, taking the infimum over all Z of fixed codimension i, we obtain

ε (V;x) ≤

(
1(

n−i+r−1
n−i

) · ε (sn−i(V∨);x
)) 1

n−i

,

where the Seshadri constant of the nef dual class sn−i(V∨) on the right is defined as in [Ful17, §8].
We thank Nicholas McCleerey for suggesting this example.

Proof of Proposition 3.13. Let W be as above, and let W ′ be its strict transform in Y ′. By Remark
3.10.(c) we have (π′∗ξ − ε (ξ;x)ρ′∗E)dimW ′ · [W ′] ≥ 0. By restricting to W ′ we can assume without
loss of generality that W ′ = Y ′, that ρ is surjective, and that X is a variety. Let n := dimX and
e := dimY − n, with e ≥ 0. We have

0 ≤
(
π′∗ξ − ε (ξ;x)ρ′∗E

)n+e
=

n∑
k=0

(
n+ e

k

)(
− ε (ξ;x)ρ′∗E

)k
π′∗ξn+e−k

≤ ξn+e +

(
n+ e

n

)(
− ε (ξ;x)ρ′∗E

)n · π′∗ξe
= ξn+e −

(
n+ e

n

)
·multxX · ε n(ξ;x) · (ξe · [Yx′ ]).

The first equality holds since (Ek) = 0 for k > n. The second inequality is a consequence of
the projection formula for π′. Pushing forward −(−ρ′∗E)k produces a pseudo-effective class, since
−E|E is ample. In the last equality, we used that (−E)n = −multxX. This implies π′∗(ρ

′∗(−E)n) =
−multxX · F , where F is a fiber over the flat locus of ρ|W : W → ρ(W ). �

Remark 3.16. With hypotheses as in the proposition, assume that ξ is ample. We show that there
exists a subvariety W ′ ⊆ Y ′, which is the strict transform of some W ⊆ Y that meets Yx without
being contained in it, such that

(π′∗ξ − ε (ξ;x)ρ′∗E)dimW ′ · [W ′] = 0.

1Duality is present because [Ful98] uses projective bundles of lines instead of quotients.
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For this, let W ′ ⊂ Y ′ be a subvariety that observes the failure of ampleness of π′∗ξ − ε (ξ;x)ρ′∗E,

i.e., (π′∗ξ − ε (ξ;x)ρ′∗E)dimW ′ · [W ′] = 0. These exist by [CP90, Bir17] over arbitrary fields for nef
R-Cartier R-divisors, extending the Nakai–Moishezon criterion for nef Cartier divisors. That W :=
π′(W ′) meets Yx without being contained in it follows from the finiteness of Y ′ → Y ×X BlxX. �

Remark 3.17. When V is ample on X, equality in the proposition is not necessarily achieved by
some W = ρ−1Z for Z a subvariety of X containing x. (As in [Hac00, p. 771], consider X = P1 and
V = OX(1)⊕OX(2). In this case E = Yx. From Remark 3.10.(c), we deduce ε (V;x) = 1. The only
subvariety of P(V) that achieves equality in (3.13.1) is W = P(OX(1)), embedded via the quotient
OX(1)⊕OX(2) � OX(1).)

We describe the behavior of Seshadri constants under pullback.

Lemma 3.18 (Quotients). Assume that ξ is ρ-nef. Let ı : Z → Y be a morphism of projective
schemes. Then,

(3.18.1) ε (ı∗ξ;x) ≥ ε (ξ;x),

and equality holds if ı is surjective. In particular, if V → Q is a surjective morphism of coherent
sheaves on X, then ε (Q;x) ≥ ε (V;x).

Proof. Let C ∈ Cρ◦ı,x, and write C ′ := ı(C) ∈ Cρ,x. We have ı∗C = dC ′ for some d ≥ 1. By the

projection formula, ı∗ξ·C
multx(ρ◦ı)∗C = ξ·dC′

multx ρ∗(dC′)
= ξ·C′

multx ρ∗C′
. Taking the infimum over all C ∈ Cρ◦ı,x,

since Cρ,x may contain curves that are not of form C ′ as above, we deduce ε (ı∗ξ;x) ≥ ε (ξ;x). When
ı is surjective, every curve in Cρ,x is of form C ′ as above, hence equality holds in (3.18.1).

For the last statement, note that there is a closed immersion PX(Q) ↪→ PX(V) such that the
restriction of OP(V)(1) is OP(Q)(1). �

3.2. Restrictions to curves. Every curve in Cρ,x is mapped by ρ to a unique curve through x in
X. It is fundamental then for the development of the theory to understand the case where X itself
is a curve.

Remark 3.19. Assume that X is a projective curve and that ξ is ρ-nef. Then,

ε (ξ;x) =
1

multxX
· sup{t

∣∣ ξ − tf ∈ Nef1(Y )},

where f is the class of a general fiber of ρ. In particular, multxX · ε (ξ;x) is independent of x in
this case. If V is a coherent sheaf on X, then

ε (V;x) =
1

multxX
· sup{t

∣∣ V〈−tx0〉 is nef},

where x0 denotes a Q-Cartier Q-class of degree 1. (Since X is a curve, degE = multxX. The set
Cρ,x is the set of curves in Y that dominate X, hence it is independent of x. Using the ρ-nefness of
ξ, it follows that (π′∗ξ − tρ′∗E) ·C ′ ≥ 0 for all C ′ ∈ C′ρ,x if and only if π′∗ξ − tρ′∗E is nef. However,
π′∗ξ − tρ′∗E = π′∗(ξ − (multxX)tf) is nef on Y ′ if and only if ξ − (multxX)tf is nef on Y .)

We can now give the following generalization of [Hac00, Theorem 3.1].

Example 3.20 (Curves). If X is a (possibly singular) integral projective curve over an algebraically
closed field k and ν : X ′ → X denotes the normalization, and if V is a coherent sheaf on X, then

(3.20.1) ε (V;x) =
µmin(ν∗V)

multxX
.

For the purpose of explaining notation, assume that X is a smooth projective curve. The slope of
a bundle V on X is

µ(V) :=
degV
rankV

.
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By convention, the slope of torsion sheaves is infinite. The smallest slope of any quotient (of positive
rank) of V is denoted by µmin(V). A quotient of V with minimal slope exists, and is determined by
the Harder–Narasimhan filtration of V. In characteristic 0, set µmin(V) := µmin(V). In characteristic
p > 0, let F : X → X be the absolute Frobenius morphism, and consider

µmin(V) := lim
n→∞

µmin

(
(Fn)∗V

)
pn

.

The sequence is weakly decreasing and eventually stationary. In fact, [Lan04, Theorem 2.7] proves
that there exists δ = δV ≥ 0 such that the Harder–Narasimhan filtration of (F δ+n)∗V is the pullback

of the Harder–Narasimhan filtration of (F δ)∗V. In particular, µmin(V) = µmin((F δ)∗V)
pδ

is the smallest

normalized slope of any quotient of any iterated Frobenius pullback (Fn)∗V.
Note that torsion is irrelevant when computing µmin or µmin.

(For the proof of (3.20.1), assume first that X is smooth. From Remark 3.19, the Seshadri constant
is independent of x ∈ X, and verifies the linearity ε (V〈λ〉;x) = ε (V;x)+deg λ. Furthermore, slopes
respect the same formula µ(V〈λ〉) = µ(V) + deg λ, and similarly for µmin and µmin.

In characteristic zero, we are then free to assume that µmin(V) = 0. Hartshorne’s Theorem
[Laz04a, Theorem 6.4.15] (which is only valid in characteristic zero; see [Har71, Example 3.2]) shows
that V is nef. In particular, ε (V;x) ≥ 0 for all x ∈ X. By the assumption µmin(V) = 0, there exists
a quotient map V � Q with Q nonzero, nef, semistable, and µ(Q) = 0. Since ε (V;x) ≤ ε (Q;x)
by Lemma 3.18, it is then enough to treat the case when V = Q is nef of degree 0. In this case,
one can use Remark 3.10(c), where the blow-up π of x ∈ X is the identity, and the “exceptional”
divisor E is OX(x).

In positive characteristic, the proof is analogous after replacing µmin with µmin, in view of [BP14,
Theorem 1.1], which proves that V is nef iff µmin(V) ≥ 0. The result was seemingly first proved by
Barton [Bar71, Theorem 2.1], and stated explicitly by Brenner in [Bre04, Theorem 2.3] and [Bre06,
p. 534], Biswas in [Bis05, Theorem 1.1], and Zhao in [Zha17, Theorem 4.3].

When X is singular, then from the projection formula, one finds ε (V;x) = ε (ν∗V)
multxX

, where ε (ν∗V)

is the Seshadri constant of ν∗V at any point of X ′. ) �

Corollary 3.21 (Seshadri constants for sheaves via restrictions to curves). Let X be a projective
scheme of arbitrary dimension over an algebraically closed field. Fix x ∈ X a closed point and V a
coherent (twisted) sheaf on X. Then

ε (V;x) = inf
x∈C⊂X

µmin(ν∗V)

multxC
,

where C ranges through the set of irreducible curves through x on X, where ν : C ′ → C is the
normalization, and µmin is defined as above.

Note that torsion subsheaves whose supports have positive dimension may influence the result.

Proof. Use CV,x =
⋃
x∈C⊂X CV|C ,x to deduce that ε (V;x) = infx∈C⊂X ε (V|C ;x). The result then

follows from Example 3.20. �

Example 3.22 (Dual Picard bundles). Let C be a smooth complex projective curve of genus g. For
d ≥ 1, denote by Cd the d-th symmetric product of C and set Jd := Picd(C). The Abel–Jacobi map
αd : Cd → Jd is given by D 7→ OC(D) for all effective divisors D of degree d on C. For d ≥ 2g − 1
we have Cd = PJd(P∨d ) and αd is the bundle map, where Pd is the Picard bundle on Jd of rank
d+1−g. It is uniquely determined by the choice of a fixed point x0 ∈ C. Furthermore, P∨d is ample
([Laz04b, Theorem 6.3.48]), and the relative O(1) sheaf has a section vanishing along Cd−1 + x0.

Assume d ≥ 2g − 1. Denote by ξd the ample class of the relative O(1) on Cd = P(P∨d ). We have

ξdd = 1 and ξd · C = 1, where C is the class of any embedding C = C1 ⊂ Cd by x 7→ x+D′, where
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D′ ∈ Cd−1. Since such curves pass through any point of Cd and map isomorphically onto their
image by αd, we deduce ε (P∨d , λ) ≤ 1 for all λ ∈ Jd. In fact, since Pd|C is semistable (cf. [EL92])
for any embedding C ↪→ Jd : x 7→ x+λ′ with λ′ ∈ Jd−1 fixed, and since c1(P∨d ) = θ ∈ N1(Jd) is the
class of a theta divisor on the Jacobian, we obtain by Example 3.20 that

ε (P∨d ;λ) ≤ µ(P∨d |C) =
θ·C
rkPd

=
g

d+ 1− g
≤ 1

for all λ ∈ Jd.

For a concrete situation, assume g = 2 and d = 2g − 1 = 3. We prove that

ε (P∨3 , λ) is


= 1

3 , if Bs |λ| 6= ∅
≤ 1

2 , if Bs |λ| = ∅
∈
[

3
7 ,

1
2

]
, if Bs |λ| = ∅ and |λ| has only simple ramification

In this case simple ramification means that |λ| contains no divisor of form 3x for some x ∈ C. Note
that λ ∈ J3 is not basepoint free if and only if λ = OC(KC + x) for some x ∈ C. Note also that
|KC | is the hyperelliptic canonical pencil.

Let P1
λ := α−1

3 {λ} and put C̃3 := BlP1
λ
C3 with blow-down map π′3 and exceptional divisor E′3.

Case λ ∈ J3 is not basepoint free. Let x be its unique basepoint. The fiber P1
λ is contained in

C2 +x as a divisor, the hyperelliptic P1 ⊂ C2. The strict transform C2 + x in C̃3 is then isomorphic
to C2 and has class π′3

∗ξ3 − E′3.
The restriction E′3|C2+x is identified with P1

λ in C2 + x, and π′3
∗ξ3 restricts to ξ2.

We have π′3
∗ξ3 − 1

3E
′
3 = [C2 + x] + 2

3E
′
3.

As in Remark 3.10.(b), we have that
(
π′3
∗ξ3 − 1

3E
′
3

)
|E′3 is nef. By Remark 3.10.(c), to show

ε (P∨3 , λ) = 1
3 , it is enough to prove that

(
3π′3
∗ξ3 − E′3

)
|C2+x is nef, but not ample.

This restriction has class 3ξ2 − [P1
λ]. Its lift via the quotient map C ×C → C2 is the pullback of

the theta class by the difference map C × C → J0 given by (x, y) 7→ OC(x− y). In particular it is
nef, and not ample because the lift vanishes on the diagonal of C × C.

Case |λ| is basepoint free. Since |λ| is basepoint free it determines a g1
3, a 3 : 1 map to P1. Let

Sλ ⊂ C3 be the image of the map F : C ×C → C3 given by (x, y) 7→ x2 + x3 + y, where x+ x2 + x3

is the unique member of |λ| determined by x. Observe that F is 1 : 1 away from the diagonal, and
3 : 1 on the diagonal. Then Sλ has multiplicity 3 along P1

λ, the image of the diagonal of C × C via
F .

There exists a Cartier divisor ∆3
2 on C3 with class δ3

2 such that 2· δ32 is the class of the big diagonal
∆3, the image of the map G : C × C → C3 given by (x, y) 7→ 2x+ y.

One computes that [Sλ] = 6ξ3 − δ3
2 , hence the strict transform of Sλ in C̃3 satisfies [Sλ] =

6π′∗3 ξ3 − π′∗3 δ3
2 − 3E′3. For this consider T ⊂ C ×P1 C ⊂ C ×C the closure of the complement of the

diagonal inside the self fiber product over the g1
3. It has class 3f1 + 3f2 − δ, where f1, f2 are the

classes of the fibers of the two projections of C × C, and δ is the class of the diagonal. Then Sλ is
the image of T × C ⊂ (C × C)× C under the quotient map C3 → C3.

The map F factors through C̃3. The pullback of π′∗3 ξ3 − 1
2E
′
3 under F is 2f1 + f2 − 1

2δ. This

class is f1 + 1
2 [Γ], where Γ is the graph of the hyperelliptic involution and [Γ] = 2f1 + 2f2 − δ. The

intersection with Γ is 0, showing that it is nef and not ample. This shows ε (P∨3 , λ) ≤ 1
2 .

Case |λ| is basepoint free with only simple ramification. ∆3 meets P1
λ in 8 points 2xi + yi,

the nonreduced fibers of the g1
3. Then, the strict transform ∆3 of ∆3 in C̃3 is the blow-up of ∆3

at the 8 points, and has class π′∗3 δ3. Let C̃ × C be the blow-up of C × C at the 8 points (xi, yi).
Denote by E the sum of the 8 exceptional divisors, and by abuse denote by f1, f2, δ the pullbacks
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of the respective classes on C × C. The pullback of π′∗3 ξ3 − 1
2E
′
3 induced by G is 2f1 + f2 − 1

2E. It
is unclear to us if this is nef.

The assumption that |λ| has only simple ramification implies that the curve T constructed above is
irreducible (see [Laz04a, Proof of Theorem 1.5.8]). Note also that Sλ∩∆3 = G(T ) set theoretically.

Since Sλ contains no π′3-exceptional curves, we have Sλ ∩ ∆3 = G(T ), and we deduce that the

pullback of Sλ to C̃ × C is supported on an irreducible curve, the strict transform of T . The
pullback has class 14f1 + 6f2 − 2δ − 3E. It is nef since it has self-intersection 8 > 0.

We have π′∗3 ξ3 − 3
7E
′
3 = 1

7 [Sλ] + 1
14π
′∗
3 (2ξ3 + δ3). To prove its nefness, it is enough to verify the

nefness of its restriction to ∆3. From the previous paragraph we know that Sλ|∆3
is nef. It suffices

to prove that G∗(2ξ3 + δ3) is nef. This class is (4f1 + 2f2) + (−2f1 + 2δ) = 2(f1 + f2 + δ), which is
nef because it has intersection 0 with δ, and f1, f2 are nef. �

Remark 3.23. We expect that ε (P∨3 , λ) = 1
2 when |λ| is basepoint free (at least in the simple

ramification case). This comes down to showing that 4f1 + 2f2 −E is nef on the blow-up of C ×C
at the 8 points (xi, yi) such that 2xi + yi are the nonreduced fibers of the g1

3 determined by λ.
Since the Seshadri constant of the theta divisor on Jac(C) is 4

3 ([Ste98]), the class 10f1+4f2−2δ−
4
3E is nef, and in fact in the boundary of the nef cone. It is the pullback of the corresponding class on
the blow-up BlλJ3. At least when |λ| has only simple ramification, we have that 14f1 +6f2−2δ−3E
is nef. It is the class of the pullback of Sλ. We were not able to deduce the nefness of 4f1 + 2f2−E
from these two classes.

If L is an ample line bundle on a smooth projective variety X, it is conjectured ([EKL95]) that
ε (L;x) ≥ 1 for x ∈ X very general. When V is an ample vector bundle of rank r > 1, the example
of curves 3.20 shows that we cannot expect 1 as a universal lower bound at very general points.
A conceivable generalization is a lower bound of 1

r at a very general point. When X is a smooth

curve, this is proved in [Hac00, Corollary 3.1]. The lower bound 1
r = 1

2 is what we expect to see in
the previous example.

3.3. Functoriality. We use restriction to curves to describe important properties of Seshadri con-
stants.

Lemma 3.24 (Homogeneity). Assume that V is a coherent (twisted) sheaf on a projective scheme
X. Fix x ∈ X. Then

ε (Sd V;x) = d · ε (V;x).

Proof. By Corollary 3.21 and since symmetric powers are compatible with pullbacks, it is enough to
consider the case of curves. By normalizing, we may assume that X is a smooth projective curve.
After iterated Frobenius pullback, we may assume that µmin = µmin throughout. Note that slopes
respect the formula µ(Sd V) = d · µ(V) for locally free sheaves V. From any quotient V � Q of
slope µ(Q) we obtain the quotient Sd V � SdQ of slope d · µ(Q). This proves the “≤” inequality
by Lemma 3.18.

For the inequality “≥”, we note that V〈−µmin(V)〉 is nef and not ample (cf. [BP14, Theorem 1.1]).
Thus, [Laz04b, Theorem 6.2.12(iii)] implies that so is Sd

(
V〈−µmin(V)〉

)
=
(
Sd V

)
〈−d · µmin(V)〉. In

particular, the latter can have no (twisted) quotients of negative slope, proving “≥”. �

Corollary 3.25. Let V be a (twisted) locally free sheaf of finite rank on the projective variety X.
Let νd : P(V)→ P(Sd V) denote the relative Veronese embedding. Then

ν∗d Nef1
(
P(Sd V)

)
= Nef1

(
P(V)

)
and νd∗ Eff1

(
P(V)

)
= Eff1

(
P(Sd V)

)
.

Proof. The second equality follows from the first by duality. Let ρd : P(Sd V) → X be the bundle
map with relative Serre bundle ξd such that ν∗dξd = dξ. If δ ∈ N1(X), it is enough to prove that
d(ξ − ρ∗δ) is nef if and only if ξd − dρ∗dδ is nef. In other words, that V〈−δ〉 is nef if and only if

(Sd V)〈−dδ〉 = Sd(V〈−δ〉) is nef. This is immediate from Lemma 3.24 and from Remark 3.10.(a). �
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Remark 3.26. With notation as in the corollary, when the characteristic of the base field is zero,

then ν∗d Eff
1(P(Sd V)

)
⊇ Eff

1(P(V)
)
. By the duality of [BDPP13], we also deduce νd∗Mov1

(
P(V)

)
⊇

Mov1

(
P(Sd V)

)
.

For the first inclusion, we essentially want to show that if some Sp V has sections, then some
Sk Sd V has sections. In characteristic zero, Skd V is a direct summand of Sk Sd V. Then one can
take k = p.

Lemma 3.27 (Determinants). If V is locally free of rank r, then for all x ∈ X, we have

ε (V;x) ≤ 1

r
ε (detV;x).

Proof. Immediate from Corollary 3.21 and from µmin(ν∗V) ≤ µ(ν∗V) =
degC′ (ν

∗V)
r = detV·C

r . �

Lemma 3.28 (Tensor products). Let V and V ′ be (twisted) coherent sheaves on X. Then

ε (V ⊗ V ′;x) ≥ ε (V;x) + ε (V ′;x)

for all x ∈ X. If X is a curve, or if V ′ = V, then equality holds.

Proof. Corollary 3.21 allows to reduce to the case of possibly singular curves. By normalizing we
can assume that X is a smooth projective curve. Pulling back by a sufficiently large iteration of
the Frobenius, we may assume that µmin = µmin for all the (finitely many) sheaves involed. Then
in fact we claim

µmin(V ⊗ V ′) = µmin(V) + µmin(V ′).
Up to twisting, we may assume µmin(V) = µmin(V ′) = 0, so V and V ′ are nef. Then V ⊗ V ′ is also
nef (cf. [Laz04a, Theorem 6.2.12]), hence µmin(V ⊗ V ′) ≥ 0. If Q and Q′ are quotients of slope 0 of
V and V ′ respectively, then Q⊗Q′ is a quotient of slope 0 of V ⊗V ′, giving the remaining inequality
µmin(V ⊗ V ′) ≤ 0. �

Note that equality on curves does not lead to equality in arbitrary dimension in general, since
the Seshadri constants ε (V;x) and ε (V ′;x) could be approximated on different curves through x.
We observe this below already for line bundles.

Example 3.29. On X := P1×P1, we have ε (O(1, 0);x) = ε (O(0, 1);x) = 0 for all x ∈ X, since the
line bundles in question are nef and have trivial restrictions on the fibers of the respective natural
projection. On the other hand, as in [Laz04a, Example 5.1.7], we find ε (O(1, 1);x) = 1 for all
x ∈ X. �

Corollary 3.30. Let X be a projective scheme over an algebraically closed field, and let V and V ′
be (twisted) sheaves on X. Assume that V is ample (resp. nef), and that V ′ is nef. Then V ⊗ V ′ is
ample (resp. nef). Furthermore, all Schur functors SλV are ample (resp. nef), where λ is a partition
of some positive integer.2

Compare with [Laz04b, Corollary 6.1.6] and [Bar71].

Proof. Immediate from Lemma 3.28 and Theorem 3.11 (resp. Remark 3.10.(a)). For the last part,
use the construction of SλV as quotient of Sλ1 V ⊗ . . .⊗Sλr V. This reduces the problem to showing
that Sn V is ample (resp. nef) if V is ample (resp. nef). This follows from Lemma 3.24 and from
Theorem 3.11 (resp. Remark 3.10.(a)). �

Lemma 3.31. Let K → V → Q → 0 be an exact sequence of (twisted) coherent sheaves on X.
Then, we have

ε (V;x) ≥ min
{
ε (K;x), ε (Q;x)

}
2Here, SλV, where λ = (λ1 ≥ . . . ≥ λr ≥ 0) ` n, is understood as a quotient of Sλ1 V ⊗ . . . ⊗ Sλr V as in [Ful97,

Chapter 8.3, Example 10].
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for all x ∈ X. In particular, if ε (K;x) ≥ ε (Q;x), then ε (V;x) = ε (Q;x). Furthermore, if
V = K ⊕Q, then ε (V;x) = min{ε (K;x), ε (Q;x)}.

Proof. By Corollary 3.21, as above, we can assume that X is a smooth curve, and that µmin = µmin

for all the sheaves involved. Let V � A be the quotient of minimal slope in the Harder–Narasimhan
filtration of V. In particular, A is semistable. If the induced map K → A is nonzero, then its image
has slope at most µ(A) = µmin(V), and µmin(K) ≤ µmin(V). If K → A is zero, then we obtain an
induced nonzero map Q → A and argue as before. The last part follows from Lemma 3.18. �

3.4. Pseudo-effectivity. Using results from [BDPP13] (which hold in arbitrary characteristic by
[FL17, Section 2.2]), we show that Seshadri constants for non-pseudo-effective divisors are negative.

Lemma 3.32. Let X be a projective variety of dimension n over an algebraically closed field, and

let L ∈ N1(X) be an R-Cartier R-divisor class outside the pseudo-effective cone Eff
1
(X). Then,

ε (L;x) = −∞ for general x ∈ X. Furthermore, ε (L;x) < 0 for all x.

Proof. By [BDPP13, Theorem 2.2], there exists a birational model f : X ′ → X and ample divisor
classes H1, . . . ,Hn−1 on X ′ such that L · f∗(H1 · . . . · Hn−1) < 0. Since there exist complete
intersection curves through every point of X ′, their images pass through every point of X. This
implies ε (L;x) < 0 for all x.

Let x ∈ X be a general smooth point where f is an isomorphism, and denote the inverse image
of x in X ′ also by x. By Bertini, for all large m there exists a curve Cm smooth at x ∈ X ′, of class
mn−1(H1 · . . . ·Hn−1). Then ε (L;x) ≤ L·f∗Cm

multx f∗Cm
. The latter tends to −∞ as m→∞. �

Corollary 3.33. Let X be a projective variety of dimension n over an algebraically closed field. If
OP(V)(1) is not pseudo-effective, then ε (V;x) < 0 for all x ∈ X.

Proof. Immediate from Lemma 3.32 and the negative case of Remark 3.12. �

3.5. Semicontinuity. We end this section with two semicontinuity results. The first concerns
semicontinuity in the R-twists λ for a twisted sheaf of the form V〈λ〉, which is a consequence of our
functoriality results.

Corollary 3.34. Let X be a projective scheme over an algebraically closed field, and fix a closed
point x ∈ X. Let V be a coherent sheaf, with ε (V;x) > −∞. Let h be an ample divisor class on
X. Consider the function ε(t) := ε(V〈th〉;x). Then, ε is nondecreasing, continuous at all t > 0 and
lower-semicontinuous at t = 0.

Proof. Lemma 3.28 and homogeneity for divisors imply

ε(t) ≥ ε(t′) + (t− t′) ε (h;x) > ε(t′)

for all t > t′ ≥ 0. Furthermore ε(t) + ε(t′) ≤ ε
(
V ⊗ V

〈
(t + t′)h

〉
;x
)

= 2ε
(
t+t′

2

)
. Finite concave

functions are continuous on open intervals. Lower-semicontinuity follows because ε is nondecreasing.
�

Proposition 3.35 (Semicontinuity in families). Let T be a smooth connected variety over an un-
countable algebraically closed field. Let p : X → T be a smooth projective family of varieties with
connected fibers and a section T → X which maps t 7→ xt ∈ Xt := p−1{t}. Let V be a locally free
sheaf on X , and denote Vt the corresponding restriction to Xt.

Let ε ≥ 0, and let t0 ∈ T such that Vt0 is nef and ε (Vt0 ;xt0) ≥ ε. Then, ε (Vt;xt) ≥ ε for very
general t ∈ T . In particular, under the positivity assumptions above, the Seshadri constants are
constant outside an at most countable union of proper closed subsets, on which they may decrease.

Proof. Let ρ : P(V ) → X be the bundle map with fiberwise restrictions ρt : P(Vt) → Xt. If the
conclusion fails, then standard relative Hilbert scheme arguments produce a scheme of finite type
H with a dominant morphism f : H → T (by restriction to a closed subset we may assume that f is
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generically finite) and a relative flat curve C ⊂ H×T P(V ) over H such that the fibers Ch ⊂ P(Vf(h))

are irreducible, and moreover in CVf(h),xf(h) for all h ∈ H. Furthermore
ξf(h)·Ch

multxf(h) ρt∗Ch
< ε.

Let Y ⊂ P(V ) be the closure of (f ×T P(V ))(C ) = ∪h∈HCh ⊂ P(V ). For any t ∈ T , denote by
[Yt] the Chow class of the restriction Y |P(Vt) in the sense of [Ful98, Chapter 8]. This is an effective
curve class (even if the scheme theoretic fiber Yt may have dimension greater than 1). See [FL16,
Lemma 4.10] for details. For very general t ∈ T , the class [Yt] is represented by the fundamental
cycle of the scheme theoretic Yt which is just the sum (with multiplicity) of the finitely many Ch
with h ∈ f−1t. By abuse, we write [Yt] = Yt =

∑
h∈f−1tCh in this case.

For t ∈ T very general, let Z0 + Z ′0 be a flat degeneration over t0 of the restriction of Y over
some irreducible curve T ′ ⊂ T connecting t and t0. In fact, Z0 +Z ′0 is the fundamental cycle of the
fiber over t0 of the irreducible component of YT ′ that dominates T ′. Here Z ′0 is the part that does
not come from CVxt0 ,xt0 . Since multiplicity is upper semicontinuous in families, and ρt0∗Z

′
0 does not

have xt0 in its support, we have

multxt0 ρt0∗Z0 ≥ multxt ρt∗[Yt].

Since ξt0 is nef, we have ξt0 · [Yt0 ] ≥ ξt0 · Z0. We reach the contradiction

ε ≤ ξt0 · Z0

multxt0 ρt0∗Z0
≤ ξt0 · [Yt0 ]

multxt0 ρt0∗Z0
≤ ξt · [Yt]

multxt ρt∗Yt
=

ξt ·
∑

h∈f−1tCh∑
h∈f−1t multxt ρt∗Ch

≤ max
h∈f−1t

ξt · Ch
multxt ρt∗Ch

< ε. �

Remark 3.36. The same results work in the more general setting of a smooth projective morphism
ρ : Y → X of T -schemes with ρ-ample polarization ξ. The only step in the proof of Proposition
3.35 where the nefness of Vt0 is used is in the inequality ξt0 · Z0 ≤ ξt0 · [Yt0 ]. In the absence of the
nefness condition (and of the positivity of ε), [Ful17, Example 3.15] observes that this form of lower
semicontinuity fails already for line bundles on toric surfaces.

4. Tangent bundles

Let X be a smooth projective variety, and let TX be the tangent sheaf. We are interested in
the Seshadri constants of this bundle and in how they recover some of the birational geometry of
X. The motivation is given by the following easy consequence of the Seshadri ampleness criterion
(Theorem 3.11) and Mori’s characterization of projective space [Kol96, V.3.3 Corollary].

Corollary 4.1. Let X be a smooth projective variety. If infx∈X ε (TX;x) > 0, then X ' Pn.

4.1. Examples. We start by computing some examples.

Example 4.2 (Seshadri constants for TPn). We have

ε (TPn;x) =

{
2 if n = 1;

1 if n ≥ 2.

(Since Pn is a toric variety, and TPn is ample, by [HMP10, Proposition 3.2], the Seshadri constant
is computed by restricting to invariant P1’s. For n = 1, the restriction is OP1(2). For n ≥ 2, the
restriction is OP1(1)⊕n−1 ⊕OP1(2), and we see that the minimal slope is 1.) �

Example 4.3 (Homogeneous varieties). If X is a homogeneous variety (e.g., abelian or rational
homogeneous space like a Grassmann variety or smooth quadric), not isomorphic to a projective
space, then TX is globally generated but not ample. Since X has a transitive algebraic group action,
ε (TX;x) is independent of x ∈ X. Then ε (TX;x) = 0 for all x ∈ X by the Seshadri ampleness
criterion (Theorem 3.11).
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Example 4.4 (Varieties of general type). Assume that X is smooth projective variety over an
algebraically closed field, with KX big (or even pseudo-effective, but not numerically trivial). Then

ε (TX;x) = −∞ ∀ x ∈ X.

(Let Cd be a smooth curve through x with limd→∞KX · Cd = ∞. General complete intersections
through x of large degree will do. Then ε (−KX ;x) = −∞. Conclude by Lemma 3.27.) �

Example 4.5 (Calabi–Yau type manifolds). Assume that X is a smooth projective variety of
dimension n over an algebraically closed field, with KX numerically trivial. Then

ε (TX;x) ≤ 0 ∀ x ∈ X.

(Indeed ε (TX;x) ≤ 1
n ε (detTX;x) = 0.) �

Corollary 4.6 (Uniruledness and Separably rationally connectedness (SRC) criterion). Let X be
a smooth projective variety over an algebraically closed field. Assume there exists x0 ∈ X such that
ε (TX;x0) > 0. Then X is uniruled, even SRC, and OP(TX)(1) is pseudo-effective.

Proof. The previous two examples show that KX is not pseudo-effective. Then X is uniruled by
[BDPP13] (whose results hold in arbitrary characteristic by [FL17, Section 2.2]).

We now show that X is SRC. Since 1
dimX ε (−KX ;x0) ≥ ε (TX;x0) > 0 by Lemma 3.27, we see

that −KX ·C > 0 for every curve C through x0. By bend and break [Kol96, II.5.14 Theorem], there
therefore exists a rational curve D through x0. Since ε (TX;x0) > 0, we see that TX|D is very free
by Example 3.20, and it follows that X is SRC by [Kol96, IV.3.7 Theorem].

For the pseudo-effectivity statement, see Corollary 3.33. �

Remark 4.7. The previous criterion is not a characterization of uniruled or SRC varieties. If
f : X → Y is a smooth morphism of smooth projective varieties with positive dimensional fibers
and dimY > 0, we claim that ε (TX;x) ≤ 0 for all x ∈ X. (Let y := π(x) ∈ Y . From the surjections

TX � f∗TY � f∗TY |Xy = O⊕ dimY
Xy

,

by Lemma 3.18 we deduce ε (TX;x) ≤ ε (O⊕ dimY
Xy

;x) = 0.) �

4.2. Characterizations of projective space. In particular cases, we can say something stronger
than Corollary 4.6 when ε (TX;x0) > 0 for a point x0 ∈ X.

Proposition 4.8 (Fano manifolds). Let X be a smooth projective variety over an algebraically
closed field k. Suppose that one of the following conditions holds:

(1) X is Fano and some x0 ∈ X verifies ε (TX;x0) > 0;
(2) char k = 0 and a general point x0 ∈ X verifies ε (TX;x0) > 0.

Then, X ' Pn.

We note that the notion of general point in (2) is that in [Keb02, Notation 2.2].

Proof. Let f : P1 → X be a rational curve passing through x0. From Corollary 3.21 we immediately
find that f∗TX is ample, hence

(4.8.1) f∗TX ' O(d1)⊕O(d2)⊕ · · · ⊕ O(dn)

and di ≥ 1 for all i. In situation (1), we conclude that X ' Pn from [Kol96, V.3.2 Theorem].
In situation (2), we have that di ≥ 2 for some i in (4.8.1) since there is a non-zero natural

homomorphism O(2) ' TP1 → f∗TX. Thus, deg f∗TX = − deg f∗ωX ≥ n + 1 for every rational
curve passing through x0. Since X is uniruled by Corollary 4.6, we conclude that X ' Pn from
[CMSB02, Corollary 0.4(11)]. �

See also Corollary 6.7. Inspired by Proposition 4.8, we pose the following:
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Conjecture 4.9. Let X be a smooth projective variety over an algebraically closed field. If there
exists x0 ∈ X such that ε (TX;x0) > 0, then X ' Pn.

We now show the case when dimX = 2. We start with the following:

Lemma 4.10. Let Z ⊂ X be a smooth closed subvariety of a smooth variety. Consider the blow-up
cartesian diagram

E � � 
//

π|E
��

�

X̃

π

��

Z � �

ı
// X

.

Identify all x ∈ X \ Z with their preimages in X̃ \ E. Then for all x ∈ X \ Z,

ε
(
π∗TX(−E);x

)
≤ ε

(
TX̃;x

)
≤ ε

(
TX;x

)
≤ ε

(
TX̃(E);x

)
≤ ε

(
π∗TX(E);x

)
.

Proof. We have a short exact sequence 0→ π∗ΩX → Ω
X̃
→ ∗ΩE/Z → 0. By duality, from the long

Ext sequence we extract

(4.10.1) 0 −→ TX̃ −→ π∗TX −→ ∗TE/Z(E) −→ 0.

The second inequality now follows from Lemma 3.31. We use here that ε (∗TE/Z(E);x) = ∞,

because x is not in the support and ε (π∗TX;x) (computed an X̃) is the same as ε (TX;x) (computed
on X). The fourth inequality is similar. Twist (4.10.1) by E.

For the first inequality, the main ingredient is a short exact sequence

(4.10.2) 0 −→ π∗TX(−E) −→ TX̃ −→ ∗Q −→ 0

Assuming it, we conclude again by Lemma 3.31. For the third inequality, twist (4.10.2) by E.

From the normal bundle sequence 0 → TE → TX̃|E → OE(E) → 0 and the relative tangent
bundle sequence 0→ TE/Z → TE → π|∗ETZ → 0, we find a bundle Q defined by the sequence

(4.10.3) 0 −→ TE/Z −→ TX̃|E −→ Q −→ 0,

sitting in 0→ π|∗ETZ → Q→ OE(E)→ 0. Restrict (4.10.1) over E, obtaining TX̃|E → π∗TX|E →
TE/Z(E) → 0. The first map is the restriction of the differential dπ. Its kernel is clearly TE/Z ,

included in TX̃|E by (4.10.3). We obtain another short exact sequence

(4.10.4) 0 −→ Q −→ π∗TX|E −→ TE/Z(E) −→ 0.

From the snake lemma for (4.10.1) and (4.10.4), we obtain (4.10.2). �

Corollary 4.11. With notation as in the lemma, if ε (TX̃;x0) > 0 for some x ∈ X \ Z = X̃ \ E,
then ε (TX;x0) > 0.

Corollary 4.12. Let X be a smooth projective surface over an algebraically closed field. If there
exists x0 ∈ X such that ε (TX;x0) > 0, then X ' P2.

Proof. Let E ⊂ X be a smooth curve with negative self-intersection. Then from the surjection
TX|E � OE(E) we deduce that ε (TX;x) < 0 for all x ∈ E.

Let π : X → X ′ be a minimal model of X constructed by blowing-down smooth −1 curves. By
the previous observation, x0 is not on any of the contracted curves, so it is in the isomorphism locus
of π. By the previous corollary, ε (TX ′;π(x0)) > 0.

The examples at the beginning of the section show that X ′ is uniruled. In the Kodaira classifi-
cation of minimal surfaces, X ′ is then either P2, or a ruled surface (possibly a Hirzebruch surface).
Remark 4.7 excludes ruled surfaces. Therefore X ′ ' P2.

If π is not an isomorphism, then it factors through the blow-up of one point on P2. This is the
Hirzebruch surface F1. Apply the previous corollary and Remark 4.7 again to find a contradiction.

�
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5. Separation of jets

In this section we give a characterization of Seshadri constants in terms of separation of jets
following [Laz04a, Chapter 5]. First, recall the following:

Definition 5.1. Let F be an OX -module on a projective scheme X, and fix a closed point x ∈ X
defined by the ideal mx ⊆ OX . We say that F separates s-jets at x if the restriction map

H0(X,F) −→ H0(X,F/ms+1
x F)

is surjective. With the convention m0
x = OX , all sheaves separate −1-jets. We denote by s(F ;x)

the largest integer s ≥ −1 such that F separates s-jets at x.

Remark 5.2. If F → G is a morphism of quasi-coherent OX -modules, surjective at x, then s(G;x) ≥
s(F ;x).

We show the following analogue of [Laz04a, Theorem 5.1.17] for higher ranks. The statement for
x a singular point is new even for line bundles.

Theorem 5.3. Let V be an ample coherent sheaf on a projective scheme X, and let x ∈ X be a
closed point. Then,

ε (V;x) ≤ lim
k→∞

s(Sk V;x)

k
,

and equality holds if V is locally free at x.

When V is locally free, for any cartesian diagram

P(f∗V)
f ′

//

ρ′

��
�

P(V)

ρ

��

Y
f

// X

and any k ≥ 0, the base change map

(5.3.1) f∗ρ∗OP(V)(k) −→ ρ′∗f
′∗OP(V)(k)

is an isomorphism. Both terms are isomorphic to Sk f∗V. When V is an arbitrary coherent sheaf,
then the same conclusion holds for k sufficiently large. We will also need the following lemma.

Lemma 5.4 (cf. [Ito13, Proof of Lem. 3.7]). Let X be a scheme, and let F and G be coherent
sheaves on X with s(F ;x) ≥ 0 and s(G;x) ≥ 0. Then, for every closed point x ∈ X, we have

s(F ;x) + s(G;x) ≤ s(F ⊗ G;x).

Furthermore,

s(SmF ;x) + s(SnF ;x) ≤ s(Sm+nF ;x)

for all m,n ≥ 0.

Proof. We first show that a coherent sheaf F separates s-jets if and only if

(5.4.1) H0(X,mi
xF) −→ H0(X,mi

xF/mi+1
x )

is surjective for every i ∈ {0, 1, . . . , s}. We proceed by induction on s. If s = 0, then there is nothing
to show. Now suppose s > 0. By induction and the fact that a coherent sheaf separating s-jets also
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separates all lower order jets, it suffices to show that if F separates (s − 1)-jets, then F separates
s-jets if and only if (5.4.1) is surjective for i = s. Consider the commutative diagram

0 // ms
xF //

��

F //

��

F/ms
xF // 0

0 // ms
xF/ms+1

x F // F/ms+1
x F // F/ms

xF // 0

Taking global sections, we obtain the diagram

0 // H0(X,ms
xF) //

��

H0(X,F) //

��

H0(X,F/ms
xF) // 0

0 // H0(X,ms
xF/ms+1

x ) // H0(X,F/ms+1
x F) // H0(X,F/ms

xF)

where the top row remains exact by the assumption that F separates (s − 1)-jets. By the snake
lemma, we see that the left vertical arrow is surjective if and only if the middle vertical arrow is
surjective, as desired.

We now prove the lemma. Suppose F separates i-jets and G separates j-jets. We then have the
commutative diagram

H0(X,mi
xF)⊗H0(X,mj

xG) //

��

H0(X,mi
xF/mi+1

x F ⊗mj
xG/mj+1

x G)

��

H0
(
X,mi+j

x (F ⊗ G)
)

// H0
(
X,mi+j

x (F ⊗ G)/mi+j+1
x (F ⊗ G)

)
Since the top horizontal arrow is surjective by assumption, and the right vertical arrow is surjective,
essentially by the the surjectivity of

mi
x/m

i+1
x ⊗mj

x/m
j+1
x ' (mi

x ⊗mj
x)⊗OX/mx � mi+j

x /mi+j+1
x ,

we see that the composition from the top left corner to the bottom right corner is surjective,
hence the bottom horizontal arrow is surjective. By running through all combinations of integers
i ≤ s(F ;x) and j ≤ s(G;x), we see that s(F ;x) + s(G;x) ≤ s(F ⊗ G;x) by the argument in the
previous paragraph.

The statement on symmetric powers is similar. Use the commutative diagram

H0
(
X,mi

x SmF
)
⊗H0

(
X,mj

x SnF
)

//

��

H0
(
X,mi

x SmF/mi+1
x SmF ⊗mj

x SnF/mj+1
x SnF

)
��

H0
(
X,mi+j

x Sm+nF
)

// H0
(
X,mi+j

x Sm+nF/mi+j+1
x Sm+nF

) �

Proposition 5.5. Let X be a projective scheme, and let V be a coherent sheaf on it. Assume that
V is locally free around x and ε (V;x) ≥ 0. Then

ε (V;x) ≥ lim sup
k→∞

s(Sk V;x)

k
.

In particular, ε (V;x) ≥ s(V;x).

Proof. Note that the second statement follows from the first by Lemma 5.4, since the limit supremum
is a supremum by Fekete’s lemma. We have natural maps ms

x ⊆ π∗OBlxX(−sE) for all s ≥ 0. They
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are equalities if x is smooth, or if s is sufficiently large. In either case, for all coherent V that are
locally free around x, they induce isomorphisms

(5.5.1) H0
(
X,ms

xV/ms+1
x V

)
' H0

(
P(V(x)),O(1)

)
⊗H0

(
E,OE(−sE)

)
.

This is because ms
xV/ms+1

x V ' ms
x/m

s+1
x ⊗ V(x) by the fact that V is flat at x, and because

ms
x/m

s+1
x = π∗OE(−sE), under our assumptions on x and s. When s ≥ 1, these assumptions

also imply that OE(−sE) is very ample on E. When s = 0, it is globally generated. The same are
true of OP(V(x))(1) �OE(−sE) = Oρ′−1E((π′∗ξ − sρ′∗E)|ρ′−1E).

Let s := s(V;x). Assume s ≥ 0. As in the proof of Lemma 5.4, we have a surjection

(5.5.2) H0(X,ms
xV) � H0

(
X,ms

xV/ms+1
x V

)
.

When x is smooth or s is large, then π′∗ξ − sρ′∗E is globally generated along ρ′−1E. For this, in
view of (5.5.1) and (5.5.2), it is enough to show that H0(X,ms

xV) determine naturally a subspace
of H0

(
Y ′, π′∗OY (1)⊗ ρ′∗OBlxX(−sE)

)
. Consider the commutative diagram

ms
xV // //

'
��

ms
xV/ms+1

x V

'
��

π∗
(
π∗V ⊗OBlxX(−sE)

)
//

��

π∗
(
π∗V ⊗OE(−sE)

)
'

��

π∗
(
π∗ρ∗OP(V)(1)⊗OBlxX(−sE)

)
//

��

π∗
(
π∗ρ∗OP(V)(1)⊗OE(−sE)

)
'

��

π∗
(
ρ′∗π

′∗OP(V)(1)⊗OBlxX(−sE)
)

//

'
��

π∗
(
ρ′∗π

′∗OP(V)(1)⊗OE(−sE)
)

'
��

(π ◦ ρ′)∗
(
π′∗OP(V)(1)⊗ ρ′∗OBlxX(−sE)

)
// (π ◦ ρ′)∗

(
π′∗OP(V)(1)⊗ ρ′∗OE(−sE)

)
where the top vertical arrows are isomorphisms by the fact that V is locally free at x, and the
vertical arrows in the second row are obtained from the natural map V → ρ∗OP(V)(1); the map
on the right is an isomorphism since V is locally free at x. The arrows in the third row are
obtained from base change for the cartesian diagram in Notation 3.1, where the right arrow is an
isomorphism by cohomology and base change since V is locally free at x, hence π is flat around
x. The bottom vertical arrows are isomorphisms by the projection formula. After taking global
sections, the bottom horizontal arrow is still surjective by the commutativity of the diagram. Thus,
since π′∗OP(V)(1)⊗ ρ′∗OE(−sE) is globally generated, we see that π′∗OP(V)(1)⊗ ρ′∗OBlxX(−sE) is

globally generated along ρ′−1(E).
Let C ′ ∈ C′V,x. By Proposition 3.7, when s ≥ 0, to show ε (V;x) ≥ s, it is enough to prove that

(π′∗ξ − sρ′∗E) · C ′ ≥ 0.

Use global generation along ρ′−1E to produce an effective divisor in the class π′∗ξ−sρ′∗E that does
not pass through y, where y is any point of C ′ ∩ ρ′−1E.

If x is smooth, the argument above works when s ≥ 0. When s = −1, there is nothing to prove.
If x is singular, and if s(Sk V;x) > 0 for some k, then by Lemma 5.4 we have that s(Sk V;x) is

arbitrarily large as k grows. Repeat the arguments above for all Sk V, and use the homogeneity
of ε (−;x) from Lemma 3.24. Assume s(Sk V;x) ≤ 0 for all k. If s(Sk V;x) = 0, then Sk V is
globally generated at x, therefore ε (Sk V;x) ≥ 0 by Example 3.3. By homogeneity, ε (V;x) ≥ 0. If
s(Sk V;x) = −1 for all k, then there is nothing to prove. �

Proof of Theorem 5.3. Write ε = ε (V;x) and sk = s(Sk V;x). Let H be a very ample divisor on X
that separates 1-jets. Since V is ample, Sk V ⊗OX(−H) is eventually globally generated by Remark
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2.4, hence sk ≥ 1 for k sufficiently large by Lemma 5.4. By Proposition 5.5, it is enough to prove

ε ≤ lim
k→∞

sk
k
.

Note that the limit exists by Fekete’s Lemma, since the sequence sk is superadditive by Lemma 5.4.
Let 0 < δ � 1 be arbitrary, and fix positive integers p0, q0 such that

ε− δ < p0

q0
< ε.

Then, q0π
′∗ξ− p0ρ

′∗E is ample. Indeed, the cone generated by π′∗ξ and π′∗ξ− ερ′∗E is contained in
the nef cone, and meets the ample cone because −ρ′∗E is π′-ample and ξ is ample. Consequently, all
the classes in its interior are ample. By Serre vanishing, there exists a natural number m0 such that
H1
(
Y ′,OY ′

(
mq0π

′∗ξ − mp0ρ
′∗E
))

= 0 for all m ≥ m0, where Y ′ = BlP(V(x)) P(V) as in Notation
3.1. By the Leray spectral sequence [Laz04a, Lemma 5.4.24], this cohomology group is isomorphic
to H1

(
P(V),OP(V)(mq0) ⊗ Imp0P(Vx)

)
for m � 0, even if the point x is singular. Now for m � 0, the

right vertical arrow in the commutative diagram

H0(X, Smq0 V) // H0(X, Smq0 V ⊗OX/mmp0
x )

'
��

H0
(
P(V),OP(V)(mq0)

)
// H0

(
P(V),OP(V)(mq0)⊗OP(V)/I

mp0
P(Vx)

)
is an isomorphism by the base change isomorphism (5.3.1) applied to Spec(OX/mmp0

x ) ⊆ X. The
bottom arrow is therefore surjective for m� 0. Thus, Smq0 V separates mp0 − 1 jets, and

smq0
mq0

≥ mp0 − 1

mq0
> ε− δ − 1

mq0
.

Then limk→∞
sk
k ≥ ε− δ. The conclusion follows. �

It is known that lower bounds on Seshadri constants of big and nef invertible sheaves L lead to
lower bounds on the jet separation of adjoint bundles ωX ⊗ L. See [Dem92, Proposition 6.8]. In
this direction, Hacon proves

Theorem 5.6 ([Hac00, Theorem 1.7]). Let V be an ample locally free sheaf of finite rank r on a
complex projective manifold of dimension n. Let β ∈ Q+ such that π∗V∨〈βξ〉 is ample. Set

(5.6.1) M := min
0≤i≤n−1

 1(
n+r−i
r

) 1
n−i
· 1

n− i

 .
Then for any integer λ > nβ/M , the locally free sheaf ωX ⊗ Sλ V ⊗ detV is generated by global
sections at all very general points x ∈ X.

[dC98b, Theorem 5.2.2.1′] is a result of similar flavor. Hacon’s global generation result is a
corollary of his lower bounds on Seshadri constants [Hac00, Theorem 1.5.a.i]. These generalize the
line bundle case of [EKL95]. Theorem 5.6 is then an instance of the following jet separation bound:

Proposition 5.7. Let X be a complex projective manifold of dimension n, and let V be an ample
(or OP(V)(1) is only big and nef) locally free sheaf of finite rank r ≥ 1 on X. If p ≥ 0 is such that

ε (V;x) > n+s
p+r , then ωX ⊗ Sp V ⊗ detV separates s-jets at x.

In particular, if ε (V;x) > n
r for all x ∈ X, then ωX ⊗ detV is globally generated.

Compare with [Dem92, Proposition 6.8]. A relative version of this argument yields a higher-rank
analogue of [dC98a, Theorem 2.2]; see Theorem 7.1.
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Proof. We follow the proof of the Griffiths vanishing result in [Laz04b, Theorem 7.3.1]. We prove
that H1

(
X,ωX ⊗ Sp V ⊗ detV ⊗ms+1

x

)
= 0. This is equivalent to

H1
(
P(π∗V), ωP(π∗V) ⊗OP(π∗V)(p+ r)⊗ ρ′∗O(−(n+ s)E)

)
= 0.

By Remark 3.10, we know that (p + r)π′∗ξ − (n + s)ρ′∗E is nef. It is also big as it is a positive
combination between the big divisor π′∗ξ and the nef (so pseudo-effective) π′∗ξ − ε (V;x)ρ′∗E. The
conclusion follows from the Kawamata–Viehweg vanishing theorem. �

5.1. Separation of jets in positive characteristic. In this subsection, we prove the following
weaker version of Proposition 5.7 in positive characteristic. Our proof is based on the proof sketched
in [PST17, Exercise 6.3], which applies to the case when V is invertible.

Proposition 5.8. Let X be a smooth projective variety of dimension n over an algebraically closed
field k of characteristic p > 0, and let V be an ample locally free sheaf of finite rank r ≥ 1 on X. If
q ≥ 0 is such that ε (V;x) > n

q+r , then ωX ⊗ Sq V ⊗ detV is globally generated at x.

In particular, if ε (V;x) > n
r for all x ∈ X, then ωX ⊗ detV is globally generated.

Proof. Following the notation in Notation 3.1, we consider the cartesian diagram

(5.8.1)

P(π∗V)
π′ //

ρ′

��
�

P(V)

ρ

��

BlxX π
// X

As in the proof of Proposition 5.7, it suffices to show that the restriction homomorphism

H0
(
P(π∗V), ωP(π∗V) ⊗OP(π∗V)(q + r)⊗OP(π∗V)(−(n− 1)E′)

)
−→ H0

(
E′, ωP(π∗V) ⊗OP(π∗V)(q + r)⊗OP(π∗V)(−(n− 1)E′)

)
is surjective, where E is the exceptional divisor of π, and E′ := ρ′−1E. Since the morphisms ρ
and ρ′ are smooth, the Cartier divisor E′ is smooth, and the target of this homomorphism can be
written as

H0
(
E′, ωE′ ⊗OP(π∗V)(q + r)⊗OP(π∗V)(−nE′)

)
.

By Remark 3.10, we know that (q + r)π′∗ξ − nE′ is nef, and is moreover ample since ξ is ample
and −E′ is π′-ample; see the proof of Theorem 5.3. Thus, the associated invertible sheaf L :=
OP(π∗V)(q + r)⊗OP(π∗V)(−nE′) is ample.

We now consider the commutative diagram

F e∗
(
ωP(π∗V)(E

′)
)

//

TreP(π∗V),E′

��

F e∗ωE′

Tre
E′

��
ωP(π∗V)(E

′) // ωE′

of OP(π∗V)-modules. Here, the vertical morphisms are induced by the Grothendieck trace morphisms
associated to the e-th iterates of the absolute Frobenius on P(π∗V) and E′ [Tan15, Lemma 2.6(1)].
Tensoring by L and taking global sections, we obtain the commutative diagram

(5.8.2)

H0
(
P(π∗V), ωP(π∗V)(E

′)⊗ Lpe
)

//

��

H0
(
E′, ωE′ ⊗ Lp

e |E′
)

��

H0
(
P(π∗V), ωP(π∗V)(E

′)⊗ L
)

// H0
(
E′, ωE′ ⊗ L|E′

)
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We now fix e� 0 such that the top horizontal arrow is surjective, which exists since

H1
(
P(π∗V), ωP(π∗V) ⊗ Lp

e)
= 0

for e � 0 by Serre vanishing. It therefore suffices to show that the right vertical arrow in (5.8.2)
is surjective, since this would imply that the composition from the top left corner to the bottom
right corner in the commutative diagram is surjective, in which case the bottom horizontal arrow
is necessarily surjective.

To show that the right vertical arrow in (5.8.2) is surjective, we first show that E′ is globally
F -split, i.e., that the Frobenius morphism F : OE′ → F∗OE′ splits as a morphism of OE′-modules.
By base changing the diagram (5.8.1) along the inclusion {x} ↪→ X, we see that E′ is a product
of projective spaces. By [Smi00, Proposition 6.4], the scheme E′ is therefore globally F -split (even
globally F -regular).

We now show that the right vertical arrow in (5.8.2) is surjective. Since the Frobenius mor-
phism F : OE′ → F∗OE′ splits, we see that F e : OE′ → F e∗OE′ splits. The Grothendieck dual
TreE′ : F

e
∗ωE′ → ωE′ therefore has a section. Finally, this implies that the right vertical arrow in

(5.8.2) has a section, and in particular is surjective. �

6. Base loci

Building on ideas of Nakamaye, [ELM+09, Remark 6.5] proves that if D is a big and nef divisor
on a smooth projective variety, then the Seshadri constants of D determine the augmented base
locus:

B+(D) = {x ∈ X
∣∣ ε (D;x) = 0}.

We aim to prove a generalization to sheaves. Let V be a coherent sheaf on a protective scheme X.
[BKK+15, Definition 2.1] defines the base locus of V as

Bs(V) := {x ∈ X
∣∣ H0(X,V)→ V(x) is not surjective}.

With notation as in Notation 3.1, when V is locally free, the relation with the base locus of OP(V)(1)

is given by ρ
(
Bs
(
OP(V)(1)

))
= Bs(V).

Remark 6.1. More precisely, Bs(V) = Supp Q and, Bs(OP(V)(1)) ⊆ P(Q), with equality when V
is locally free. Here Q determined by

H0(X,V)⊗OX
ev−→ V −→ Q −→ 0. �

The stable base locus of a coherent sheaf V is

B(V) :=
⋂
k≥1

Bs(Sk V).

Let gg(V) := X \ Bs(V) be the globally generated locus of V. From

(6.1.1) gg(V) ⊆ gg(Sm V) ⊆ gg(Sk Sm V) ⊆ gg(Skm V),

we deduce that B(V) ⊆ B(Sm V) for all m ≥ 1. While the inclusion ρ
(
B
(
OP(V)(1)

))
⊆ B(V) is

easy to prove (see [BKK+15, p. 233]), equality may fail, even when V is locally free (see [MU19,
Example 3.2]). However, equality does hold if one allows perturbations.

Definition 6.2 ([BKK+15, Definition 2.4]). The augmented base locus of a coherent sheaf V is

B+(V) :=
⋂
k≥0

B
(
Sk V ⊗OX(−H)

)
,

where H is any ample divisor on X.
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Remark 6.3. It is a standard argument that the definition is independent of the choice of H.
Furthermore,

B+(V) =
⋂
k≥0

Bs
(
Sk V ⊗OX(−H)

)
.

When H is ample and globally generated, then

B+(V) = Bs
(
Sk V ⊗OX(−H)

)
for all sufficiently divisible k.

The relation between B+(V) and B+(OP(V)(1)) is given by the following:

Proposition 6.4. Let V be a coherent sheaf on a projective scheme over an algebraically closed
field. Then,

B+(V) ⊇ ρ
(
B+

(
OP(V)(1)

))
.

Equality holds when intersecting with the open locally free locus of V.

Proof. [BKK+15, Proposition 3.2] proves that when V is locally free on complex projective mani-
folds, and the proof in general is essentially the same. Let H be a very ample divisor on X such
that V(H) is globally generated. We obtain a surjection H0(X, V(H))⊗OX(H) � V(2H), which
shows that A := OP(V)(1)⊗ ρ∗OX(2H) is very ample on P(V).

Assume x ∈ gg
(
Sk V ⊗OX(−H)

)
. Then ρ−1{x} = P(V(x)) ⊆ gg

(
OP(V)(2k)⊗ ρ∗OX(−2H)

)
. We

have OP(V)(2k)⊗ ρ∗OX(−2H) = OP(V)(2k + 1)⊗A∨. These show the “⊇” inclusion.

Assume now P(V(x)) ⊆
⋃
k≥0 gg

(
OP(V)(k) ⊗ A∨

)
. Since A is very ample, we have inclusions

gg
(
OP(V)(k)⊗A∨

)
⊆ gg

(
OP(V)(mk)⊗A∨

)
for all m ≥ 1 and all k ≥ 0. We deduce that OP(V)(k)⊗

A∨ = OP(V)(k − 1) ⊗ ρ∗OX(−2H) is globally generated along P(V(x)) for sufficiently divisible k.

Pushing forward to X, since ρ∗OP(V)(k) = Sk V for k large enough, we find that the canonical map

H0
(
X, Sk−1 V ⊗OX(−2H)

)
⊗ ρ∗OP(V) → Sk−1 V ⊗OX(−2H)

is surjective at x. If x is in the locally free locus of V, then the natural map OX → ρ∗OP(V) is an

isomorphism around x, hence x ∈ gg
(
Sk−1 V ⊗OX(−2H)

)
. �

Remark 6.5. [ELM+09] and [Bir17] define augmented base loci of R-Cartier R-divisors. If V is
locally free, one can use the result above to define B+(V〈λ〉) := ρ(B+(ξ + ρ∗λ)).

We start relating B+(V) to Seshadri constants.

Lemma 6.6. Let V be a coherent sheaf on a projective scheme X. If x 6∈ B+(V), then ε (V;x) > 0.

Proof. The assumptions imply that for every ample Cartier divisor H on X there exists k > 0
such that Smk V ⊗ OX(−mH) is globally generated at x for sufficiently large m. Then ε (Smk V ⊗
OX(−mH);x) ≥ 0 by Example 3.3. Conclude by Lemmas 3.24 and 3.28. �

Corollary 6.7. Let X be a smooth projective variety over an algebraically closed field of character-
istic zero. If B+(TX) ( X, then X ' Pn.

Proof. Lemma 6.6 implies ε (TX;x) > 0 for x a general point on X. Now use Proposition 4.8(2). �

Definition 6.8 (see [BKK+15, Theorem 6.4]). A sheaf V is called V-big3 if B+(V) 6= X.

[Jab09, Examples 1.7 and 1.8] shows that this is usually stronger than asking for OP(V)(1) to be

big, even when V is locally free. See also [BKK+15, Remark 6.6].
The main result of this section is the following:

3“V” stands for Viehweg.



SESHADRI CONSTANTS FOR VECTOR BUNDLES 25

Proposition 6.9. Let V be a locally free sheaf of finite rank on a projective scheme X over an
algebraically closed field, and suppose that V is nef. Then,

B+(V) =
{
x ∈ X

∣∣ ε (V;x) = 0
}
.

If V is only a coherent sheaf (but still nef), and x is in the locally free locus of V, then x ∈ B+(V)
if and only if ε (V;x) = 0.

Proof. In view of Lemma 6.6, it is enough to justify the “⊆” inclusion. Let x ∈ B+(V) such that V
is locally free around x. By Proposition 6.4, there exists y ∈ P(V(x)) such that y ∈ B+(ξ). Since
ξ is nef, [Bir17] proves that there exists a subvariety Z ⊆ P(V) through y such that ξdimZ · Z = 0.
By [Laz04a, Proposition 5.1.9], we deduce ε (ξ; y) = 0. Conclude by Remark 3.12. �

We obtain an immediate improvement of Theorem 3.11.

Corollary 6.10. Let X be a projective scheme. Let V be a (nef) locally free sheaf of finite rank on
X. Then, V is ample if and only if ε (V;x) > 0 for all x ∈ X.

The following lemma will be used in the proof of Theorem 7.1.

Lemma 6.11. Let X be a projective scheme, and let V be a coherent sheaf on X. If x /∈ B+(V) is
a closed point, then for every coherent sheaf F on X and every integer s ≥ 0, the sheaf F ⊗OX Sm V
separates s-jets at x for all m sufficiently large.

Proof. Let H be a very ample divisor on X that separates s-jets at x. Since x 6∈ B+(V), there exists
m ≥ 1 such that x ∈ gg

(
Sm V ⊗OX(−H)

)
. Let n0 be sufficiently large so that F ⊗ Sr V ⊗OX(nH)

separates s-jets at x for all 0 ≤ r < m and all n ≥ n0. Such n0 exists by Lemma 5.4. For
M ≥ mn0, write M = mq + r with 0 ≤ r < m and q ≥ n0. Then F ⊗ SM V is a quotient of
F ⊗ Sr V ⊗ Sq Sm V =

(
F ⊗ Sr V ⊗OX(qH)

)
⊗ Sq(Sm V ⊗OX(−H)). Conclude by Lemma 5.4. �

7. Direct images of pluricanonical sheaves

In this section, we prove the following analogue of [DM19, Theorem A] for higher-rank bundles
and for higher-order jets, in the spirit of a relative Fujita-type conjecture of Popa and Schnell [PS14,
Conjecture 1.3].

Theorem 7.1. Let f : Y → X be a surjective morphism of complex projective varieties, where X
is of dimension n. Let (Y,∆) be a log canonical R-pair and let V be a locally free sheaf of finite
rank r ≥ 1 on X such that OP(V)(1) is big and nef. Consider a Cartier divisor P on Y such that
P ∼R k(KY +∆) for some integer k ≥ 1, and consider a general smooth closed point x ∈ X \B+(V).
If we have

(7.1.1) ε (V;x) > k · n+ s

m+ k(r − 1) + 1
,

then the sheaf

(7.1.2) f∗OY (P )⊗OX Sm V ⊗OX (detV)⊗k

separates s-jets at x.
In particular, if X is smooth, V is ample, and β > 0 is such that π∗V∨〈βξ〉 is ample, then with

M as in (5.6.1), for every integer

λ > k ·
(
β

M
(n+ s)− (r − 1)

)
− 1

the sheaf f∗OY (P )⊗ Sλ V ⊗ (detV)⊗k separates s-jets at all general points x ∈ X.
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Note that by Proposition 6.9, the condition x /∈ B+(V) follows from the condition on ε (V;x) in
(7.1.1). This condition also implies V is V-big in the sense of Definition 6.8. We also note that
the last statement follows in the same way as in [Hac00, Theorem 1.7], using the lower bound for
Seshadri constants in [Hac00, Theorem 1.5.a.i], hence it suffices to show the first statement. Finally,
our statement has “general” instead of “very general” since separating s-jets is an open condition.

Proof. By applying Lemma 6.11 to F = f∗OY (P )⊗(detV)⊗k, there exists a smallest positive integer
m0 such that the sheaf (7.1.2) separates s-jets at x for m ≥ m0. We will prove that the sheaf (7.1.2)
separates s-jets at x for a suitable choice of a general point x, if

(7.1.3) ε (V;x) >
n+ s

m+ r − k−1
k m0

.

The choice of the general point x will be detailed momentarily, but first we explain how the con-
clusion of the theorem follows from (7.1.3). This inequality is equivalent to

m >
n+ s

ε (V;x)
+
k − 1

k
m0 − r,

and by the minimality of m0, we see that

m0 ≤
⌊
n+ s

ε (V;x)
+
k − 1

k
m0 − r

⌋
+ 1 ≤ n+ s

ε (V;x)
+
k − 1

k
m0 − r + 1.

Rearranging this inequality yields

m0 ≤ k ·
(
n+ s

ε (V;x)
− r + 1

)
,

and substituting this upper bound for m0 into the inequality for m above, we see that the sheaf
(7.1.2) separates s-jets at x if

m >
n+ s

ε (V;x)
+ (k − 1) ·

(
n+ s

ε (V;x)
− r + 1

)
− r = k · n+ s

ε (V;x)
− k(r − 1)− 1

which is equivalent to the inequality (7.1.1). This idea was inspired by the proof of [PS14, Theorem
1.7].

We now explain the choice of the general point x. Following Steps 0 and 1 in the proof of [DM19,
Theorem A], we may assume that Y is smooth, that ∆ has simple normal crossings support and
coefficients in (0, 1], and that the image of the adjunction morphism

f∗f∗OY (P ) −→ OY (P )

is of the form OY (P −G) for a divisor G such that ∆ +G has simple normal crossings support. We
will show that under these assumptions, the sheaf (7.1.2) separates s-jets at all smooth closed points
x ∈ X \B+(V) satisfying (7.1.1), such that f is smooth at x and such that the fiber Yx := f−1(x)
over x intersects each component of ∆ transversely.

Step 1. Reduction to the case k = 1 for a suitable pair.

By assumption on m0, we know that the sheaf (7.1.2) separates s-jets at x for m = m0, and in
particular, is globally generated at x. This implies that the sheaf

OY (P −G)⊗ Sm0 f∗V ⊗ (det f∗V)⊗k

is globally generated along Yx. By pulling back along the bundle map

ρY : PY (f∗V) −→ Y,

and using the m0th symmetric power of the tautological quotient map, the invertible sheaf

OPY (f∗V)

(
ρ∗Y (P −G)

)
⊗OPY (f∗V)(m0)⊗

(
det(f ◦ ρY )∗V

)⊗k
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on PY (f∗V) is globally generated along ρ−1
Y (Yx). Now let c1(f∗V) denote the divisor class of the

determinant of f∗V on Y , and let η = c1(OPY (f∗V)(1)). Switching to divisor notation,

ρ∗Y (P −G) + k ρ∗Y c1(f∗V) +m0η ∼R ρ
∗
Y (k∆−G) + k ρ∗YKY + k ρ∗Y c1(f∗V) +m0η

∼R ρ
∗
Y (k∆−G) + kKPY (f∗V) + (m0 + kr)η.

By Bertini’s theorem, we can therefore choose a general divisor

D ∈
∣∣ρ∗Y (P −G) + k ρ∗Y c1(f∗V) +m0η

∣∣
that is smooth along ρ−1

Y (Yx), and intersects both ρ−1
Y (Yx) and the supports of ρ∗Y ∆ and ρ∗YG

transversely (see [Laz04a, Lemma 4.1.11]) in a neighborhood of ρ−1
Y (Yx). We then have

k
(
KPY (f∗V) + ρ∗Y ∆

)
∼R KPY (f∗V) + ρ∗Y ∆ +

k − 1

k
D +

k − 1

k
ρ∗YG−

k − 1

k
(m0 + kr)η.

We now want to rewrite the right-hand side as the sum of a log canonical divisor coming from
a log canonical pair on PY (f∗V) and a multiple of η. Since ∆ + k−1

k G may have some coefficients
greater than one, we first adjust the coefficients of ∆ and G. Applying [DM19, Lemma 2.18] to
c = k−1

k , there exists an effective Cartier Z-divisor G′ � G such that

∆′ := ∆ +
k − 1

k
G−G′

is effective with simple normal crossings support, with components intersecting Yx transversely, and
with coefficients in (0, 1]. Since ρY is a smooth morphism, the pullback ρ∗Y ∆′ also has these same
properties on PY (f∗V). We then have

(7.1.4)

ρ∗Y
(
P + k c1(f∗V)−G′

)
∼R k

(
KPY (f∗V) + rη + ρ∗Y ∆

)
− ρ∗YG′

∼R KPY (f∗V) + ρ∗Y ∆′ +
k − 1

k
D +

(
r − k − 1

k
m0

)
η.

This R-linear equivalence will be used to reduce the case k > 1 for the pair (Y,∆) to the case k = 1
for the pair (PY (f∗V), ρ∗Y ∆′ + k−1

k D).

Step 2. Replacing D with a divisor with simple normal crossings support.

Let µ : Z → PY (f∗V) be a common log resolution for D and (PY (f∗V), ρ∗Y ∆′). Note that we can

choose µ to be an isomorphism along ρ−1
Y (Yx), since D and ρ∗Y ∆′ intersect transversely and have

simple normal crossings support in a neighborhood of ρ−1
Y (Yx). We can then write

µ∗D = D1 + F, (ρY ◦ µ)∗∆′ = µ−1
∗ (ρ∗Y ∆′) + F1,

where D1 is a smooth divisor intersecting (ρY ◦µ)−1(Yx) transversely and F, F1 are supported away
from (ρY ◦ µ)−1(Yx). Define

F ′ :=

⌊
k − 1

k
F + F1

⌋
, ∆̃ := (ρY ◦ µ)∗∆′ +

k − 1

k
µ∗D− F ′,

P̃ := (ρY ◦ µ)∗
(
P + k c1(f∗V)

)
+KZ/PY (f∗V).

Note that ∆̃ has simple normal crossings support and coefficients in (0, 1] by assumption on the
log resolution µ and by the definition of F ′, and also has components intersecting (ρY ◦ µ)−1(Yx)
transversely. Pulling back the decomposition in (7.1.4) via µ and adding KZ/PY (f∗V) − F ′ yields

(7.1.5) P̃ − (ρY ◦ µ)∗G′ − F ′ ∼R KZ + ∆̃ +

(
r − k − 1

k
m0

)
µ∗η.
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Step 3. To show the sheaf (7.1.2) separates s-jets at x, it suffices to show that the sheaf

(7.1.6) (f ◦ ρY ◦ µ)∗OZ
(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

)
separates s-jets at x.

Consider the commutative diagram

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

))
//

� _

��

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

)
⊗ OX

ms+1
x

)
'

��

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ +mµ∗η

))
//

'
��

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ +mµ∗η

)
⊗ OX

ms+1
x

)
'

��

H0
(
X, f∗OY (P −G′)⊗ Sm V ⊗ (detV)⊗k

)
//

'
��

H0
(
X, f∗OY (P −G′)⊗ Sm V ⊗ (detV)⊗k ⊗ OX

ms+1
x

)
'

��

H0
(
X, f∗OY (P )⊗ Sm V ⊗ (detV)⊗k

)
// H0

(
X, f∗OY (P )⊗ Sm V ⊗ (detV)⊗k ⊗ OX

ms+1
x

)
where the top right isomorphism holds since F ′ is supported away from (ρY ◦µ)−1(Yx). The vertical
isomorphisms in the middle row follow from the projection formula, the fact that KZ/PY (f∗V) is
µ-exceptional, and the fact that RρY ∗OPY (f∗V)(m) is quasi-isomorphic to Sm f∗V for m ≥ 0. The
vertical isomorphisms in the bottom row follow from [DM19, Lemma 2.17]. If the top horizontal
arrow is surjective, then the commutativity of the diagram implies that the bottom horizontal arrow
is also surjective, i.e., the sheaf in (7.1.2) separates s-jets at x.

Step 4. The sheaf (7.1.6) separates s-jets at x if

ε (V;x) >
n+ s

m+ r − k−1
k m0

.

Consider the commutative diagram

Z ′
πZ //

µ′

��
�

Z

µ

��

PY ′(W)
π′Y //

�ρY ′
��

PY (f∗V)

ρY
��

Y ′
πY //

f ′

��
�

Y

f
��

X ′
π // X

with cartesian squares, where X ′ = BlxX, where Y ′ = BlYx Y , and W = (f ◦ πY )∗V = (π ◦ f ′)∗V.
The bottom square is cartesian since f is flat at x. Since ρY is smooth and therefore flat, we also
have PY ′(W) = Blρ−1

Y Yx
PY (f∗V). In the top square, πZ is the blow-up of Z along (ρY ◦ µ)−1(Yx)

since µ is an isomorphism over ρ−1
Y (Yx). Consider the commutative diagram

(7.1.7)

H0
(
Z ′, π∗ZOZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

))
// H0

(
Z ′, π∗ZOZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

)∣∣
(t+1)µ′∗E

)

H0
(
Z,OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

))
//

'

OO

H0
(
Z,OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

)
/It+1

(ρY ◦µ)−1(Yx)

)'
OO

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

))
//

'

OO

H0
(
X, (f ◦ ρY ◦ µ)∗OZ

(
P̃ − (ρY ◦ µ)∗G′ − F ′ +mµ∗η

)
⊗ OX

mt+1
x

)αt(x)

OO

where E denotes the exceptional divisor of the blow-up π′Y , and where the vertical arrows in the
top row are isomorphisms by the fact that πZ is the blow-up along the smooth subscheme (ρY ◦



SESHADRI CONSTANTS FOR VECTOR BUNDLES 29

µ)−1(Yx) ⊆ Z; see [Laz04a, Lemma 4.3.16]. We will show that the top horizontal arrow is surjective
for t = 0 and t = s. The t = 0 statement will show that αt(x) is surjective by the commutativity
of the diagram, hence an isomorphism for all t by cohomology and base change [Ill05, Corollary
8.3.11], using the flatness of f at x. The surjectivity of the top horizontal arrow for t = s will then
show that the sheaf (7.1.6) separates s-jets at x.

Choose a sufficiently small positive rational number δ such that

ε (V;x) >
n+ s+ δ

m+ r − k−1
k m0

.

Let D denote the exceptional divisor for the blow-up PX′(π∗V) → PX(V) along P(V(x)) and let ξ
denote the Serre class on PX′(π∗V). The Q-divisor

(7.1.8)

µ′∗
((

m+ r − k − 1

k
m0

)
π′∗Y η − (n+ t+ δ)E

)
= (ρY ′ ◦ µ′)∗

((
m+ r − k − 1

k
m0

)
ξ − (n+ t+ δ)D

)
is big and nef for t ∈ {0, s} by assumption on ε (V;x) and Remark 3.10(c). By the definition of
ε (V;x) and [ELM+09, Remark 6.5], the stable base locus of the divisor (7.1.8) is disjoint from µ′∗E
(cf. the proof of [DM19, Lemma 3.3]). By Bertini’s theorem, for ` a sufficiently large and divisible
integer, we can therefore choose a general divisor

E ∈
∣∣∣∣`(µ′∗((m+ r − k − 1

k
m0

)
π′∗Y η − (n+ t+ δ)E

))∣∣∣∣
that is smooth along µ′∗E, and intersects every component of the support of π∗Z∆̃ transversely in a
neighborhood of µ′∗E.

Choose a common log resolution ν : Z̃ ′ → Z ′ for E and (Z ′, π∗Z∆̃) that is an isomorphism along
µ′∗E. We then write

ν∗E = E1 +B, (πZ ◦ ν)∗∆̃ = ν−1
∗ π∗Z∆̃ +B1

where E1 is a smooth prime divisor intersecting (µ′ ◦ ν)∗E transversely and B,B1 are supported
away from (µ′ ◦ ν)∗E. Define

B′ :=

⌊
1

`
B +B1

⌋
, Γ := (πZ ◦ ν)∗∆̃ +

1

`
ν∗E−B′ + δ(µ′ ◦ ν)∗E,

Q := (πZ ◦ ν)∗P̃ +K
Z̃′/Z′ ,

where we note that Γ has simple normal crossings support and coefficients in (0, 1], since π∗Z∆̃ has

simple normal crossings support and coefficients in (0, 1] by the condition that ∆̃ has components
intersecting (ρY ◦ µ)−1(Yx) transversely; see [Ful98, Corollary 6.7.2]. By the R-linear equivalence
(7.1.5), we have that

π∗Z P̃ − (ρY ◦ µ ◦ πZ)∗G′ − π∗ZF ′ +m(µ ◦ πZ)∗η − (t+ 1)µ′∗E

∼R KZ′ + π∗Z∆̃ + δµ′∗E +
1

`
E

where we use the fact that πZ is the blow-up along the smooth subvariety (ρY ◦ µ)−1(Yx) of codi-
mension n. Pulling back along ν and adding K

Z̃′/Z −B
′, we obtain

(7.1.9)
Q− (ρY ◦ µ ◦ πZ ◦ ν)∗G′ − (πZ ◦ ν)∗F ′ −B′ +m(µ ◦ πZ ◦ ν)∗η − (t+ 1)(µ′ ◦ ν)∗E

∼R KZ̃′ + Γ.
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Since B′ is supported away from (µ′ ◦ν)∗E and K
Z̃′/Z is ν-exceptional, an argument similar to Step

3 shows that to show the surjectivity of the top horizontal arrow in (7.1.7), it suffices to show that
the morphism

H1
(
Z̃ ′,O

Z̃′

(
Q− (ρY ◦ µ ◦ πZ ◦ ν)∗G′ − (πZ ◦ ν)∗F ′ −B′ +m(µ ◦ πZ ◦ ν)∗η − (t+ 1)µ′∗E

))
−→ H1

(
Z̃ ′,O

Z̃′

(
Q− (ρY ◦ µ ◦ πZ ◦ ν)∗G′ − (πZ ◦ ν)∗F ′ −B′ +m(µ ◦ πZ ◦ ν)∗η

))
is injective. This injectivity follows from Fujino’s Kollár-type injectivity theorem [Fuj17, Theorem
5.4.1] by using the R-linear equivalence (7.1.9) and the fact that Γ contains (µ′ ◦ν)∗E in its support.

The argument above works for t = 0 or t = s, hence the sheaf (7.1.6) separates s-jets at x. �

Specializing to the case when V is an invertible sheaf, we obtain the following version of [DM19,
Theorem A] for higher-order jets using the lower bound on Seshadri constants in [EKL95]. This
also gives a generic version of [SZ20, Corollary 1.9(2)] for big and nef line bundles that are not
necessarily globally generated, albeit with weaker bounds.

Corollary 7.2. Let f : Y → X be a surjective morphism of complex projective varieties, where X
is of dimension n. Let (Y,∆) be a log canonical R-pair and let L be a big and nef invertible sheaf on
X. Consider a Cartier divisor P on Y such that P ∼R k(KY + ∆) for some integer k ≥ 1. Then,
the sheaf

f∗OY (P )⊗OX L
⊗`

separates s-jets at all general points x ∈ X for all ` ≥ k(n(n+ s) + 1).

Just as in the case when s = 0, one can replace the lower bound ` ≥ k(n(n + s) + 1) with the
lower bound ` ≥ k((n−1)(n+s)+1) when X is smooth of dimension at most three and L is ample;
see [DM19, Remark 5.2].
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