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Abstract

Deep Generative Networks (DGNs) with probabilistic modeling of their output
and latent space are currently trained via Variational Autoencoders (VAEs). In the
absence of a known analytical form for the posterior and likelihood expectation,
VAEs resort to approximations, including (Amortized) Variational Inference (AVI)
and Monte-Carlo (MC) sampling. We exploit the Continuous Piecewise Affine
(CPA) property of modern DGNs to derive their posterior and marginal distribu-
tions as well as the latter’s first moments. These findings enable us to derive an
analytical Expectation-Maximization (EM) algorithm that enables gradient-free
DGN learning. We demonstrate empirically that EM training of DGNs produces
greater likelihood than VAE training. Our findings will guide the design of new
VAE AVI that better approximate the true posterior and open avenues to appply
standard statistical tools for model comparison, anomaly detection, and missing
data imputation.

1 Introduction

Deep Generative Networks (DGNs), which map a low-dimensional latent variable z to a higher-
dimensional generated sample x are the state-of-the-art methods for a range of machine learning
applications, including anomaly detection, data generation, likelihood estimation, and exploratory
analysis across a wide variety of datasets [11, 32, 40, 39].

Training of DGNs roughly falls into two camps: (i) by leveraging an adversarial network as in a
Generative Adversarial Network (GAN) [23] to turn the method into an adversarial game; and (ii)
by modeling the latent variable and observed variables as random variables and performing some
flavor of likelihood maximization training. A widely used solution to likelihood based DGN training
is via Variational Autoencoders (VAEs) [34]. The popularity of the VAE is due to its intuitive and
interpretable loss function, which is obtained from likelihood estimation, and its ability to exploit
standard estimation techniques ported from the probabilistic graphical models literature.

Yet, VAEs only offer an approximate solution for likelihood based training of DGNs. In fact, all
current VAEs employ three major approximation steps in the likelihood maximization process. First,
the true (unknown) posterior is approximated by a variational distribution. This estimate is governed
by some free parameters that must be optimized to fit the variational distribution to the true posterior.
VAEs estimate such parameters by means of an alternative network, the encoder, with the datum
as input and the predicted optimal parameters as output. This step is referred to as Amortized
Variational Inference (AVI), as it removes the explicit, per datum, optimization by a single deep
network (DN) pass. Second, as in any latent variable model, the complete likelihood is estimated by
a lower bound (ELBO) obtained from the expectation of the likelihood taken under the posterior or
variational distribution. With a DGN, this expectation is unknown and thus VAEs estimate the ELBO
by Monte-Carlo (MC) sampling. Third, the maximization of the MC estimated ELBO, which drives
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the parameters of the encoder to better model the data distribution and the encoder to produce better
variational parameter estimates, is performed by some flavor of gradient descend (GD).

These VAE approximation steps enable rapid training and test-time inference of DGNs. However,
due to the lack of analytical forms for the posterior, ELBO, and explicit (gradient free) parameter
updates, it is not possible to measure the above steps’ quality or effectively improve them. Since the
true posterior and expectation are unknown, current VAE research roughly fall into three camps: (i)
on developing new and more complex output and latent distributions [45, 38] such as the truncated
distribution; (ii) on improving the various estimation steps by introducing complex MC sampling
with importance re-weighted sampling [13]; on providing different estimates of the posterior with
moment matching techniques [17, 31].

In this paper, we advance both the theory and practice of VAEs by computing the exact analytical
posterior and marginal distributions of any DGN employing continuous piecewise affine (CPA)
nonlinearities. The knowledge of these distributions enables us to perform exact inference without
resorting to AVI or MC-sampling and to train the DGN in a gradient-free manner with guaranteed
convergence.

The analytical distributions we obtain provide first-of-their-kind insights into (i) how DGNs model
the data distributions à la Mixture of Probabilistic Principal Component Analysis (MPPCA), (ii)
how inference is performed and is akin Generative Latent Optimization models [12], (iii) the roles
of each DGN parameter and how are they updated, and (iv) the impact of DGN architecture and
regularization choice in the form of the DGN distributions and layer weights. The exact likelihood
and marginal computation also enables the use of standard statistical model comparison tools such
as the Akkaike Information Criterion (AIC) [1] and Bayesian Information Criterion (BIC) [49] and
inspires new reliable anomaly detection approaches.

Having the exact posterior also enables us to quantify the approximation error of the AVI and MC
sampling of VAEs and guide the development of VAEs by leveraging the analytical posterior to
design more adapted variational distributions. In fact, current VAEs suffer from occasional training
instabilities [60, 37]; we validate the empirical observation that VAEs training instabilities emerge
from an inadequate variational estimation of the posterior.

We summarize our main contributions as follows:

[C1] We leverage the CPA property of current DGNs to obtain the analytical form of their conditional,
marginal, and posterior distributions, which are mixtures of truncated Gaussians and relate DGN
density modeling to MPPCA and MFA (Sec. 3.1). We develop new algorithms and methods to
compute the DGN latent space partition, per-region affine mappings, and per-region Gaussian
integration (Sec. 3.2).

[C2] We leverage the analytical form of a DGN’s posterior distribution to obtain its first two moments.
We then leverage these moments to obtain the analytical expectation of the complete likelihood with
respect to the DGN posterior (E-step), which enables encoder-free EM training with guaranteed
convergence (Sec. 4.1). We also derive the analytical M-step, which enables for the first time
guaranteed and rapid gradient-free learning of DGNs (Sec. 4.2). The analytical E-step allows to
interpret how the expected latent representation of an input is formed while the M-step demonstrates
how information is propagated through layers akin backpropagation encounter in gradient descent.

[C3] We compare our exact E-step to standard VAE training to demonstrate that the VAE inference
step is to blame for unstable training. We also demonstrate how EM-based DGN training provides
much faster and stable convergence (Sec. 4.3); and provide new directions to leverage the analytical
distributions to improve VAE models.

Reproducible code for all experiments and figures will be provided on Github at https://github.
com/RandallBalestriero/EMDGN.git. The proofs of all results are provided in the Supplemen-
tary Material.
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2 Background

Max-Affine Spline Deep Generative Networks. A deep generative network (DGN) is an operator
g that maps a (typically low-dimensional) latent vector z ∈ RS to an observation x ∈ RD 1 by
composing L intermediate layer mappings g`, ` = 1, . . . , L, that combine affine operators such as
the fully connected operator (simply an affine transformation defined by weight matrixW ` and bias
vector v`), convolution operator (with circulentW `), and, nonlinear operators such as the activation
operator (applying a scalar nonlinearity such as the ubiquitous ReLU), or the (max-)upsampling
operator; definitions of these operators can be found in [22].

In this paper, we focus on DGNs employing arbitrary affine operators and continuous piecewise
affine (CPA) nonlinearies, such as the ReLU, leaky-ReLU, and absolute value activations, and
spatial/channel max-pooling. In this case, the entire DGN is the composition of Max-Affine Spline
Operators (MASOs) [5] and is overall a CPA operator [58, 2, 47, 55]. As such, DGNs inherit a latent
space partition Ω and a per-region affine mapping

g(z) = Aωz + bω, ∀ω ∈ Ω, (1)

where the per-region slope and bias parameters are a function of the per-layer parameters W`, b`.
For various properties of such CPA DGNs, see [7] and for details on the partition, see [6]. In this
paper we will make explicit the per-region affine mappings; to this end, it is practical to encode the
derivatives of the DGN nonlinearities in the matricesD`. For activation operators, this is a square
diagonal matrix with values ∈ {η, 1} (η > 0 for leaky-ReLU, η = 0 for ReLU, and η = −1 for
absolute value). For the max-pooling operator, it is a rectangular matrix filled with {0, 1} values
based on the pooling arg max. We thus obtain

Aω =WLDL−1
ω WL−1 . . .D1

ωW
1 and bω = vL +

L−1∑
i=1

WLDL−1
ω WL−1 . . .Di

ωv
i. (2)

Throughout the rest of the paper, the upper index will indicate the layer and not a power.

Variational Expectation-Maximization. A Probabilistic Graphical Model (PGM) combines proba-
bility and graph theory into an organized data structure that expresses the relationships between a
collection of random variables: the observed variables collected into x and the latent, or unobserved,
variables collected into z [33]. The parameters θ that govern the PGM probability distributions are
learned from observations xi ∼ x, i = 1, . . . , N , requiring estimation of the unobserved zi, ∀i. This
inference-optimization is commonly done with the Expectation-Maximization (EM) algorithm [16].

The EM algorithm consists of (i) estimating each zi from the Expectation of the complete log-density
taken with respect to the posterior distribution under the current parameters at time t; (ii) Maximizing
the estimated complete log-likelihood to produce the updated parameters θt+1. The estimated
complete log-likelihood obtained from the E-step is a tight lower bound to the true complete log-
likelihood; this lower bound is maximized in the M-step. This process has many attractive theoretical
properties, including guaranteed convergence to a local minimum of the likelihood [35].

In the absence of closed form or tractable posterior, an alternative (non-tight) lower bound can be
obtained by using a variational distribution instead. This distribution is governed by parameters γ
that are optimized to make this distribution as close as possible to the true posterior. This process
is results in a variational E (VE) step [3] or variational inference (VI). The tightness of the lower
bound is measured by the KL-divergence between the variational and true posterior distributions.
Minimization of this divergence cannot be done directly (due to the absence of tractable posterior)
but rather indirectly by maximizing the so-called evidence lower bound (ELBO) via

log(p(x)) = Eq(z|γ)[log(p(x, z|θ))] + H(q(z|γ))︸ ︷︷ ︸
ELBO

+KL(q(z|γ)||p(z|x, θ)), (3)

with q the variational distribution and H the (differential) entropy. Maximization the ELBO with
respect to γ produces the γ∗ that adapts q(z|γ∗) to fit as closely as possible to the true posterior.
Finally, maximizing the ELBO with respect to the PGM parameters θ provides θt+1; this can be
performed on the entire dataset or on mini-batches [29].

1Note that we do not require that S < D.
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Variational AutoEncoders. A Variational AutoEncoder (VAE) uses a minimal probabilistic graphi-
cal model (PGM) with just a few nodes but highly nonlinear inter-node relations [36, 56]. The use
of DNs to model the nonlinear relations originated in [46, 21, 42] and has been born again with
VAEs [34]. Many variants have been developed but the core model consists of modeling the latent
distribution over z with a Gaussian or uniform distribution and then modeling the data distribution
as x = g(z) + ε with ε some noise distribution and g a DGN. Learning the DGN/PGM parameters
requires inference of the latent variables z. This inference is done in VAEs by producing an amortized
VI where a second encoder DN f produces γ∗n = f(xn) from (3). Hence, the encoder is fed with
an observation x and outputs its estimate of the optimal variational parameters that minimizes the
KL-divergence between the variational distribution and true posterior. During learning, the encoder
adapts to make better estimates f(xn) of the optimum parameters γn. Then, the ELBO is estimated
with some flavor of Monte-Carlo (MC) sampling (since its analytical form is not known) and the
maximization of the θ parameters is solved iteratively using some flavor of gradient descent.

3 Posterior and Marginal Distributions of Deep Generative Networks

We now derive analytical forms of the key DGN distributions by exploiting the CPA property. In
Sec. 4 we will use this result to derive the EM learning algorithm for DGNs and study the VAE
inference approximation versus the analytical one.

Our key insight is that a CPA DGN consists of an implicit latent space partition and an associated
per-region affine mapping (recall (1)). In a DGN, propagating a latent datum z through the layers
progressively builds the Aω, bω. We now demonstrate that turning this region selection process
explicit, the analytical DGN marginal and posterior distributions can be obtained.

3.1 Conditional, Marginal and Posterior Distributions of Deep Generative Networks

Throughout the paper we will consider the commonly employed case of a centered Gaussian latent
prior and centered Gaussian noise [59] as

p(x|z) = φ(x; g(z),Σx), p(z) = φ(z; 0,Σz), (4)

with φ the multivariate Gaussian density function with given mean and covariance matrix [14]. When
using CPA DGNs, the generator mapping is continuous and piecewise affine with an underlying latent
space partition, and per-region mapping as given by (1). We can thus obtain the analytical form of
the conditional distribution of x given the latent vector z as follows.
Lemma 1. The DGN conditional distribution is given by p(x|z) =∑
ω∈Ω 1z∈ωφ (x;Aωz + bω,Σx) with per-region parameters from (2).

This type of data modeling is closely related to MPPCA [53] that combines multiple PPCAs [54]
and MFA [20, 27] that combines multiple factor analyzers [25]. The associated PGMs represent the
data distribution with R components and leverage an explicit categorical distribution t ∼ Cat(π),
leading to the conditional input distributions x|(z, t) =

∑R
r=1 1r=t (Wrz + vr) + ε, withWr,vr

denoting the per-component affine parameters and with Σx diagonal (MPPCA) or fully occupied
(MFA) and z ∼ N(µz,Σz). Note, however, that neither MPPCA nor MFA impose continuity in the
(t, z) 7→ x mapping as opposed to a DGN. To formalize this, consider an (arbitrary) ordering of the
DGN latent space regions as ω1, . . . , ωR with R = Card(Ω); we also denote by Φω the cumulative
density function on ωr (integral of the density function on ωr).
Proposition 1. A DGN with distributions given by (4) corresponds to a continuous MPPCA (or
MFA) model with implicit categorical variable given by p(t = r) = Φωr

(0,Σz),Wr = Aωr
,vr =

bωr
, R = Card(Ω) and Σx = σI (or full Σx).

Note that this result generalizes the result of [41] which related linear and shallow DGNs to PPCA, as
in the linear regime one has g(z) = Wz + b+ ε. We now consider the marginal p(x) and posterior
p(z|x) distributions. The former will be of use to compute the likelihood, while the latter will enable
us to derive the analytical E-step in the next section.
Theorem 1. The marginal and posterior distributions of a CPA DGN are given by

p(x) =
∑
ω∈Ω

φ(x; bω,Σx +AωΣzA
T
ω )Φω(µω(x),Σω), (5)
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p(z|x) =p(x)−1
∑
ω∈Ω

1z∈ωφ(x; bω,Σx +AωΣzA
T
ω )φ(z;µω(x),Σω), (6)

with

µω(x) = Σω

(
AT
ωΣ−1

x (x− bω)
)
, Σω =

(
Σ−1
z +AT

ωΣ−1
x Aω

)−1
. (7)

The distribution Φω(µω(x),Σω) is derived in the next section. For both the marginal and the posterior
distribution, on each partition region, there exists a mean µω(x) and covariance Σω that we can
interpret. For that purpose, consider Σx = I,Σz = I to obtain µω(x) = (I +AT

ωAω)−1AT
ω (x−

bω). That is, the bias of the per-region affine mapping is removed from the input which is then
mapped back to the latent space viaAT

ω and whitened by the “regularized” inverse of the correlation
matrix of Aω. Note that AT

ω backpropagates the signal from the output to the latent space in the
same way that gradients are backpropagated during gradient learning of a DN. We further highlight
the specific form of the posterior as being a mixture model of truncated Gaussians [30], a truncated
Gaussian being a Gaussian distribution for which the domain RS has been constrained to a (convex)
sub-domain, ω in our case.
Proposition 2. The DGN posterior distribution is a mixture of Card(Ω) truncated Gaussians, each
truncated on a different polytope ω ∈ Ω with mean µω(x) and covariance Σω from (7).

Zero-Noise Limit and Generative Latent Optimization (GLO) Models. In the zero-noise limit
(Σx = σI and σ → 0) the posterior takes a very special form. Denote by z∗(x) , arg minz ‖x−
g(z)‖22 +zTΣzz, the (regularized) latent vector that produces the closest output from an observation
x.
Lemma 2. In the zero-noise limit, the DGN posterior distribution converges to a Dirac positioned in
the z-space at z∗(x) as limσ→0 p(z|x) = δ(z − z∗(x)).

Interestingly, GLO [12] performs DGN training by first inferring a latent vector akin to z∗(x) but
without the `2 regularization zTΣzz, which is often replaced by a z truncation/clipping.
Proposition 3. The GLO-inferred DGN latent variable associated to an observation x corresponds to
the maximum a posteriori estimate of the zero-noise limit posterior distribution and with uninformative
prior (large Σz) or with uniform prior z ∼ U([a, b]) when using [a, b] clipping).

3.2 Gaussian Integration on the Deep Generative Network Latent Partition

We now turn to the computation of the DGN marginal (5) and posterior (6) distributions for which
we need to integrate over all of hte the regions ω ∈ Ω in the latent space partition.

Obtaining the DGN Partition. Each region ω ∈ Ω is a polytope that can be explicitly described
via a system of inequalities involving the up-to-layer ` mappings

A1→`
ω ,W `D`−1

ω W `−1 . . .D1
ωW

1 and b1→`
ω , v` +

`−1∑
i=1

W `D`−1
ω W `−1 . . .Di

ωv
i, (8)

producing the pre-activation feature maps h`(z) ∈ RD`

by h`(z) = A1→`
ω z + b1→`

ω and with
A1→`
ω ∈ RD`×S and b1→`

ω ∈ RD`

. Note that we have, in particular, that AL
ω = Aω and bLω = bω

from (2). When using standard activation functions such as (leaky-)ReLU or absolute value, the sign
of the pre-activation defines the activation state; denote this by q` = sign(h`(z)) and collect all of
the per-layer signs into q. Without degenerate weights, the sign patterns produced by q(z), ∀z are
tied to the regions ω ∈ Ω; we will thus use interchangeably q(z) with z ∈ ω and q(ω).
Lemma 3. The operator z 7→ [q1(z), . . . , qL−1(z)] is piecewise constant with a bijection between
its image and Ω.
Corollary 1. The polyhedral region ω is given by

ω =
L−1⋂
`=1

{
z ∈ RS : A1→`

ω z < −q`(ω)� b1→`
ω

}
,

with � the Hadamard product.

The above result tells us that the pre-activation signs locate on which side of each hyperplane the
region ω is located, which provides a direct way to compute the H-representation of ω from q(z)
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Init. Step 1 Step 2 Step 3 Step 4

Figure 1: Recursive partition discovery for a DGN with S = 2 and L = 2, starting with an initial region
obtained from a sampled latent vector z (init). By walking on the faces of this region, neighboring regions
sharing a common face are discovered (Step 1). Recursively repeating this process until no new region is
discovered (Steps 2–4) provides the DGN latent space partition at left .

Figure 2: Triangulation T (ω) as per (9)
of a polytopal region ω (left plot) obtained
from the Delaunay Triangulation of the re-
gion vertices leading to 3 simplices (three
right plots).

with z ∈ ω. To obtain the entire partition Ω, we propose a recursive scheme that starts from an initial
region (or sample z) and walks on its faces to discover the neighboring regions. This process is
repeated on the newly discovered regions until no new region is discovered. We detail this exploration
procedure in Appendix A and illustrate it in Fig. 1.

Gaussian Integration on ω. The Gaussian integral on a region ω (and its moments) cannot in
general be obtained by direct integration unless ω is a rectangular region [51, 9] or is polytopal with
at most S faces [52]. In general, the DGN regions ω ∈ Ω will have at least S + 1 faces, as they are
closed polytopes in RS . To leverage the known integral forms, we propose to first decompose a DGN
region ω into simplices (S + 1-face polytopes in our case [44]) and then further decompose each
simplex into open polytopes with at most S faces, which enables the use of [52]. In our case, we
perform the simplex decomposition with the Delaunay triangulation [15] denoted as T (ω) with

T (ω) , {∆1, . . . ,∆Card(T (ω))}, with ∪Card(T (ω))
i=1 ∆i = ω and ∆i ∩∆j = ∅, ∀i 6= j, (9)

where each ∆i is a simplex defined by the half-spaces ∆i = ∩S+1
s=1Hi,j . This process is illustrated

in Fig. 2. The decomposition of each simplex into open polytopes with less than S + 1 faces is
performed by employing the standard inclusion-exclusion principle [10] leading to the following
result.
Lemma 4. The integral of any integrable function g on a polytopal region ω ∈ Ω can be decomposed
into integration over open polytopes of at most S faces via∫

ω

g(z)dz =
∑

∆∈T (ω)

∑
(s,V )∈H(∆)

s

∫
V

g(z)dz.

with H(∆i) ,
{(

(−1)|J|+S ,∩j∈JHi,j

)
, J ⊆ {1, . . . , S + 1}, |J | ≤ S

}
.

From the above result, we can apply the known form of the Gaussian integral on a polytopal region
with fewer than S faces and obtain the form of the integral and moments as provided in Appendix B,
where detailed pseudo code is provided.

Remark: The integral performed as per Lemma 4 is computationally expensive, particularly with
respect to the latent space dimension S. This is the current main practical limitation of performing
the analytical computation of the DGN posterior (and thus the E-step). A more elaborated discussion
plus several solutions are provided in the next section; see also Appendix I for the asymptotic
computational complexity details.

Visualization of the Marginal and Posterior Distributions. To illustrate our theoretical devel-
opment so far, we now visualize the posterior and marginal distributions of a randomly initialized
DGN in a low-dimensional space D = 2 and with latent dimension S = 1. (See Appendix J for
the architectural details of the DGN.) We depict the obtained distributions as well as the generated
samples in Fig. 3. We also plot the posterior distribution b ased on one observation obtained via
g(z0) given a sampled z0 from the z distribution and one noisy observation g(z0) + ε0 given a noise
realization ε0.
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Figure 3: Left: Noiseless generated samples
g(z) in red and noisy samples g(z) + ε in blue,
with Σx = 0.1I , Σz = I . Middle: marginal
distribution p(x) from (5). Right: the posterior
distribution p(z|x) from (6) (blue), its expecta-
tion (green) and the position of the region limits
(black), with sample point x depicted in black in
the left figure.

4 Expectation-Maximization Learning of Deep Generative Networks

We now derive an analytical Expectation-Maximization training algorithm for CPA DGNs based on
the results of the previous sections. We then compare DGN training via EM and AVI and leverage
the exact complete likelihood to perform model selection and study the VAE approximation error.

4.1 Expectation Step

The E-step infers the latent (unobserved) variables associated to the generation of each observation
x by taking the expectation of the log of the complete likelihood with respect to the posterior
distribution (6). We denote the per-region moments of the DGN posterior (from Appendix B)
by Ez|x[1z∈ω] , e0

ω(x), Ez|x[z1z∈ω] , e1
ω(x) and Ez|x[zzT1z∈ω] , E2

ω(x); we also have
e1(x) , Ez|x[z] =

∑
ω e

1
ω(x) and likewise for the second moment. We obtain the following E-step

(the detailed derivations are in Appendix G.1)

Ez|x [log (p(x|z)p(z))] =− 1

2
log
(

(2π)S+D| det(Σx)|| det(Σz)|
)
− 1

2
Tr(Σ−1

z E
2(x))

− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωe
1
ω(x) + bωe

0
ω(x)

)

+
∑
ω

[
Tr(AT

ωΣ−1
x AωE

2
ω(x)) + (e0

ωbω + 2Aωe
1
ω(x))TΣ−1

x bω

])
.

Note that the (per-region) moments involved in the E-step, such as e1
ω(x), are taken with respect

to the current parameters (θ = {Σx,Σz, (W `,v`)L`=1}). That is, if gradient based optimization is
leveraged to maximize the ELBO, then no gradient should be propagated through them. We can
see from the above formula that the contributions of each region’s affine parameters are weighted
based on the posterior for each datum x. That is, for each input x, the posterior combines all of the
per-region affine parameters as opposed to current forms of learning that only leverage the parameters
involved on the specific region activated by the DGN input z.

4.2 Maximization Step

Given the E-step, maximizing the ELBO can be done via some flavor of gradient based optimization.
However, thanks to the analytical E-step and the Gaussian form of the involve distributions, there
exists analytical form of this maximisation process (M-step) leading to the analytical M-step for
DGNs. The formulas for all of the DGN parameters are provided in Appendix G. We provide here
the analytical form for the bias v`∗, for which we introduce r`ω(x) as the expected reconstruction
error of the DGN as

r`ω(x) ,

x−∑
i6=`

Ai+1→L
ω Di

ωv
i

 e0
ω(x)−Aωe

1
ω(x) (expected residual without v`),

v`
∗

=

(∑
x

∑
ω

D`
ωA

L→`+1
ω Σ−1

x A
`+1→L
ω D`

ω

)−1
∑

x

∑
ω∈Ω

D`
ωA

L→`+1
ω Σ−1

x r
`
ω(x)︸ ︷︷ ︸

residual back-propagated to layer `

 .

Some interesting observations can be made based on the analytical form of these updates. First, the
bias update is based on the residual of the reconstruction error with a DGN whose bias has been

7



Figure 4: DGN training under EM (black) and VAE
training with various learning rates for VAE (blue:
0.005, red: 0.001, green: 0.0001). In all cases, VAE
converges to the maximum of its ELBO. The gap be-
tween the VAE and EM curves is due to the inabil-
ity of the VAE’s AVI to correctly estimate the true
posterior, pushing the VAE’s ELBO far from the true
log-likelihood (recall (3)) and thus preventing it from
precisely approximating the true data distribution.

Figure 5: KL-divergence between a VAE variational distri-
bution and the true DGN posterior when trained on a noisy
circle dataset in 2D for 3 different learning rates. During
learning, the DGN adapts such that g(z) + ε models the
data distribution based on the VAE’s estimated ELBO. As
learning progresses, the true DGN posterior becomes harder
to approximate by the VAE’s variational distribution in the
AVI process. As such, even in this toy dataset the commonly
employed Gaussian variational distribution is not rich enough
to capture the multimodality of p(z|x) from (6).

removed; this residual is then backpropagated to the `th layer. The backpropagation is performed
via the (transposed) backpropagation matrix as when performing gradient-based learning. Second,
the updates of any parameter depend on each region parameter’s contribution based on the posterior
moments and integrals, similarly to any mixture model. Third, all of the updates are whitened based
on the backpropagation (or forward propagation) correlation matrix A`→L

ω , ∀ω, ∀`. We study the
impact of using a probabilistic priors on the layer weights such as Gaussian, Laplacian, or uniform
which are related to the `2, `1 regularization, and weight clipping techniques in Appendix H.

4.3 Empirical Validation and VAE Comparison

We now numerically validate the above EM-steps on a simple problem involving data points on
a radius 1 circle in 2D augmented with a Gaussian noise of standard deviation 0.05. We depict
the EM-training of a 2-layer DGN with width of 8 with the VAE training. In all cases the DGNs
are the same architecture, with same weight initialization, and the dataset is also identical between
models with the same noise realizations. Thanks to the analytical form of the marginals, we can
compute the true ELBO (without variational estimation of the true posterior) for the VAE during its
training to monitor its ability to fit the data distribution. We depict this in Fig. 4. We observe how
EM training converges faster to a lower negative log-likelihood. In addition, we see how all of the
trained VAEs seem to converge to the same bound, which corresponds to the maximum of its ELBO,
where the gap is induced by the use of a variational approximation of the true posterior. We further
investigate this phenomenon in Fig. 5. In fact, we obtained from (6) and Prop. 2 that the posterior is a
mixture of truncated Gaussian and the covariances are based onAT

ωAω . Hence VAEs employing a
single Gaussian as a variational distribution q(x) will fail to correctly approximate the true posterior
p(z|x), especially as training proceeds making the posterior covariance less diagonal. The absence
of precise posterior estimation directly translated into VAE optimizing an ELBO objective being far
from the tight log-likelihood bound, in turn hurting VAE ability to correctly approximate the data
distribution as opposed to EM learning producing much smaller negative log-likelihood. Providing
better posterior estimates is thus key to improve VAE performances. From this we conclude that
multimodal variational distributions should be considered for VAEs regardless of the data at hand.
We provide additional figures and experiments with various architectures in Appendix J.

5 Conclusions

We have derived the analytical form of the posterior, marginal, and conditional distributions of for CPA
DGNs. This has enabled us to derive the EM-learning algorithm for DGNs that not only converges
faster than state-of-the-art VAE training but also to a higher likelihood. Our analytical forms can be

8



leveraged to improve the variational distribution of VAEs, understand the form of analytical weight
updates, study how a DGN infers the latent variable z from x, and leverage standard statistical tools
to perform model selection, anomaly detection and beyond.

In addition of these insights, our new EM learning algorithm can be used to train DGNs. The main
computational bottlenecks are the width/depth of the DGN and the dimension of the latent space.
One interesting research direction is developing approximations to our various analytical forms that
enable fast inference/learning à la VAE but with better approximation and quantified approximation
error. One promising direction would involve only computing and integrating the distributions on the
regions ω ∈ Ω where we know a priori that the posterior is nonzero.

9



Broader Impacts

We have derived the analytical form of the posterior, marginal and conditional distributions of Deep
Generative Networks (DGNs) based on continuous piecewise affine architectures. Our approach
provides an approximation-free alternative to VAEs to train DGNs. In addition to improving DGN
algorithms, our analytical forms will enable researchers to probe more deeply into the inner workings
of DGNs and VAE, making them more interpretable and thus trustworthy. Our calculations will
also enable accurate anomaly detection and model selection, which should find wide application in
sensitive applications where accurately computing the probability of a data point is crucial.
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Supplementary Material

A Computing the Latent Space Partition

In this section we first introduce notations and demonstrate how to express a region ω of the partition Ω as a polytope defined by a
system of inequalities, and then leverage this formulation to demonstrate how to obtain Ω by recursively exploring neighboring regions
starting from a random point/region.

Regions as Polytopes To represent the regions ω ∈ Ω as a polytope via a system of inequalities we need to recall from (1) that the
input-output mapping is defined on each region by the affine parameters Aω, Bω themselves obtained by composition of MASOs.
Each layer pre-activation (feature map prior application of the nonlinearity) is denoted by h`(z) ∈ RD`

, ` = 1, . . . , L− 1 and given
by h`(x) = A1→`

ω z + b1→`
ω , with up-to-layer ` affine parameters

A1→`
ω ,W `D`−1

ω W `−1 . . .D1
ωW

1, A1→`
ω ∈ RD

`×S , (10)

b1→`−1
ω , v` +

∑̀
i=1

W `D`−1
ω W `−1 . . .Di

ωv
i, b1→`

ω ∈ RD
`

, (11)

which depend on the region ω in the latent space 2. Notice that we have in particularAL
ω = Aω and bLω = bω , the entire DGN affine

parameters from (2) on region ω. The regions depend on the signs of the pre-activations defined as q`(z) = sign(h`(z)) due to the
used activation function behaving linearly as long as the feature maps preserve the same sign. This holds for (leaky-)ReLU or absolute
value, for max-pooling we would need to look at the argmax position of each pooling window, as pooling is rare in DGN we focus
here on DN without max-pooling; let qall(z) , [(qL−1(z))T , . . . , (q1(z))T ]T collect all the per layer sign operators without the last
layer as it does not apply any activation.Lemma 5. The qall operator is piecewise constant and there is a bijection between Ω and Im(q).
The above demonstrates the equivalence of knowing ω in which an input z belongs to and knowing the sign pattern of the feature maps
associated to z; we will thus use interchangeably qall(z), z ∈ ω and qall(ω). From this, we see that the pre-activation signs and the
regions are tied together. We can now leverage this result and provide the explicit region ω as a polytope via its sytem of inequality, to
do so we need to collect the per-layer slopes and biases into

Aall
ω =

A1→L−1
ω
. . .
A1→1
ω

 , ball
ω =

b1→L−1
ω
. . .
b1→1
ω

 , Aall
ω ∈ R(

∏L−1
`=1 D`)×S , ball

ω ∈ R
∏L−1

`=1 D`

. (12)

Corollary 2. The H-representation of the polyhedral region ω is given by

ω = {z ∈ RS : Aall
ω z < −qall(ω)� ball

ω } =
L−1⋂
`=1

{z ∈ RS : A1→`
ω z < −q`(ω)� b1→`

ω }, (13)

with � the Hadamard product.
From the above, it is clear that the sign locates in which side of each hyperplane the region is located. We now have a direct way
to obtain the polytope ω from its sign pattern qall(ω) or equivalently from an input z ∈ ω; the only task left is to obtain the entire
partition Ω collecting all the DN regions, which we now propose to do via a simple scheme.

Partition Cells Enumeration. The search for all cells in a partition is known as the cell enumeration problem and has been extensively
studied in the context of speicific partitions such as hypreplane arrangements [4, 50, 19]. In our case however, the set of inequalitites
of different regions changes. In fact, for any neighbour region, not only the sign pattern qall will change but alsoAall

ω and ball
ω due to

2looser condition can be put as the up-to-layer ` mapping is a CPA on a coarser partition than Ω but this is sufficient for our goal.
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the composition of layers. In fact, changing one activation state say −1 to 1 for a specific unit at layer ` will alter the affine parameters
from (10) and (11) due to the layer composition. As such, we propose to enumerate all the cells ω ∈ Ω with a deterministic algorithm
that starts from an intial region and recursively explores its neighbouring cells untill all have been visited while recomputing the
inequality system at each step. To do so, consider the initial region ω0. First, one finds all the non-redundant inequalities of the
inequality system (13), the remaining inequalities define the faces of the polytope ω. Second, one obtains any of the neighbouring
regions sharing a face with ω0 by switching the sign in the entry of q(ω0) corresponding to the considered face. Repeat this for all
non-redundant inequalities to obtain all the adjacent regions to ω0 sharing a face with it. Each altered code defines an adjacent region
and its sytem of inequality can be obtain as per Lemma 2. Doing so for all the faces of the initial region and then iterating this process
on all the newly discovered regions will enumerate the entire partition Ω. We summarize this in Algo 1 in the appendix and illustrate
this recursive procedure in Fig. 1.

We now have each cell as a polytope and enumerated the partition Ω, we can now turn into the computation of the marginal and
posterior DGN distributions.

B Analytical Moments for truncated Gaussian

To lighten the derivation, we introduce extend the [.] indexing operator such that for example for a matrix, [.]−k,. means that all the
rows but the kth are taken, and all columns are taken. Also, [.](k,l),. means that only the kth and lth rows are taken and all the columns.
Let also introduce the following quantities

[F (a,Σ)]k =φ ([a]k; 0, [Σ]k,k) Φ[[a]−k,∞)

(
µ(k),Σ(k)

)
[G(a,Σ)]k,l =φ

(
[a](k,l); 0, [Σ](k,j),(k,j)

)
Φ[[a]−(k,l),∞)

(
µ
(
(k, l)

)
,Σ
(
(k, l)

))
H(a,Σ) =G(a,Σ) + diag

(
l� F (l,Σ)−

(
Σ�G(l,Σ)

)
1

diag(Σ)

)
with µ(u) = [Σ]−u,u[Σ]−1

u,u[a]u, and Σ(u) = [Σ]−u,−u − [Σ]−u,u[Σ]−1
u,u[Σ]T−u,u. Thanks to the above form, we can now obtain

the integral e0
ω(Σ) , Φω(0,Σ) and the first two moments of a centered truncated gaussian e1

ω(Σ) ,
∫
ω
zφ(z; 0,Σ) and E2

ω(Σ) ,∫
ω
zzTφ(z; 0,Σ)

Corollary 3. The integral and first two moments of a centered truncated gaussian are given by

e0
ω(Σ) =

∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sΦ[l(C),∞)

(
0, RcΣR

T
c

)
dz, (14)

e1
ω(Σ) =Σ

∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sRTCF (lω,c, RcΣR
T
c ), (15)

E2
ω(Σ) =Σ

 ∑
∆∈T (ω)

∑
(s,C)∈T (∆)

sRTC(H(lω,C , RcΣR
T
c ))RC

Σ + e0
ω(Σ)Σ (16)

To simplify notations let consider the following notation of the posterior (6) where are incorporate the terms independent of z into

αω(x) =
φ(x;Bω,Σx +AωΣzA

T
ω )∑

ω φ(x;Bω,Σx +AωΣzATω )Φω(µω(x),Σω)
, (17)

leading to p(z|x) =
∑
ω∈Ω δω(z)αω(x)φ(z;µω(x),Σω).

Theorem 2. The first (per region) moments of the DGN posterior are given by

Ez|x[1z∈ω] = αω(x)e0
ω(Σω),

Ez|x[z1z∈ω] = αω(x)
(
e1
ω−µω(x)(Σω) + e0

ω−µω(x)(Σω)µω(x)
)
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Ez|x[zzT1z∈ω] = αω(x)
(
E2
ω−µω(x)(Σω) + e1

ω−µω(x)(Σω)µω(x)T

+ µω−µω(x)(x)e1
ω−µω(x)(x)T + µω(x)µω(x)T e0

ω(x)
)

which we denote Ez|x[1z∈ω] , e0
ω(x), Ez|x[z1z∈ω] , e1

ω(x) and Ez|x[zzT1z∈ω] , E2
ω(x). (Proof in F.9.)

C Implementation Details

The Delaunay triangulation needs the V-representation of ω, the vertices which convex hull form the region [24]. Given that we have
the H-representation, finding the vertices is known as the vertex enumeration problem [18]. To compute the triangulation we use the
Python scipy [57] implementation which interfaces the C/C++ Qhull implementation [8]. To compute the H 7→ V representation and
vice-versa we leverage pycddlib 3 which interfaces the C/C++ cddlib library 4 employing the double description method [43].

D Figures

We demonstrate here additional figures for the posterior and marginal distribution of a DGN.

3https://pypi.org/project/pycddlib/
4https://inf.ethz.ch/personal/fukudak/cdd_home/index.html
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Figure 6: Additional random DGNs with their samples, the posterior and the marginal distributions.
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E Algorithms

Algorithm 1: SearchRegion
Data: Starting region ω and q(ω), initial set (Ω)
Result: Updated Ω
if ω 6∈ Ω then

Ω← Ω ∪ {ω};
else

Quit
end
I = reduce(Aall

ω , B
all
ω );

for i ∈ I do
SearchRegion(flip(q(ω), i), Ω);

end

F Proofs

In this section we provide all the proofs for the main paper theoretical claims. In particular we will go through the derivations of the
per region posterior first moments and then the derivation of the expectation and maximization steps.

F.1 Proof of Lemma 1

Proof. The proof consists of expressing the conditional distribution and using the properties of DGN with piecewise affine nonlinearities.
We are able to split the distribution into a mixture model as follows:

p(x|z) =
1

(2π)D/2
√
| det Σx|

e−
1
2 (x−g(z))T Σ−1

x (x−g(z))

=
1

(2π)D/2
√
| det Σx|

e−
1
2 (x−

∑
ω∈Ω 1z∈ω(Aωz+Bω))T Σ−1

x (x−
∑

ω∈Ω 1z∈ω(Aωz+Bω))

=
1

(2π)D/2
√
| det Σx|

e−
1
2

∑
ω∈Ω 1z∈ω(x−(Aωz+Bω))T Σ−1

x (x−(Aωz+Bω))

=
∑
ω∈Ω

1z∈ω
1

(2π)D/2
√
| det Σx|

e−
1
2 (x−(Aωz+Bω))T Σ−1

x (x−(Aωz+Bω))

=
∑
ω∈Ω

1z∈ωφ(x|Aωz +Bω,Σx)

F.2 Proof of Proposition 1

Proof. This result is direct by noticing that the probability to obtain a specific region slope and bias is the probability that the sampled
latent vector lies in the corresponding region. This probability is obtained simply by integrating the latent gaussian distribution on the
region. We obtain the result of the proposition.
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F.3 Proof of Theorem 1

Proof. For the first part, we simply leverage the known result from linear Gaussian models [48] stating that

p(z|x) =
p(x|z)p(z)

p(x)

=
1

p(x)

e−
1
2 (x−g(z))T Σ−1

x (x−g(z))

(2π)D/2
√
| det(Σx)|

e−
1
2 (z−µ)T Σ−1

z (z−µ)

(2π)S/2
√
| det(Σz)|

=
1

p(x)

(∑
ω∈Ω

1z∈ω
e−

1
2 (x−Aωz−Bω)T Σ−1

x (x−Aωz−Bω)

(2π)D/2
√
| det(Σx)|

)e− 1
2 (z−µ)T Σ−1

z (z−µ)

(2π)S/2
√
| det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 (x−Aωz−Bω)T Σ−1

x (x−Aωz−Bω)− 1
2z

T Σ−1
z z

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)−Aωz)T Σ−1

x ((x−Bω)−Aωz)− 1
2z

T Σ−1
z z

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

× e− 1
2 ((x−Bω)T Σ−1

x (x−Bω))+ 1
2 ((x−Bω)T Σ−1

x Aω(AT
ωΣ−1

x Aω+Σ−1
z )−1AT

ωΣ−1
x (x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

× e− 1
2 ((x−Bω)T (Σ−1

x −Σ−1
x Aω(AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x )(x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 ((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)T (AT
ωΣ−1

x Aω+Σ−1
z )((AT

ωΣ−1
x Aω+Σ−1

z )−1AT
ωΣ−1

x (x−Bω)−z)

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

× e− 1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

=
1

p(x)

∑
ω∈Ω

1z∈ω
e−

1
2 (µω(x)−z)T Σ−1

ω (µω(x)−z)

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

e−
1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

with µω(x) = ΣωA
T
ωΣ−1

x (x−Bω) and Σω = (ATωΣ−1
x Aω + Σ−1

z )−1 as a result it corresponds to a mixture of truncated gaussian,
each living on ω. Now we determine the renormalization constant:

p(x) =

∫
p(x|z)p(z)dz

=
∑
ω∈Ω

∫
ω

1z∈ω
e−

1
2 (µω(x)−z)T Σ−1

ω (µω(x)−z)

(2π)(S+D)/2
√
| det(Σx)|| det(Σz)|

e−
1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))dz

=
∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

(2π)D/2
√
| det(Σx)|| det(Σz)|

√
det(Σω)

∫
ω

φ(z;µω(x),Σω)dz

=
∑
ω∈Ω

1z∈ω
e−

1
2 ((x−Bω)T (Σx+AωΣzA

T
ω )−1(x−Bω))

(2π)D/2
√
| det(Σx)|| det(Σz)|

√
det(Σω)Φω(µω(x),Σω)
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=
∑
ω∈Ω

1z∈ω

√
det(Σx +AωΣzATω ) det(Σω)√
| det(Σx)|| det(Σz)|

φ(x;Bω,Σx +AωΣzA
T
ω )Φω(µω(x),Σω),

now using the Matrix determinant lemma [26] we have that det(Σx+AωΣzA
T
ω ) = det(Σ−1

z +ATωΣ−1
x Aω) det(Σx) det(Σz) leading

to

p(x) =
∑
ω

φ(x;Bω,Σx +AωΣzA
T
ω )Φω(µω(x),Σω),

p(z|x) =
∑
ω

δω(z)
φ(x;Bω,Σx +AωΣzA

T
ω )φ(z;µω(x),Σω)∑

ω φ(x;Bω,Σx +AωΣzATω )Φω(µω(x),Σω)
.

F.4 Proof of Lemma 2

The proof will consist of observing that the posterior (prior rewriting) can be expressed as a softmax of a quantity rescaled by the
standard deviation.

Proof.

log(φ(z;µω(x),Σω)) =− 1

2
(x− µω)TΣ−1

ω (x− µω(x)))− 1

2
log(det(Σω)) + cst

=− 1

2
(z − ΣωA

T
ωΣ−1

x (A0z0 +B0 −Bω))TΣ−1
ω (z − ΣωA

T
ωΣ−1

x (A0z0 +B0 −Bω))T )

− 1

2
log(det(Σω)) + cst

= −1

2
(z − (ATωΣ−1

x Aω)−1ATωΣ−1
x (A0z0 +B0 −Bω))TΣ−1

ω (z − (ATωΣ−1
x Aω)−1ATωΣ−1

x (A0z0 +B0 −Bω))T )

− 1

2
log(det(Σω)) + cst

where we used the following result to develop µω(x)

Σω = (ATωΣ−1
x Aω + Σ−1

z )−1 =(ATωΣ−1
x Aω + (ATωΣ−1

x Aω)(ATωΣ−1
x Aω)−1Σ−1

z )−1

=(ATωΣ−1
x Aω)−1(I + (ATωΣ−1

x Aω)−1Σ−1
z )−1

=(ATωΣ−1
x Aω)−1 as (ΣzA

T
ωΣ−1

x Aω)−1 → 0.

if we are in the same region ω than z0 then the above becomes

arg max
z∈ω0

log(φ(z;µω(x),Σω)) = arg max
z∈ω0

−1

2
(z − z0)TΣ−1

ω (z − z0) = z0,

and since we know that we are in the same region, the argmax z = z0 lies in this region and thus is the maximum of the posterior.

F.5 Proof of Lemma 3

Proof. The sign vectors represent the sign of each pre-activation feature maps. The key here is that when changing the sign, the input
passes through the knot of the corresponding activation function of that layer. This implies a change in the region in the DGN input
space. In fact, without degenerate weights and with nonzero activation functions, a change in any dimension of the sign vector (used to
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form the per region slope and bias) impact a change in the affine mapping used to map inputs z to outputs x. As such, whenever a
sign changes, the affine mapping changes, leading to a change of region in the DGN input space. As the sign vector is formed from
the DGN input space, and we restrict ourselves to the image of this mapping, there does not exist a sign pattern/configuration not
reachable by the DGN (otherwise it would not be in the image of this mapping). Now for the other inclusion, recall that a change in
region and thus in per region affine mapping can only occur with a change of pre-activation sign pattern.

F.6 Proof of Corollary2

Proof. From the above result, it is clear that the preactivation roots define the boundaries of the regions. Obtaining the hyperplane
representation of the region thus simply consists of reexpressing this statement with the explicit pre-activation hyperplanes for all the
layers and units, the intersection between layers coming from the subdivision. For additional details please see [6].

F.7 Proof of Lemma 4

Proof. The proof consists of rearranging the terms from the inclusion-exclusion formula as in∑
J⊆{1,...,F},J 6=∅

(−1)|J|+1 (∩j∈JAj) = ∪iAi

(−1)F+1S +
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj) = ∪iAi

(−1)F+1S = ∪iAi −
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj)

S = (−1)F+1 ∪i Ai − (−1)F+1
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1 (∩j∈JAj)

S = (−1)F+1 ∪i Ai +
∑

J⊆{1,...,F},J 6=∅,|J|<F

(−1)|J|+1+F (∩j∈JAj)

then by application of Chasles rule [28], the integral domain can be decomposed into the signed sum of per cone integration. Finally, a
simplex in dimension S has S + 1 faces, making F = S + 1 and leading to the desired result.

F.8 Proof of Moments

Lemma 6. The first moments of Gaussian integration on an open rectangle defined by its lower limits a is given by∫ ∞
a

zφ(0,Σ)dz =ΣF (a), (18)∫ ∞
a

zzTφ(0,Σ)dz =Φ[a,∞)(0,Σ)Σ + Σ

(
G(a) +

a� F (a)−
(
Σ�G(a)

)
1

diag(Σ)

)
Σ. (19)

where the division is performed elementwise.

Proof. First moment:∫
ω

zφ(x; 0,Σ)dz =

∫
ω

z
e−

1
2z

T Σ−1z

(2π)K/2| det(Σ)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
C

z
e−

1
2 (RCz)T (RT

C)−1Σ−1
ω R−1

C RCz

(2π)K/2| det(Σω)|1/2
dz
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=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
l(C)

R−1u
e−

1
2u

T (RCΣωR
T
C)−1u

(2π)K/2| det(RC)|| det(Σω)|1/2
du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C

∫
l(C)

uφ(u; 0, RCΣωR
T
C)du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C (RCΣωR

T
CF (l(C))

=Σω
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sRTCF (l(C))

Second moment∫
ω

zzTφ(x; 0,Σ)dz =

∫
ω

zzT
e−

1
2z

T Σ−1z

(2π)K/2| det(Σ)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
C

zzT
e−

1
2 (RCy)T (RT

C)−1Σ−1
ω R−1

C RCy

(2π)K/2| det(Σω)|1/2
dz

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

s

∫
l(C)

R−1
C uuT (R−1

C )T
e−

1
2u

T (RCΣωR
T
C)−1u

(2π)K/2| det(RC)|| det(Σω)|1/2
du

=
∑

∆∈S(ω)

∑
(s,C)∈T (∆)

sR−1
C

∫
l(C)

uuTφ(u; 0, RCΣωR
T
C)du(R−1

C )T

=
∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

sR−1
C

[
Φ[l(C),∞)(0, RCΣωR

T
C)RCΣωR

T
C

+RCΣωR
T
C

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
(RCΣωR

T
C)T

]
(R−1

C )T

=
∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

s
[
Φ[l(C),∞)(0, RCΣωR

T
C)Σω

+ ΣωR
T
C

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
RCΣω

]
= e0

ω−µω(x)Σω + Σω
[ ∑

∆∈S(ω−µω(x))

∑
(s,C)∈T (∆)

sRTC

(
l(C)� F (l(C)) +

(
RCΣωR

T
C �G(l(C))

)
1

diag(RCΣωRTC)

)
RC
]
Σω

F.9 Proof of Theorem 2

Proof. Constant:RC =

(
CT

HTΣ−1
ω

)
∫
ω

p(z|x)dz = αω(x)

∫
ω

φ(z;µω(x),Σω)dz = αω(x)

∫
ω−µω(x)

φ(z; 0,Σω)dz = αω(x)e0
ω−µω(x)
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First moment: ∫
ω

zp(z|x)dz =αω(x)

∫
ω

z
e−

1
2 (z−µω(x))T Σ−1

ω (z−µω(x))

(2π)K/2| det(Σω)|1/2
dz

=αω(x)

∫
ω−µω(x)

(y + µω(x))
e−

1
2y

T Σ−1
ω y

(2π)K/2| det(Σω)|1/2
dz

=αω(x)
(
e1
ω−µω(x) + e0

ω−µω(x)µω(x)
)

Second moment:∫
zzT p(z|x)dz =αω(x)

∫
ω

zzTφ(z;µω(x),Σω)dz

=αω(x)

∫
ω−µω(x)

(y + µω(x))(y + µω(x))Tφ(z; 0,Σω)dz

=αω(x)
(
E2 + µω(x)e1

ω(Σω)T + e1
ω(Σω)µω(x)T + µω(x)µω(x)T e0

ω−µω(x)(Σω)
)

G Proof of EM-step

We now derive the expectation maximization steps for a piecewise affine and continuous DGN.

G.1 E-step derivation

Ez|x[(Aωz +Bω)1ω] = Am1
ω +Be0

ω (20)

Ez|x[zTATωAωz1ω] = Tr(ATωAωm
2) (21)

EZ|X
[
log
(
pX|Z(x|z)pZ(z)

)]
=EZ|X

[
log

(
e−

1
2 (x−g(z))T Σ−1

x (x−g(z))

(2π)D/2
√
| det(Σx)|

e−
1
2z

T Σ−1
z x

(2π)S/2
√
| det(Σz)|

)]

= − log
(

(2π)(S+D)/2
√
| det(Σz)|

√
| det(Σx)|)

)
− 1

2
EZ|X

[
(x− g(z))TΣ−1

x (x− g(z)) + zTΣ−1
z z

]
= − log

(
(2π)(S+D)/2

√
| det(Σz)|

√
| det(Σx)|)

)
− 1

2

(
xTΣ−1

x x+ EZ|X

[
− 2xTΣ−1

x g(z) + g(z)TΣ−1
x g(z) + zTΣ−1

z z

])
= − log

(
(2π)(S+D)/2

√
| det(Σz)|

√
| det(Σx)|)

)
− 1

2

(
xTΣ−1

x x+ Tr(EZ|X [zzTΣ−1
z ])

+ EZ|X

[
− 2xTΣ−1

x g(z) + g(z)TΣ−1
x g(z)

])
= − log

(
(2π)(S+D)/2

√
| det(Σz)|

√
| det(Σx)|)

)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωe
1
ω(x) + bωe

0
ω(x)

)

+
∑
ω

e0
ωb

T
ωΣ−1

x bω + Tr(AT
ωΣ−1

x AωE
2
ω(x)) + 2(Aωm

1
ω(x))TΣ−1

x bω + Tr(Σ−1
z E

2(x))

)
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G.2 Proof of M step

Let first introduce some notations:

AL→i
ω , (AL→i

ω )T (back-propagation matrix to layer i),

r`ω(x) ,

xe0
ω(x)−

Aωe
1
ω(x) +

∑
i6=`

m0
ω(x)Ai+1→L

ω Di
ωv

i

 (expected residual without v`)

ẑ`ω(x) ,D`−1
ω

(
A1→`−1
ω m1

ω(x) + b1→`−1
ω e0

ω

)
(expected feature map of layer `)

we can now provide the analytical forms of the M step for each of the learnable parameters:

Σ∗x=
1

N

∑
x

(
xxT+

∑
ω

bω
(
bωm

0
ω(x) + 2Aωe

1
ω(x)

)T− 2x(ẑLω (x))T+AωE
2
ω(x)AT

ω

)
, (22)

v`
∗

=

(∑
x

∑
ω

D`
ωA

L→`+1
ω Σ−1

x A
`+1→L
ω D`

ω

)−1
∑

x

∑
ω∈Ω

D`
ωA

L→`+1
ω Σ−1

x r`ω(x)︸ ︷︷ ︸
residual back-propagated to layer `

 , (23)

vect(W `∗) = U−1
ω vect

(∑
x

∑
ω

D`
ωA

L→`+1Σ−1
x

(
x−

L∑
i=`

Ai+1→L
ω Di

ωv
i

)
︸ ︷︷ ︸

residual back-propagated to layer `

(ẑ`ω(x))T
)
, (24)

we provide detailed derivations below.

G.2.1 Update of the bias parameter

Recall from (2) that bω = vL +
∑L−1
i=1 W

LDL−1
ω WL−1 . . .Di

ωv
i, we can thus rewrite the loss as

L(v`) =− 1

2
log
(

(2π)S+D| det(Σx)|| det(Σz)|
)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωm
1
ω(x) + bωm

0
ω(x)

)

+
∑
ω

m0
ωb

T
ωΣ−1

x bω + Tr(AT
ωΣ−1

x AωM
2
ω(x)) + 2(Aωm

1
ω(x))TΣ−1

x bω

)
− 1

2
Tr(Σ−1

z M
2(x))

=− 1

2

(
− 2xTΣ−1

x

(∑
ω

bωe
0
ω(x)

)
+
∑
ω

e0
ωb

T
ωΣ−1

x bω + 2
∑
ω

(Aωm
1
ω(x))TΣ−1

x bω

)
+ cst

=− 1

2

∑
ω

(
− 2xTΣ−1

x

(
A`+1→L
ω D`

ωv
`e0
ω(x)

)
+ e0

ω(A`+1→L
ω D`

ωv
`)TΣ−1

x (A`+1→L
ω D`

ωv
`)

+ 2e0
ω(x)(

∑
i6=`

Ai+1→L
ω Di

ωv
i)TΣ−1

x (A`+1→L
ω D`

ωv
`) + 2((m1

ω(x))T (Aω)TΣ−1
x A

`+1→L
ω D`

ωv
`
)

+ cst

=− 1

2

∑
ω

(
e0
ω(A`+1→L

ω D`
ωv

`)TΣ−1
x (A`+1→L

ω D`
ωv

`) (A)

+ 2(e0
ω(x)(

∑
i6=`

Ai+1→L
ω Di

ωv
i − x) +Aωe

1
ω(x))TΣ−1

x (A`+1→L
ω D`

ωv
`)
)

+ cst (B)
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=⇒ ∂L(v`) =− 1

2

∑
ω

[
− e0

ω(x)2D`
ωA

L→`+1
ω Σ−1

x A
`+1→L
ω D`

ωv
`

+ 2
(
A`+1→L
ω D`

ω

)T
Σ−1
x

e0
ω(x)

∑
i6=`

Ai+1→L
ω Di

ωv
i − x

+Aωe
1
ω(x)

]

=⇒ v` =

(∑
x

∑
ω

e0
ω(x)D`

ωA
L→`+1
ω Σ−1

x A
`+1→L
ω D`

ω

)−1

×
∑
x

∑
ω∈Ω

D`
ωA

L→`+1
ω Σ−1

x

xe0
ω(x)−

Aωm
1
ω(x) +

∑
i6=`

m0
ω(x)Ai+1→L

ω Di
ωv

i


as

(A) =e0
ω(x)(A`+1→L

ω D`
ωv

`)TΣ−1
x (A`+1→L

ω D`
ωv

`)

=⇒ ∂(A) =e0
ω(x)2D`

ωA
L→`+1
ω Σ−1

x A
`+1→L
ω D`

ωv
`

(B) =2


e0

ω(x)

∑
i6=`

Ai+1→L
ω Di

ωv
i − x

+Aωe
1
ω(x)

T

Σ−1
x (A`+1→L

ω D`
ωv

`)

+ cst

=⇒ ∂(B) =
(
A`+1→L
ω D`

ω

)T
Σ−1
x

e0
ω(x)

∑
i6=`

Ai+1→L
ω Di

ωv
i − x

+Aωe
1
ω(x)


G.2.2 Update of the slope parameter

We can thus rewrite the loss as

L(v`) =− 1

2
log
(

(2π)S+D| det(Σx)|| det(Σz)|
)
− 1

2

(
xTΣ−1

x x− 2xTΣ−1
x

(∑
ω

Aωm
1
ω(x) + bωm

0
ω(x)

)

+
∑
ω

m0
ωb

T
ωΣ−1

x bω + Tr(AT
ωΣ−1

x AωM
2
ω(x)) + 2(Aωm

1
ω(x))TΣ−1

x bω

)
− 1

2
Tr(Σ−1

z M
2(x))

=xTΣ−1
x

(∑
ω

Aωe
1
ω(x) + bωe

0
ω(x)

)
− 1

2

∑
ω

e0
ωb

T
ωΣ−1

x bω −
1

2

∑
ω

Tr(AT
ωΣ−1

x AωE
2
ω(x))

−
∑
ω

(Aωm
1
ω(x))TΣ−1

x bω

Notice that we can rewrite bω = A`+1→LD`
ωW

`D`−1
ω b1→`−1

ω +
∑L
i=`A

i+1→L
ω Di

ωv
i and Aω = A`+1→L

ω D`
ωW

`D`−1
ω A1→`−1
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we can group B,D and E together as well as A and C. Now to solve this equal 0 we will need to consider the flatten version ofW `

which we denote by w` = vect(W `) leading to
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H Regularization

We propose in this section a brief discussion on the impact of using a probabilistic prior on the weights of the GDN. In particular,
it is clear that imposing a Gaussian prior with zero mean and isotropic covariance on the weights falls back in the log likelihood to
impose a l2 regularization of the weights with parameter based on the covariance of the prior. If the prior is a Laplace distribution,
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the log-likelihood will turn the prior into an l1 regularization of the weights, again with regularization coefficient based on the prior
covariance. Finally, in the case of uniform prior with finite support, the log likelihood will be equivalent to a weight clipping, a
standard technique employed in DNs where the weights can not take values outside of a predefined range.

I Computational Complexity

The computational complexity of the method increases drastically with the latent space dimension, and the number of regions, and
the number of faces per regions. Those last quantities are directly tied into the complexity (depth and width) of the DGNs. This
complexity bottleneck comes from the need to search for all regions, and the need to decompose each region into simplices. As such,
the EM learning is not yet suitable for large scale application, however based on the obtained analytical forms, it is possible to derive
an approximation of the true form that would be more tractable while providing approximation error bounds as opposed to current
methods.

J Additional Experiments

In this section we propose to complement the toy circle experiment from the main paper first we an additional 2d case and then with
the MNIST dataset.

Wave

We propose here a simple example where the read data is as follows:

Figure 7: sample of noise data for the wave dataset

We train on this dataset the EM and VAE based learning with various learning rates and depict below the evolution of the NLL for all
models, we also depict the samples after learning.

MNIST We now employ MNIST which consists of images of digits, and select the 4 class. Note that due to complexity overhead
we maintain a univariate latent space of the GDN and employ a three layer DGN with 8 and 16 hidden units. We provide first the
evolution of the NLL through learning for all the training methods and then sample images from the trained DGNs demonstrating how
for small DGNs EM learning is able to learn a better data distribution and thus generated realistic samples as opposed to VAEs which
need much longer training steps.
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Figure 8: Depiction of the evolution of the NLL during training for the EM and VAE algorithms, we can see that despite the high
number of training steps, VAEs are not yet able to correctly approximate the data distribution as opposed to EM training which benefits
from much faster convergence. We also see how the VAEs tend to have a large KL divergence between the true posterior and the
variational estimate due to this gap, we depict below samples from those models.
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Figure 9: Samples from the various models trained on the wave dataset. We can see on top the result of EM training where each
column represents a different run, the remaining three rows correspond to the VAE training. Again, EM demonstrates much faster
convergence, for VAE to reach the actual data distribution, much more updates are needed.
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Figure 10: Evolution of the true data negative log-likelihood (in semilogy-y plot on MNIST (class 4) for EM and VAE training for a
small DGN as described above. The experiments are repeated multiple times, we can see how the learning rate is clearly impacting the
learning significantly despite the use of Adam, and that even with the large learning rate, the EM learning is able to reach lower NLL,
in fact the quality of the generated samples of the EM modes is much higher as shows below.
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Expectation-Maximization training

VAE training (large learning rate)

VAE training (medium learning rate)

VAE training (small learning rate)

Figure 11: Random samples from trained DGNs with EM or VAEs on a MNIST experiment (with digit 4). We see the ability of EM training to
produce realistic and diversified samples despite using a latent space dimension of 1 and a small generative network.
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