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In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-
dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN) based a
posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP
detector replaces the trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction
(PDNP) in a typical TDMR scenario, in that it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges
them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures - fully connected
DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN’s complexity is limited by
employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative
decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN
architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area
influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in?, the CNN detection
system achieves an information areal density of 3.08 Terabits/in?, i.e. a 21.72% density gain over a standard BCJR-based 1D-PDNP;
the CNN-based system also has 3x the throughput of 1D-PDNP, yet requires only 1/10th the computer run time.

Index Terms—Two-dimensional magnetic recording, deep learning, convolutional neural network, recurrent neural network, long
short-term memory, channel detection, grain-flipping-probability model

I. INTRODUCTION to a BCJR detector to detect coded bits in presence of
ISI, intertrack interference (ITI) and media noise. The LAIP
detector was first proposed in [8] and further evaluated in [9].
It estimates media noise in a 3 x3 local area. Simulation results
in [7] show the LAIP-BCJR detector achieves significant
detector bit error rate (BER) reductions over 2D-PDNP.

The LAIP detector employs a relatively simple machine
learning method, i.e., trained conditional probability mass
function (PMF) tables. Deep learning techniques [10] employ
much more general network structures and training techniques,
and have seen great success in a wide variety of applications.
For example, convolutional neural networks (CNNs) [11] work
well for spatially correlated data, and are highly competitive
in image recognition and computer vision. Long short-term
memory (LSTM) networks [12], a type of recurrent neural
network (RNN), circumvent the vanishing gradient problem in
traditional RNNs, and are well suited for sequential data such
as those used in speech recognition and machine translation.
Traditional fully connected deep neural networks (FC-DNNs),
on the other hand, are “structure agnostic”, and learn general
relationships between input and output without requiring spe-
cial assumptions about the input. In TDMR, down-track ISI
can span around 10 to 20 bits, whereas the media noise term
affecting a given target bit is primarily due to local grain-
bit interactions that occur in a 2D neighborhood of the target
bit. Thus, it makes sense to consider HDD readings as either
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UE to a phenomenon called the “superparamagnetic ef-
fect,” the hard disk drive (HDD) industry is approaching
an areal density limit for conventional one-dimensional mag-
netic recording (1IDMR). Two-dimensional magnetic recording
(TDMR) has the potential of achieving an order of magnitude
increase in HDD capacity without requiring radical redesign
of recording media [1]. HDD recording channels have media
noise, which results from magnetic grain-bit interactions and
is signal dependent. Typical signal processing for conventional
IDMR includes 1D pattern dependent noise prediction (1D-
PDNP, [2], [3]), which assists a trellis based Bahl-Cocke-
Jelinek-Raviv (BCJR) or Viterbi algorithm (VA) in detecting
coded data bits in presence of intersymbol interference (ISI)
and media noise, and exchanges log-likelihood ratios (LLRs)
with a channel decoder. Proposed generalizations to 2D-PDNP
for two-reader TDMR (e.g., [4]-[6]) suffer a state explo-
sion problem, i.e., trellis state cardinality becomes A+ +L),
where A is the predictor look-ahead, and I and L are the
ISI channel length and predictor order. The complexity grows
exponentially with I + L, and becomes impractical for more
than two readers.
To address this issue, in [7] we proposed a three-track
detection system for TDMR, in which a local area influence
probabilistic (LAIP) a priori detector passes its estimates



Two previous papers [13], [14] employ neural networks
(NNs) for equalization of TDMR channels. However, these
NNs have only three layers, and are thus not DNNs (which
typically have ten or more layers including hidden and output
layers), but are more like the first generation NNs introduced
in the 1980s. In addition, the NNs in [13], [14] do not appear
to interface directly with a channel decoder, and their perfor-
mance is compared only with that of a 2D linear equalizer,
which is known to perform significantly worse than the 2D-
BCJR or Viterbi equalizers typically employed in TDMR
detectors (e.g. [4]-[6], [15]).

In this paper, we propose a novel DNN based a posteriori
probability (APP) TDMR detection system, in which a DNN
detects data pre-processed by a linear PR equalizer, and iter-
atively exchanges log-likelihood ratios (LLRs) with a channel
decoder. Three types of DNN architecture are investigated:
FC-DNN, CNN and LSTM. They are evaluated in terms of
detector BER. The best performing DNN architecture, CNN,
is selected for iterative channel decoding, and the achieved
areal density is compared against both the LAIP-BCJR and a
conventional 1D-PDNP system. The proposed system is eval-
vated on a grain-flipping-probability (GFP) magnetic media
model, a realistic model which replicates output from micro-
magnetic simulations [16] but can be generated several orders
of magnitude faster. The GFP model has been validated in
previous studies against both spin-stand [17], [18] and HDD
[19] signals, and an HDD areal density estimate was made in
[20].

A DNN-based media noise predictor was recently proposed
in [21], in which a DNN replaces the conventional PDNP
by supplying media noise estimates to the BCJR. The BCJR
performs ISI equalization, and subtracts the estimated media
noise when computing its LLRs. By contrast, in the present
paper we eliminate the trellis and replace both the BCJR and
PDNP by a single DNN that directly estimates the coded bits.
Also, [21] considers only single-track detection for 1DMR,
whereas the system proposed in this paper detects three tracks
simultaneously and is designed for TDMR.

This work’s main contributions are as follows: 1) three novel
DNN APP three-track detectors based on FC-DNN, CNN,
and LSTM that reduce the detector BER by 30.47%, 32.87%,
and 28.27% respectively compared to a state-of-art 2D-PDNP
detector; 2) use of a linear minimum mean-squared error
(MMSE) filter with partial response (PR) signaling as a pre-
processing step to limit the DNN complexity; 3) a method of
exploiting spatial correlation in the a priori LLRs provided to
the CNN by the channel decoder to improve iterative decoding
performance; 4) a novel DNN training-per-iteration approach
for iterative decoding with a channel decoder. On a GFP
model with 18 nm track pitch and 11.4 Teragrains/in?, the
CNN detection system achieves an information areal density
of 3.08 Terabits/in? (Tb/in?), i.e. a 21.72% density gain over a
standard BCJR-based 1D-PDNP; the CNN-based system also
has 3x the throughput of 1D-PDNP, yet requires only 1/10th
the computer run time.

This paper is organized as follows. Section II discusses
the GFP model data used to train and evaluate our system.
Section III provides an overview of the proposed DNN-based
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Fig. 1. A capture of the GFP model readback signal with track pitch of 18
nm and bit length of 11 nm. Bit regions are not rectangular but curved stripes
due to the shingled write process. The blue and red stripes represent —1 and
+1 coded bits. The 3 x 3 white square denotes a 3 X 3 convolutional filter
applied on the data. The white arrow indicates the direction that the filter
moves.
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Fig. 2. Cartoon representation of the writing process and readback sampling
position for GFP model data.

APP detection system. Section IV describes the three DNN
architectures investigated, i.e., FC-DNN, CNN and LSTM,
and section V describes how they are trained. Section VI
explains in detail the DNN-based TDMR detection system,
and section VII presents Monte Carlo simulation results on
the GFP model. Section VIII concludes the paper.

II. THE GFP MODEL

The GFP waveforms are generated based on micro-magnetic
simulations. The simulated media has grain density of 11.4
Teragrains per square inch; similar grain densities have been
employed in previous papers [22], [23]. The GFP model data
used in our system consists of five tracks of coded bits (£1),
denoted as tracks 0 through 4. They are written using shingled
writing technology. Fig. 1 shows a capture of the GFP model
readback signal. Bit regions are not rectangular, but rather
curved stripes due to the relative orientation of the corner write
head. The blue and red stripes represent —1 and +1 coded bits.
Track O at the bottom is written first. Then track 1 is written,
overlapping part of track 0. The writing process repeats until
track 4 is written. Track 4 is called the fat track, since it is not
followed by any more tracks and thus preserves its original
width, i.e., the magnetic write width (MWW). MWW is a
characteristic of the write head, and it is equal to 75 nm. In
our GFP simulations, bit length (BL) is chosen to be 11 nm,
and track pitch (TP), i.e., the distance between adjacent tracks,
is set to be 18 nm. The number of grains per coded bit (GPB)
is calculated as

GPB = Grain density x BL x TP
= 11.4 Teragrains/in® x 11nm x 18nm
x (3.937 x 107% in/nm)? = 3.5.

Fig. 2 is a cartoon representation of the writing process and
readback sampling position. The input bits in the GFP data
are arranged in tracks O through 4, and are of size 5 X IV,
where NV, is the number of bits per track, or the track length.
Their values are randomly distributed and known. Of these
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Fig. 3. Block diagram of the DNN-based APP detection system for TDMR.

TABLE I
NORMALIZED 3 X 3 CONVOLUTIONAL MASK FOR ESTIMATING 2D-ISI

GFP data set #1
0.1163 0.2725 0.0462
0.3087 1.0000 0.5264
0.0959 0.4194 0.3628

GFP data set #2
0.0967 0.1742 0.0598
0.3857 1.0000 0.5596
0.0637 0.2397 0.2757

five tracks, only tracks 1, 2, and 3 have readback values, and
thus the readback values are of size 3 x IV. There are 25 read
offsets spaced at TP/8 ranging over tracks 1, 2, and 3. To
sample the data on these three central tracks, we use reader
positions at 4, 12 and 20, approximately the center of each
track.

We generate two sets of GFP data. They have the same BL
and TP, but different reader and writer parameters during the
GFP simulation. Each track in GFP data set #1 consists of
41,206 coded bits, and there are 41,207 coded bits in GFP
data set #2; this is close to the sector size of 32,768 bits (4K
bytes) in a typical HDD. The bits written on the two outer
tracks have no readings available, and are considered boundary
bits. For GFP data set #1, the three-track readings have raw
BERs of roughly 18.54%, 18.53% and 18.33% under a hard
decision with threshold 0. For GFP data set #2, the raw BERs
are 16.38%, 16.41% and 16.32%. Table 1 shows the best fit
normalized 3 x 3 ISI convolutional masks for the two GFP data
sets. These ISI masks are estimates of the 2D channel response
used to simulate these two data sets, and are estimated using
least squares method as in [9]. It can be seen that the simulated
channel for these two data sets are significantly different. GFP
data set #1 clearly suffers more ITI from both adjacent tracks
than GFP data set #2.

The shingled writing process introduces ITI. As the MWW
is fixed, a smaller TP results in greater ITI. Compared to
typical commercial HDDs with TP = 48nm, the GFP model
data with TP = 18 nm used in this paper suffers from rather
severe ITL. In our system, a 2D linear PR equalizer is applied
on the GFP waveforms prior to the DNN. This pre-processing
step partially equalizes the ITI and the down-track ISI, and as
a result it helps lower the complexity of the DNN.

III. DNN DETECTION SYSTEM MODEL AND OVERVIEW

Fig. 3 shows a block diagram of the proposed DNN-based
APP detection system. The system input, consisting of three-
track GFP readings, is first pre-processed by a 2D 3-input-
3-output linear PR equalizer. The linear equalizer h (of size

3 x 15) is applied on the raw GFP readings r in order to
minimize the MSE between the filtered output hxr and desired
output g u, where g is a 2D 3 x 3 controlled partial response
(PR) target response, u is the block of three-track coded data
bits, and * indicates discrete 2D convolution. The linear PR
equalizer output y serves as input to the DNN. The detection
system assumes the following discrete time channel model for
the readback signal 7:

D

where h. is the channel response, and n. j represents AWGN
from reader electronics. The channel response h, is implicitly
time varying and pattern dependent, because the channel is
inherently nonlinear [24]. Therefore, pattern dependent media
noise arises. The filtered readings y still retain the effects of
pattern dependent media noise, which the linear equalizer h
can not really remove. Unlike a BCJR-PDNP detector that
predicts media noise using a linear auto-regressive model and
performs trellis-based detection, the DNN-based APP detector
directly learns a general model to predict coded bits u through
an offline training process, i.e.

Py = 1) = T(yx).

rp = (he * u)g + ne g,

)

Here 7 is a nonlinear transformation, yy, is a 3 x 15 patch of
filtered readings and 4y is the DNN’s estimate of the center
bit of the patch yj. The binary GFP data bits u (£1) are the
target bits that the DNN aims to output; they are available to
the DNN as true labels during an initial offline training. As a
result, the DNN detection process is essentially an instance of
binary classification under supervised learning.

The DNN consists of several layers. Interconnections be-
tween the layers are defined by functions. Parameters that
specify these functions in the DNN include weights, biases,
offsets and scales. Among these parameters, some are specified
prior to training; they are called hyperparameters. The rest
of the parameters are learnable through training; the goal of
training is to optimize the learnables so that they provide an
accurate description of the input-output relationship between
the bottom (input) layer and the top (output) layer of the DNN.
In our simulations, the goal is to arrive at optimized learnables
that yield the lowest detector BER, or highest code rate and
areal density.

Since the equalizer output target g * u is multi-level for
each binary target bit, the DNN learns through training how
to detect the binary target bit from the equalizer output. This
replaces the typical trellis processing done in the BCJR or VA
with more general DNN processing.



Each patch of filtered readings that the DNN uses to
estimate one coded bit u is considered as one example, and it
corresponds to one label. In our system, one example consists
of three tracks of filtered readings of length 15 (same length
as the linear PR equalizer), and the label is the true value of
the coded bit « in the center of the 3 x 15 example patch. After
one example is formed, we move down-track by one bit and
form the next 3 x 15 example. The total number of examples
per track N is thus N = N, — 14.

An objective function measures the error between the true
label u and its DNN estimate 4. We choose the cross entropy
loss (described in section IV-A) as the objective function. The
DNN’s goal is to minimize the objective function. This is
done through iterative gradient-based optimization during the
training. At each training step, the DNN computes the gradient
with respect to each of the learnables over the training data
set, and updates them in the direction of descending gradient.
The optimized learnables, along with the DNN structure, are
stored at the end of the training. In real-time detection, the
stored values are pre-loaded into the network and used to make
predictions on a previously unseen test data set. Both training
and test data in our system are generated using the same GFP
model parameters. This is justified by the fact that the read and
write head as well as recording media are fixed in a specific
set of HDDs.

Given a block of filtered waveform inputs, the DNN outputs
APPs of each coded bit being +1. These APPs are fed into
a soft-input-soft-output channel decoder following the DNN.
The channel decoder is an irregular repeat accumulate (IRA)
low density parity check (LDPC) decoder [25]. Because the
GFP data is randomly distributed, coset decoding is employed
by the IRA decoder. The three tracks are processed indepen-
dently by the IRA decoder, assuming each track contains a
separate codeword. The DNN detector and the IRA decoder
exchange LLRs; the LLR magnitudes are capped at thresholds
T, and 75 at the outputs of the detector and the decoder. A
multiplicative weight w is applied to the LLRs passed by the
DNN to the IRA decoder after thresholding in order to slow
the convergence of the system and thereby avoid local minima
in the channel decoder’s BER.

We investigate three DNN architectures, i.e., FC-DNN,
CNN and LSTM. For each DNN architecture, three networks
with the same structure are trained in parallel to estimate tracks
1, 2 and 3. Details of the DNN architectures are described in
section IV. We evaluate the performance of the three architec-
tures on the test data set based on DNN output BERs. The best-
performing DNN architecture is selected for iterative decoding
with the channel decoder. We explore iterative decoding with
two decoding passes. In the second decoding pass, the channel
decoder passes its soft estimates of the coded bits back to the
DNN, and a separate DNN is trained for the second iteration.
Details of the iterative decoding are described in section VI

IV. DNN ARCHITECTURES

In this section, we describe three DNN architectures imple-
mented for TDMR APP detection: FC-DNN, CNN and LSTM.
Because the FC-DNN and the LSTM network do not yield

Fig. 4. Interconnections between two fully connected layers. Each node in
one layer is connected to every node in an immediately adjacent layer.

the lowest detector BERs, they are not included in subsequent
turbo detection with the channel decoder. The CNN is selected
for iterative decoding, and the different CNN structures in both
decoding passes are described below in section IV-B.

In each of the three types of DNN, we group the layers
and categorize them into three functional stages: input stage,
hidden stage and output stage. The input stage typically con-
sists of an input layer. To account for ITI and the correlation
introduced by the linear PR equalizer, the network input
consists of three-track filtered readings of size 3 x 15, shaped
in certain dimensions that are tailored to each of the three
network architectures. The true label for each example is the
bit value at the center of the 3 x 15 patch. When estimating
tracks 1 and 3, we use boundary track bits (tracks 0 and 4) to
form the three-track external input.

The hidden stages are the main stages performing the
function of the network. The function of the hidden stages
depends on the DNN architecture. For instance, as shown in
Fig. 5, the hidden stages in the CNN apply convolutional filter
banks to the input. The output stage generates the probabilities
that each bit belongs to each of the two classes, and computes
the network loss. It is made up of several layers that work
jointly, and is identical in all the three architectures.

A. Fully connected neural network

We first describe a traditional FC-DNN for APP detection.
It consists of an input stage, four stacks of fully connected
stages (fully connected stages #1 through 4), and an output
stage, for a total of 12 layers.

In fully connected networks, all the nodes in each fully
connected layer are connected to every node in the imme-
diately previous layer. These connections are specified by
weights, which are optimized during network training and can
be zero. Fig. 4 illustrates such connection between two fully
connected layers. Because layers are fully connected, to form
each training example, we vectorize a 3 x 15 window of filtered
readings into a 45 X 1 column vector. The ensemble of all the
column vectors comprises the input stage.

In each fully connected stage, a fully connected layer with
a number of hidden nodes is followed by a ReLU layer for
network activation. Each node in the fully connected layer
applies the affine function y = w - = + b to its input z,
where w, b are trainable parameters. The weights and biases
between each fully connected layers are the learnables to
train and optimize in the FC-DNN. The ReLU layer utilizes
the ReLU function f(z) = max(0,z), a popular nonlinear
activation function that generates sparsity, is easy to compute,
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Fig. 5. Functional block diagram of the CNN for the first decoding pass.
The CNN is structured in a series of stages, including an input stage, several
stacks of convolutional stages, and an output stage. In the first decoding pass,
the size of each input example at the input stage is [3 X 15 x 1], and there are
five convolutional stages, i.e., convolutional stages #1 through 5, with 128,
64, 32, 16 and 8 convolutional filter banks respectively.

and combats the vanishing gradient problem that occurs with
the sigmoid activation function [10].

The number of hidden nodes in each hidden layer of the
four fully connected stages is 128 — 64 — 32 — 8. We find in
our experiments that a decreasing number of nodes gives best
results. This is probably because we have the most information
available at the beginning of the network. We also find that
given the fixed input size (45 x 1), further increase in the
depth of the DNN does not improve the network performance
for a relatively short training time (roughly 30 min). Potential
benefits could result from a deeper network for a larger input
size and enough training time.

The output stage is made up of a fully connected layer with
two hidden nodes, a softmax layer and a classification layer.
The fully connected layer combines all the learned features to
make a classification. Its output size is equal to the number
of classes of the data set, K, and K = 2. Following it is the
softmax layer, which applies the following softmax function
to the output x; of the fully connected layer:

K
pr = exp(x) /(Y exp(x;)), k= 1,2. 3)
j=1
This softmax function produces a probability distribution py
over the K output classes. This is considered as the soft
information formed by the DNN detector, where p; is the
probability that the bit is 0, and ps is the probability that the
bit is 1. The last layer in the output stage is the classification
layer, which computes the cross entropy loss as

Ny K
T =3 1(a(i) = k) x In(pi), )
i=1 k=1
where N,,;, denotes the number of training examples in the
mini batch that we compute cross entropy over, 1(-) is the
indicator function that is turned on when the expression inside
the parentheses is true, and p;; is the probability from the
softmax layer that the i*" example belongs to class k. The
cross-entropy loss is the most common loss function for binary
classification problems. Minimizing this objective function
yields accurate and reliable classification [26].

B. Convolutional neural networks

We now describe a convolutional neural network for APP
detection. Fig. 5 shows the structure of the CNN for the first
decoding pass. It can be categorized into an input stage, five
stacks of convolutional stages and an output stage. The input
stage consists of an image input layer. Each convolutional
stage consists of three layers, to be described below. The

Channel Decoder’s Output Probabilities

Filtered Readings

Fig. 6. Image input in one training example in second decoding pass. It is
a [3 x 15 x 2] array of two [3 x 15 x 1] images. The first image, shown in
orange at the bottom, is the filtered waveforms, and the second image, shown
in blue on the top, is the a priori information from the IRA decoder.

output stage is identical to that of the FC-DNN, and consists
of three layers, thereby giving a total of 1+ (5 x3)+3 =19
layers. External input to the network is required to be in the
form of a multidimensional array in order to be considered
as an image. In the first decoding pass, the size of the image
input layer is [3 X 15 x 1] and the overall size of the entire
input is [3 x 15 x 1 x N]. In the second decoding pass, a priori
information from the channel decoder becomes available, i.e.,
for each coded bit there exists an extrinsic soft estimate from
the channel decoder. Therefore, we form the input layer size
as [3 x 15 x 2], and store the channel decoder’s estimates as
a second image stacked on top of the first [3 x 15 x 1] image
of filtered readings. This is illustrated in Fig. 6.

Following the input stage are several stacks of convolutional
stages. There are five of them in the first decoding pass, and six
of them in the second decoding pass. Fig. 7 shows the structure
of a convolutional stage. It consists of a 2D convolutional
layer, a batch normalization layer, and a rectified linear unit
(ReLU) layer. The 2D convolutional layer applies several
sliding 2D convolutional filter banks, or kernels, of size 3x 3 to
its layer input, as shown by the white 3 x 3 square and arrow in
Fig. 1. Zero padding is applied to both horizontal and vertical
input borders so that the output of the convolutional layer has
the same size as its input. This filtering process can be regarded
as autonomous feature extraction; each convolutional filter
bank corresponds to one feature map. Applying convolutional
filters to generate features greatly reduces the efforts for
manual feature selection in traditional machine learning, and
also provides translation invariance and parameter sharing. For
our system, the network learns through this feature extraction
process to account for the signal-dependent media noise due
to the underlying grain model.

In the first decoding pass, we choose the number of filter
banks at convolutional stages #1 through 5 to be 128 — 64 —
32—16—8. In the second decoding pass, an extra convolutional
stage #6 with 4 filter banks is added after convolutional stage
#5. Because the network input in our system only consists of
three rows, the rationale for decreasing the number by a factor
of 2 at each stage is to enable the CNN to extract more salient
features from the input stage, and then gradually abstract
only the part that is relevant to the output. The per stage
filter bank numbers are experimentally found to work well for
our system in terms of classification accuracy, while keeping
the overall network complexity reasonable. The fact that the
second decoding pass is able to leverage more convolutional
stages is probably due to the doubled input size and thus more
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Fig. 7. The structure of a convolutional stage. It consists of a 2D convolutional
layer, a batch normalization layer, and a rectified linear unit (ReLU) layer.
Each convolutional layer includes a certain number of 3 X 3 2D convolutional
filter banks, or kernels. Each filter bank is applied to its input in a sliding
block manner.

information.

A batch normalization layer follows the convolutional layer
to normalize the convolutional layer’s output across a mini-
batch, ie., ©; = (v; — pup)/\/ 0% + € yi = ¥&; + 3, where
up denotes the mini-batch mean, op denotes the mini-batch
standard deviation, ¢ is a small denominator offset for numeri-
cal stability, and (3, y are learnable offset and scale factors that
are optimized during the training. This normalization process
speeds up the training, reduces the network’s sensitivity to
initialization and increases the network’s stability. As in a fully
connected network, the last layer component in a convolutional
stage is the ReLU layer, which activates the network. Neither
the batch normalization layer nor the ReLU layer change the
size of its input. The output size of each convolutional stage
is 3 X 15 x Ny, where N; denotes the number of filter banks
at that convolutional stage. Based on our choice of Ny’s,
the dimensionality of the output at each convolutional stage
is rather low. Thus, no max pooling layer is employed for
downsampling. The last functional stage, i.e., the output stage,
of the CNN is identical to that of the FC-DNN, described in
section IV-A. Overall, the learnables of the CNN include the
coefficients of the filter banks in the convolutional layers, the
parameters in the batch normalization layers, and the weights
and biases in the fully connected layers in the output stage.

C. Long short-term memory

We describe another DNN APP detector, based on LSTM.
The LSTM consists of an input stage, seven stacks of LSTM
stages (LSTM stages #1 through 7), and an output stage, with
a total of 11 layers. The input stage for LSTM consists of
a sequence input layer, with sequence size Ny = 45. Thus
the input to LSTM is the same as the input to the FC-DNN.
The input is interpreted as [N, time steps in a sequence. Each
subsequent LSTM stage consists of a bidirectional LSTM
(BLSTM) layer, which is a hybrid version of LSTM and
bidirectional RNN (BRNN). Bidirectional dependencies can
be learned because the network has access to the complete
sequence at each time step. Each BLSTM layer is made up
of N, repeating LSTM block cells, corresponding to the N
time steps. At each BLSTM layer, information passes through
each LSTM block cell sequentially. Fig. 8 shows the data flow
inside a typical LSTM block cell at time step ¢, i.e., the ¢
LSTM block cell.

LSTM layers derive inter-time step relationships mainly
through three type of gates—input gate, denoted as ¢ in Fig. 8§,
forget gate, denoted as f, and output gate, denoted as o. At
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Fig. 8. Data flow inside the LSTM block cell at time step ¢. The LSTM
block cell consists of a forget gate f, an input gate 4, a cell candidate g and
an output gate o. The cell state and hidden state at time step ¢ are denoted
as c¢, he respectively. The output h¢ of the LSTM block cell at time step ¢
becomes input to the LSTM block cell at time step ¢ + 1.

a particular time step, the input gate allows the new input to
pass through, the forget gate discards irrelevant information
and the output gate allows the output to be updated. These
three gates control the states at each time step, including
the hidden state h;, and the cell state ¢;. The hidden state
h; in the right corner of Fig. 8 contains the output of the
LSTM block cell at time step t. It stores information from
previous time steps, which can be longer than the sequence
length 45, and thus the name long short-term memory. The
dimension of the hidden state h; is chosen as 100 for all of
the seven BLSTM layers in the seven LSTM stages. The cell
state ¢; is where memory from previous time steps is taken
into consideration. At each time step, information is either
added to (through input gate i) or removed from (through
forget gate f) c;. The hyperbolic tangent function (tanh) is
used as state activation function to update c; and h;, and the
sigmoid function o(x) = 1/(1 + exp(—x)) is used as the
gate activation function to update the gates. LSTM stages #1
through 6 output the complete sequence (of length 45); LSTM
stage #7 outputs the last time step of the sequence. The output
stage of the LSTM is identical to that of the FC-DNN and the
CNN, described in section IV-A. The learnables of the LSTM
include the weights in the BLSTM layers, and the weights and
biases in the fully connected layers in the output stage.

V. DNN TRAINING

For each of the three architectures, three DNNs with the
same structure are trained independently to estimate each
of the three tracks. Weights are initialized to be zero-mean
Gaussian with a standard deviation of 0.01. Biases and offsets
are initialized to zero. Scales are initialized to one. We employ
the adaptive moment estimation (Adam) optimizer [27]. As its
name suggests, Adam computes individual adaptive learning
rates for different parameters from estimates of the first and
second moments m; and v; of the gradient at the [th step. Com-
pared to standard stochastic gradient descent (SGD), Adam is
known to help escape local saddle points and accelerate the
training in the relevant direction. In our experiments, Adam
achieves a high accuracy much faster than SGD. The set of
gradient update rules for each individual parameter for Adam



is summarized as
my = Bimy—1 + (1 — B1)VE[§]

v = Bovi—1 + (1 — B2)(VE[6)])?
anmy

Vite

where 6; denotes the parameter value at step I, 51, B2 are the
gradient decay factor and the squared gradient decay factor,
« is the learning rate, and € is a small offset. Values for
hyperparameters (31, 02, o, € are specified prior to training; in
our experiments for all DNN architectures, we set 31 = 0.95,
B2 = 0.99 and € = 1078, For learning rate o, we make it
piece-wise decaying with an initial value of 0.05. In CNN
and FC-DNN, « drops by a factor of 0.75 every epoch, i.e.,
one pass of the entire training data through the network. In
LSTM, for track 2, o drops by a factor of 0.75 every epoch,
whereas for tracks 1 and 3 it drops by the same factor every
two epochs. Such learning rate scheduling is experimentally
found to yield best results.

In our experiments, we have N ~ 3x 100 training examples.
It is computationally inefficient to pass all of them to the
DNN at once and compute the gradient. Therefore, we divide
the training data into mini batches of size N,,;, = 10%, and
pass one mini batch to the DNN at a time for computing the
gradient. One such pass of a mini batch is called an iteration.
The total number of iterations in an epoch thus equals N/10%,
which is roughly 290 in our simulation. The choice of mini
batch size is experimentally found to work well with our
system, based on a trade-off between computational efficiency
and training accuracy (low BER). We train the DNN over
a certain number of epochs, N.. N, is roughly the smallest
number of epochs we find that is required for the network to
converge. For the FC-DNN and CNN, N, = 15 for all three
tracks. For LSTM, N, = 10.

We also pass to the network a validation data set, which is
used for evaluating the network as the training moves forward.
Such evaluation, or validation, gives us an idea of how the
trained network generalizes to previously unseen data. Both
the training data and validation data are randomly shuffled
prior to the beginning of every epoch in order to reduce the
effect of noise and generalize the learning.

For training a CNN for use with iterative decoding, we
explore the possibility of early stopping based on ongoing
validation results. Because the network input contains noise,
both the training and validation accuracy fluctuate when
evaluated, say every 50 iterations. Based on the level of
fluctuation we observed, when training the CNN for the second
decoding pass, we perform validation every epoch and stop
training when validation loss does not decrease after three
consecutive evaluations, i.e., after three epochs. We observe
in our experiments that the CNN training for tracks 1, 2 and
3 in the second decoding pass auto-stopped after 11, 3 and 2
epochs. In other words, track 1 requires the most number of
epochs to converge, whereas track 3 requires the least. This
probably results from the shingled writing process, described
in section II. As shown in Fig. 1, both tracks 1 and 3 are
next to a boundary track. Track 3 abuts the fat track, track 4,
whereas track 1 adjoins a fellow narrow track, track 0. In our
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system, the coded bits on tracks 0 and 4 are known boundary
bits and are passed to the DNN. Because track 4 is the fat track
and has a higher SNR, it may have provided better help to the
DNN in estimating track 3 than track 0 could have helped in
estimating track 1.

VI. TDMR TURBO DETECTION SYSTEM

Fig. 3 shows the three-input-three-output system block
diagram. In the linear PR equalizer, the PR mask and the
filter coefficients are co-designed using the monic constraint
according to the method described in [28]; the upper and lower
track outputs are produced using bits on the two boundary
tracks. For the two GFP data sets, the two designed PR masks
are

0.0028 0.1417

0.1623
g = [0.2795 1.0000 0.2903
_0.2347 0.2684 0.0780_
for GFP data set #1, and
_0.0080 0.0780 0.1097_
g = 10.2635 1.0000 0.2768
0.1965 0.1275 0.0267

for GFP data set #2. This pre-processing step equalizes cross-
track ITI and down-track ISI to a window size approximately
the same as the PR equalizer, i.e., 3 x 15, which helps reduce
the complexity of the subsequent DNN. The 3 x 3 PR target for
the equalizer also enables the CNN to better capture the local
features or correlations in the equalized readings, because the
size of the filters used in all convolutional layers are 3 x 3.
The larger coefficients on the first and third row of the PR
mask for GFP data set # 1 imply higher ITI in GFP data set
#1 than GFP data set #2.

Since the CNN yields the lowest BER among the three
DNN architectures (per Table II in section VII), we choose
the CNN detector for iterative (turbo) decoding with the IRA
decoder. The CNN detector receives the filtered waveforms
from the 2D linear PR equalizer and outputs soft estimates for
all three tracks. These soft estimates are converted to LLRs,
de-interleaved per track, and then fed into the channel decoder.
This simulates the scenario that HDD data are first encoded
and then interleaved. The purpose of interleaving and de-
interleaving is to break correlation among the errors introduced
by the detector, so that the errors appear random to the channel
decoder. Accordingly, the channel decoder’s output LLRs are
first interleaved and then sent to the CNN detector as a priori
information for use in the next decoding pass.

For the second decoding pass, we train and optimize a
separate CNN tailored to the a priori information from the
channel decoder. This piece of a priori information is shaped
as part of the image input in a similar manner as the filtered
waveforms. The input in the second iteration is a [3 X 15 x 2]
array of two [3 x 15 x 1] images. The first image is the
filtered waveforms, and the second image is the a priori
information from the IRA decoder. In our system, what is
passed to the CNN from the IRA decoder is actually a linearly



shifted version of the IRA’s estimated probabilities of each
coded bit. We experimentally find that passing probabilities
yields better performance than passing LLRs. This is most
likely because the log function in LLRs is nonlinear, and as a
result introduces distortion. Because probabilities are between
0 and 1, we subtract 0.5 from them to make them zero mean
before passing to the CNN. The CNN in the second iteration
further lowers the BER, and passes its output LLRs to the IRA
decoder again. The IRA decoder produces the final decoded
codeword at the end of the second iteration.

LLRs from the CNN to the channel decoder are multiplied
by a weight factor w < 1. This reduces the CNN output LLR
magnitudes, which otherwise tend to overestimate the CNN
bit reliabilities. In addition, the CNN’s processing (including
the non-linear ReLU function) makes it difficult to express the
CNN’s output LLRs as a sum of extrinsic and a-priori terms.
Therefore, subtraction of the CNN’s input LLRs (provided by
the channel decoder) from its output LLRs in order to form
extrinsic information to pass to the channel decoder is not
possible. We find experimentally that w = 0.5 results in lowest
decoded BER. Thresholds are also applied on LLRs during
turbo iteration to avoid numerical issues.

VII. SIMULATION RESULTS

This section presents Monte Carlo simulation results of the
DNN-based APP detection system. The system is tested on
two GFP data sets, both with TP = 18 nm, BL = 11 nm, and
GPB = 3.5. The binary input bits in each block of these data
sets are of size 5 x Ny, and the waveforms are 3 x [Ny, where
the track length N = 41,207 for GFP data set #1, and N, =
41,206 for GFP data set #2. GFP data set #1 corresponds
to the special sets of 512 training patterns that were used to
train the conditional PMFs for the LAIP [9]. GFP data set #2 is
identical to one tested in [29], where simulation results in Fig.
16 of that paper show that an information density of 2.4 Tb/in?
(corresponding to 0.2105 U/G) can be achieved with this data
set by employing a 3-input/1-output 2D linear PR equalizer
with a 1D BCJR and IRA decoder. In both GFP data sets, the
boundary bits on the outer two input tracks are known. A total
of a hundred blocks of input and waveform data are available.
We assign seventy blocks as the training data set, ten blocks
as the validation data set, and twenty blocks as the test data
set. Both the training data set and the validation data set are
available to the DNN during training. Simulation results are
reported only for the test data set.

A. Detector-only BER Comparison

We first evaluate the three DNN architectures implemented
in the first decoding pass in terms of detector-only BER
comparison. GFP data set #1 is used for this evaluation.
Fig. 9 shows a portion of the training learning curves of
the three DNN architectures on track 2. Accuracy is equal to
1—BER, which means the percentage of bits that are classified
correctly. More than 90% accuracy is achieved within two
epochs. During training, the FC-DNN classifies the fastest
among the three, followed by LSTM. The CNN initially makes
the slowest classification but eventually achieves the highest
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Fig. 9. The training learning curves of FC-DNN, CNN and LSTM on track
2. More than 90% accuracy is achieved within two epochs. During training,
the FC-DNN classifies the fastest among the three, followed by LSTM. The
CNN initially makes the slowest classification, but eventually achieves the
highest accuracy. The learning curves for tracks 1 and 3 are similar.

TABLE II
DETECTOR BER COMPARISON
TDMR BER BER BER BER
Detectors Track 1 | Track 2 | Track 3 | average
None 18.54% 18.53% 18.33% 18.47%
FC DNN 8.30% 8.21% 7.56% 8.03%
CNN 7.99% 7.87% 7.38% 7.75%
LSTM 8.41% 8.62% 7.80% 8.28%
2D-PDNP 10.60% 12.48% N/A 11.54%
LAIP-BCJR 8.99% 7.69% 8.88% 8.52%

accuracy. It is possible that the initial convergence of the CNN
can be improved by fine tuning the hyperparameters in the
optimizer used in the training process. The learning curves
for tracks 1 and 3 are similar.

Table II summarizes the simulation results for detector BER.
The first row in the table shows the raw BERs on tracks 1,
2 and 3, which are obtained by applying a threshold of 0 on
the readback signals before the equalizer. The second, third,
and fourth rows show that the FC-DNN, CNN and LSTM
achieve average BERs (over all three tracks) of 8.03%, 7.75%,
and 8.28% respectively, thereby achieving BER reductions of
56.55%, 58.05% and 55.18% over the raw BER. This suggests
that the TDMR detection problem is more suitably considered
as an image processing problem rather than a time series
problem.

In the fifth row in Table II, we report the BER of a
state-of-art 2D-PR 2D-BCJR/2D-PDNP two-track detection
system, where the 2D-PDNP two-track uses the following 2D
autoregressive model to predict media noise [6]:

NP
ng =Y Pi(Ap)ng i + A(Ap)wg. (5)
i=0
Details of our implementation are described in [7]. The

2D-PDNP parameters are trained over forty blocks of GFP
data and tested on the remaining sixty blocks. We observed



experimentally that more than forty training blocks showed
no improvement. One possible reason is that the relatively
low-complexity linear model in (5) is unable to learn from
more training data. Compared to the BCJR/2D-PDNP, the
CNN detector achieves detector BER reductions of 24.62%
and 36.94% on tracks 1 and 2, or an average BER reduction of
32.87%. The FC-DNN and the LSTM detector gives average
BER reductions of 30.47% and 28.27% separately. All of the
three DNN detectors detect three tracks and thus achieve a
factor of 1.5x throughput gain.

In the sixth row in Table II, we show the detector BER of
a recently proposed 2D-PR LAIP-BCIJR three-track detector
as described in [7]. The LAIP detector considers a 3 x 3 bit
cell (denoted as A, B, ..., H, and U) and assumes an additive
model for read back value of center bit U:

2

i€{A,B,....H}

Yu = au + Qtotal = QU + Qg (6)

where ag denotes the local area influence (LAI) on target bit
U due to bit 3. Details of the LAIP detector are described in
[7]. The LAIP detector is trained on 512 blocks of special
training patterns, simulated using the same GFP model as
GFP data set #1 and with the same track length. This special
training data set is required inherently by the LAIP detector
due to the flip-and-subtraction estimation method for LAIs,
whereas the DNN can be trained directly from the regular
GFP data set or from actual HDD data if available. Compared
to the LAIP-BCIR detector, the proposed CNN, FC-DNN and
LSTM detector achieves average detector BER reductions of
9.07%, 5.83%, and 2.85%.

B. Areal Density Comparison

We implement iterative decoding between the CNN detec-
tor and the IRA decoder. The LLR thresholds 7} and 75
at the outputs of the CNN detector and IRA decoder are
Ty = 10.0, and T = 5.0. We use systematic IRA codes.
The number of internal IRA decoder iterations is 100 in the
first decoding pass, and 200 in the second decoding pass.
For GFP data set #1, two decoding passes are done. For
GFP data set #2, one decoding pass is done. Results are
reported in terms of both user bits per grain (U/G), where
U/G = achieved-code-rate/GPB, and areal density, where
Areal-density = U/G - Grain-density. Here “achieved-code-
rate” is the highest code rate after puncturing that achieves a
final decoded BER of 10~°. We use a puncturing scheme that
accurately simulates puncturing bits written to a HDD; this
scheme is described in detail in [9].

Table III summarizes the simulation results of the DNN
detection system with channel decoding. The raw channel
BER is equal to that of the track detected for single-track
detection, i.e., track 2, whereas it is the average BER over the
three tracks detected for three-track detection, i.e., tracks 1,
2 and 3. When we get zero error counts, we also provide in
parenthesis a conservative BER upper bound estimate with a
95% confidence level. This BER upper bound is computed as
3/Nich, wWhere Ny, is the total number of transmitted coded
bits [30]. For GFP data set #1, with two passes of channel

decoding, i.e., one loop between the CNN and the IRA, the
DNN system achieves an average code rate of 0.6833 over
the three detected tracks, which corresponds to 2.232 Terabits
per square inch (Tb/in?), or equivalently 0.1957 U/G. The
base rate of the IRA code used to produce this result is
0.6506. For GFP data set #2, with one single pass of channel
decoding, the DNN system gives an average code rate of
0.9433, which corresponds to 3.081 Tb/inz, or 0.2702 U/G.
To our knowledge, this is the highest density ever reported on
GFP model data with grain density of 11.4 Tg/in?. The base
rate of the IRA code used to produce this result is 0.7507.
Further density gains are likely to result from a higher base
rate code requiring very little puncturing.

For density comparison, the BCJR/2D-PDNP detector in the
fifth row of Table II is interfaced with an IRA decoder, and
the average density result on the two tracks under a single
decoding pass on GFP data set #2 is shown in the sixth
row of Table III. We also implement a standard 1D-PR 1D-
BCJR/PDNP single-track detection system [24], based on the
following 1D autoregressive model:

L
nk(uk) = Z ai(uk)nk_i(uk) + a(uk)wk. (7

i=1

Comparing the fourth, sixth and last rows of Table III, 1D-
PDNP gives 13.4% areal density gain over 2D-PDNP on GFP
data set #2, whereas CNN gives 38.11% density gain, all
under one decoding pass. The fact that 1D-PDNP has better
performance than 2D-PDNP is at least partially due to the
fact that 1D-PDNP considers a pattern of seven downtrack
bits, whereas 2D-PDNP only considers three bits on each of
the two tracks (as in [6] where the 2D-PDNP was proposed) in
order to maintain a reasonable trellis state cardinality. We note,
however, that 2D-PDNP doubles the data throughput compared
to 1D-PDNP. Furthermore, the proposed CNN system with one
decoding pass (last row of Table IIT) achieves a 21.72% density
gain over the 1D-PDNP turbo system with two decoding
passes (fifth row of Table III). Note that we allow up to 20
iterations between the 1D-PDNP and the IRA decoder, but the
1D-PDNP system is unable to take advantage of more turbo
loops at a higher code rate. In contrast, we only trained CNNs
per iteration for up to two decoding passes, and it is likely
higher density can be achieved with more decoding passes.
As for GFP data set #1, the proposed CNN system (third row
of Table III) achieves a 5.12% areal density gain and three
times throughput gain over 1D-PDNP (first row of Table III),
both with two decoding passes.

We next compare the density of the CNN system with that of
the LAIP-BCJR system in [7]. One global pass, i.e., two IRA
decoding passes are done. The number of internal IRA decoder
iterations is 200 and 100 for the two IRAs following the LAIP
and the BCIR respectively. To make it a fair comparison, no
inner loops between the LAIP and the first IRA decoder or
between the BCJR and the second IRA decoder are done.
Because the LAIP is trained using the same model as GFP
data set #1, it is not evaluated on GFP data set #2. The CNN
system in the third row of Table III gives a 4.32% areal density
gain over the LAIP-BCJR system (second row in Table III).



TABLE III
AREAL DENSITY COMPARISON
GFP Raw Number Areal User Bits Code Decoded Decoded
TDMR Detectors Model Channel of tracks Density per Grain Rate BER FER
BER detected (Tb/in?)
ID-PDNP 2 passes GFP #1 0.1853 1 2.123 0.1862 0.6500 0 (1.9583e-6) 0 (0.0500)
LAIP-BCIJR 2 passes GFP #1 0.1847 3 2.139 0.1876 0.6550 0 (3.7300e-7) 0 (0.0100)
CNN 2 passes GFP #1 0.1847 3 2.232 0.1957 0.6833 0 (1.8650e-6) 0 (0.0500)
ID-PDNP 1 pass GFP #2 0.1641 1 2.482 0.2177 0.7600 0 (1.2115¢-6) 0 (0.0375)
ID-PDNP 2 passes GFP #2 0.1641 1 2.531 0.2220 0.7750 0 (1.2115e-6) 0 (0.0375)
2D-PDNP 1 pass GFP #2 0.1641 2 2.230 0.1957 0.6830 0 (6.8377e-06) 0 (0.0250)
CNN 1 pass GFP #2 0.1637 3 3.081 0.2702 0.9433 0 (1.6153e-6) 0 (0.0500)
TABLE 1V In addition to the run time measurement, computational
COMPUTATIONAL COMPLEXITY COMPARISON complexity comparison (per bit) between the four detectors
Method mul/div | add/sub | exp/log is given in Table IV. The 1D-PDNP looks at 1 x 7 bit patterns
D.PDNP 37985 | 106726 gy op track 2, and has 128 states. The 2D-PDNP considers 2 x 3
’ ’ bit patterns on tracks 1 and 2, and has 64 states. 2D-PDNP
2D-PDNP 86,657 | 54,392 257 with 256 states was investigated in [7], and it gives 0.7% BER
LAIP-BCJR | 291,560 | 189,279 257 reduction on track 2 as well as 0.2% BER increase on track
CNN 113,761 | 102,062 1 1, compared to the 64 state version. However, the complexity

C. Storage, Latency and Complexity Comparison

In regards to offline storage overhead, the conditional PMF
tables stored by the LAIP require about 780 MB of stor-
age [9]. The three FC-DNNs require 0.18 MB for storing
49, 518 learnables, and the LSTM requires 17 MB for storing
4,686, 006 learnables for GFP data set #1. The three CNNs in
each decoding pass together require approximately 1.2 MB for
storing around 0.3 million learnables. The 1D-PDNP requires
0.035 MB for storing 2,560 parameters. All the variables
above are stored as double-precision floating-point values. The
storage requirement for the LAIP-BCJR system is thus 325X
that of the two-pass CNN system.

As for online detection time, in the 1D-PDNP system,
the latency due to one run of the 1D-PDNP detector is
roughly 771.9 microseconds (us) per bit. In the LAIP-BCJR
system, the latency caused by one run of LAIP detector is
approximately 766.4 us/bit, and 281.3 us/bit for one run of
the 2D-BCIJR. For the one global shot LAIP-BCJR system in
the second row of Table III, the total latency caused by the
LAIP and 2D-BCJR detectors is thus 1047.7 pus/bit. In the
DNN detection system, the three tracks can be detected in
parallel. The latency is around 12.8 us/bit for the FC-DNN,
and 94.2 ps/bit for LSTM. The CNN latency ranges from
64.2 ps/bit to 79.5 us/bit per decoding pass. Thus the CNN
latency for one decoding pass in the last row of Table III
is approximately 1/10 the latency of one pass of the 1D-
PDNP in the fourth row of Table III. The above results are
estimated when all systems are running on the same CPU.
When running on a GPU, the CNN latency is reduced to the
range between 12.1 us/bit and 14.3 us/bit, and the latency
of LSTM becomes 43.2 us/bit. We note that the capability
to use GPU-enabled hardware for acceleration of training and
real-time operation is an inherent advantage of DNNs.

of the BCJR algorithm grows as the square of the number
of states (and same statement holds for Viterbi algorithm),
and 256-state 2D-PDNP would require more than 1 million
multiplications. The minimal performance improvement of
256 states does not justify the increase in complexity. Thereby
we present only results of 64 states here. For the LAIP-BCJR
detector, more than 90% of the complexity is due to the
2D-BCIJR, which is a straightforward BCJR implementation
according to [31]. The number of states in the BCJR algorithm
in turn grows exponentially with the number of tracks being
detected. This explains why the LAIP-BCJR that detects
three tracks has the highest complexity. The LAIP detector
is implemented in MATLAB, which might explain the large
running time of the LAIP. The CNN is implemented using the
deep learning toolbox in MATLAB. Table IV shows that the
CNN requires fewer operations than both the 1D-PDNP and
the LAIP-BCJR. This supports the measurement that CNN has
the least latency. We note that exponentiations/logarithms are
required in our implementation of BCJR, but could be avoided
if an approximation such as MAX-Log-MAP algorithm [32]
is used.

D. Boundary Conditions

The results in Tables II and III assume perfect knowledge
of the bits on the top and bottom boundary tracks. In a
more realistic scenario, bits on both boundary tracks would
be unknown, but readback values would still be available. By
making hard decisions on the boundary track readings, we can
(roughly) estimate the boundary track bits. For GFP data set
#1, this would mean a raw BER of 18.5% for both boundary
rows. In the 2D LAIP-BCJR system we describe in [9], we
estimate the unknown boundary tracks by pre-processing them
with a simple 1D BCJR detector with four trellis states.
Simulations in [9] with GFP data set #1 show that this scheme




reduces the boundary track BER to 7.6%. In [9], we therefore
introduce random errors at a 7.6% BER into the boundary
track data bits, and simulate the LAIP-BCJR detector with
these estimated boundary conditions; the simulations show
that using the estimated boundaries reduces the LAIP-BCJR
detector’s achieved areal density by about 7.0% compared to
the perfect boundary case. We anticipate that the CNN APP
detector would suffer a similar density penalty if boundary
estimation were used; for GFP data set #1, this density penalty
would drop the achieved areal density of the LAIP-BCJR and
CNN APP detectors slightly below that of 1D-PDNP, which
does not use adjacent track information. Further reduction of
the boundary track BER can be achieved by using a single
channel decoder pass on the boundary tracks, which would
improve the CNN APP detector’s achieved density compared
to 1D-PDNP. It also important to note that, for GFP data set #2,
the lower raw BER of 16.4% would result in lower boundary
bit BERs after simple four state BCJR detection, thus reducing
the areal density penalty due to unknown boundaries to < 7%,
and that, even assuming a 7% density loss, the CNN APP
detector with one channel decoding pass would still achieve
a 13.2% density gain over the 1D-PDNP detector (with 2
decoding passes) on GFP data set #2.

VIII. CONCLUSION

This paper describes the design of a DNN-based APP de-
tection system for parallel multi-track turbo TDMR detection.
We investigate three DNN architectures, all of which achieve
significant BER reductions compared to state-of-art multi-
track detectors. The CNN is found to be the best performing
DNN architecture, and we select it for iterative decoding with
a channel decoder. The CNN APP detection system achieves
significant areal density gains over the standard 1D-PDNP and
state-of-the-art LAIP-BCJR detection systems with same or
fewer decoding passes, and with < 1/10 the per bit latency.
More turbo loops between the CNN detector and the channel
decoder should result in further density gains.
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