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Abstract. We give a framework for relating the concrete security of a
“reference” protocol (say, one appearing in an academic paper) to that
of some derived, “real” protocol (say, appearing in a cryptographic stan-
dard). It is based on the indifferentiability framework of Maurer, Renner,
and Holenstein (MRH), whose application has been exclusively focused
upon non-interactive cryptographic primitives, e.g., hash functions and
Feistel networks. Our extension of MRH is supported by a clearly defined
execution model and two composition lemmata, all formalized in a mod-
ern pseudocode language. Together, these allow for precise statements
about game-based security properties of cryptographic objects (interac-
tive or not) at various levels of abstraction. As a real-world application,
we design and prove tight security bounds for a potential TLS 1.3 exten-
sion that integrates the SPAKE2 password-authenticated key-exchange
into the handshake.

Keywords: real-world cryptography, protocol standards, concrete secu-
rity, indifferentiability

1 Introduction

The recent effort to standardize TLS 1.3 [44] was remarkable in that it lever-
aged provable security results as part of the drafting process [40]. Perhaps the
most influential of these works is Krawczyk and Wee’s OPTLS authenticated
key-exchange (AKE) protocol [35], which served as the basis for an early draft
of the TLS 1.3 handshake. Core features of OPTLS are recognizable in the final
standard, but TLS 1.3 is decidedly not OPTLS. As is typical of the standard-
ization process, protocol details were modified in order to address deployment
and operational desiderata (cf. [40, §4.1]). Naturally, this raises the question of
what, if any, of the proven security that supported the original AKE protocol
is inherited by the standard. The objective of this paper is to answer a general
version of this question, quantitatively:

Given a reference protocol II (e.g., OPTLS), what is the cost, in terms
of concrete security [7], of translating IT into some real protocol IT (e.g.,
TLS 1.3) with respect to the security notion(s) targeted by IT?
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Such a quantitative assessment is particularly useful for standardization because
real-world protocols tend to provide relatively few choices of security parameters;
and once deployed, the chosen parameters are likely to be in use for several
years [33].

A more recent standardization effort provides an illustrative case study. At
the time of writing, the CFRG! was in the midst of selecting a portfolio of
password-authenticated key-exchange (PAKE) protocols [10] to recommend to
the IETF? for standardization. Among the selection criteria [51] is the suitability
of the PAKE for integration into existing protocols. In the case of TLS, the goal
would be to standardize an extension (cf. [44, §4.2]) that specifies the usage of the
PAKE in the handshake, thereby enabling defense-in-depth for applications in
which (1) passwords are available for use in authentication, and (2) sole reliance
on the web PKI for authentication is undesirable, or impossible. Tight security
bounds are particularly important for PAKEs, since their security depends so
crucially on the password’s entropy. Thus, the PAKE’s usage in TLS (i.e., the
real protocol IT) should preserve the concrete security of the PAKE itself (i.e.,
the reference protocol IT ), insofar as possible.

The direct route to quantifying this gap is to re-prove security of the derived
protocol IT and compare the new bound to the existing one. This approach is
costly, however: particularly when the changes from IT to IT seem insignificant,
generating a fresh proof is likely to be highly redundant. In such cases it is
common to instead provide an informal security argument that sketches the parts
of the proof that would need to be changed, as well as how the security bound
might be affected (cf. [35, §5]). Yet whether or not this approach is reasonable
may be hard to intuit. Our experience suggests that it is often difficult to estimate
the significance of a change before diving into the proof.

Another difficulty with the direct route is that the reference protocol’s con-
crete security might not be known, at least with respect to a specific attack model
and adversarial goal. Simulation-style definitions, such as those formalized in the
UC framework [20], define security via the inability of an environment (univer-
sally quantified, in the case of UC) to distinguish between attacks against the
real protocol and attacks against an ideal protocol functionality. While useful in
its own right, a proof of security relative to such a definition does not immedi-
ately yield concrete security bounds for a particular attack model or adversarial
goal.

This work articulates an alternative route in which one argues security of IT
by reasoning about the translation of IT into IT itself. Its translation framework
(described in §2 and introduced below) provides a formal characterization of
translations that are “safe”, in the sense that they allow security for II to be
argued by appealing to what is already known (or assumed) to hold for II. The
framework is very general, and so we expect it to be broadly useful. In this
work we will demonstrate its utility for standards development by applying it to
the design and analysis of a TLS extension for SPAKE2 [3], one of the PAKEs
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considered by the CFRG for standardization. Our result (Theorem 1) precisely
quantifies the security loss incurred by this usage of SPAKE2, and does so in
a way that directly lifts existing results for SPAKE2 [3,6,1] while being largely
agnostic about the targeted security notions.

THE FULL VERSION [42]. This article is the extended abstract of our paper. The
full version includes all deferred proofs, as well as additional results, remarks,
and discussion.

Overview. Our framework begins with a new look at an old idea. In particular,
we extend the notion of indifferentiability of Maurer, Renner, and Holenstein [38§]
(hereafter MRH) to the study of cryptographic protocols.

Indifferentiability has become an important tool for provable security. Most
famously, it provides a precise way to argue that the security in the random oracle
model (ROM) [12] is preserved when the random oracle (RO) is instantiated
by a concrete hash function that uses a “smaller” idealized primitive, such as a
compression function modeled as an RO. Coron et al. [26] were the first to explore
this application of indifferentiability, and due to the existing plethora of ROM-
based results and the community’s burgeoning focus on designing replacements
for SHA-1 [53], the use of indifferentiability in the design and analysis of hash
functions has become commonplace.

Despite this focus, the MRH framework is more broadly applicable. A few
works have leveraged this, e.g.: to construct ideal ciphers from Feistel net-
works [27]; to define security of key-derivation functions in the multi-instance
setting [11]; to unify various security goals for authenticated encryption [4]; or
to formalize the goal of domain separation in the ROM [8]. Yet all of these ap-
plications of indifferentiability are about cryptographic primitives (i.e., objects
that are non-interactive). To the best of our knowledge, ours is the first work to
explicitly consider the application of indifferentiability to protocols. That said,
we will show that our framework unifies the formal approaches underlying a
variety of prior works [31,17,41].

Our conceptual starting point is a bit more general than MRH. In partic-
ular, we define indifferentiability in terms of the world in which the adversary
finds itself, so named because of the common use of phrases like “real world”,
“ideal world”, and “oracle worlds” when discussing security definitions. Formally,
a world is a particular kind of object (defined in §2.1) that is constructed by
connecting up a game [15] with a scheme, the former defining the security goal
of the latter. The scheme is embedded within a system that specifies how the
adversary and game interact with it, i.e., the scheme’s execution environment.

Intuitively, when a world and an adversary are executed together, we can
measure the probability of specific events occurring as a way to define adversarial
success. Our MAINY security experiment, illustrated in the left panel of Figure 1,
captures this. The outcome of the experiment is 1 (“true”) if the adversary A
“wins”, as determined by the output w of world W, and predicate 1) on the
transcript tx of the adversary’s queries also evaluates to 1. Along the lines of
“penalty-style” definitions [47], the transcript predicate determines whether or
not A’s attack was valid, i.e., whether the attack constitutes a trivial win. (For
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Fig. 1: Tllustration of the MAINY (
ments for worlds W, V', resources R
icate 1.

1) and SR-INDIFFY (Def. 3) security experi-

Def.
,Q, adversary A, simulator S, and transcript pred-

example, if W captures IND-CCA security of an encryption scheme, then
would penalize decryption of challenge ciphertexts.)

SHARED-RESOURCE INDIFFERENTIABILITY AND THE LIFTING LEMMA. Also
present in the experiment is a (possibly empty) tuple of resources E, which
may be called by both the world W and the adversary A. This captures embel-
lishments to the base security experiment that may be used to prove security,
but are not essential to the definition of security itself. An element of R might be
an idealized object such as an RO [12], ideal cipher [27], or generic group [43]; it
might be used to model global trusted setup, such as distribution of a common
reference string [22]; or it might provide A (and W) with an oracle that solves
some hard problem, such as the DDH oracle in the formulation of the Gap DH
problem [39].

The result is a generalized notion of indifferentiability that we call shared-
resource indifferentiability. The SR-INDIFFY experiment, illustrated in the right
panel of Figure 1, considers an adversary’s ability to distinguish some real
world /resource pair W/R (read “W over R”) from a reference world /resource
pair V/ Q when the world and the adversary share access to the resources. The
real world W exposes two interfaces to the adversary, denoted by subscripts W3
and Wa, that we will call the main and auziliary interfaces of W, respectively.
The reference world V' also exposes two interfaces (with the same monikers),
although the adversary’s access to the auxiliary interface of V' is mediated by a
simulator S. Likewise, the adversary has direct access to resources R in the real
experiment, and S-mediated access to resources Cj in the reference experiment.

The auxiliary interface captures what changes as a result of translating world
v/ @ into w/ R: the job of the simulator S is to “fool” the adversary into believing
it is interacting with W/ R when in fact it is interacting with V/ Q Intuitively,
if for a given adversary A there is a simulator S that successfully “fools” it,
then this should yield a way to translate A’s attack against W/ R into an attack
against V/ @. This intuition is captured by our “lifting” lemma (Lemma 1, §2.3),
which says that if V/@ is MAINY-secure and W/R is indifferentiable from V/Q
(as captured by SR-INDIFF¥), then W/R is also MAIN%-sccure.
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GAMES AND THE PRESERVATION LEMMA. For all applications in this paper,
a world is specified in terms of two objects: the intended security goal of a
scheme, formalized as a (single-stage [45]) game; and the system that specifies the
execution environment for the scheme. In §2.4 we specify a world W = Wo(G, X)
whose main interface allows the adversary to “play” the game G and whose
auxiliary interface allows it to interact with the system X.

The world’s auxiliary interface captures what “changes” from the reference

experiment to the real one, and the main interface captures what stays the
same. Intuitively, if a system X is indifferentiable from Y, then it ought to be
the case that world Wo(G, X) is indifferentiable from Wo(G,Y'), since in the
former setting, the adversary might simply play the game G in its head. Thus,
by Lemma 1, if YV is secure in the sense of G, then so is X. We formalize this
intuition via a simple “preservation” lemma (Lemma 2, §2.4), which states that
the indifferentiability of X from Y is “preserved” when access to X’s (resp. Y's)
main interface is mediated by a game G. As we show in §2.4, this yields the main
result of MRH as a corollary (cf. [38, Theorem 1]).
UPDATED PSEUDOCODE. An important feature of our framework is its highly
expressive pseudocode. MRH define indifferentiability in terms of “interacting
systems” formalized as sequences of conditional probability distributions (cf. [38,
§3.1]). This abstraction, while extremely expressive, is much harder to work with
than conventional cryptographic pseudocode. A contribution of this paper is to
articulate an abstraction that provides much of the expressiveness of MRH, while
preserving the level of rigor typical of game-playing proofs of security [15]. In
§2.1 we formalize objects, which are used to define the various entities that run
in security experiments, including games, adversaries, systems, and schemes.

EXECUTION ENVIRONMENT FOR ECK-PROTOCOLS. Finally, in order define in-
differentiability for cryptographic protocols we need to precisely specify the sys-
tem X (i.e., execution environment) in which the protocol runs. In §3.1 we
specify the system X = eCK(IT) that captures the interaction of the adversary
with protocol IT in the extended Canetti-Krawczyk (eCK) model [37]. The aux-
iliary interface of X is used by the adversary to initiate and execute sessions
of IT and corrupt parties’ long-term and per-session secrets. The main interface
of X is used by the game in order to determine if the adversary successfully
“attacked” II.

Note that our treatment breaks with the usual abstraction boundary. In
its original presentation [37], the eCK model encompasses both the execution
environment and the intended security goal; but in our setting, the full model is
obtained by specifying a game G that codifies the security goal and running the
adversary in world W = Wo(G,eCK(IT)). As we discuss in §3.1, this allows us
to use indifferentiability to prove a wide range of security goals without needing
to attend to the particulars of each goal.

Case study: Design of a PAKE extension for TLS. Our framework lets
us make precise statements of the following form: “protocol IT is G-secure if
protocol IT is G-secure and the execution of I is indifferentiable from the ex-
ecution of I1.” This allows us to argue that IT is secure by focusing on what
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changes from IT to I1. In §3.2 we provide a demonstration of this methodology
in which we design and derive tight security bounds for a TLS extension that
integrates SPAKE2 [3] into the handshake. Our proposal is based on existing
Internet-Drafts [5,36] and discussions on the CFRG mailing list [18,55].

Our analysis (Theorem 1) unearths some interesting and subtle design issues.
First, existing PAKE-extension proposals [5,54] effectively replace the DH key-
exchange with execution of the PAKE, feeding the PAKE’s output into the key
schedule instead of the usual shared secret. As we will discuss, whether this usage
of the output is “safe” depends on the particular PAKE and its security proper-
ties. Second, our extension adopts a “fail closed” posture, meaning if negotiation
of the PAKE fails, then the client and server tear down the session. Existing
proposals allow them to “fail open” by falling back to standard, certificate-only
authentication. There is no way to account for this behavior in the proof of
Theorem 1, at least not without relying on the security of the standard authen-
tication mechanism. But this in itself is interesting, as it reflects the practical
motivation for integrating a PAKE into TLS: it makes little sense to fail open if
one’s goal is to reduce reliance on the web PKI.

PARTIALLY SPECIFIED PROTOCOLS. TLS specifies a complex protocol, and most
of the details are irrelevant to what we want to prove. The Partially Specified
Protocol (PSP) framework of Rogaway and Stegers [46] offers an elegant way
to account for these details without needing to specify them exhaustively. Their
strategy is to divide a protocol’s specification into two components: the protocol
core (PC), which formalizes the elements of the protocol that are essential to the
security goal; and the specification details (SD), which captures everything else.
The PC, fully specified in pseudocode, is defined in terms of calls to an SD oracle.
Security experiments execute the PC, but it is the adversary who is responsible
for answering SD-oracle queries. This formalizes a very strong attack model, but
one that yields a rigorous treatment of the standard itself, rather than a boiled
down version of it.

We incorporate the PSP framework into our setting by allowing the world
to make calls to the adversary’s auxiliary interface, as shown in Figure 1. In
addition, the execution environment eCK and world-builder Wo are specified
so that the protocol’s SD-oracle queries are answered by the adversary.

Related work. Our formal methodology was inspired by a few seemingly dis-
parate results in the literature, but which fit fairly neatly into the translation
framework. Recent work by the authors [41] considers the problem of secure key-
reuse [31], where the goal is design cryptosystems that safely expose keys for use
in multiple applications. They formalize a condition (GAP1, cf. [41, Def. 5])
under which the G-security of a system X implies that G-security of X holds
even when X's interface is exposed to additional, insecure, or even malicious
applications. This condition can be formulated as a special case of SR-INDIFF¥
security, and their composition theorem (cf. [41, Theorem 1]) as a corollary of
our lifting lemma. The lifting lemma can also be thought of as a computational
analogue of the main technical tool in Bhargavan et al.’s treatment of downgrade
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resilience (cf. [17, Theorem 2]). We discuss this connection in detail in the full
version.

THE UC FRAMEWORK. MRH point out (cf. [38, §3.3]) that the notion of indif-
ferentiability is inspired by ideas introduced by the UC framework [20]. There
are conceptual similarities between UC (in particular, the generalized UC frame-
work that allows for shared state [21]) and our framework, but the two are quite
different in their details. We do not explore any formal relationship between
frameworks, nor do we consider how one might modify UC to account for things
that are naturally handled by ours (e.g., translation and partially specified be-
havior [46]). Such an exploration would make interesting future work.

PrOVABLE SECURITY OF SPAKE2. The SPAKE2 protocol was first proposed
and analyzed in 2005 by Abdalla and Pointcheval [3], who sought a simpler
alternative to the seminal encrypted key-exchange (EKE) protocol of Bellovin
and Merritt [16]. Given the CFRG’s recent interest in SPAKE2 (and its relative
SPAKE2+ [25]), there has been a respectable amount of recent security anal-
ysis. This includes concurrent works by Abdalla and Barbosa [1] and Becerra
et al. [6] that consider the forward secrecy of (variants of) SPAKE2, a property
that Abdalla and Pointcheval did not address. Victor Shoup [49] provides an
analysis of a variant of SPAKE2 in the UC framework [20], which has emerged
as the de facto setting for studying PAKE protocols (cf. OPAQUE [32] and
(Au)CPace [30]). Shoup observes that the usual notion of UC-secure PAKE [23]
cannot be proven for SPAKE2, since the protocol on its own does not provide
key confirmation. Indeed, many variants of SPAKE2 that appear in the litera-
ture add key confirmation in order to prove it secure in a stronger adversarial
model (cf. [6, §3]).

A recent work by Skrobot and Lancrenon [50] characterizes the general con-
ditions under which it is secure to compose a PAKE protocol with an arbitrary
symmetric key protocol (SKP). While their object of study is similar to ours—a
PAKE extension for TLS might be viewed as a combination of a PAKE and the
TLS record layer protocol—our security goals are different. In their model for
the combined protocol, the adversary’s goal is to break the security goal intended
by the SKP, whereas our goal is to show that the combined protocol does not
impact security of the underlying PAKE.

2 The Translation Framework

This section presents the analytical foundation of this paper. We begin in §2.1
by defining objects, our abstraction of the various entities run in a security
experiment; in §2.2 we define our base experiment and formalize shared-resource
indifferentiability; in §2.3 we state the lifting lemma, the central technical tool
of this paper (we defer a proof to the full version); and in §2.4 we formalize the
class of security goals to which our framework applies.

NOTATION. When X is a random variable we let Pr[X = v] denote the prob-
ability that X is equal to v; we write Pr [X] as shorthand for Pr [X =1 ] We
let x < y denote assignment of the value of y to variable . When X is a finite
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set we let x «— X denote random assignment of an element of X to = according
to the uniform distribution.

A string is an element of {0, 1}*; a tuple is a finite sequence of symbols sep-
arated by commas and delimited by parentheses. Let £ denote the empty string,
() the empty tuple, and (z,) the singleton tuple containing z. We sometimes (but
not always) denote a tuple with an arrow above the variable (e.g., Z). Let |z| de-
note the length of a string (resp. tuple) . Let x; and z[i] denote the i-th element
of z. Let z ||y denote concatenation of x with string (resp. tuple) y. We write
x =Xy if string x is a prefix of string y, i.e., there exists some r such that z || r = y.
Let y % 2 denote the “remainder” r after removing the prefix z from y; if £ v,
then define y % 2 = ¢ (cf. [19]). When z is a tuple we let 2.z = (z1,..., 2|4, 2)
so that z is “appended” to x. We write z € x if (i) x; = z. Let [i..j] denote the
set of integers {i,...,j}; if 7 <, then define [i..j] as 0. Let [n] = [1..n].

For all sets X and functions f,g : X — {0,1}, define function f A g as the
map [f A g|(z) — f(z) Ag(z) for all z € X. We denote a group as a pair (G, *),
where G is the set of group elements and * denotes the group action. Logarithms
are base-2 unless otherwise specified.

2.1 Objects

Our goal is to preserve the expressiveness of the MRH framework [38] while
providing the level of rigor of code-based game-playing arguments [15]. To strike
this balance, we will need to add a bit of machinery to standard cryptographic
pseudocode. Objects provide this.

Each object has a specification that defines how it is used and how it in-
teracts with other objects. We first define specifications, then describe how to
call an object in an experiment and how to instantiate an object. Pseudocode
in this paper will be typed (along the lines of Rogaway and Stegers [46]), so
we enumerate the available types in this section. We finish by defining various
properties of objects that will be used in the remainder.

Specifications. The relationship between a specification and an object is anal-
ogous to (but far simpler than) the relationship between a class and a class
instance in object-oriented programming languages like Python or C++. A spec-
ification defines an ordered sequence of variables stored by an object—these are
akin to attributes in Python—and an ordered sequence of operators that may
be called by other objects—these are akin to methods. We refer to the sequence
of variables as the object’s state and to the sequence of operators as the object’s
interface.

We provide an example of a specification in Figure 2. (We give a detailed de-
scription of the syntax in the full version.) Spec Ro is used throughout this work
to model functions as random oracles (ROs) [12]. It declares seven variables, X,
Y, q, p, T, i, and j, as shown on lines 1-2 in Figure 2. (We will use shorthand
for line references in the remainder, e.g., “2:1-2” rather than “lines 1-2 in Fig-
ure 27.) Each variable has an associated type: X and Y have type set, ¢, p, 1,
and j have type int, and T has type table. Variable declarations are denoted by
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spec Ro: op (SET, M object):
var X,) set, ¢, p int var x elemy, y elemy,
var T table, i, j int if j > p then ret L
op (SETUP): T <+ []; 4,5« O J i+ 1L ((z,y),0) « M()
op (z elemy): Tlz] -y
if ¢ > q then ret L ret ((z,y),0)

if T[x] = L then
i+ i+ 1 Tx] « Y
ret T'[x]

Fig. 2: Specification of a random oracle (RO) object. When instantiated, variables X
and ) determine the domain and range of the RO, and integers ¢ and p determine,
respectively, the maximum number of distinct RO queries, and the maximum number
of RO-programming queries (via the SET-operator), (cf. Def. 6).

the keyword “var”, while operator definitions are denoted by the keyword “op”.
Spec Ro defines three operators: the first, the seTuP-operator (2:3), initializes
the RO’s state; the second operator (2:4-8) responds to standard RO queries;
and the third, the seT-operator (2:9-14), is used to “program” the RO [29].

Calling an Object. An object is called by providing it with oracles and passing
arguments to it. An oracle is always an interface, i.e., a sequence of operators
defined by an object. The statement “out < 0bj Il""’Im(inl, ..., iny)” means to
invoke one of 0bj’s operators on input of in, ..., in, and with oracle access to
interfaces Iy, ...,I,, and set variable out to the value returned by the operator.
Objects will usually have many operators, so we must specify the manner in
which the responding operator is chosen. For this purpose we will adopt a con-
vention inspired by “pattern matching” in functional languages like Haskell and
Rust. A pattern is comprised of a tuple of literals, typed variables, and nested
tuples. A value is said to match a pattern if they have the same type and the
literals are equal. For example, value val matches pattern (_ elemy) if val has
type elemy. (The symbol “_” contained in the pattern denotes an anonymous
variable.) Hence, if object R is specified by Ro and x has type elemy, then the
expression “R(x)” calls R’s second operator (2:4-8). We write “val ~ pat” if the
value of val matches pattern pat.

Calls to objects are evaluated as follows. In the order in which they are
defined, check each operator of the object’s specification if the input matches
the operator’s pattern. If so, then execute the operator until a return statement
is reached and assign the return value to the output. If no return statement is
reached or if val does not match an operator, then return L.

spec Schnorr:

op (GEN): s 4= Zg|; PK < g°; ret (PK,s) op™ (s int, SIGN, msg str):
op™ (PK elemg, VERIFY, msg str, (z,t int)): 4= Zig|; t + H(g", msg)
ret t = H(g9” - PK*, msg) (mod |G|) ret (r — st,t)

Fig. 3: Specification of Schnorr’s signature scheme.
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Let us consider an illustrative example. Let IT be an object that implements
Schnorr’s signature scheme [48] for a group (G,-) as specified in Figure 3. The
expression IT(GEN) calls IT’s first operator, which generates a fresh key pair. If
s € Z and msg € {0,1}*, then expression ITH (sicn, msg) evaluates the third
operator, which computes a signature (z,t) of message msg under secret key s
(we will often write the first argument as a subscript). The call to interface
oracle H on line 3:5 is answered by object H. (Presumably, H is a hash function
with domain G x {0, 1}* and range Zg|.) If PK € G, msg € {0,1}*, and z,t € Z,
then expression ITH, (veriFy, msg, (z,t)) evaluates the second operator. On an
input that does not match any of these patterns—in particular, one of (GEN),
(_ elemg, VERIFY, _ str, (z,t int)), or (_int,sicN, _ str)—the object returns L.
For example, IT1Im (o0 bar) = L for any Iy,..., L.

It is up to the caller to ensure that the correct number of interfaces is passed

to the operator. If the number of interfaces passed is less than the number of
oracles named by the operator, then calls to the remaining oracles are always
answered with 1 ; if the number of interfaces is more than the number of oracles
named by the operator, then the remaining interfaces are simply ignored by the
operator.
EXPLANATION. We will see examples of pattern matching in action throughout
this paper. For now, the important takeaway is that calling an object results in
one (or none) of its operators being invoked: which one is invoked depends on
the type of input and the order in which the operators are defined.

Because these calling conventions are more sophisticated than usual, let us
take a moment to explain their purpose. Theorem statements in this work will
often quantify over large sets of objects whose functionality is unspecified. These
conventions ensure that doing so is always well-defined, since any object can be
called on any input, regardless of the input type. We could have dealt with
this differently: for example, in their adaptation of indifferentiability to multi-
staged games, Ristenpart et al. require a similar convention for functionalities
and games (cf. “unspecified procedure” in [45, §2]): our hope is that the higher
level of rigor of our formalism will ease the task of verifying proofs of security
in our framework.

Instantiating an Object. An object is instantiated by passing arguments to its
specification. The statement “o0bj < Object(iny, ..., in,,)" means to create a
new object obj of type Object and initialize its state by setting obj.vary < inq,

.., obj.var,, <+ in,,, where vary,...,var,, are the first m variables declared
by Object. If the number of arguments passed is less than the number of
variables declared, then the remaining variables are uninitialized. For example,
the statement “R < Ro(X,Y,q,p,[],0,0)” initializes R by setting R.X + X,
RY < Y, Rq <+ q, Rp < p, RT « [], R.i + 0, and R.j < 0. The state-
ment “R + Ro(X,Y,q,p)” sets RX + X, RY « Y, R.q + ¢, and R.p < p,
but leaves T, i, and j uninitialized. Object can also be copied: the statement
“new < obj” means to instantiate a new object new with specification Object
and set mew.vary < obj.vary,...,new.var, < obj.var,, where vary,...,vary,
is the sequence of variables declared by 0bj’s specification.
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Types. We now enumerate the types available in our pseudocode. An object
has type object. A set of values of type any (defined below) has type set; we
let ) denote the empty set. A variable of type table stores a table of key/value
pairs, where keys and values both have type any. If T is a table, then we let T},
and T'[k] denote the value associated with key & in T'; if no such value exists,
then Ty, = L. We let [] denote the empty table.

When the value of a variable z is an element of a computable set X, we say
that  has type elemy. We define type int as an alias of elemy, type bool as
an alias of elemyq 1}, and type str as an alias of elemy 1-. We define type any
recursively as follows. A variable z is said to have type any if: it is equal to L
or (); has type set, table, or elemy for some computable set X; or it is a tuple
of values of type any.

Specifications declare the type of each variable of an object’s state. The types
of variables that are local to the scope of an operator need not be explicitly
declared, but their type must be inferable from their initialization (that is, the
first use of the variable in an assignment statement). If a variable is assigned a
value of a type other than the variable’s type, then the variable is assigned L.
Variables that are declared but not yet initialized have the value L. For all
I,..., L, ing, ..., in, the expression “L1Im(iny .. . in,)” evaluates to L.
We say that x = L or L = z if variable x was previously assigned 1. For
all other expressions, our convention will be that whenever L is an input, the
expression evaluates to L.

Properties of Operators and Objects. An operator is called deterministic
if its definition does not contain a random assignment statement; it is called
stateless if its definition contains no assignment statement in which one of the
object’s variables appears on the left-hand side; and an operator is called func-
tional if it is deterministic and stateless. Likewise, an object is called determin-
istic (resp. stateless or functional) if each operator, with the exception of the
SETUP-operator, is deterministic (resp. stateless or functional). (We make an ex-
ception for the seTuP-operator in order to allow trusted setup of objects executed
in our experiments. See §2.2 for details.)

RESOURCES. Let t € N. An operator is called t-time if it always halts in ¢ time
steps regardless of its random choices or the responses to its queries; we say that
an operator is halting if it is t-time for some t < co. Our convention will be that
an operator’s runtime includes the time required to evaluate its oracle queries.
Let ¢ € N*. An operator is called ¢-query if it makes at most ¢ calls to its
first oracle, ¢> to its second, and so on. We extend these definitions to objects,
and say that an object is t-time (resp. halting or ¢-query) if each operator of its
interface is t-time (resp. halting or g-query).

EXPORTED OPERATORS. An operator f is said to shadow operator fs if: (1) f1
appears first in the sequence of operators defined by the specification; and (2)
there is some input that matches both f; and f5. For example, an operator with
pattern (z any) would shadow an operator with pattern (y str), since y is of
type str and any. An object is said to export a pat-type-operator if its speci-
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procedure Realv(l‘)//ﬁ(A): procedure Ref‘f//ﬁ(A, S):
A(SETUP); W(SETUP) S(SETUP); A(SETUP); W (SETUP)
for i <— 1 to u do R;(SETUP) for i < 1 to u do R;(SETUP)
to + (); a « AYVLW2RoyT) to + (); a « AY1S2:53(0yT)
w 4 W1 (WIN); ret @(tz, a, w) w <+ Wi (WIN); ret &(tz, a, w)
procedure W (i, x): procedure R(7, x):
Yy WiAQ’R(x); tr < tz.(i,x,y); ret y ret R;(x)
procedure A(i,x): procedure S(i, z):
if S = L then ret Ayvl'w2’R(z) ret SiVV%R@)
ret Ayvl’sz'SS (z)

Fig. 4: Real and reference experiments for world W, resources R = (R1,...,Ry), ad-
versary A, and simulator S.

fication defines a non-shadowed operator that, when run on an input matching
pattern pat, always returns a value of type type.

2.2 Experiments and Indifferentiability

This section describes our core security experiments. An experiment connects up
a set of objects in a particular way, giving each object oracle access to interfaces
(i.e., sequences of operators) exported by other objects. An object’s i-interface is
the sequence of operators whose patterns are prefixed by literal i. We sometimes
write ¢ as a subscript, e.g., “X;(---)” instead of “X (i,---)” or “X (4, (---))". We
refer to an object’s 1-interface as its main interface and to its 2-interface as its
auxiliary interface.

A resource is a halting object. A simulator is a halting object. An adversary
is a halting object that exports a (1, ouT)-bool-operator, which means that on
input of (ouT) to its main interface, it outputs a bit. This operator is used
to in order to initiate the adversary’s attack. The attack is formalized by the
adversary’s interaction with another object, called the world, which codifies the
system under attack and the adversary’s goal. Formally, a world is a halting
object that exports a functional (1,win)-bool-operator, which means that on
input of (wiN) to its main interface, the world outputs a bit that determines
if the adversary has won. The operator being functional means this decision is
made deterministically and in a “read-only” manner, so that the object’s state
is not altered. (These features are necessary to prove the lifting lemma in §2.3.)

MAIN Security. Security experiments are formalized by the execution of
procedure Real defined in Figure 4 for adversary A in world W with shared
resources R = (Ry,...,Ry). In addition, the procedure is parameterized by
a function @. The experiment begins by “setting up” each object by running
A(seTur), W(seTur), and R;(seTuP) for each ¢ € [u]. This allows for trusted
setup of each object before the attack begins. Next, the procedure runs A with
oracle access to procedures W1, Wy, and R, which provide A with access to,
respectively, W’s main interface, W’s auxiliary interface, and the resources R.
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Figure 1 illustrates which objects have access to which interfaces. The world W
and adversary A share access to the resources R.In addition, the world has ac-
cess to the auxiliary interface of A (4:5), which allows us to formalize security
properties in the PSP setting [46]. Each query to Wy or W5 by A is recorded in
a tuple tx called the experiment transcript (4:5). The outcome of the experiment
is @(tx, a,w), where a is the bit output by A and w is the bit output by W. The
MAINY security notion, defined below, captures an adversary’s advantage in
“winning” in a given world, where what it means to “win” is defined by the world
itself. The validity of the attack is defined by a function ¢, called the transcript
predicate: in the MAINY experiment, we define @ so that Real?  (A) = 1 holds

W/R
if A wins and ¢(tz) =1 holds.

Definition 1 (MAINY security). Let W be a world, Rbe resources, and A be
an adversary. Let ¢ be a transcript predicate, and let win¥ (tz, a, w) := (¢(tz) =
1) A (w=1). The MAIN? advantage of A in attacking W/R is

main¥ win¥
AdvW/ﬁ (4):= Pr[RealW/é(A)] .

Informally, we say that W/ R is -secure if the MAINY advantage of every ef-
ficient adversary is small. Note that advantage for indistinguishability-style se-
curity notions is defined by normalizing MAINY advantage (e.g., Def. 11 in the
full version). O

This measure of advantage is only meaningful if ¢ is efficiently computable,
since otherwise a computationally bounded adversary may lack the resources
needed to determine if its attack is valid. Following Rogaway-Zhang (cf. com-
putability of “fixedness” in [47, §2]) we will require ¢ (tz) to be efficiently com-
putable given the entire transcript, except the response to the last query. Intu-
itively, this exception ensures that, at any given moment, the adversary “knows”
whether its next query is valid before making it.

Definition 2 (Transcript-predicate computability). Let ¢ be a transcript
predicate. Object F' computes 1 if it is halting, functional, and F(iz) = ¢ (iz)
holds for all transcripts tz, where tz = (tz1,. .., trq_1, (iq, e, L)), ¢ = |tz|, and
(iq,q, _) = trq. We say that 1 is computable if there is an object that computes
it. We say that v is t-time computable if there is a t-time object F' that computes
it. Informally, we say that 1 is efficiently computable if it is ¢-time computable
for small ¢. O

SHORTHAND. In the remainder we write “W/R’ as “W/H” when “(R) = (H, )",
i.e., when the resource tuple is a singleton containing H. Similarly, we write
“W/R’ as “W” when R = (), i.e., when no shared resources are available. We
write “win” instead of “win¥” whenever 1) is defined so that t(tz) = 1 for all tran-
scripts tx. Correspondingly, we write “MAIN” for the security notion obtained
by letting & = win.

SR-INDIFF Security. The Real procedure executes an adversary in a world
that shares resources with the adversary. We are interested in the adversary’s
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ability to distinguish this “real” experiment from a “reference” experiment in
which we change the world and/or resources with which the adversary inter-
acts. To that end, Figure 4 also defines the Ref procedure, which executes an
adversary in a fashion similar to Real except that a simulator S mediates the
adversary’s access to the resources and the world’s auxiliary interface. In partic-
ular, A’s oracles W5 and R oracles are replaced with Sy and S3 respectively (4:7
and 10), which run S with access to Wy and R (4:13). SR-INDIFF¥ advantage,
defined below, measures the adversary’s ability to distinguish between a world
w/ R in the real experiment and another world V/ Q in the reference experiment.

Definition 3 (SR-INDIFFY security). Let W,V be worlds, é, Cj be resources,
A be an adversary, and S be a simulator. Let ¢ be a transcript predicate and
let out? (tz,a,w):= (¢(tz) = 1) A (a=1). Define the SR-INDIFF¥ advantage of

adversary A in differentiating W/ R from v/ Q@ relative to S as
r-indiff¥ £ £
Advy) }géf/@(A, S):= Pr[Real}) 5(4) ] — Pr[Ref5(4,9)] .
out?
W/R

say that W/ Ris y-indifferentiable from V/ Cj if for every efficient A there exists
an efficient S for which the SR-INDIFF¥ advantage of A is small. O

By convention, the runtime of A is the runtime of Real (A). Informally, we

SHORTHAND. We write “out” instead of “out¥” when v is defined so that 1 (tz) = 1
for all ¢tx. Correspondingly, we write “SR-INDIFF” for the security notion ob-
tained by letting @ = out.

Non-Degenerate Adversaries. When defining security, it is typical to design
the experiment so that it is guaranteed to halt. Indeed, there are pathological

conditions under which Realf{, ) 7#(A) and Ref g;, ) 7#(A,5) donot halt, even if each

of the constituent objects is halting (as defined in §2.1). This is because infinite
loops are possible: in response to a query from adversary A, the world W is
allowed to query the adversary’s auxiliary interface As; the responding operator
may call W in turn, which may call As, and so on. Consequently, the event that

Realg;,/é(A) =1 (resp. Refvfj/é(A, S) = 1) must be regarded as the event that

the real (resp. reference) experiment halts and outputs 1. Defining advantage
this way creates obstacles for quantifying resources of a security reduction, so it
will be useful to rule out infinite loops.

We define the class of non-degenerate (n.d.) adversaries as those that respond
to main-interface queries using all three oracles—the world’s main interface, the
world’s aux.-interface, and the resources—but respond to aux.-interface queries
using only the resource oracle. To formalize this behavior, we define n.d. adver-
saries in terms of one object that is called in response to main-interface queries,
and another object that is called in response to aux.-interface queries.

Definition 4 (Non-degenerate adversaries). An adversary A is called non-
degenerate (n.d.) if there exist a halting object M that exports an (ouT)-bool-
operator and a halting, functional object SD for which A = NoDeg(M, SD) as
specified in Figure 5. We refer to M as the main algorithm and to SD as the
auxiliary algorithm. O
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spec NoDeg:

var M, SD object
op (SETUP): M(SETUP); SD(SETUP)

opW'W,’R (1, z any): ret MW’W/’R(x)
opW'WI’R (2, z any): ret SDR(x)

Fig. 5: Specification of non-degenerate adversaries.

Observe that we have also restricted n.d. adversaries so that the main and
auxiliary algorithms do not share state; and we have required that the auxiliary
algorithm is functional (i.e., deterministic and stateless). These measures are
not necessary, strictly speaking, but they will be useful for security proofs. Their
purpose is primarily technical, as they do not appear to be restrictive in a prac-
tical sense. (They do not limit the primary application considered in this work
(§3.2). Incidentally, we note that Rogaway and Stegers make similar restrictions
in [46, §5].)

2.3 The Lifting Lemma

The main technical tool of our framework is its lifting lemma, which states that
if V/@ is y-secure and W/R is ¢-indifferentiable from V/@, then W/R is also
i-secure. This is a generalization of the main result of MRH, which states that
if an object X is secure for a given application and X is indifferentiable from Y,
then Y is secure for the same application. In §2.4 we give a precise definition of
“application” for which this statement holds.

THE RANDOM ORACLE MODEL (ROM). The goal of the lifting lemma is to
transform a i-attacker against W/ R into a y-attacker against V/ Cj Indifferen-
tiability is used in the following way: given -attacker A and simulator S, we
construct a y-attacker B and v-differentiator D such that, in the real exper-
iment, D outputs 1 if A wins; and in the reference experiment, D outputs 1
if B wins. Adversary B works by running A in the reference experiment with
simulator S: intuitively, if the simulation provided by S “looks like” the real
experiment, then B should succeed whenever A succeeds.

This argument might seem familiar, even to readers who have no exposure to
the notion of indifferentiability. Indeed, a number of reductions in the provable
security literature share the same basic structure. For example, when proving
a signature scheme is unforgeable under chosen message attack (UF-CMA), the
first step is usually to transform the attacker into a weaker one that does not
have access to a signing oracle. This argument involves exhibiting a simulator
that correctly answers the UF-CMA-adversary’s signing-oracle queries using only
the public key (cf. [14, Theorem 4.1]): if the simulation is efficient, then we can
argue that security in the weak attack model reduces to UF-CMA. Similarly, to
prove a public-key encryption (PKE) scheme is indistinguishable under chosen
ciphertext attack (IND-CCA), the strategy might be to exhibit a simulator for
the decryption oracle in order to argue that IND-CPA reduces to IND-CCA.



16 Christopher Patton and Thomas Shrimpton

Given the kinds of objects we wish to study, it will be useful for us to accom-
modate these types of arguments in the lifting lemma. In particular, Lemma 1
considers the case in which one of the resources in the reference experiment is
an RO that may be “programmed” by the simulator. (As we discuss in the full
version (§A), this capability is commonly used when simulating signing-oracle
queries.) In our setting, the RO is programmed by passing it an object M via
its seT-operator (2:9-14), which is run by the RO in order to populate the ta-
ble. Normally we will require M to be an entropy source with the following
properties.

Definition 5 (Sources). Let u, p > 0 be real numbers and X', ) be computable
sets. An X-source is a stateless object that exports a ()-elemy-operator. An
(X,))-source is a stateless object that exports a ()-(elemyyy,any)-operator.
Let M be an (X, Y)-source and let ((X,Y"), X) be random variables distributed
according to M. (That is, run ((x,y),0) < M() and assign X < z, Y < y, and
XY + o.) We say that M is (p, p)-min-entropy if the following conditions hold:

(1) For all  and y it holds that Pr[X =z] <27# and Pr[Y =y| <277.
(2) For all y and o it holds that Pr[Y =y | =Pr[YV =y | Y =0].

We refer to o as the auziliary information (cf. “source” in [9, §3]). g

A brief explanation is in order. When a source is executed by an RO, the
table T is programmed with the output point (z,y) so that T[z] = y. The
auxiliary information o is returned to the caller (2:14), allowing the source to
provide the simulator a “hint” about how the point was chosen. Condition (1) is
our min-entropy requirement for sources. We also require condition (2), which
states that the range point programmed by the source is independent of the
auxiliary information output by the source.

Definition 6 (The ROM). Let X', Y be computable sets where ) is finite, let
q,p > 0 be integers, and let u, p > 0 be real numbers. A random oracle from X
to Y with query limit (¢, p) is the object R = Ro(X, ), ¢, p) specified in Figure 2.
This object permits at most ¢ unique RO queries and at most p RO-programming
queries. If the query limit is unspecified, then it is (co0,0) so that the object
permits any number of RO queries but no RO-programming queries. Objects
program the RO by making queries matching the pattern (seT, M object). An
object that makes such queries is called (u, p)-(X, Y)-min-entropy if, for all such
queries, the object M is always a (u, p)-min-entropy (X,))-source. An object
that makes no queries matching this pattern is not RO-programming (n.r.). O

To model a function H as a random oracle in an experiment, we revise the
experiment by replacing each call of the form “H(---)” with a call of the form
“Ri(---)", where i is the index of the RO in the shared resources of the experi-
ment, and R is the name of the resource oracle. When specifying a cryptographic
scheme whose security analysis is in the ROM, we will usually skip this rewriting
step and simply write the specification in terms of R;-queries: to obtain the stan-
dard model experiment, one would instantiate the i-th resource with H instead
of an RO.



Quantifying the Security Cost of Migrating Protocols to Practice 17

spec Wo: e W&, 35 o 7/’&1)
var G, X object ),51, 7216 —»D’
op (SETUP): G(SETUP); X(SETUP) LR XS

op (1, WIN): ret G1(WIN)
op™™®R (1,z any): ret G1(z)

op™™® (2, z any): ret Xz(z)

Y
procedure X (i, x): procedure G(i, x): Az
1

ret XiGQ'R(z) ret G?I'A(z) Y

Fig. 6: Left: Specification Wo for building a world from a security game G and sys-

tem X . Right: Who may call whom in experiment Real“;/é(A), where W = Wo(G, X).

We are now ready to state and prove the lifting lemma. Our result accom-
modates indifferentiability arguments in which the RO might be programmed
by the simulator.

Lemma 1 (Lifting). Let I = (Il,...,Iu),f = (J1,...,Jy) be resources; let
X,V be computable sets, where Y is finite; let N = |Y|; let u,p > 0 be real
numbers for which log N > p; let q,p > 0 be integers; let R and P be random
oracles for X,y with query limits (¢ + p,0) and (q,p) respectively; let W,V be
n.r. worlds; and let ¢ be a transcript predicate. For every t-time, (a1,as,a,)-
query, n.d. adversary A and tg-time, (s2,s,)-query, (i, p)-(X,Y)-min-entropy
simulator S, there exist n.d. adversaries D and B for which

main? main? sr-indiff¥
AdVWa)j' (A) S A -+ AdVV/af R(B) + AdVW/j,V/f P(D’ S) s

where A = p [(p—i— q)/27"* ++/N/2¢r - log(N/QP)} , D is O(ta)-time and (a1 +
1, a9, a,)-query, and B is O(tats)-time and (a1, ass2, (az + a,.)s,)-query.

We leave the proof to the full version of this paper. Apart from dealing with
RO programmability, which accounts for the A-term in the bound, the proof
is essentially the same argument as the sufficient condition in [38, Theorem 1]
(cf. [45, Theorem 1]). The high min-entropy of domain points programmed by
the simulator ensures that programmed points are unlikely to collide with stan-
dard RO queries previously made by the adversary or world. However, we will
need that range points are statistically close to uniform; otherwise the A-term
becomes vacuous. Note that A = 0 whenever programming is disallowed.

2.4 Games and the Preservation Lemma

Lemma 1 says that indifferentiability of world W from world V' means that secu-
rity of V implies security of W. This starting point is more general than the usual
one, which is to first argue indifferentiability of some system X from another
system Y, then use the composition theorem of MRH in order to argue that se-
curity of Y for some application implies security of X for the same application.
Here we formalize the same kind of argument by specifying the construction of
a world from a system X and a game G that defines the system’s security.
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A game is a halting object that exports a functional (1, win)-bool-operator.
A system is a halting object. Figure 6 specifies the composition of a game G
and system X into a world W = Wo(G, X) in which the adversary interacts
with G’s main interface and X’s auxiliary interface, and G interacts with X’s
main interface. The system X makes queries to G’s auxiliary interface, and G
in turn makes queries to the adversary’s auxiliary interface. As shown in right
hand side of Figure 6, it is the game that decides whether the adversary has
won: when the real experiment calls Wi (win) on line 4:4, this call is answered
by the operator defined by Wo on line 6:3, which returns Gy (win).

Definition 7 (G¥ security). Let 1 be a transcript predicate, G be a game, X

be a system, R be resources, and A be an adversary. We define the G¥ advantage
of A in attacking X/R as

GY . main?
Ade/R(A) = AdVWo(G,X)/R(A) .
We write Advg / 7#(A) whenever 1(tz) = 1 for all tz. Informally, we say that X/ R
is G¥-secure if the G¥ advantage of any efficient adversary is small. O

World Wo formalizes the class of systems for which we will define security
in this paper. While the execution semantics of games and systems seems quite
natural, we remark that other ways of capturing security notions are possible.
We are restricted only by the execution semantics of the real experiment (Def. 1).
Indeed, there are natural classes of security definitions we cannot capture, in-
cluding those described by multi-stage games [45].

For our particular class of security notions we can prove the following useful
lemma. Intuitively, the “preservation” lemma below states that if a system X is -
indifferentiable from Y, then Wo(G, X) is ¢-indifferentiable from Wo(G,Y") for
any game G. We leave the simple proof to the full version. The main idea is that B
in the real (resp. reference) experiment can precisely simulate A’s execution in
its real (resp. reference) experiment by using G to answer A’s main-interface
queries.

Lemma 2 (Preservation). Let ¢ be a transcript predicate, X,Y be objects,
and R,Q be resources. For every (g1, _)-query game G, ta-time, (a1,a2,a;)-
query, n.d. adversary A and simulator S there exists an n.d. adversary B such
that

sr-indiff¥ sr-indiff¥
Advi T (4, 5) < AdviaT(B. ),

where W = Wo(G, X), V = Wo(G,Y), and B is O(ta)-time and (a191,az, ar)-
query.

3 Protocol Translation

In this section we consider the problem of quantifying the security cost of protocol
translation, where the real system is obtained from the reference system by
modifying the protocol’s specification. As a case study, we design and prove
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secure a TLS extension for SPAKE2 [3], which, at the time of writing, was one
of the PAKEs considered by the CFRG for standardization.

Recall from the previous section that for any transcript predicate v, game G,
and systems X and X, we can argue that X is G¥-secure (Def. 7) given that X
is ¢-indifferentiable from X (Def. 3) and X is itself G¥-secure. In this section,
the system specifies the execution environment of a cryptographic protocol for
which G defines security.

We take as our starting point the extended Canetti-Krawczyk (eCK) model
of LaMacchia et al. [37], a simple, yet powerful model for the study of AKE.
It specifies both the execution environment of the protocol (i.e., how the adver-
sary interacts with it) and its intended goal (i.e., key indistinguishability [13]).
Our treatment breaks this abstraction boundary: in §3.1 we specify a system
eCK(II) that defines the execution environment for a protocol IT and let the
security goal be captured by a game. Going up a level of abstraction, running an
adversary A in world W = Wo(G,eCK(II)) in the MAINY experiment (Def. 1)
lets A execute II via W's auxiliary interface and “play” the game G via W's
main interface. The environment eCK surfaces information about the state of
the attack, which G uses to determine if A wins. Finally, predicate 1 is used to
determine if the attack is valid based on the sequence of W3- and Ws-queries
made by A.

3.1 eCK-Protocols

The eCK model was introduced by LaMacchia et al. [37] in order to broaden
the corruptive powers of the adversary in the Canetti-Krawczyk setting [24].
The pertinent change is to restrict the class of protocols to those whose state
is deterministically computed from the player’s static key (i.e., its long-term
secret), ephemeral key (i.e., the per-session randomness), and the sequence of
messages received so far. This results in a far simpler formulation of session-
state compromise. We embellish the syntax by providing the party with an initial
input at the start of each session, allowing us to capture features like per-session
configuration [17].

Definition 8 (Protocols). An (eCK-)protocol is a halting, stateless object I,
with an associated finite set of identities Z C {0, 1}*, that exports the following
operators:

— (sGEN)-(pk, sk table): generates the static key and corresponding public key
of each party so that (pk;, sk;) is the public/static key pair of party i € Z.

— (EGEN, i str, c any)-(ek any): generates an ephemeral key ek for party ¢ with
input a. The ephemeral key constitutes the randomness used by the party
in a given session.

— (SEND, i str, sk, ek, o, , in any)-(7’, out any): computes the outbound mes-
sage out and updated state 7’ of party ¢ with static key sk, ephemeral
key ek, input «, session state m, and inbound message in. This operator
is deterministic.
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spec eCK:

var IT object, r int
var pk, sk, ek, a, ™ table; atk any
op (SETUP):
II(SETUP); r « II(MOVES)
pk, sk, ek, a, ™ < []; atk < ()

op™® (1,INIT):
(pk, sk) < IT™T(SGEN); ret pk
op™™ (1, GAME ST, x, s, i str):

op‘A‘R (2,INIT, s, str, a any):
Init(active, s, %, a)
op'A'72 (2,SEND, s, i str, in any):
ret Send(s, i, in)
op™®R (2, EXEC, 51,1, S0, io str, a1, ap any):
Init(passive, s1,%1,a1)
Init(passive, sg, %0, ao)
out « L; tr < ()
for j <~ 1tor+1do~y < j (mod 2)
out < Send(s~, i, out)
tr < tr.out

ret IT*Y®(GAME ST, z,4,7¢) ret tr

1, ATTACK ST): ret atk
op ( )i ret a procedure Init(t, s, i, a):

ekl « IR (EGEN, i, a)
oy <—a; Ty +— L

2, PK, i str): ret pk;
oP (2,PK, i str): ret pk; atk < atk . (t, s, 1)

op (2,SK, 1 str):

atk < atk . (SK, 1); ret sk;
op (2,EK, s, str):

atk < atk . (EK, s,1); ret eki

procedure Send(s, 4, in): o
(my, out) < HA’R(SEND, i, ski, ek}, oy, g, m)
ret out

Fig. 7: Execution environment for two-party eCK-protocols.

— (MOVES)-(r int): indicates the maximum number of moves (i.e., messages
sent) in an honest run of the protocol. This operator is deterministic. O

The execution environment for eCK-protocols is specified by eCK in Fig-
ure 7. The environment stores the public/static keys of each party (tables pk
and sk) and the ephemeral key (ek), input («), and current state (7) of each ses-
sion. As usual, the adversary is responsible for initializing and sending messages
to sessions, which it does by making queries to the auxiliary interface (7:14-31).
Each session is identified by a pair of strings (s, ), where s is the session index
and 7 is the identity of the party carrying out the session. The auxiliary interface
exports the following operators:

— (niT, 8,7 str,a any): initializes session (s,4) on input a by setting o’ < a
and 7% < L. A session initialized in this way is said to be under active attack
because the adversary controls its execution.

— (SEND, 8,7 str,in any)-(out any): sends message in to a session (s,i) un-
der active attack. Updates the session state ¢ and returns the outbound
message out.

— (EXEC, 81,11, S0, 10 Str,a;,ap any)-(tr any): executes an honest run of the
protocol for initiator session (s1,41) on input a1 and responder session (s, i)
on input ag and returns the sequence of exchanged messages tr. A session
initialized this way is said to be under passive attack because the adversary
does not control the protocol’s execution.

— (PK, i str)-(pk any), (sk, i str)-(sk any), and (EK, s, i str)-(ek any): returns
the public key of party ¢, the static key of party 7, and the ephemeral key of
session (s, %) respectively.

Whenever the protocol is executed, it is given access to the adversary’s auxiliary
interface (see interface oracle A on lines 7:9, 11, 32, and 35). This allows us
to formalize security goals for protocols that are only partially specified [46].



Quantifying the Security Cost of Migrating Protocols to Practice 21

In world Wo(G, X), system X = eCK(IT) relays II’s A-queries to G: usually
game G will simply forward these queries to the adversary, but the game must
explicitly define this. (See the definition of KEY-IND security below in the full
version for an example.)

The attack state (atk) records the sequence of actions carried out by the
adversary. Specifically, it records whether each session is under active or passive
attack (7:34), whether the adversary knows the ephemeral key of a given ses-
sion (7:19), and which static keys are known to the adversary (7:17). These are
used by the game to decide if the adversary’s attack was successful. In addition,
the game is given access to the game state, which surfaces any artifacts computed
by a session that are specific to the intended security goal: examples include the
session key in a key-exchange protocol, the session identifier (SID) or partner
identifier (PID) [10], or the negotiated mode [17]. The game state is exposed by
the protocol’s caME_sT-interface (e.g., lines 8:8-13). All told, the main interface
(7:7-12) exports the following operators:

— (InT)-(pk any): initializes each party by running the static key generator
and returns the table of public keys pk.

— (ATTACK sT)-(atk any): returns the attack state atk to the caller.

— (GAME ST, z, 8,1 str)-(val any): provides access to the game state.

ATTACK VALIDITY. For simplicity, our execution environment allows some be-
haviors that are normally excluded in security definitions. Namely, (1) the adver-
sary might initialize a session before the static keys have been generated or try
to generate the static keys more than once; or (2) the adversary might attempt
to re-initialize a session already in progress. The first of these is excluded by
transcript predicate ¢ini; and the second by ¢gess, both defined below.

Definition 9 (Predicates ¢yt and @gess). Let ¢ (tz) = 1if |tz > 1, tzg =
(1,niT), and for all 1 < o < |¢z| it holds that tx, # (1,INIT). Let dgess(tz) = 0 iff
there exist 1 < av < 8 < |atk| such that atk, = (ta, Sasia), atkg = (ts,58,13),
(Sa,ia) = (Sﬂ,i@), and ta,tﬂ S {passive,active}, where atk is the attack state
corresponding to transcript tz. O

3.2 Case Study: PAKE Extension for TLS 1.3

In order to support the IETF’s PAKE-standardization effort, we choose one of
the protocols considered by the CFRG and show how to securely integrate it into
the TLS handshake. By the time we began our study, the selection process had
narrowed to four candidates [52]: SPAKE2 [3], OPAQUE [32], CPace [30], and
AuCPace [30]. Of these four, only SPAKE2 has been analyzed in a game-based
security model (the rest have proofs in the UC-framework [20]) and as such is
the only candidate whose existing analysis can be lifted in our setting. Thus, we
choose it for our study.

Existing proposals for PAKE extensions [54,5] allow passwords to be used
either in lieu of certificates or alongside them in order to “hedge” against fail-
ures of the web PKI. Barnes and Friel [5] propose a simple, generic extension
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for TLS 1.3 [44] (draft-barnes-tls-pake) that replaces the standard DH key-
exchange with a 2-move PAKE. This straight-forward approach is, arguably,
the best option in terms of computational overhead, modularity, and ease-of-
implementation. Thus, our goal will be to instantiate draft-barnes-tls-pake
with SPAKE2. We begin with an overview of the extension and the pertinent
details of TLS. We then describe the SPAKE2 protocol and formally specify its
usage in TLS. We end with our security analysis.

Usage of PAKE with TLS 1.3 (draft-barnes-tls-pake). The TLS hand-
shake begins when the client sends its “ClientHello” message to the server. The
server responds with its “ServerHello” followed by its parameters “EncryptedEx-
tensions” and “CertificateRequest” and authentication messages “Certificate”,
“CertificateVerify”, and “Finished”. The client replies with its own authentica-
tion messages “Certificate”, “CertificateVerify”, and “Finished”. The Hellos carry
ephemeral DH key shares signed by the parties’ Certificates, and the signatures
are carried by the CertificateVerify messages. Each party provides key confirma-
tion by computing a MAC over the handshake transcript; the MACs are carried
by the Finished messages.

The DH shared secret is fed into the “key schedule” [44, §7.1|, which is
used to derive all symmetric keys used in the protocol. Key derivation uses
the HKDF' function [34], which takes as input a “salt” string, the “initial key
material (IKM)” (i.e., the DH shared secret), and an “information” string used
to bind derived keys to the context in which they are used in the protocol.
The output is used as a salt for subsequent calls to HKDF. The first call is
salt < HKDF (0F, psk, derived), where k > 0 is a parameter of TLS called the hash
length and psk is the pre-shared key. (If available, otherwise psk = 0*.) Next,
the parties derive the client handshake-traffic key Ky < HKDF (salt, dhe, info,),
the server handshake-traffic key Ko <~ HKDF (salt, dhe, info,), and the session
key K < HKDF (salt, dhe, derived). Variable dhe denotes the shared secret. Each
information string encodes both Hellos and a string that identifies the role of
the key: c hs traffic for the client and s hs traffic for the server. The traffic keys are
used for encrypting the parameter and authentication messages and computing
the Finished MACs. The session key is used for encrypting application data and
computing future pre-shared keys.

EXTENSIONS. Protocol extensions are typically comprised of two messages car-
ried by the handshake: the request, carried by the ClientHello; and the response,
carried by the ServerHello or by one of the server’s parameter or authentica-
tion messages. Usually the request indicates support for a specific feature and
the response indicates whether the feature will be used in the handshake. In
draft-barnes-tls-pake, the client sends the first PAKE message in an extension
request carried by its ClientHello; if the server chooses to negotiate usage of the
PAKE, then it sends the second PAKE message as an extension response carried
by its ServerHello. When the extension is used, the PAKE specifies the values
of psk and dhe in the key schedule.

At first brush, it may seem “obvious” that the security of the extension follows
immediately from the security of the PAKE, since the PAKE is run without
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spec SPakeZ-APg‘S:
var PW object, Ny, Ny elemg op (SEND, c elerpc, sk, ek int, L, 1, 1):
op (SETUP): N1, No 4— G X{ g% N
op (MOVES): ret 2 ret ((wait, X7), (¢, X7))
op—" (SGEN): pk + [] s
for i € CUS do pk; + (N1, No) op—" (SEND, c elemc, sk, ek int, L,
ret (pk, PWR()) (wait, X7 elemg), (s elems, X elemg)):
* —skyek
op (EGEN,...): ek 4= Zg|; ret ek Z <+ (X5 -Ng ™)
op (GAME ST, z, i str, tkm « (c,s, X7, X5, sk, Z)
(st,j, K str, X7, X elemg)): K « R1(ikm)
if st # done then ret L ret ((done, s, K, X7, X§), L)
if = sid then ret (X7, X[) p)
if z = pid then ret j op—"" (SEND, s elemg, sk table, ek int, L, |
if x = key then ret K (celemc, X{ elemg)):
X g% - Ni¥e, Z (X7 - Ny keyek
tkm < (c,s, X1, X, ske, Z)
K « Ry (ikm)
ret ((done, ¢, K, X{, X)), (s, X{))
op (SEND,...): ret (fail, L)

Fig. 8: Protocol SPakeZ-APé’S, where G = (G, -) is a prime-order, cyclic group with
generator g and S,C C {0,1}" are finite, disjoint, non-empty sets. Object PW is a
symmetric password generator for S,C, P for some P C Zg.

modification. There are two important points to note here. The first is that the
extension is underspecified: the output of a PAKE is generally a single session
key, so it is up to the implementer to decide how the session key is mapped to
the inputs of the key schedule (i.e., psk and dhe). The second point is that the
PAKE is not only used to derive the session key (used to protect application
data), but also to encrypt handshake messages and compute MACs. As a result,
whether this usage is secure or not depends on the concrete protocol and how it
is implemented in the extension.

The SPAKE2 Protocol. SPAKE2 is the eCK-protocol SPake2-APS® (PW)
in Figure 8 (cf. [1, Figure 1]). (Refer to the full version for a detailed explanation.)
Sets C and S denote the clients and servers respectively. Key derivation is carried
out by a call to Ri. To obtain the concrete protocol, one would use the hash
function H to instantiate the first resource in the experiment. However, since
all existing analyses model H as an RO [3,6,1], we will also use an RO. (See
Theorem 1 below.)

The protocol is parameterized by an object PW used to generate the static
keys. Syntactically, we require that PW halts and outputs a table sk for which
sk[s][c] = sk|c] € P for all (c,s) € C xS and some set P C Zg| called the dictio-
nary. We refer to such an object as a symmetric password generator for C,S,P.
Following Bellare et al. [10], each client ¢ is in possession of a single pass-
word sk[c] € P, used to authenticate to each server; and each server s is in posses-
sion of a table sk[s] that stores the password sk[s][c] shared with each client c.
Generally speaking—and for SPAKE2 in particular [3,6,1]—passwords are as-
sumed to be uniformly and independently distributed over the dictionary P. We
call such a generator uniform.
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spec SPake2-TLSS'®:
var PW , en object, consty, constg str

op (MOVES): ret 3 procedure KDF(ikm, ¢, s, helloy, hellog):
op—T (SGEN): pk + [] Yar infoy, infog, infq, salt str
N1 < Ra(const1); No + Ra(constq) 7tnf01 < A(c hs traff.lc, helloq, hellog)
for i € CUS do pk; « (N1, No) z.nfo0 — A(s hs.; traffic, helloy, hellog)
ret (pk, PWR()) info <« A(derived, c, s)
OpA (EGEN, i elemcus, a any): ?alt ) — ./4.(Sa|t7 . c, s)
var p elemy, r str if ‘{“’Lf"lv. znfoo,.znfo}\‘ #3V
p + A(rnd,i,a); if p # L then r «— {0,1}” L € {info,, info,, info, salt}
ek « Zyg|; ret (ek, ) then ret (L, L, 1) . ‘
op (GAME ST, z, i str, Ky = Ra(salt, eny (ikm), info,)
(st, j, K str, X7, X elemg, ...)): Ko + Ra(salt, enl(l‘km)v ?nfoo)
if st & {done, s wait} then ret L K+ Ri(salt, eni(tkm), info)
if x = sid then ret (X7, X[) ret (K1, Ko, K)

if x = pid then ret j
if x = key then ret K

opA'R (SEND, ¢ elemc, sk, (ek int, r any),a any, L, 1):

var helloy str

N1 <+ Ra(consty); X7 <+ g8k . ka

helloy < A(c hello, r,a, ¢, X7); if A(c kex, hello1) # (¢, X{') then ret (fail, A(proto err))
ret ((c wait, X7, hello1), helloy)

op™™ (SEND, c eleme, sk, (ek int, r any), a any,
(c wait, X] elemg, helloy str), (hellog, authg str)):
var s elemgs, X elemg, auth; str
(s, X)) « A(s kex, hellog); if L € {s, X} then ret (fail, A(proto err))
No < Ra(consto); Z + (X& - Ng **)*; ikm < (¢, s, X7, X§, sk, Z)
tr < helloq || hellog; (K1, Ko, K) < KDF(itkm,c, s, hello1, hellog)
if Ky = L then ret (fail, A(proto err))
if A(s verify, Ko, (a, tr), autho) # 1 then ret (fail, A(verify err))
tr < tr || autho; authy < A(c auth, K1, (a, tr), 1)
ret ((done, s, K, X, X(), authy)

op™t R (SEND, s elemg, sk table, (ek int, r any), a any, 1, helloy str):
var ¢ elem¢, X| elemg, hellog, authg str
(e, X7) < A(c kex, helloy); if L € {c, X} then ret (fail, A(proto err))
Ny < Ra(consty); Z «+ (X7 - Nl_SkC)Ek; tkm < (c,s, X{, X[, ske, Z)
Ny <+ Ra(constg); X5 g . N(‘;kc
hellog < A(s hello, 7, a, s, X); if A(s kex, hellog) # (s, X)) then ret (fail, A(proto err))
tr < helloy || hellog; (K1, Ko, K) <+ KDF(ikm,c, s, helloy, hellog)
if K1 = L then ret (fail, A(proto err))
authg < A(s auth, Ko, (a, tr), r); tr < tr || authg
ret ((s wait, ¢, K, X1, X, K1, tr), (hellog, authg))
opA'R (SEND, s elemg, sk table, (ek int, r any), a any,
(s wait, ¢, K str, X7, X elemg, K1, tr str), auth; str):
if A(c verify, K1, (a, tr), authy) # 1 then ret (fail, A(verify err))
ret ((done, ¢, K, X7, X(), L)

op™ (SEND,...): ret (fail, A(unexpected message))

Fig. 9: Protocol SPakeZ-TLSé’S, where PW, G = (G,-), g, C, and S are as defined in
Figure 8. Object en is a ({0,1}* x {0,1}* X G x G x Zg| X G)-encoder, where G is a
represented set (Def. 10).



Quantifying the Security Cost of Migrating Protocols to Practice 25

Securely Instantiating draft-barnes-tls-pake with SPAKE2. In Figure 9
we define a protocol SPakeZ-TLSé’S(P W, consty, constg) that partially speci-
fies the usage of SPAKE2 in TLS. We say “partially” because most of the details
of TLS are provided by calls to interface oracle A, which are answered by the
adversary’s auxiliary interface in the real experiment. Calls to R; and Ro are
answered by, respectively, an RO for HKDF and an RO for a function Hg, de-
fined below. Before being passed to HKDF', the input is first encoded using an
object en with the following properties.

Definition 10 (Encoders and represented sets). A represented set is a
computable set X for which L € X (cf. “represented groups” in [2, §2.1]). Let X
be a represented set. An X' -encoder is a functional, halting object en that exports
the following operators:

— (1,z elemy)-(M str): the encoding algorithm, returns the encoding M of «
as a string.

— (0, M str)-(z elemy,1): the decoding algorithm, returns the element x
of X encoded by string M (or L if M does not encode an element of X).

Correctness requires that eng(eni(x)) = x for every © € X. O

The Hellos carry the SPAKE2 key-exchange messages. The first is encoded
by the client on line 9:22 and decoded by the server on line 39, and the second is
encoded by the server on line 42 and decoded by the client on line 28. Value ikm
(the input to H in SPAKE2) is passed to procedure KDF (54-65), which is used
to derive the traffic and session keys. Oracle A (i.e., the adversary’s aux. inter-
face) chooses the salt and information strings, subject to the constraint that the
information strings are distinct.

We refer to the ClientHello as HELLO1 and to the ServerHello as HELLOO.

Our spec lumps all other handshake messages into two: AUTHO for the server’s
parameter and authentication messages (EncryptedExtensions...Finished); and
AUTHI for the client’s authentication messages (Certificate...Finished). This
consolidates all traffic-key dependent computations into four A-queries: AUTHO
is computed on line 9:45 and verified on line 32 and AUTHI1 is computed on
line 33 and verified on line 50. In the full version we include a detailed explana-
tion of Figure 9 and design rationale for the extension. One notable feature is that
instead of relying on trusted setup to generate the public parameters N1, Ny € G,
we pick two distinct constants consty, consty € {0,1}* and compute the param-
eters as Ny < Hg(consty) and Ny + Hg(consty), where Hg : {0,1}* = G is a
hash function suitable for the given group G = (G,-) (e.g., a suitable “hash-to-
curve” algorithm [28]).
SECURITY. We now derive the concrete security of this usage of SPAKE2. Our
analysis is in the weak corruption model of Bellare et al. [10], which assumes
that only static keys (i.e., passwords) and not ephemeral keys can be revealed
to the attacker. This is without loss of generality, as all existing analyses of
SPAKE2 assume the same corruption model [3,6,1,49]. Our proof also uses the
GDH assumption [39], defined below.

Definition 11 (Predicate ¢y.). Let dye(tr) = (Ba) tra ~(2,EK,...). O
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Definition 12 (The GDH problem). Let G = (G, ) be a cyclic group with
generator ¢ € G. A DDH oracle for G is a halting object DDH for which
DDH(X,Y, Z) = 1 holds if and only if log, X -log, Y =log, Z for all X,Y,Z € G.
Define Advédh(A) = Pr[x,y & Zig) : ADDH (g2 gv) = gwy] to be the advan-
tage of an adversary A in solving the GDH problem for G. Informally, we say
the GDH problem is hard for G if the advantage of every efficient adversary is
small. O

Let k > 0 be an integer; let consty, constqy be distinct strings; let G = (G, ) be
a prime-order cyclic group; let C,S C {0, 1}* be finite, disjoint, non-empty sets;
let P C Zjg| be a dictionary; and let PW be a uniform, symmetric password-
generator for C,S,P. Define T to be the set {0,1}* x{0,1}* xGxGxZ g xG. Let
IT = SPake2-TLSS® (PW, consty, constg), [ = SPake2-APS° (PW), X =
eCK(II), and X = eCK(fY). Let ¥ = @init A Psess A\ Pwe- The following says that
for any game G, the G¥-security of X (in the ROM for HKDF and Hg) follows
from the G¥-security of X (in the ROM for H) under the GDH assumption.

Theorem 1. Let F be an RO from ({0,1}*)3 to {0,1}*, R be an RO from
{0,1}* to G, and H be an RO from T to {0,1}*. Let DDH be a DDH oracle
for G. For every game G and ta-time, n.d. adversary A making q, resource

queries, qs SEND-queries, and q. EXEC-queries, there exist an n.d. adversary B
and GDH-adversary C such that

leXd lels
Advy)pr)(A) SAAVY )y poy (B) +
2¢s | (qs +2qc)?
Pl 21|’
where: DDH is t ppy -time; B runs in time O(T) and makes at most g5 SEND-

queries, ge EXEC-queries, O(Q DDH -queries, and q, H-queries; C' runs in time

) ¢
O(T) and makes at most O(Q) DDH -queries; T =ts(ta + ¢- - tppr); and Q =
QT‘(qS + Qe)-

2. AdvE" (C) +

We leave the proof to the full version but sketch the main ideas here. The
claim is proved by first applying Lemma 1, then applying Lemma 2 so that we
can argue security using the ¢-indifferentiability of X/(F, R) from X /(H, DDH).
The bound reflects the loss in security that results from using the PAKE to derive
the traffic keys. The GDH-advantage term is used to bound the probability that
derivation of one of these keys during an honest run of the protocol (via EXEC)
coincides with a previous RO query; the 2¢./|P|-term is used to bound the
probability of the same event occurring during an active attack (via senp). The
simulator kills a session if the SID ever collides with another session other than
the partner, which accounts for the final term.

Given a non-degenerate, i-differentiator D, the goal is to exhibit an efficient
simulator S and GDH-adversary C that yield the result. Recall that S gets two
oracles in the reference experiment: one for the aux. interface of X, which is used
to execute the reference protocol II ; and another for resources (H, DDH). Its job
is to simulate aux./resource queries for X/(F, R). The central problem it must
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solve is that the adversary has direct access to the main interface of X, which
provides it with the game and attack state. Hence, the adversary needs to use
its own oracles in a way that ensures the game and attack state are consistent
with the adversary’s view of the execution.

Refer to S’s oracles as X and R. Its strategy is to “embed” a run of the
reference protocol into each simulation of the real one so that each ExEc- or
SEND-query from the adversary is mapped to an EXec- or sEND-query to X. RO
queries are simulated by S itself, except that R; (points to H) is called whenever
the query coincides with the derivation of a session key. The DDH oracle (pointed
to by R2) is used to determine if this is the case. The difficult part is simulating
computation of the traffic keys without knowing the password and/or shared
secret. In a nutshell, the strategy is to “guess” that the adversary has not yet
made an RO query that coincides with these, generate fresh keys, then back-
patch the RO simulation in order to ensure consistency going forward.
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