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Harnessing deep neural networks to solve inverse
problems in quantum dynamics: machine-learned
predictions of time-dependent optimal control
fields†

Xian Wang, ‡a Anshuman Kumar, ‡b Christian R. Shelton c and Bryan M. Wong *d

Inverse problems continue to garner immense interest in the physical sciences, particularly in the

context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of

deep neural networks for predicting time-dependent optimal control fields, E(t), that enable desired

electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse

problem, we investigated two independent machine learning approaches: (1) a feedforward neural

network for predicting the frequency and amplitude content of the power spectrum in the frequency

domain (i.e., the Fourier transform of E(t)), and (2) a cross-correlation neural network approach for

directly predicting E(t) in the time domain. Both of these machine learning methods give complementary

approaches for probing the underlying quantum dynamics and also exhibit impressive performance in

accurately predicting both the frequency and strength of the optimal control field. We provide detailed

architectures and hyperparameters for these deep neural networks as well as performance metrics for

each of our machine-learned models. From these results, we show that machine learning, particularly

deep neural networks, can be employed as cost-effective statistical approaches for designing

electromagnetic fields to enable desired transitions in these quantum dynamical systems.

I. Introduction

Inverse problems arise in many domains of quantum dynamics,
with quantum optimal control being one of the most well-known
examples. In the context of molecular systems, the field of
quantum optimal control1 seeks to steer a chemical system from
a known initial state to a desired target state via an external field,
E(t), typically a tailored electromagnetic pulse. Predicting the
explicit time-dependence of E(t) is central to providing critical
initial conditions for experiments across multiple chemical
physics domains including light-harvesting complexes,2–6

quantum information processing,7–9 laser cooling,10,11 and
ultracold physics.12,13 As such, the capability to fully harness

these optically-driven systems has tremendous potential to
grow as we understand how to control the excited-state quantum
dynamical processes that govern these systems.

Although several approaches and algorithms have been
proposed on optimizing quantum control fields (each with
their own purposes and advantages14–17), all of these prior
approaches are iterative in nature and require complex numer-
ical methods to solve for these optimal control fields. Due to
the nonlinear nature of these dynamical optimization problems,
the number of iterations and floating point operations required
by these algorithms can be extremely large, leading to extremely
slow convergence (even for relatively simple one-dimensional
problems16,18). Furthermore, when an optimal control field for
a new quantummechanical system is desired, the entire iteration
process has to be re-started de novo since the algorithm has
no prior ‘‘memory’’ of previously converged cases. Because of
these computational bottlenecks, we wondered whether machine
learning, particularly deep neural networks (DNNs), could offer a
promising approach for obtaining solutions to this complex,
inverse problem in quantum dynamics.

In recent years, machine learning has emerged as a powerful
tool in the physical sciences for finding patterns (particularly
those that evade human intuition) in high-dimensional data.
While the majority of machine learning efforts in the chemical
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sciences have focused on equilibrium properties such as thermo-
dynamic,19–21 structural,22–25 and ground-state properties26–28

(to name just a select few), considerably less attention has
focused on non-equilibrium dynamical processes, such as the
explicitly time-dependent optimal fields discussed previously.
As such, the use of machine learning in this largely unexplored
application of quantum dynamics is a first step towards
the design of machine-learned, time-dependent fields for effi-
ciently controlling directed electron/energy transfer in these
complex systems.

To this end, we present the first machine learning effort
for solving time-dependent quantum control problems in
reduced-dimensional chemical systems. These dynamical time-
dependent systems pose a unique challenge for conventional
machine learning techniques, and we investigate a variety of
approaches for predicting optimal control fields, E(t), in these
systems. The present paper is organized as follows: Section II
briefly outlines the basic concepts of quantum control and the
requisite datasets used by the machine learning approaches in
our work. Section III describes a neural network approach for
predicting the frequency and amplitude content of the power
spectrum in the frequency domain (i.e., the Fourier transform of
E(t)), whereas Section IV provides a cross-correlation neural
network approach for directly predicting E(t) in the time domain.
Finally, Section V concludes with a brief discussion and perspec-
tive look at potential future applications of our machine learning
approach.

II. Theory and
computational methodology
A. Brief overview of quantum control

Since the main purpose of this work is to harness machine
learning techniques for controlling dynamic chemical systems,
we only give a brief overview of quantum optimal control and
point the interested reader to several topical reviews in this
area.29–32 For chemical systems, the quantum optimal control
formalism commences with the time-dependent Schrödinger
equation for describing the temporal dynamics of nuclei, which
in atomic units is given by

i
@

@t
cðx; tÞ ¼ � 1

2m

@

@x2
þ VðxÞ � mðxÞEðtÞ

� �
cðx; tÞ: (1)

In the equation above, x denotes the reduced coordinate along
a chosen reaction path,33–36 m is the effective mass associated
with the molecular motion along the reaction path,37,38 V(x) is
the Born–Oppenheimer electronic energy of the molecule, m(x)
is the dipole moment function, E(t) is the time-dependent
external electric field, and c(x,t) represents the probability
amplitude for the motion of the nuclei along the reduced
coordinate path. Both V(x) and m(x) can be obtained from a
standard quantum chemistry calculation by carrying out a
relaxed potential energy scan.39,40

With x and V(x) properly chosen/computed, eqn (1) allows us to
mathematically answer the question: ‘‘given an electric field E(t),

how does an initial state, c0(x,t = 0), evolve after some final time T
has elapsed?’’ However, as mentioned in the Introduction, the
field of quantum optimal control is an inverse problem and
instead seeks the answer to the ‘‘inverse’’ question: ‘‘if we want
to reach a desired final state cN�1(x,t = T) at time T (after N � 1
propagation steps), what does the functional form of E(t) look
like?’’ To be more mathematically precise, quantum control seeks
the functional form of an external electric field, E(t), that
maximizes the functional J[cN�1,E] given by

J cN�1;E½ � ¼
ð1
�1

cf
�ðxÞcN�1ðxÞdx

����
����2�a

ðT
0

EðtÞ2dt; (2)

where cf is a known desired final target wavefunction (given by
the user), and cN�1 is obtained after applying N � 1 successive
propagation steps of the time-dependent Schrödinger equation
(i.e., eqn (1)). It should be noted that the first term in eqn (2) is
essentially a measure of the similarity of the final target and the
propagated wavefunction. The second term in eqn (2) is a fluence
and acts as a penalty to prevent unphysically large values of the
electric field, where a is a positive constant (set to 0.001 in this
work) to be chosen by the user. Providing accurate and efficient
answers to this inverse question is the ultimate goal of the
machine learning approaches described in this work.

B. Generation of datasets used for machine learning

To generate the data required for our machine learning
approaches, we utilized the NIC-CAGE (Novel Implementation
of Constrained Calculations for Automated Generation of
Excitations) program developed in our previous work.41 Given
a potential, V(x), this program iteratively calculates a numerical
representation of E(t) that enables a E100% transition prob-
ability between two desired electronic transitions (which, in
this work, are the ground and first-excited state, schematically
shown in Fig. 1a and b). In simple terms, our NIC-CAGE
program can be seen as a black box that accepts potential
functions, V(x), as input and subsequently outputs optimal
electric fields, E(t), corresponding to the inputted potentials.
It is important to note that the optimal electric field, E(t), can
also be represented in the frequency domain as a power
spectrum, s(o), by applying a fast Fourier transform (FFT) to
E(t) (cf. Fig. 1c). In this work, we seamlessly switch between the
time and frequency domains to provide different machine
learning approaches for predicting optimal control fields in
these dynamic systems.

While the NIC-CAGE program41 can obtain transition prob-
abilities with notable accuracy (typically over 97%), it can take
hundreds of iterations (or longer) to converge to the final
electric field for each potential. Moreover, as mentioned in
the Introduction, when a new potential is inputted, the iteration
process has to be re-started anew since the program has no prior
memory of previously converged cases. For these reasons, the
prediction of optimal electric fields for a general potential energy
function is a natural application for a data-driven solution.
To generate a large dataset for our machine learning approaches,
a vast number of potentials were generated as input to the
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NIC-CAGE program to produce corresponding optimized
electric fields. These potential-field pairs served as the training,
validation, and test sets for our DNNs.

Our complete dataset consisted of 36 118 randomly gene-
rated potential functions, V(x), each of which was evaluated
across 192 points in one dimension. For all of these potential
functions, the effective mass, m, and dipole moment, m(x), were
set to 1 and x, respectively. To enable statistical flexibility in
this dataset, each potential was constructed by the summation

of three Gaussian functions with varying amplitudes, widths,
and centers, according to the following equation:42

VðxÞ ¼ �
X3
i¼1

Ai exp � x� mið Þ2
2Di

2

" #
(3)

Specifically, our dataset was created by randomly sampling
each of the parameters with the following ranges: amplitude
A A [1, 10], center m A [�3, 3], and width D A [0.5, 2]. As such,
each potential function can be fully described by nine randomly
generated parameters. In addition, we also visualized this
parameter space and found that all parameters were evenly
distributed within the selected range, indicating that the randomly
generated potential functions sufficiently span this phase space
(cf. Fig. 2). Each of the 36118 potential functions was inputted into
the NIC-CAGE code, which resulted in an optimized electric field
evaluated across 30000 points in the time domain.

Of the 36 118 potentials examined in this work, 26 000 were
used for the training set, 5000 were utilized for the validation
set, and the remaining 5118 potentials were designated for the
test set. We ensured that the number of potentials used in the
training, validation, and test sets were exactly the same for each
training instance to ensure that the results could be compared.

C. General neural network architectures

We employed feedforward neural networks (FNNs) for this work
due to their simplicity as well as their ability to learn compli-
cated mappings between input and target spaces. The FNNs
used here can be classified as deep network architectures, with
the depth in each network arising from the stacking of multiple
hidden layers. Each hidden layer accepts output from the
previous layer as input, and returns a non-linear activation as
the output. It is worth noting that the predictive accuracy of
the FNNs can be sensitive to several key hyperparameters and
training methods, such as the number of hidden layers, the

Fig. 2 Plot of all 36 118 potentials sampled in this work. The center region
of the V(x) space is densely packed and fully sampled, indicating that the
full set of these potentials sufficiently explores this phase space. The side
regions of the figure are not filled by the potential energy curves since the
range of the Gaussian centers, m, were intentionally kept small to prevent
the wavefunctions from spreading outside the x A [�8.0, 8.0] range.

Fig. 1 Schematic example of (a) a potential well, V(x), as a function of
intermolecular distance x. The horizontal dashed lines denote the energy
levels of the ground and first excited state, and their respective probability
wavefunctions, |c(x)|2, are depicted as blue curves above the energy levels;
(b) the optimal electric field E(t) required to excite the transition between
the ground and the first excited state; (c) the corresponding power
spectrum s(o) as a function of frequency o, obtained from the fast Fourier
transform of E(t).
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number of nodes in each layer, the learning rate, and the
regularization method. As such, multiple models and para-
meters were tested in this work (i.e., we also tested convolu-
tional neural networks but found that the best results were
obtained with FNNs), and we only present FNN archite-
ctures and parameters in Sections III and IV with the best
performance.

III. Neural networks for predicting the
resonance frequency and amplitude,
r(x)

In this section, we describe our first machine learning approach,
which utilizes FNNs to predict the frequency and amplitude of
the power spectrum, s(o), in the frequency domain. As briefly
mentioned in Section IIB, the power spectrum is obtained by a
standard numerical procedure in which a fast Fourier transform
of a properly converged E(t) is first computed, followed by taking
its absolute value. It is worth mentioning that because of the last
absolute value operation, the phase of the original electric field is
inherently lost and, therefore, only the amplitude and frequency
were predicted with our FNNs in this section. To this end, we
utilized two independent FNNs to separately learn the frequency
and amplitude, and a schematic of the FNN architecture used for
both of these predictions is shown in Fig. 3.

Upon closer inspection of the original test set used in this
work, we noticed that 66 of the optimal E(t) fields had extremely
large amplitudes (i.e., these specific electric fields were charac-
terized by amplitudes that were an order of magnitude larger
than the average E(t) in the test set). Since electric fields with
these large amplitudes are difficult to construct in a realistic
experiment, we eliminated these 66 data points (they account
for only 1.29% of the 5118 data points), and we designated
this dataset as our pruned test set. The input for each of our
independent FNNs was the potential V(x) (consisting of 192 data
points), whereas the output was the single value of the
frequency or amplitude, as depicted in the last step of Fig. 3.
Both of these two FNNs were constructed and trained using a

Tensorflow43 backend with GPU acceleration powered by
NVIDIA CUDA libraries.44 In each FNN model, all of the weight
matrices were initialized with random values satisfying a
normal distribution, while all the biases were initialized to
0.001. We chose our loss function based on the definition of the
mean square error (MSE), given by the following equation:

loss ¼
PN
i¼1

ytrue � ypred
� �2

N
(4)

where N is the mini-batch size, ytrue is the true frequency/
amplitude of s(o) obtained from the NIC-CAGE program, and
ypred is the frequency/amplitude predicted by the machine
learning algorithm. An L2 regularization of the weights was
applied to prevent overfitting, and the built-in Adam optimizer
was utilized. The training, validation, and test sets were kept
the same size, and after several tests, we found that the optimal
learning rates and regularization coefficients were different for
these two FNNs, while all other optimal hyperparameters had
the same values. Table 1 summarizes the optimal hyper-
parameters used in each of these FNNs.

Fig. 4 depicts the results of our machine-learned amplitudes
and frequencies. The diagonal line in each plot represents a
perfect match between the machine-learned predictions and
true values (obtained with 1 000 000 epochs). To further quan-
tify this performance, we computed a coefficient of determina-
tion (R2) for measuring the similarity between ypred and ytrue:

R2 ¼ 1�
PN
i¼1

ypred � ytrue
� �2

PN
i¼1

ypred � ŷpred

� �2
(5)

where N is the batch size, and ŷpred is the average of all the ypred
values in the batch. A perfect agreement between ypred and ytrue
yields an R2 value of 1. As visually shown in Fig. 4 and from the
R2 values listed in Table 2, our machine learning approaches
were more accurate in predicting the resonance frequency
compared to the amplitude. This difference in performance
suggests that the machine-learned mapping from the potential
to the amplitude is much more complicated than the mapping
from the same potential to the resonance frequency. More
concretely, the frequency has a more clear/intuitive physical
meaning, which is equal to the energy difference between the

Fig. 3 Architecture of the FNN used to predict the amplitude and reso-
nance frequency of the power spectrum, s(o). The FNN starts with an input
layer composed of 192 units (which correspond to the potential, V(x),
evaluated across 192 points), followed by four hidden layers of various
sizes. The output layer is composed of 1 unit to predict either the
amplitude or resonance frequency of s(o).

Table 1 Hyperparameters and settings of the FNNs used for predicting
the amplitude and frequency of the optimized E(t)

Output purpose Amplitude Frequency

Neural network structure Feedforward Feedforward
Activation ReLU ReLU
Learning rate 0.0001 0.0005
Loss function MSE MSE
Regularization L2 L2
Regularization coefficient 0.0001 0.0005
Mini-batch size 1024 1024
Number of hidden layers 4 4
Number of units in hidden layers 96, 64, 32, 16 96, 64, 32, 16
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ground- and first-excited state. However, the amplitude is much
more sensitive to the underlying shape of the potential, V(x),
and this sensitivity contributes to the error in predicting the
amplitude with our neural network. This difference in predic-
tive performance can also be seen by comparing the figures of
the R2 values vs. the epoch number on the validation set.
In particular, the R2 values for predicting the frequency show
a smooth progression, while that for the amplitude fluctuates
significantly as shown in Fig. 5c and d. We also investigated the
sensitivity of our results to the size of our training set and
found that the accuracy of the machine-learned predictions
decreased with the training set size. Specifically, when the
training set was reduced to only 10 000 potentials, the R2 values
for predicting the resonance frequency and amplitude in the
same validation set decreased to 0.93 and 0.41, respectively.
As such, these statistics showed that a sufficiently large training
set was necessary to enable accurate machine-learned predic-
tions for these optimal control fields.

We also explored the option of predicting the entire power
spectrum instead of just the primary resonance frequency and
amplitude. Several attempts were made along those lines,
including reducing the size of the output to 800 rather than
15 000 (since the resonance peaks typically had small frequen-
cies), choosing a cross-entropy loss function instead of the
MSE, fixing the lineshape of the output to be a Gaussian or
symmetric Lorentzian to reduce the number of units (i.e., to 3)
required in the output layer to predict the power spectrum,
etc. Unfortunately, all of these attempts failed in predicting
the correct amplitude of the power spectrum, although some of

them were quite successful in predicting the resonance frequency.
We attribute these failures to the sharpness of the resonance peak
in the power spectrum. Due to the limited resolution inherent to
the discrete s(o) data, each peak only consisted of a few data
points and, therefore, the linewidth was not well-resolved. In other
words, since the linewidth of the resonance peak in s(o) was
inherently imprecise, the FNN was unable to converge to a proper
mapping of the power spectrum. In addition, we also tested one-
dimensional convolutional neural networks (CNNs) for predicting
the frequency and the amplitude as well as the entire power
spectrum. Unfortunately, the results obtained with CNNs were
less accurate than those obtained with the FNN approaches used
here. Because of these limitations, we investigated other FNN
architectures to learn mappings between V(x) and E(t) in the time
domain. This is motivated by the fact that if E(t) can be accurately
predicted using FNNs in the time domain, s(o) could also be
accurately resolved (since s(o) is merely the Fourier transform of
E(t)), and we discuss these strategies in the next section.

IV. Neural networks for directly
predicting the electric field, E(t)

While Section III focused on predicting the power spectrum, s(o),
in the frequency domain, we now investigate whether the electric
field in the time domain, E(t), can be predicted with a machine
learning approach. Predicting these dynamic fields as an explicit
function of time presents unique challenges for machine learning
approaches. In particular, while s(o) in the frequency domain
contains no phase information, E(t) in the time domain does
contain an explicit phase dependence (cf. Fig. 1b) that requires
additional care, which we discuss in further detail below.

To predict E(t) as an explicit function of time, we constructed
an FNN with three hidden layers, which was trained with
the same GPU-accelerated Tensorflow43 backend and NVIDIA
CUDA libraries44 used in Section III. Our FNN, depicted in
Fig. 6, was designed such that the number of units increases as

Fig. 4 Scatter density plots of the machine-learned predicted vs. true (a) amplitudes and (b) frequencies. The diagonal line in each plot represents a
perfect match between the machine-learned predictions and true values. Both plots were obtained with 1 000000 epochs. The vertical color bar in each
sub-plot indicates the density of the data points.

Table 2 FNN metrics for predicting the amplitude and frequency,
respectively

Output Amplitude Frequency

Number of epochs for best performance B1 000 000 B1 000 000
Loss on original test set 509.1925 286.1925
R2 for pruned test set 0.6036 0.9814
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data flows towards the output layer. Specifically, the input layer
was composed of 192 units (which correspond to the potential,
V(x), evaluated across 192 points), followed by three hidden
layers having 300, 500, and 750 units, respectively. The output
layer, which outputs the electric field as a function of time, was
composed of 1000 (or fewer) units. Similar to the FNN used in
Section III, the activation for both the input and hidden layers
was chosen to be a ReLU function without any leaky or bounded
modification. Since the output array is expected to be sinu-
soidal with a zero base, the activation of the output layer was
chosen to be a tanh function to enable the output of negative
values. All of the weight matrices were initialized with random

values satisfying a normal distribution, while all the biases
were initialized to 0.001. We chose the same loss function
(cf. eqn (4)), L2 regularization, and Adam optimizer described
previously in Section III for our FNN. Based on several tests of
our data, we found that a regularization coefficient 0.001 was
optimal for balancing regression speed and overfitting.

For the specific case of excitations from the ground to the first-
excited state, we noticed that the optimal electric field, E(t), could
be closely approximated with a sinusoidal function (with a single
frequency and amplitude) regardless of the potential function used.
Because of this periodicity, the time-dependent trends in these
electric fields could be accurately captured by only considering a
smaller portion of the entire periodic signal. To this end, we only
extracted 1000 (or fewer) representative data points within the
entire 30000-point electric field for our output set. This simplifica-
tion allowed us to train our machine learning models more easily
due to constraints in holding this large amount of data in RAM, the
immense computing time, and associated GPU resources.

In the same spirit of reducing the number of physically
relevant parameters needed for our machine learning efforts,
we also explored whether the transition probability was sensitive
to the specific phase factors or amplitudes directly obtained from
the NIC-CAGE code. To test the first assumption, we inputted
several electric fields with different phase shifts, j (but having the
same optimized frequency and amplitude that gives the desired
transition), as an initial guess into the NIC-CAGE code (cf. Fig. 7a).
All of these phase-shifted electric fields gave a transition prob-
ability close to unity (with the NIC-CAGE code exiting immediately

Fig. 5 Plot of loss vs. number of epochs for FNN predictions of (a) the amplitude and (b) resonance frequency. R2 values for the FNN-predicted
(c) amplitude and (d) resonance frequency. All plots were generated from the validation dataset.

Fig. 6 Architecture of the FNN used to predict the electric field, E(t). The
FNN starts with an input layer composed of 192 units (which correspond to
the potential, V(x), evaluated across 192 points), followed by three hidden
layers of various sizes. The output layer is composed of 1000 (or fewer)
units and is directly interfaced with a cross-correlation algorithm to predict
the final electric field, E(t).
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without further iterations), indicating that the transition prob-
ability was not dependent on the phase. However, when we tested
the second assumption by inputting electric fields with different
amplitudes as an initial guess into the NIC-CAGE code (cf. Fig. 7b),
we observed a completely different phenomenon. Specifically, all
of these initial conditions resulted in several subsequent itera-
tions that eventually reverted/converged to the same optimal E(t)
form (cf. Fig. 7c). Taken together, both of these benchmark tests
indicate that the optimal E(t) is insensitive to the phase but highly
dependent on the amplitude. As such, these tests allow us to
construct a streamlined FNN using a cross-correlation technique
for predicting E(t) in the time domain (without having to directly
predict the phase factor, since it has no physical effect on the
dynamics), which we describe in further detail below.

For the ground to first-excited state transitions examined in this
work, each of the optimal control fields, E(t), can be nearly charac-
terized by a single amplitude, frequency, and phase, j. Since we
showed previously that the transition probability is insensitive to
j, a conventional neural network may be unable to learn any
patterns that map between V(x) and j, since the phase is arbitrary
and has no physical meaning. To sidestep this difficulty, we used a
cross-correlation approach to shift the predicted E(t) by a series of
different phase values. In essence, this generates multiple E(t)
functions with exactly the same frequency and amplitude but with

a variety of different phases. To this end, 150 shift-matrices were
constructed by shifting the identity matrix along rows with a ‘‘roll’’
function. To more concretely illustrate how we automated these
phase shift operations in our machine learning approach, we
denote E(t) as a row vector given by

EðtÞ ¼

E1

E2

..

.

E999

E1000

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

T

(6)

Therefore, E(t) can be trivially written as

E1

E2

..

.

E999

E1000

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

T

¼

E1

E2

..

.

E999

E1000

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

T

�

1 0 � � � 0 0

0 1 0 0

..

. . .
. ..

.

0 0 1 0

0 0 � � � 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (7)

Fig. 7 (a) Optimized electric field, E(t), with various phase shifts, j. The blue data points denote the optimized E(t) obtained directly from the NIC-CAGE
code. The red curve is the same E(t) with a phase shift of p/2, and the green curve is E(t) with a phase shift of p. When each of these electric fields is used as
initial guesses for propagating the time-dependent Schrödinger equation, all of them gave a transition probability close to unity (which shows that the
transition probability is insensitive to the phase, j). (b) Optimized electric field, E(t), with various amplitudes. The blue data points denote the optimized
E(t) obtained from the NIC-CAGE code, and the red and green curves denote the same E(t) with amplitudes multiplied by 2 and 0.5, respectively.
When each of these electric fields was used as initial guesses for time propagation, all of them reverted/converged back to the E(t) with the original
amplitude shown in panel (c), which indicates that the transition probability depends critically on the electric field amplitude. (d) Power spectra, s(o), of
the various E(t) fields depicted in (a), showing that they coincide with each other, as expected.
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By shifting the diagonal entry of the identity matrix, the
phase of E(t) can be ‘‘rolled’’ or shifted as follows:

E1000

E1

E2

..

.

E999

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

T

¼
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..

.

E999

E1000
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1
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T

�

0 1 � � � 0 0

0 0 0 0

..

. . .
. ..

.

0 0 0 1

1 0 � � � 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (8)

Using this approach, the predicted E(t) can be shifted along the
time axis by 0 to 150 increments when multiplied by the matrix
in eqn (8). As such, each output array was spanned to a set of
150 arrays with exactly the same frequency and amplitude,

but with different phases, j. We also tested the accuracy of
this approach by using a smaller number of shift matrices
but found that at least 100 of these arrays were needed to
sufficiently sample the entire phase space of j A [0, 2p]
(i.e., each new array shifts the phase, j, by at least 2p/100,
and 100 or more arrays were necessary to ensure that the phase
within the interval [0, 2p] was sufficiently represented to give
accurate results). With these 150 shift matrices in hand, the
MSE loss was computed for each prediction, and when the
phase of the prediction matched that of the true E(t), the MSE
loss was minimized. The weights and biases of the neural
network were then updated using a back-propagation algorithm
based on the minimum loss value. It is worth noting that our
cross-correlation approach was only used to train the neural
network, and after the neural network was successfully trained,
the cross-correlation procedure was no longer needed to process/
predict new data.

We optimized some of the hyperparameters used by our
cross-correlation neural network approach for the training
set, and the optimal learning rate was chosen to be 0.0001.
A mini-batch of 1024 input arrays was chosen from the training
set for each training epoch, and the training set was fully
shuffled after each epoch. Since the electric fields outputted
by the NIC-CAGE program had amplitudes on the order of
B0.01, all of the electric fields were multiplied by 80 to avoid
numeric underflows and allow the weights and biases to
converge faster in our machine learning algorithms. We chose

Table 3 Hyperparameters and settings of the FNN used for predicting E(t)
in the time domain

Neural network structure Feedforward

Activation ReLU (hidden layers)
tanh (output layer)

Learning rate 0.0001
Loss function MSE
Regularization L2
Regularization coefficient 0.001
Mini-batch size 1024
Multiplicative pre-factor of E(t) 80
Maximum phase-shift in cross-correlation 150 increments

Fig. 8 Comparisons of true (red) and machine-learned predicted (blue) E(t) fields. The electric fields correspond to the same potential, but with (a) 600,
(b) 800, and (c) 1000 units. (d) True (red) and machine-learned (blue) E(t) for a different potential characterized by a large amplitude. When the true E(t)
has a much larger amplitude, the machine learning algorithm is able to still accurately predict the resonance frequency but underestimates the amplitude.
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a scaling factor of 80 to ensure that the processed electric field
would not exceed 1, since the tanh function used in our output
layer has a range of [�1, 1]. Table 3 summarizes our selection of
hyperparameters and settings used to predict E(t) in the time
domain.

To reduce the large RAM requirements and computational
effort for our machine learning algorithms, we reduced the
number of units for predicting E(t) to 600 and 800 from our
original 1000-output-layer-unit model. The number of hidden
layer units were also reduced to 300, 400, 500, and 300, 450,
600, while the size of the input layer remained the same. This
reduction in the number of points had a negligible effect on

predicting the frequency of E(t), as shown in Fig. 8a–c. In these
plots, the predicted E(t) is shifted with the proper phase to
allow a more straightforward comparison. Both the frequency
and amplitude agree well, and these results show that our
cross-correlation approach is able to address the previous
issues associated with the random phase of E(t). Similar to
the tests carried out in Section III, we also investigated the
sensitivity of our results to the size of our training set and
found that the accuracy of the machine-learned predictions
decreased with the training set size. Specifically, when the
training set was reduced to only 10 000 potentials, the R2 values
for predicting the resonance frequency and amplitude in the
same validation set decreased to 0.89 and �0.02, respectively.
Similar to our findings in Section III, these statistics showed
that a sufficiently large training set was necessary to enable
accurate machine-learned predictions for these optimal control
fields, even in the time domain. Nevertheless, it is still worth
noting that when the cross-correlated FNN approach was applied
to E(t) fields with large amplitudes (which were originally pruned
from the test set as discussed in Section III), the machine learning
algorithm was able to still accurately predict the resonance

Table 4 FNN metrics for predicting E(t) in the time domain with the 600-,
800-, and 1000-output-layer-unit models

Number of output layer units 600 800 1000

Number of epochs for best performance B30 000 B40 000 B50 000
Loss on original test set 25.0653 44.5876 68.2800
R2 for amplitude on pruned test set 0.3702 0.2594 0.1485
R2 for frequency on original test set 0.9550 0.9381 0.9370

Fig. 9 Scatter density plots of the predicted and true amplitude for the (a) 600-, (b) 800-, and (c) 1000-output-layer-unit model, respectively. Scatter
density plots of the predicted and true resonance frequency for the (d) 600-, (e) 800-, and (f) 1000-output-layer-unit model, respectively. The diagonal
line in each plot represents a perfect match between the machine-learned predictions and true values. The horizontal color bar in each sub-plot
indicates the density of the data points.
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frequency, as shown in Fig. 8(d), which indicates the robustness of
this approach.

To quantitatively demonstrate that the machine-learned and
true E(t) are in excellent agreement, a fast Fourier transform
was applied to both of these data sets. The amplitude and
frequency of s(o) were then compared for each data point in
the validation and test set. As before, we computed R2 values
(cf. eqn (5)) for each of our 600-, 800-, and 1000-output-layer-
unit models, and all of these configurations showed similar R2

statistics, which are summarized in Table 4. The loss and R2

of the training and validation sets were recorded every 1000 epochs.
The figures in the ESI† show that the 1000-output-layer-unit DNN
was sufficiently trained at B50000 epochs, and further training
introduces overfitting (B30000 andB40000 epochs were required
for the 600- and 800-output-layer-unit DNN to reach a minimal
loss). It is also worth mentioning that batch normalization and
dropout approaches (among others) are machine-learning techni-
ques that could also be used to prevent overfitting of the data;
however, since we did not observe any severe overfitting of our
training set, we did not employ these techniques in our work.
Nevertheless, the R2 for predicting the frequency on the validation
set converged to an impressive B0.95 value for all three models
(cf. ESI†), and both Fig. 8 and 9 show that reducing the number of
units in the layers of our cross-correlation neural network approach
did not adversely affect its predictive performance.

In addition, we also investigated the effect of using only 2
hidden layers to predict E(t) with 1000 units. As shown in the
ESI,† the density plot obtained with a 2-hidden-layer FNN was
more sparse and spread out. Furthermore, the R2 values for
predicting the frequency on the validation set never exceeded
0.87, showing that the 2-hidden-layer neural network under-
fitted the data (cf. ESI†). On the other hand, we also recognized
that increasing the number of hidden layers beyond 3 would
possibly improve the accuracy of our neural network; however,
this modification would also incur an immense computational
cost. Specifically, training our 3-hidden-layer FNN to predict
E(t) required B256 GB of RAM and 20 hours on high-
performance GPUs. Further training with additional layers
would require even more memory and GPU time, which we felt
was impractical since we already obtained impressive R2 values
greater than 0.95 with our 3-hidden-layer FNN. As such, these
benchmark configuration tests indicated that the use of 3
hidden layers in our neural network was sufficient and practical
for accurate predictions. Most importantly, the density plots in
Fig. 9 show that both the resonance frequencies and amplitudes
predicted by our cross-correlation neural network approach
demonstrate an impressive agreement with the brute-force
(and computationally expensive) quantum control results
obtained with the NIC-CAGE program.

V. Conclusion

In conclusion, we have presented the first machine learning
effort for solving explicit time-dependent quantum control
problems in reduced-dimensional chemical systems. Using a

variety of deep neural networks, we have shown that the
prediction of optimal control fields is an inverse problem that
naturally lends itself to a machine learning approach. In terms of
efficiency, we have shown that our machine learning approach
only requires knowledge of the potential, V(x), to yield a reliable
prediction of an optimal control field, E(t). In other words, a user
can simply input a variety of potentials into our neural network
model to obtain optimal control fields without having to do
a computationally expensive time-dependent quantum control
calculation. In terms of accuracy, we have shown that deep neural
networks can predict these optimal control fields within 96%
accuracy by directly learning the underlying patterns between
V(x) and E(t).

While this work focused on reduced-dimensional quantum
systems, we anticipate that the machine learning techniques
explored in this work could be applied to other applications
of increasing complexity. For example, we envision that some
of the machine learning tactics used here could serve as a
first step towards solving more complex quantum dynamics
problems in higher dimensions. The use of reduced-dimensional
techniques to address full 3D quantum dynamics problems is
similar in spirit to ongoing efforts that use machine-learned,
ground-state, 1D exchange–correlation functionals42,45 for
full three-dimensional chemical problems.46 Finally, we also
anticipate that the machine learning techniques used here
could be harnessed to predict optimal electric fields for
other higher-lying transitions, which are known to exhibit
more complex patterns in the time and frequency domains.41

In particular, cross-correlation neural network approaches,
which were used to overcome problems associated with the
random phase of E(t), could be useful in (1) predicting optimal
electric fields for other higher-energy excitations in the time
domain or (2) enabling the prediction of the full absorption/
emission spectra of molecules since the absorption spectra
is merely the Fourier transform of E(t). Taken together,
these machine learning techniques show a promising path
towards cost-effective statistical approaches for designing
control fields that enable desired transitions in quantum
dynamical systems.
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