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Abstract—In this work, we present a multi-view framework to
classify spatio-temporal phenomena at multiple resolutions. This
approach utilizes the complementarity of features across different
resolutions and improves the corresponding models by enforcing
consistency of their predictions on unlabeled data. Unlike tradi-
tional multi-view learning problems, the key challenge in our case
is that there is a many-to-one correspondence between instances
across different resolutions, which needs to be explicitly modeled.
Experiments on the real-world application of mapping urban
areas using spatial raster data-sets from satellite observations
show the benefits of the proposed multi-view framework.

Index Terms—multi-resolution classification, multi-instance
learning, remote sensing

I. INTRODUCTION

Managing urban areas has become one of the most im-
portant developmental challenges of the 21st century [1].
Urbanization is beneficial from a sustainability standpoint
since it is resourcefully more economical and environmentally
less damaging to provide for a concentrated population than
a dispersed one [1]. However, rapid unchecked urbanization
can have adverse environmental and ecological issues [2], [3]
along with poor living conditions [4]. Thus, an urban planning
agenda is critical to ensure our sustainable living on the planet.
This requires that we have regularly updated maps for urban
land and population density to track their dynamics.

Raster images of reflectance data collected by satellites or-
biting the Earth [5], [6] can be used for generating such urban
maps. Raster data [7] are inherently spatio-temporal in nature
where the underlying spatio-temporal field is observed at fixed
locations in space and fixed points in time. Examples of spatio-
temporal raster data-sets in environmental applications include
time series of air quality measurements through ground sensors
at a weather station, raster images of reflectance data collected
by satellites orbiting the Earth. A key characteristic of raster
data-sets is the resolution at which the data is collected.
The same spatio-temporal field might be observed at different
resolutions in space and time across different data-sets. Data-
sets collected at different resolutions might differ in terms of
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Fig. 1: Most urban expansion is occurring in developing
nations where deploying resource-intensive methods is not an
option. Figure courtesy of [1].

the kind of features that they have and the availability of
training samples at that resolution. However, since they all
observe the same underlying spatio-temporal field, inferences
made using data observed at different resolutions have to be
consistent and thus, they can complement each other.

As an example, table I shows the spatial and temporal
resolutions for few of the publicly available raster data-sets
in the remote sensing domain. These data-sets are used for
various environmental applications, prominently among which
is the task of mapping land cover and land use across the
globe over time [5], [8]–[10]. From the table, one can clearly
see that there is a wide range of available resolutions. While
we may want high resolution maps of land use, using coarser
resolution data-sets in conjunction can be very advantageous.
Coarser spatial resolution satellite products such as MODIS
(500m*500m pixels) are observed more frequently in time
(every 8 days), while very fine resolution products such as
WorldView-3 (30cm*30cm pixels) might only be available
for select dates. Coarser spatial resolution products have
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TABLE I: The variability in the available raster data-sets for
the remote sensing domain

DATASET TEMPORAL
RESOLUTION

SPATIAL
RESOLU-
TION

AVAILABILITY

MODIS 8 days 500 m via NASA since
1999

LANDSAT 16 days 30 m via USGS since
1972

SENTINEL 10 days 10 m via ESA since
2014

PLANET-
SCOPE

select dates 3 m commercially
available since
2016

WorldView select dates 30 cm commercially
available since
2014

been collected for several decades, unlike some of the fine
resolution products, so historical analyses are not possible
with fine resolution data-sets. Moreover, it might be easier
to procure training data at coarser resolutions since there are
many good quality land cover products that already exist at
this resolution. Finally, since every satellite product typically
observes the Earth across different ranges of wavelengths, the
features for the same location across different satellite products
are different and hence complementary.

In this paper, we consider the problem of predicting a class
of interest on a spatio-temporal field using raster data-sets
at multiple resolutions. Generally, one operates in a setting
where we are trying to predict the class of interest at a single
resolution, with features and training samples provided for that
resolution [11]–[13]. In contrast, in our setting, training data is
available for a limited number of instances at each resolution,
that informs us of the presence or absence of the class of
interest, when observed from that resolution. The different
resolutions can be seen as different views that describe the
same data set, on which a predictive model is being learned.
The theory of multi-view learning, which considers predictive
modeling settings with multiple views of the data, states that
under the assumption that the feature spaces corresponding to
the two views are independent of each other, it is possible for
models trained separately on each view of the data to learn
from the others. Therefore, in our case, instead of separately
learning models to predict the phenomenon at different resolu-
tions, we propose to simultaneously learn these models while
maintaining the consistency of predictions between resolutions
on the entire data set, labeled or unlabeled. This has the
following advantages (1) Utilizes an independent feature space
(2) Utilizes unlabeled data and (3) Mitigates lack of labeled
data from either resolution.

However, the key challenge in applying the multi-view
learning approach in our case is the many-to-one nature of
correspondence between instances from one view to the other.
Figure 2 shows a caricature demonstrating this challenge in
enforcing the consistency idea. The example considers the
problem of predicting urban areas using two raster data-sets
with different spatial resolutions. Note that the number of

Fig. 2: This figure shows a small region in Minneapolis, USA
and the corresponding labels (urban land) as observed from 30
m resolution and 10 m resolution. Note how only part of the
region seems urban from the finer resolution although all of
it is urban at the coarse resolution. Moreover, the fraction of
urban fine resolution instances within a urban coarse resolution
instance can have a large variability.

fine resolution instances classified as urban within an urban
coarse resolution instance is variable within the data set. In
this paper, we propose a multi-instance learning based strategy
to handle this many-to-one correspondence between a pair
of resolutions, coarse and fine, where the presence of even
a single instance of the class of interest among the finer
resolution instances makes the corresponding coarse resolution
instance positive.

In a nutshell, we make the following contributions in this
work

1) Formalize the problem of classifying phenomena across
multiple resolutions in a multi-view framework.

2) Propose multi-instance learning strategy to implement
the multi-view framework that handle the many-to-one
correspondence across resolutions.

3) Demonstrate the utility of the proposed method on land
cover mapping problems of great environmental signifi-
cance.

II. METHOD

A. Problem Setting

In this paper, we consider the problem of classifying a
spatio-temporal field on multiple resolutions. Data instances
at every resolution 1 ≤ k ≤ NR can be described through
attributes (x, l, y) described as follows

1) Features x ∈ RDk , where Dk is the dimensionality of
the features observed in the kth resolution

2) Location l that describes the voxel id of the observation
that encodes the location in space and the point in time
where each instance is observed.

3) Label y ∈ {0, 1} that encodes the presence (y = 1) or
absence (y = 0) of the class of interest at location l

Goal: To learn classification models wk at every resolution k
that can take the features xk observed for an instance on that
resolution and predict its corresponding label yk.
Training data: During the training phase, for each resolution
k, we are provided a set T k

l of Nk
l > 0 labeled samples

{xk
i , l

k
i , y

k
i }N

k
l

i=1. In addition, we have unlabeled data for a large
region RU of the spatio-temporal field at every resolution i.e

4118

Authorized licensed use limited to: University of Minnesota. Downloaded on October 21,2020 at 14:15:42 UTC from IEEE Xplore. Restrictions apply.



we have features xk
i for every observable location l within the

region RU at resolution k, forming a unlabeled training data
set T k

u of Nk
u samples {xk

i , l
k
i }N

k
u

i=1.

B. Multi-view framework

Classification models wk are learned at every resolution k ∈
{1 · · · , NR}. In particular, classifier fk(xk;wk) at resolution
k with parameters wk models Pr(yk = 1|xk), where yk is the
label at that resolution. We place no restriction on the actual
form of f . It could take any form like LSTMs for temporal
data or CNNs for spatial data or more traditional classifiers like
a neural network with one hidden layer. However, instead of
learning the classifiers at different resolutions independently,
as would be the case in a conventional approach, we propose to
use the large number of unlabeled data available on the same
region RU of the spatio-temporal field to enforce consistency
in predictions across resolutions and thus, make the models on
different resolutions learn from each other. Thus, the objective
function takes the following form,

O(w1, · · · ,wNR) =
NR∑
k=1

L(T k
l ;wk)+

NR−1∑
k1=1

λk1

NR∑
k2=k1+1

D(pred(T k1
u ;wk1

), pred(T k2
u ;wk2

))

(1)

The first term in the objective function is the loss over
labeled samples while the second term is a regularization term
that enforces the consistency of predictions across resolutions
on the unlabeled instances i.e L(T k

l ;wk) is the loss over
the labeled training instances T k

l on the kth resolution and
the function D() captures the consistency of the predictions
between every pair of resolutions.

1) Defining consistency across resolutions: The choice of
function L() in equation 1 is standard. Defining the con-
sistency function D() is non-trivial because of the lack of
an one-to-one mapping between instances across a pair of
resolutions, as would be the case in traditional multi-view
problems. Given a pair of resolutions - coarse and fine, one
can define a many-to-one mapping of instances from the fine
resolution to the coarse resolution by using a nearest neighbor
approach. i.e every fine resolution instance is assigned to
the coarse resolution instance with the closest location to it.
Subsequently, the consistency of predictions on the unlabeled
instances between a pair of resolutions boils down to defining
the consistency between every coarse resolution instance and
its corresponding fine resolution instances. In particular, the
consistency term in equation 1 can be rewritten as,

D(pred(T k1
u ;wk1

), pred(T k2
u ;wk2

)) =∑
i∈T

k1
u

d(xk1

i , {xk2

j |j ∈ Si and j ∈ T k2
u },wk1 ,wk2) (2)

where the summation is over all unlabeled instances i in the
coarser resolution k1. Also, the set Si denotes the unlabeled

TABLE II: Comparison with baselines: balanced data-sets
(Accuracy)

METHODS DATASETS
ROME MINNEAPOLIS

LANDSAT

LogReg 0.877 0.887
Conc Features 0.822 0.821

Semi Supervised 0.876 0.888
Multi-Res 0.913 0.917

SENTINEL

LogReg 0.852 0.884
Conc Features 0.874 0.896

Semi Supervised 0.884 0.899
Multi-Res 0.944 0.952

instances in fine resolution k2 that are closest in location to
instance i from the coarser resolution.

C. Multiple Instance Learning (MIL) solution

Multiple Instance Learning (MIL) [14], [15] considers the
problem of learning predictive models to label groups of
instances, in contrast to traditional settings where the goal
is to label individual instances. Typical MIL classification
settings operate under the presence-based assumption [14],
[16] which states that a group has a positive label when at
least one of its constituting instances has a positive label and
it has a negative label when all of its constituting instances
have a negative label as well. MIL forms a direct way to
define function d() in equation 2 that models the many-to-
one relationship between an instance of a coarse resolution
and its corresponding instances in the finer resolution. Given
an instance i from a coarse resolution k1 and its corresponding
instances Si from a fine resolution k2, the prediction for the
coarse resolution label can be written in two ways - first using
the model on resolution k1 as Pr(yk1

i |xk1

i ) = fk1
(xk1

i ;wk1
).

Secondly, the label at k1 can also be predicted using cor-
responding instances on k2 using the MIL assumption as
Pr(yk1

i |{xk2

j |j ∈ Si}) = maxj∈Si
fk2

(xk2

j ;wk2
). Note that

taking the maximum of the probabilities for instance-level for
constituting instances is one way to implement the presence-
based MIL assumption [17]. Thus, the function d() in equation
2 can be defined as,

d(xk1

i ,{xk2

j |j ∈ Si and j ∈ T k2
u },wk1 ,wk2) =(

fk1
(xk1

i ;wk1
)−max

j∈Si

fk2
(xk2

j ;wk2
)

)2

Since we use gradient descent algorithm to learn the optimal
parameters for our models, we want our objective functions to
be differentiable and hence, in our implementation, the max
function is replaced by its differentiable softmax approxima-
tion.

III. EVALUATION

The methods proposed in this paper are evaluated on data-
sets of 2 different regions namely Minneapolis and Rome,
from a real world application - urban area detection, that
use satellite-collected observations of different locations to
automatically track changes on the surface of the Earth. We
use data-sets from two satellites available at two different
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resolutions. Landsat 8 satellite data product having 30m spatial
resolution(3660×3660 pixels) and Sentinel 2A data product
having 10m spatial resolution(10980×10980 pixels). These
two sources act as the coarse and fine resolution respectively.
In each data-set we take 200 training samples and 60000 test
samples on each resolution. In addition to those we also have
10000 unlabeled coarse-resolution and correspondingly, 90000
unlabeled fine-resolution samples (there are 9 Sentinel pixels
for each Landsat pixel). We compare the following methods
on the above data-sets:
1. Coarse-Resolution Logistic Regression and Fine-
resolution Logistic Regression Separate models are trained
on both resolutions using their respective labeled samples.
2. Concatenated Features Logistic Regression This method
uses a concatenated feature space using features from the other
resolution. For each coarse-resolution pixel, the corresponding
fine-resolution pixels are averaged and concatenated to have an
extended feature-set. The same is done for each fine-resolution
pixel. Separate models are learned at each resolution using the
extended feature sets.
3. Semi-Supervised Logistic Regression This is an extension
of baseline 1 where in addition to labeled samples at a
given resolution, unlabeled samples are also used to regularize
predictions at that resolution. Note that models at different
resolutions are still trained separately.
4. Multi-Resolution Logistic Regression Proposed algorithm
which uses the limited labeled data available in the respective
resolutions and enforces consistency in predictions on unla-
beled data between resolutions.

A. Results

Table II reports the accuracy for the two data sets for the
urban mapping application i.e Rome and Minneapolis. First,
we have LogReg, that is trained with just labeled samples
from each resolution. If we concatenate features from the
other resolution (Conc Features), we observe that the per-
formance goes down since there are not enough samples to
handle the increased dimensionality. Using unlabeled data in a
semi-supervised fashion yields some benefit, especially in the
finer resolution. However, the most gains are found in using
unlabeled data to enforce consistency between resolutions as
it brings out the benefit of an independent feature space to
learn from.

IV. CONCLUSION

In this paper, we formalized the problem of classifying
spatio-temporal phenomena simultaneously at multiple resolu-
tions in a multi-view framework. The multi-view framework
helps to regularize the models trained on individual resolutions
by enforcing consistency of predictions across resolutions on
the large number of freely-available unlabeled data. Unlike
traditional multi-view learning scenarios, the multi-resolution
classification task involves a many-to-one correspondence be-
tween views of the data, which the proposed methods in the
paper learn explicitly through multiple instance learning and
attention mechanism. Experiments on urban mapping data-sets

show the utility of utilizing unlabeled data through the multi-
view framework. Future work involves investigating other ap-
proaches to modeling the consistency across resolutions such
as through the attention mechanism [18] that has shown much
promise in domains such as Natural Language Processing
(NLP).
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