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a b s t r a c t

In today’s global economy, supply chain (SC) entities have become increasingly in-
terconnected with demand and supply relationships due to the need for strategic
outsourcing. Such interdependence among firms not only increases efficiency but also
creates more vulnerabilities in the system. Natural and human-made disasters such as
floods and transport accidents may halt operations and lead to economic losses. Due to
the interdependence among firms, the adverse effects of any disruption can be amplified
and spread throughout the systems. This paper aims at studying the robustness of
SC networks against cascading failures. Considering the upper and lower bound load
constraints, i.e., inventory and cost, we examine the fraction of failed entities under load
decrease and load fluctuation scenarios. The simulation results obtained from synthetic
networks and a European supply chain network (Cardoso et al., 2015) both confirm
that the recovery strategies of surplus inventory and backup suppliers often adopted in
actual SCs can enhance the system robustness, compared with the system without the
recovery process. In addition, the system is relatively robust against load fluctuations but
is more fragile to demand shocks. For the underload-driven model without the recovery
process, we found an occurrence of a discontinuous phase transition. Differently from
other systems studied under overload cascading failures, this system is more robust for
power-law distributions than uniform distributions of the lower bound parameter for
the studied scenarios.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Cascading failures and network robustness have been studied extensively in real-world networks such as power
ystems and traffic networks [1–8]. Failures in these models are often overload-driven. Pahwa et al. [8] built a simple
ut realistic overload cascade model for power systems and studied its emergent behavior against power outages, which
an lead to the load redistribution across the network and result in more failures due to the power flows exceeding the
ine capacity. They observed a sudden breakdown of the system with an increased load level and a large network size.
any works study the cascading failure phenomenon from a single network perspective, and there have also been recent
tudies of failure cascades in interdependent networks. Buldyrev et al. developed in [9] a one-to-one correspondence
odel to study the robustness of interconnected networks against cascading failures, and found that removal of a critical

raction of nodes could lead to a complete breakdown of the system. Since the work [9], many works have studied the

∗ Corresponding author.
E-mail address: qihui@ksu.edu (Q. Yang).
ttps://doi.org/10.1016/j.physa.2020.125466
378-4371/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2020.125466
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2020.125466&domain=pdf
mailto:qihui@ksu.edu
https://doi.org/10.1016/j.physa.2020.125466


Q. Yang, C.M. Scoglio and D.M. Gruenbacher Physica A 563 (2021) 125466

r
s

t
i
c
O
i
f
r
p
b
t
c
a
o

m
c
r
Z
t
t
S
r
c
a
t
b
a
o
c
t
d
s
n
r
d
t
r
t
w

g
u
u
d
a
f

o
t
p
s
t
o
d

obustness of interdependent networks from various perspectives [10–17], in which disruptions of components in one
ystem may propagate and cause elements in the other system to fail.
In the competitive economic market, SC entities often build business relationships with outsourcing partners to reduce

he overall cost and promote productivity. As a result, SCs have become more complicated and geographically dispersed,
ncreasing the frequencies of SC disruptions [18]. Due to the increased dependencies among entities, disruptions of a
ompany’s operation can result in revenue losses in its business partners, and cascade to other components in the SC [19].
n the other hand, sustainability concerns have pushed for higher efficiency in the use of resources and reduction
n protective redundancies in SCs, thus making SCs more susceptible to disruptions [20]. SC entities may suffer from
inancial losses due to delays in the flow of goods caused by natural disasters or intentional attacks. For example, heavily
elying upon transportation services for timely delivery of animals among ranches, stockers, feedlots, and meat-processing
lants, the beef industry can suffer substantial economic losses due to disruptions in transportation infrastructure caused
y natural disasters and movement restrictions during disease outbreaks [11]. During the 2011 Japan earthquake and
sunami, Toyota Motor Company suffered at least a 140,000-vehicle production loss. This adverse effect spread to other
ountries, which led to a massive collapse in the global automotive and electronics industry [21]. In the following weeks
fter the disaster, Toyota in North America experienced shortages of over 150 parts, resulting in curtailed operations at
nly 30% of capacity [22].
In light of these low probability and high impact disruptions, several studies have utilized the above overload failure

odels to analyze the SC robustness against cascading failure [23–25]. From a complex network perspective, a supply
hain is also termed a supply network, in which network nodes and links refer to the SC entities and supply–demand
elationships between the entities, respectively. Cluster SC network is a typical SC network based on industry clusters.
eng and Xiao studied the dynamic robustness of cluster SC networks under overloaded cascading failures, and found
hat network load entropy can help identify the cascading failure phenomenon with large damage at its early stage,
hereby avoiding the collapse of the whole network [23]. Tang et al. [24] examined the robustness of an interdependent
C network model, which consists of an undirected cyber layer and a directed physical layer, subject to different node
emoval strategies. However, the nature of cascading failures in SC systems is mostly underload-driven. When entities
annot fulfill the expected production requirement to overcome the fixed production costs, they will fail to gain profit
nd possibly exit the market. When a node is disrupted, its downstream and upstream neighbors will be affected due
o supply shortage and demand losses, respectively. If the neighboring node’s remaining load drops below the lower
ound constraint, i.e., cost, new failure occurs, and cascades to other nodes in the entire system [26,27]. Tang et al. [28]
ssessed the SC system robustness in the form of production capability losses, but they assumed that the failed node loads
nly propagate downstream without consideration of mitigation strategies. Wang et al. [26] attempted to improve the
luster SC network resilience against cascading failures, leveraging insights from the ant colony’s spatial fidelity zones. In
he model developed by Wang et al. a node can propagate the failure impact both upstream and downstream, and can
ynamically change the strength of the business relationship with its neighbors [27]. Sun et al. proposed a multi-echelon
upply chain evolutionary model and performed robustness analyses under different attack strategies. They assumed that
ode failures are caused by insufficient load, and successive failures happen only among nodes that have certain symbiotic
elationships [29]. Huo et al. proposed a two-layer network to study the SC risk propagation under warning information
iffusion. In their work, a risk propagation threshold is derived and found to have correlations with the network topology,
he herd mentality, and the risk reference [30]. There also exists a series of studies focusing on the design of optimal
ecovery methods to cope with disturbance or disruptions in SC networks [31,32]. To the best of the authors’ knowledge,
here are few works considering underload-driven failures, and this work attempts to add a new element to this domain
ith a focus on the phase transition behavior.
Given the tremendous damages caused by the disruptions, understanding the nature of the systemic failure in SC that

oes beyond a single component behavior is a significant problem to be addressed. The goal of this work is to build an
nderload cascade failure model and analyze its behavior against disruptive events. First, we will build a generalized
nderload cascade failure model with and without recovery strategies. The material flow of goods through an entity node
efines its load. Second, we will examine the fraction of failed nodes in the system under scenarios of load decrease
nd load fluctuations. Third, we will provide analytic results based on the assumption of equal load redistribution upon
ailures for the studied scenarios.

The contributions of this paper are: (i) Using the proposed model with recovery strategies, we confirm that strategies
f backup suppliers and surplus inventories, often adopted in actual SCs, improve the system robustness. In addition,
he system is relatively robust against load fluctuations but is more fragile to load decrease. (ii) Without the recovery
rocess, we found numerically and analytically a discontinuous phase transition of the system under a load decrease
cenario. Based on statistical physics, this indicates that a small fraction of failures can result in a sudden breakdown in
he SC system. More specifically, the model is more robust under the power-law distribution than the uniform distribution
f the lower bound load parameter for the studied scenarios. These findings indicate that underload driven systems have
ifferent behaviors against cascading failures compared with overload cascade models, and need to be further explored.
2
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. Underload cascading failure model

.1. Load and load constraints

In multi-hierarchy SC networks, nodes are entities and edges denote the supply–demand relationships between the
ntities. SC entities are both demand-side and supply-side, and those in the same tier have similar network connections,
ore businesses, and competitive environments [33–35].
In this work, we represent the SC as follows:

G = (V , E, L, A, B) (1)

here V = {v1, v2, . . . , vn} is a set of nodes, and E =
{
(vi, vj)|eij = 1 or 0

}
is a set of edges. When eij = 1, there is a

irected link between nodes vi and vj; otherwise, eij = 0.
L = {L1, L2, . . . , Ln} is a set of node loads. We define the load of a node Li(t) as the sum of material flows that go

hrough an entity node, i.e., the total number of products that an entity has sold per time unit. A = {A1, A2, . . . , An} and
B = {B1, B2, . . . , Bn} are sets of node load constraints. More specifically, Ai denotes the upper bound load for node i, which
is the maximum number of products an entity can provide, i.e., inventory. Bi denotes the lower bound load for node i,
and reflects costs such as labor costs and maintenance fees.

Suppose the SC network has T number of tiers, and the initial loads for nodes in the last tier T, equivalent to the
demand for final customers, are known and equal. To initialize the node load and load constraints in the network, we
first calculate weights on all edges, which reflect the business relationship strength between node entities. Weight on
edge eij is calculated by wij = (di · dj)θ , with θ = 0.5 [26,27]. di denotes the node degree of node i, and is obtained by
di = d+

i + d−

i , where d+

i and d−

i are the indegree and outdegree of node i, respectively.
Given initial node loads in tier T, we calculate all initial flows on edges between nodes in tier T -1 and tier T as follows:

Fi,j (0) = Lj(0) · wij/
∑
k∈Γ U

j

wkj (2)

where Fi,j(t) is the flow on edge eij at time t and wij/
∑

k∈Γ U
j

wkj indicates the fraction of the supplies from supplier i with

respec to all suppliers of node j. Γ U
j is the node collection consisting of upstream nodes connected to node j.

According to the node load definition, the initial load of each node in tier T -1 equals the sum of its outgoing flows,
which is given by

Li (0) =

∑
jϵΓ D

i

Fi,j (0) (3)

where Γ D
i is the node collection consisting of downstream nodes connected to node i.

After obtaining the initial loads of nodes in tier T -1, we calculate the initial node loads in tier T -2 using Eqs. (2)–(3).
Similarly, we sequentially calculate the initial loads of nodes in all tiers backward, i.e., T -3, . . . , 2, 1. As a result, the sum
of incoming flows equals the sum of outgoing flows for each node i, i.e., Li (t) =

∑
mϵΓ U

i (t) Fm,i (t) =
∑

jϵΓ D
i (t) Fi,j (t), with

demand and supply balanced, which is in accordance with the node load definition.
In terms of node load constraints, we assume that Ai and Bi are proportional to the initial node load Li (0), and are

given as follows{
Ai = aLi (0)

Bi = bLi (0)
(4)

where a is the upper bound parameter, a > 1; b is the lower bound parameter, 0 < b < 1.

2.2. Cascading failure process

In the normal state, the network is in the steady state and the load of node i at time t satisfies Bi < Li (t) < Ai. When
an SC network suffers from disruptive events, some nodes can be underloaded and fail initially. Caused by the connections
between the entities, the impact of these initial failures could result in more failures and spread to the entire system. In
this work, we consider the cascading failure processes with and without recovery measures as follows.

Step 1: We initialize the node load Li(0) for each node i in the network, and then calculate load constraints (Ai and
Bi) based on the value of Li(0). Keeping the load constraints for each node unchanged, we decrease or fluctuate the initial
node loads to simulate initial failures. The new initial load of node i after the load decrease or fluctuations is denoted as
L′

i (0).
Step 2: Caused by the new failures, node load loss propagates throughout the system, and all the loads and flows

affected are updated.
3



Q. Yang, C.M. Scoglio and D.M. Gruenbacher Physica A 563 (2021) 125466

f
a

2

d
a

o
u

Step 3: With recovery measures, the nodes affected but not yet failed can reduce load losses by altering flows with
existing partners or by building new partners.

Then, if there are still nodes with loads below their lower bound load, i.e., Li (t) < Bi, these nodes will be marked as
ailed and we continue the process from Step 2–3. Such a procedure is repeated until no new failure happens. Failure of
node indicates that the entity receives insufficient load and fails to gain profit in the competitive market.

.2.1. Node load loss propagation scheme
We assume that if a node fails, it can neither receive supplies from upstream neighbors, nor ship products to

ownstream partners. Thus, once a node i fails at time t, both its load and the flows on its incoming and outgoing edges
re set to zero. Here we use ∆−

i (t) to denote the load loss of node i at time t, and ∆−

m,i(t) to denote the load loss of node
m influenced by node i at time t. Fi,j(t) denotes the flow from node i to node j at time t.

We model the impact of the failed node i on its upstream nodes as follows. For node i failed at time t, its upstream
neighboring node m in Γ U

i will suffer load loss ∆−

m,i(t). Accordingly, the load of node m, i.e., Lm(t), and the flow Fm,i(t)
n edge emi are updated according to Eq. (5). Furthermore, the affected node m will lead to the load loss of node d in its
pstream neighboring set, Γ U

m .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆−

i (t) = Li (t − 1) =

∑
pϵΓ U

i

Fp,i(t − 1)

∆−

m,i (t) = ∆−

i (t)Fm,i(t − 1)/
∑
pϵΓ U

i

Fp,i (t − 1) = Fm,i(t − 1)

Lm (t) = Lm (t − 1) − ∆−

m,i (t)

Fm,i (t) = Fm,i (t − 1) − ∆−

m,i (t) = 0

∆−

d,m (t) = ∆−

m,i (t) Fd,m (t − 1) /
∑
qϵΓ U

m

Fq,m (t − 1)

Ld (t) = Ld (t − 1) − ∆−

d,m (t)

Fd,m (t) = Fd,m (t − 1) − ∆−

d,m (t)

(5)

where mϵΓ U
i and dϵΓ U

m . Summation
∑

pϵΓ U
i
Fp,i (t − 1) is the sum of flows on the incoming edges of node i, and

Fm,i (t − 1) /
∑

pϵΓ U
i
Fp,i (t − 1) indicates the fraction of the newly load loss allocated to node m with respect to the total

load loss of node i.
In addition, the load loss of node i is propagated to downstream nodes. Due to the failure of node i, its downstream

neighboring node s reduces load by ∆−

s,i(t). The flow between nodes i and s is also updated. As the load loss propagates
further downstream, we also decrease the load of node r, which is the downstream neighboring of node s, and the
corresponding flow Fs,r (t) according to Eq. (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆−

i (t) = Li (t − 1) =

∑
gϵΓ D

i

Fi,g (t − 1)

∆−

s,i (t) = ∆−

i (t)Fi,s (t − 1) /
∑
gϵΓ D

i

Fi,g (t − 1) = Fi,s(t − 1)

Ls (t) = Ls (t − 1) − ∆−

s,i (t)

Fi,s (t) = Fi,s (t − 1) − ∆−

s,i (t) = 0

∆−

r,s (t) = ∆−

s,i (t) Fs,r (t − 1) /
∑
hϵΓ D

s

Fs,h (t − 1)

Lr (t) = Lr (t − 1) − ∆−

r,s (t)

Fs,r (t) = Fs,r (t − 1) − ∆−

r,s (t)

(6)

where sϵΓ D
i and rϵΓ D

s .
The node load loss propagation process continues upstream to tier 1 and downstream to tier T, mimicking the ripple

effect spreading throughout the system.
To clearly illustrate the load loss propagation after nodes failed, we present a simplified example on a four-tier

SC network, as shown in Fig. 1. Assuming that nodes 9 and 13 fail at time t, the load they lose will affect their
neighboring nodes 4, 14, 15 and 8, 18 through connectivity links. Then, affected nodes 14, 15 further impact their
downstream nodes 18, 19 and 20 by reducing supply. Meanwhile, node 8 influences its upstream neighboring nodes
4
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Fig. 1. An example of load loss propagation in a four-tier supply chain. Red circles represent the initial failures caused by load decrease or fluctuations.

2, 3 and 4 by cutting back demand. It is worth noting that the load loss suffered by node 4 is affected by nodes 8
and 9 at the same time, thus its load at time t is decreased by ∆−

4,8 (t) + ∆−

4,9 (t), where ∆−

4,9 (t) = L9 (t − 1) and
∆−

4,8 (t) = ∆−

8,13 (t) F4,8 (t − 1) /
∑

qϵΓ U
8
Fq,8 (t − 1).

2.2.2. Load loss recovery scheme
In this section, the load loss recovery scheme is designed to simulate that entities can mitigate their losses by requesting

rush orders or building new business partnerships during disruptive events. We define the residual load of node i at time
t as RLi (t) = Ai − Li (t), which indicates the additional available products an entity can provide, i.e., surplus inventory.
Each node can at most provide its residual load when it helps its neighbor to recover losses.

When recovery measures are considered in the cascading failure model, only surviving nodes can recover their node
load when suffering from load losses. Note that after the load loss propagation process, a node with Li (t) < Bi can recover
its load if it is not marked as failed. If the node’s load, Li (t), is still below its lower bound load, Bi, after the recovery process,
his node will be marked as failed, and cause further load losses in the next step.

Since acquiring new partners will bring additional costs, we assume node i (not yet permanently failed) will first select
rom surviving nodes in its upstream neighboring set, Γ U

i , and downstream neighboring set, Γ D
i , to recover load losses. If

ll the neighboring nodes’ residual load still cannot help it recover above Bi, node i will build links with surviving nodes
n its upstream non-neighboring set, Γ

U
i (t), and downstream non-neighboring set, Γ

D
i (t).

According to the node load definition, each node’s demand and supply are balanced in the steady state. Therefore,
the impact of the increase in a node load will spread upstream to tier 1 and downstream to tier T. Then, it is easy to
nderstand that the total load increase of nodes in each tier s,

∑
iϵΩs

∆+

i should always be equal, where Ωs is the node
ollection consisting of surviving nodes in tier s and s = 1, 2, . . . , T. In this section, we use ∆+

i (t) to denote the load
ncrease of node i, and ∆+

m,i(t) to denote the load increase of node m influenced by node i.
Note that as the numbers of surviving nodes in each tier at time t are not necessarily the same, the total load loss for

each tier, i.e.,
∑

iϵΩs
(L′

i (0)−Li(t)), are different. In addition, the total residual loads for each tier, i.e.,
∑

iϵΩs
RLi (t), are also

different.
The load loss recovery process is described as follows:
Due to the aforementioned reasons, we identify the tier γa with the minimum residual load, RLMIN , and tier γb with

the maximum loss, ∆LMAX (Eq. (7)). The total load increase of each tier,
∑

i∈tiers ∆
+

i (t), equals the smaller value of RLMIN
and ∆LMAX .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLMIN = min
s

[∑
iϵΩs

RLi (t)

]
, s = 1, 2, . . . , T and γa = s∗

∆LMAX = max
s

[∑
iϵΩs

(L′

i (0) − Li (t))

]
, s = 1, 2, . . . , T and γb = s∗

∑
iϵΩs

∆+

i = min (RLMIN , ∆LMAX ) , s = 1, 2, . . . , T

(7)

If RLMIN < ∆LMAX , we first recover nodes in tier γ = γa with the load of each node i increased by ∆+

i (t) = RLi (t),
iϵΩγa . Otherwise, if RLMIN ≥ ∆LMAX , we first recover node load in tier γ = γb, and each node load increases by
∆+(t) = L′ 0 − L t , iϵΩ .
i i ( ) i ( ) γb

5
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Similar to the load propagation process, the impact of load increase in tier γ will spread upstream and downstream to
the entire system. Suppose node i is in tier γ , and its load gets increased by ∆+

i (t). To imitate that node i requests a rush
order from its supplier m, we increase Fm,i (t) and the load of node m by ∆+

m,i = min(∆+

i (t) , RLm (t)), mϵΓ U
i = Ωγ−1.

If the first randomly selected supplier m’s residual load cannot satisfy the order request of node i (RLm (t) < ∆+

i (t)),
node i will continue to randomly select the next supplier in Γ U

i . If all suppliers still fail to meet the request of node
i, i.e.,

∑
m∈Γ U

i
RLm (t) < ∆+

i (t), node i will build links with randomly selected nodes in the non-neighboring set Γ
U
i (t),

ntil objective ∆+

i (t) =
∑

mϵΓ U ′

i
∆+

m,i is met, where Γ U ′

i is the new node collection consisting of all upstream neighboring
odes connected to node i .
Load increase of node m will further lead to load increase of its upstream nodes. This process continues until all related

uppliers in tier 1 have increased their loads. Similarly, loads of surviving nodes downstream are updated.

. Numerical simulation results

Researchers often study the phase transition behavior exhibited by the system through stressing external forces to
t until the rupture point [36]. In this section, we examine the robustness of the SC networks under the stress of load
ecrease and fluctuations. Note that each node’s load constraints, Ai and Bi, remained fixed as strength of the stress δ or
changes under each scenario.
As the failures are underload-driven, we conduct extensive simulations with lower bound parameter b following

i) uniform and (ii) power-law distribution, which are two commonly used families of distributions [8,37]. Uniformly
istributed over [bmin, bmax], denoted by U[bmin, bmax], the probability density function for a random variable b is given by
(b) = 1/(bmax − bmin) · 1bmin≤b≤bmax . Following a power-law distribution, the probability density function for a random
ariable b is of the form p (b) = k · (b)−γ with b ∈ [bmin, 1].

3.1. Synthetic networks

Hernández and Pedroza-Gutiérrez [38] constructed random network models in bipartite graphs to model the theoret-
ical SC networks. Similarly, we generate synthetic networks for a four-tier SC network, as shown in Fig. 1, representing
suppliers, production centers, distribution centers, and customers. N nodes are generated and equally divided into four
tiers, in which one enterprise node belongs only to one tier. Links are created randomly with a given connection probability
p, which is the likelihood of existing business relationships between nodes in two tiers. Additional efforts are made
to ensure the network created is without self-loops. Despite the random placement of links, most nodes will have
approximately the same number of connections. For example, the average node outdegree of a network with 100 nodes
in each tier (N = 400) and p = 0.1 will be around 10.

3.1.1. Load decrease
In this scenario, we consider a negative demand shock, in which demand for goods or services shrinkages suddenly.

To model the load decrease, we simultaneously decrease the initial loads for all nodes in tier 4 by a factor δ, i.e., L′

i(0) =

(1 − δ) Li (0), and then calculate all the flows and node loads in tiers 1–3. Keeping the network topology unchanged, it
is equivalent to a uniform decrease of all the nodes by a factor δ. In each realization, δ changes from 0 to 1 with a step
size of 0.02. We record the fraction of failed nodes f at the end of the simulation, and the results are averaged over 100
realizations with network size N = 400 and connection probability p = 0.1.

In Fig. 2(a)–(c), we found a sharp collapse of the system when there are no recovery measures and b is uniformly
distributed over [bmin, bmax]. More specifically, the critical point above which the failure occurs is only determined by
bmax, the upper limit of the uniform distribution. For example, in Fig. 2(b), in which Bi ranges between [0.2Li (0) , 0.7Li (0)],
when δ > 0.3, i.e., L′

i (0) < 0.7Li (0), initial failures start to appear and will propagate throughout the system, resulting in
the collapse of the whole system.

When recovery measures are included and b ∈ U[bmin, bmax], results in Fig. 2(a)–(c) show that the recovery strategy
can reduce the scale of systemic failure, as the reconfiguration of the trade flows among alive nodes can absorb losses of
nodes affected by the initial failures. In Fig. 2(b), when δ > 0.8, i.e., L′

i (0) < 0.2Li (0), all the loads fail at the beginning
nd are marked as failed, so they will not mitigate losses under the recovery process.
With b in the form of power distribution, the system collapses when δ increases to 0.88 without recovery process in

ig. 2(d), indicating that the system becomes more robust compared to the uniform distribution case.

.1.2. Load fluctuations
We mimic the load fluctuations by setting final customers’ new initial load as L′

i (0) = (1 + σξi) Li (0), i.e., L′

i (0) ∈

[(1 − σ) Li (0) , (1 + σ) Li (0)], where ξi is a random variable uniformly distributed in [−1, 1]. Then, we calculate the new
initial loads for the nodes in tier 1–3 and flows on the edges. It is equivalent to allowing all the initial loads to fluctuate
by a fraction of σ . When σ varies between [0, 1], upper bound parameter a is set to be two to ensure L′

i (0) < Ai, with
Ai = aLi (0). Results are averaged over 100 runs of the simulation, with network size N = 400 and connection probability

p = 0.1.
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Fig. 2. Plots of the fraction of failed nodes f versus the relative load decrease δ mimicking the demand shock.

Fig. 3. Plot of the fraction of failed nodes f versus the relative strength of load fluctuations σ .

Fig. 3 shows the changes in the fraction of failed nodes as variation size σ increases. Compared with the load decrease
scenario, the system collapse happens less abruptly. When recovery measures are not included and b is uniformly
distributed over [0, 0.9], the fraction of failed nodes reaches a plateau of around 80% as fluctuation escalates. In
comparison, when b is uniformly distributed over [0, 0.8], about 25% of nodes failed in the end, suggesting that the system
is relatively robust.
7
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N
b

w

Fig. 4. Network structure of a European supply chain.
Source: From Cardoso et al. [39].

3.2. Real-world example

The underload cascading model proposed in this work is independent of the network topologies and can be applied to
other types of SC networks. In this section, we apply the proposed model to a European supply chain network obtained
from [39], which includes 11 raw materials suppliers, 3 plants, 5 warehouses, and 18 markets (Fig. 4).

As shown in Fig. 5, simulation results under load decrease/fluctuation scenarios coincide with previous simulation
results obtained from synthetic networks. Regarding load decrease, we observe a discontinuous phase transition for the
system without recovery measures, and this system becomes more robust with the addition of recovery measures. Also,
the system is relatively robust in the case of load fluctuations. For instance, without recovery measures, the fraction of
failed nodes varies between 40%–50% when the relative strength of load fluctuations σ is larger than 0.66.

4. Mean-field analysis

In this section, we forecast a discontinuous transition for the cascading failure model without the recovery process
using mean-field analysis. In power systems, power flows can redistribute in the whole system upon failures according to
the Kirchhoff’s law, which is dependent on power line impedance. Similarly, the effects of disruptions can spread to the
entire SC network, and the flow redistribution in the system is dependent on the business relationships among entities.
This feature inspires us to leverage the equal load redistribution model that has been used in power systems [8,37,40,41].
The assumption is that when a node fails, the load it carries before the failure will be redistributed equally among all the
remaining nodes. The equal load redistribution assumption is originated from the widely used democratic fiber bundle
model [42], in which N parallel fibers with different failure capacity share an applied force equally.

In the following, we analyze the load decrease scenario using a simple equal-load redistribution model. Suppose there
are N nodes with a lower bound load Bi characterized by a probability distribution p (B), and failures happen in discrete
time steps t = 0, 1. . . The fraction of failed nodes and the number of surviving nodes until cascade stage t is denoted as ft
and Nt respectively. When the load of a node goes below Bi, the node fails and its load gets redistributed equally among
the remaining surviving nodes.

Suppose all the nodes initially carried the same load L
′

0. There is no failure before the disruptions, thus f0 = 0 and
0 = N . Under disruptions, a fraction of nodes f1 =

∫
∞

L′0
p (B) dB immediately fails, since their load L

′

0 is below the lower
ound load. After the first stage, the number of surviving nodes equals to N1 = (1 − f1)N , and the new load per node

becomes L1 = L
′

0−
f1L

′

0N
(1−f1)N =

(
1 −

f1
1−f1

)
L
′

0. The cascade failure process continues recursively, and the mean-field equations
for the (t + 1)th stage are as follows:⎧⎪⎪⎨⎪⎪⎩

ft+1 =

∫
∞

Lt
p (B) dB

Nt+1 = (1 − ft+1)N
Lt+1 = Lt − (ft+1N − ftN) Lt/Nt+1 = [1 − (ft+1 − ft )/(1 − ft+1)]Lt

(8)

here (f N − f N)/N is Number of lines that survive stage t but fail at t+1 .
t+1 t t+1 Number of lines that survive stage t+1

8
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Fig. 5. Simulation results using the European supply chain network.

Eq. (8) can be simplified as

ft+1 = F (L
′

0

t∏
t=1

(1 −
ft − ft−1

1 − ft
)) (9)

here F (x) =
∫

∞

x p (B) dB.
From Eq. (9), we can see that the critical point f ∗ is mainly dependent on the distribution of Bi. To obtain the fraction

f failed nodes, we provide analytic solutions by numerically solving Eq. (9) and verify them by simulating the above
qual-load redistribution process under disruptions. We assume the initial node load L0 = 1 before the disruptions,
nd thus lower bound load Bi = bL0 = b · 1 with b ∈ [bmin, bmax]. Under load decrease, the new initial load becomes

L
′

0 = (1 − δ) L0 = (1 − δ) · 1.
The results obtained from the simulation are averaged over 100 runs and compared with the results calculated from

quations in Fig. 6, in which a discontinuous phase transition occurs in all cases. In the uniform distribution case, the
ritical point below which a sudden collapse happens is only determined by b . When the new initial load L

′

is above
max 0

9
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B

Fig. 6. Plots of the fraction of failed nodes f as a function of the relative load decrease δ using the mean-field model.

i, there are no failures in the system. Once L
′

0 falls below Bi, the system collapses because the fraction of failed node
obtained from the equation will increase to 1. When b follows a power-law distribution, the system is more robust, and
there is an abrupt breakdown of the system at δ ≈ 0.9. Interestingly, this is contrary of the mean-field result for the
overload cascade model [8], in which the discontinuous jump happens with no precursors in power-law distributions,
and with precursors in line capacity following a uniform distribution. This indicates that the scale of cascade failures in
SCs could be significantly affected by the shape of the b distribution, which is closely related to a company’s cost.

5. Conclusions

In this paper, we constructed an underload cascading failure model to study the robustness of SC networks under load
decrease and load fluctuation scenarios. Most real-world SCs are equipped with redundancies such as surplus inventory
and backup suppliers, and our simulation results from both synthetic networks and real network topologies show that the
recovery strategies can significantly reduce the scale of the systemic failure when disruptive events happen. In addition,
the system is relatively robust under the load fluctuation scenario, as the fraction of failed nodes escalates only when
variation size σ is very high without considering recovery measures, which rarely happens in reality. Compared to the
load fluctuations, the system appears more vulnerable against disruptive events such as load decrease, i.e., demand shock,
and SC decision-makers need to take proactive protection measures to reduce or avoid the impact of such disruptive
events.

Since many cascading failure models do not consider the recovery process, we also studied the behavior of the
proposed underload-driven model without the recovery measures. We found that the model exhibits a discontinuous
phase transition behavior under load decrease scenario as predicted by the mean-field analysis. More specifically, under
different distributions of lower bound parameter b, i.e., cost per output, the system is more robust when b follows a
power distribution compared to the uniform distribution for the studied scenarios. These emergent behaviors observed
are different from the analytic results derived from the overload-driven system by Pahwa et al. [8], in which the power-law
distribution of capacity results in a more abrupt system breakdown.

In this paper, we qualitatively show the dynamic behavior of specific SC networks against disruptions and do not take
the whole complexity of SCs into account. For example, the proposed model disregards the possible internal connections
between entities in the same tier. Future work can add more features to the current model and analyze the system
behavior under disruptive events. Since the links in the SC synthetic network are randomly generated based on a
10
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c
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d
h
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onnection probability and we disrupt all nodes with a factor δ or σ , the initial failures triggered in this work can be seen
s caused by random attacks. More simulations can be conducted to examine the phase transition behavior of SC systems
nder targeted attacks with various network topologies. In this work, we mainly focus on the robustness assessment, thus
esigning an optimal recovery strategy is not our primary focus. The recovery process developed assumes that SC entities
ave full knowledge of the surplus inventory information in the whole system, and future work can include more realistic
ssumptions regarding mitigation strategies.
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