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Abstract. Formula retrieval systems using substructure matching are
effective, but suffer from slow retrieval times caused by the complex-
ity of structure matching. We present a specialized inverted index and
rank-safe dynamic pruning algorithm for faster substructure retrieval.
Formulas are indexed from their Operator Tree (OPT) representations.
Our model is evaluated using the NTCIR-12 Wikipedia Formula Brows-
ing Task and a new formula corpus produced from Math StackExchange
posts. Our approach preserves the effectiveness of structure matching
while allowing queries to be executed in real-time.
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1 Introduction

In information retrieval, a great deal of research has gone into creating effi-
cient search engines for large corpora. However, few have addressed substruc-
ture search in structural content, e.g., in Mathematical Information Retrieval
(MIR) [21] where efficient substructure similarity search is needed to identify
shared subexpressions effectively. For example, in math formula search, to dis-
cern that a + b and b + a are equivalent (by commutativity), but that ab + cd
and a + bcd are different, applying tokenization and counting common token
frequencies is insufficient. Instead, a hierarchical representation of mathematical
operations is needed and we may want to identify shared substructures.

In the most recent math similarity search competition,4 effective systems all
take a tree-based approach by extracting query terms from tree representations.
For example, an Operator Tree (OPT) is used in Figure 1 to represent math
formulas where operands are represented by leaves and operators are located at
internal nodes. This facilitates searching substructures shared by two math ex-
pressions. For example, we can extract paths from their tree representations and
find their shared subtrees by matching their common paths grouped by subtree

4 The NTCIR-12 Wikipedia Formula Browsing Task.
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Fig. 1. Operator trees (OPTs) for two similar formulas. OPTs represent the application
of operations (at internal nodes in circles) to operands (at the leaves in squares). Two
common substructures are highlighted in black and gray.

root nodes. However, in order to carry structure information, it is common to see
structural queries with over tens or even hundreds of path tokens which is un-
usual for normal fulltext search. This makes query processing costly for realistic
math search tasks.

In text similarity search, query processing can be accelerated through dy-
namic pruning [18], which typically estimates score upperbounds to prune docu-
ments unlikely to be in the top K results. However, effective substructure search
requires additional matching or alignment among query terms, and this makes
it hard to get a good score estimation and it prevents us applying traditional
dynamically pruning effectively. In fact, reportedly few state-of-the-art MIR sys-
tems have achieved practical query run times even when given a large amount
of computing resources [11, 20]. In this paper we try to address this problem
by introducing a specialized inverted index and we propose a dynamic pruning
method based on this inverted index to boost formula retrieval efficiency.

2 Related Work

Recently there has been an increasing amount of research on similarity search for
math formulas, with most focusing on search effectiveness [5,7,11,23]. There are
many emerging issues regarding effectiveness, including handling mathematical
semantics, and identifying interchangeable symbols and common subexpressions.
However, the efficiency of math formula search systems is often not addressed.

A number of MIR systems apply text search models to math retrieval, ex-
tracting sequential features from formulas and use variants of TF-IDF scor-
ing [12, 14, 16]. These approaches incorporate a bag-of-words model, and use
frequency to measure formula similarity. Inevitably, they need to index different
combinations of sequences or substrings to handle operator commutativity and
subexpression identification. This index augmentation results in a non-linearly
increasing index size in the number of indexed “words” [12] and thus hurts ef-
ficiency for large corpora. On the other hand, recent results [10, 20, 23] reveal
that effective systems for formula retrieval use tree-based approaches distinct
from text-based methods. However, tree-based systems usually need to calculate
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costly graph matching or edit distance metrics [9,22], which generally have non-
linear time complexity. Recently, a path-based approach [23] was developed to
search substructures in formula OPTs approximately by assuming that identi-
cal formulas have the same leaf-root path set. Although at the time of writing,
it obtains the best effectiveness for the NTCIR-12 dataset, the typically large
number of query paths means that query run times are not ideal - maximum run
times can be a couple of seconds.

Dynamic pruning has been recognized as an effective way to reduce query
processing times [2, 8, 13, 18]. Dynamic pruning speeds up query processing by
skipping scoring calculations or avoiding unnecessary reads for documents which
are unlikely to be ranked in the top K results. Pruning methods can be based
on different query processing schemes: Document-at-a-time (DAAT) requires
all relevant posting lists be merged simultaneously. Term-at-a-time (TAAT) or
score-at-a-time (SAAT) processes one posting list at a time for each term, requir-
ing additional memory to store partial scores, and posting lists in this case are
usually sorted by document importance (e.g, impact score [1]), with promising
documents placed at the front of inverted lists. Pruning strategies are rank-safe
(or safe up to rank K ) [19] if they guarantee that the top K documents are ranked
in the same order before and after pruning. The most well-known rank-safe prun-
ing strategies for DAAT are MaxScore [8,17,19] and WAND variants [3,6]. Shan
et al. [15] show that MaxScore variants (e.g. BMM, LBMM) outperform other
dynamic pruning strategies for long queries, and recently Mallia et al. [2] report
a similar finding over a range of popular index encodings.

3 Preliminaries

Baseline Model This work is based on our previous work [23] which extracts
prefixes from OPT leaf-root paths as index or query terms. The OPT is parsed
from a formula in LATEX. For indexed paths, they are mapped to corresponding
posting lists in an inverted index where the IDs of expressions containing the
path are appended. For query paths, the corresponding posting lists are merged
and approximate matching is performed on candidates one expression at a time.
The similarity score is measured from matched common subtree(s).

Because math symbols are interchangeable, paths are tokenized for better
recall, e.g., variables such as a, b, c are tokenized into VAR. In our tokenized path
representation uppercase words denote token types, which may be for operators
as well as operands (e.g., TIMES for symbols representing multiplication). In
Figure 1, when indexing “bc + xy + a + z,” its expression ID (or ExpID)
will be appended to posting lists associated with tokenized prefix paths from its
OPT representation, i.e., VAR/TIMES, VAR/ADD and VAR/TIMES/ADD. At
query processing, the shared structures highlighted in black and gray are found
by matching these tokenized paths (two paths match if and only if they have
the same tokenized paths, for example, “a/+” and “z/+” can be matched) and
common subtree roots are identified by grouping paths by their root nodes. As
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a result, the posting list entry also stores the root node ID for indexed paths, in
order to reconstruct matches substructures at merge time.

At query time, the similarity score is given by the size of matched common
subtrees. Specifically, the model chooses a number of “widest” matched sub-
tree(s) (e.g., a+ bc is the widest matched in Figure 1 because it has 3 common
leaves and is “wider” than the other choices) and measure formula similarity
based on the size of these common subtrees.

The original Approach0 model [23] matches up to three widest common sub-
trees and scores similarity by a weighted sum of the number of matched leaves
(operands) and operators from different common subtrees T̂ iq , T̂

i
d of a common

forest π. Operators and operand (leaf) nodes weights are controlled by parame-
ter α, while the weight of rooted substructures from largest to smallest are given
by βi. In the following, | · | indicates the size of a set:

3∑
i=1

βi

(
α ·
∣∣∣operators(T̂ id)

∣∣∣+ (1− α) ·
∣∣∣leaves(T̂ id)

∣∣∣) , (T̂ iq , T̂
i
d) ∈ π (1)

Interestingly, while multiple subtree matching boosts effectiveness, using just
the widest match still outperforms other systems in terms of highly relevant
results [23]. The simplified similarity score based on widest common subtree
between query and document OPTs Tq, Td is the widest match w∗Q,D, formally

w∗Q,D = max
T̂q,T̂d∈CFS(Tq,Td)

| leaves(T̂d)| (2)

where CFS(Tq, Td) are all the common formula subtrees between Tq and Td. In
addition to subtree isomorphism, a formula subtree requires leaves in a subtree
to match leaves in the counterpart, in other words, subtrees are matched bottom-
up from operands in OPTs. In Figure 1, the value of w∗Q,D is 3, produced by the
widest common subtrees shown in gray.

Dynamic Pruning In dynamic pruning, the top K scored hits are kept through-
out the querying process, with the lowest score in the top K at a given point
defining the threshold θ. Since at most K candidates will be returned, dynamic
pruning strategies work by estimating score upperbounds before knowing the
precise score of a hit so that candidate hits with a score upperbound less or
equal to θ can be pruned safely, because they will not appear in the final top
K results. Moreover, if a subset of posting lists alone cannot produce a top K
result from their upperbounds, they are called a non-requirement set, the oppo-
site being the requirement set. Posting lists in the non-requirement with IDs less
than the currently evaluating IDs in the requirement set can be skipped safely,
because posting lists in the non-requirement set alone will not produce a top K
candidate.

4 Methodology

In this paper, we apply dynamic pruning to structural search. As structure search
has more query terms in general, we focus on a MaxScore-like strategy suggested
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Fig. 2. Bipartite graph of hit path set for formulas in Figure 1 (original leaf symbol is
used here to help identify paths). Edges are established if paths from the two sides are
the same after tokenization. Edges with shared end points (i.e., same root-end nodes)
in original OPTs have the same color (black or gray).

by [2,15], since they do not need to sort query terms at merge iterations (which is
expensive for long queries). Our approach is different from the original MaxScore,
as upperbound scores are also calculated from the query tree representation. We
also use the simplified scoring equation (2) where a subset of query terms in the
widest matched common subtrees T̂ ∗q , T̂

∗
d contribute to the score. In contrast,

typical TF-IDF scoring has all hit terms contribute to the rank score.
When we merge posting lists, a set of query paths match paths from a doc-

ument expression one at a time, each time a hit path set for matched query
and candidate paths are examined. Define P(T ) to be all paths extracted from
OPT T , i.e., P(T ) = {p : p ∈ leafroot paths(Tn), n ∈ T} where Tn is the entire
subtree of T rooted at n with all its descendants. We model the hit path set by
a bipartite graph G(Q,D,E) where Q = {q : q ∈ P(Tq)}, D = {d : d ∈ P(Td)}
are query and document path sets, and edges are ordered pairs E = {(q, d) :
tokenized(q) = tokenized(d), q ∈ Q, d ∈ D} representing a potential match be-
tween a query path to a document path. Since an edge is established only for
paths with the same token sequence, we can partition the graph into discon-
nected smaller bipartite graphs Gt = G(Qt, Dt, Et), each identified by tokenized
query path t:

Qt = {q : q ∈ Q, tokenized(q) = t}
Dt = {d : d ∈ D, tokenized(d) = t}
Et = {(q, d) : (q, d) ∈ E, tokenized(q) = tokenized(d)}

Figure 2 shows the hit path set of the example in Figure 1, this example
can be partitioned into independent subgraphs associated with tokenized paths
VAR/TIMES/ADD, VAR/TIMES and VAR/ADD. Each partition is actually a
complete bipartite graph (fully connected) because for any edge between Qt and
Dt, it is in edge set Et. And for each complete bipartite graph G(Qt, Dt, Et), we
can obtain their maximum matching sizes from min(|Qt|, |Dt|) easily.
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On the other hand, to calculate score w∗Q,D, we need to find a pair of query

and document nodes at which the widest common subtree T̂ ∗q , T̂
∗
d are rooted (see

equation 2), so we also define the matching candidate relations filtered by nodes.
Let G(m,n) = G(Q(m), D(n), E(m,n)) be the subgraph matching between query
subtree rooted at m and document subtree rooted at n where

Q(m) = {q : q ∈ Q, root end(q) = m}
D(n) = {d : d ∈ D, root end(d) = n}

E(m,n) = {(q, d) : (q, d) ∈ E, root end(q) = m, root end(d) = n}

Then, similarity score w∗Q,D can be calculated from selecting the best matched
node pairs and summing their partition matches. Specifically, define token paths
of tree T rooted at n as set T(n) = {t : t = tokenized(p), p ∈ leafroot paths(Tn)},

w∗Q,D = max
m∈Tq,n∈Td

ν(G(m,n)) (3)

= max
m∈Tq,n∈Td

∑
t∈T(m)

ν(G
(m,n)
t ) (4)

= max
m∈Tq,n∈Td

∑
t∈T(m)

min(|Q(m)
t |, |D(n)

t |) (5)

where ν(G) is the maximum matching size of bipartite graph G.

Denote wm,t = |Q(m)
t |, we call wm,t ≥ min(|Q(m)

t |, |D(n)
t |) as our (pre-

computed) partial score upperbound. It is analogous to text search where each
posting list has a partial score upperbound, the TF-IDF score upperbound is
merely their sum. In our case, the sum for partial score upperbounds is only for
one node or a subtree.

In the following we propose three strategies to compute w∗Q,D upperbound
from partial score upperbounds and assign non-requirement set.

Max reference (MaxRef) strategy In MaxScore [17, 19], each posting list
has a partial score upperbound, however, our scoring function implies each post-
ing list can be involved with multiple partial score upperbounds. One way to se-
lect the non-requirement set in our case is using an upperbound score MaxReft
(for each posting list t) which is the maximum partial score from the query nodes
by which this posting list gets “referenced”, and if a set of posting lists alone
has a sum of MaxRef scores less or equal to θ, they can be safely put into the
non-requirement set.

The rank safety can be justified, since each posting list corresponds to a
unique tokenized path t, and MaxReft = maxm wm,t. Then for m ∈ Tq, n ∈ Td,∑

t

min(|Q(m)
t |, |D(n)

t |) ≤
∑
t

wm,t ≤
∑
t

MaxReft (6)

then the selection of non-requirement set (named Skip set for short) such that∑
t∈Skip MaxReft ≤ θ follows w∗Q,D ≤ θ for all non-requirement set posting lists.
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Greedy binary programming (GBP) strategies Inequality (6) is relaxed
twice, so it spurs the motivation to get tighter upperbound value by maximizing
the number of posting lists in the non-requirement set, so that more posting lists
are likely to be skipped. Define partial upperbound matrix W = {wi,j}|Tq|×|T|
where T = {T(m),m ∈ Tq} are all the token paths from query OPT (T is essen-
tially the same as tokenized P(Tq)), and a binary variable x|T|×1 indicating which
corresponding posting lists are placed in the non-requirement set. One heuristic
objective is to maximize the number of posting lists in the non-requirement set
(GBP-NUM):

maximize 1 · x (7)

s.t. Wx ≤ θ (8)

However, maximizing the number of posting lists in the non-requirement set
does not necessarily cause more items to be skipped, because the posting lists
can be very short. Instead, we can maximize the total length of posting lists in
the non-requirement set. In this case, the vector of ones in objective function (7)
is replaced with posting list length vector L =

[
L1, L2, . . . L|T|

]
, where Li is the

length of posting list i. We call this strategy GBP-LEN. The two GBP strategies
are rank-safe since constraints in inequality (8) implies

∑
t∈Skip wm,t ≤ θ.

Both strategies require solving binary programming problems, which are
known to be NP-complete and thus too intensive for long queries. Instead, we
greedily follow one branch of the binary programming sub-problems to obtain a
feasible (but not optimal) solution in O(|Tq||T|2).

5 Implementation

Figure 3 illustrates formula query processing using a modified inverted index
for dynamic pruning. For each internal node m of the query OPT, we store the
number of leaves of m as wm = |Q(m)|. Each query node points to tokenized path

entries in a dictionary, where each reference is associated with wm,t = |Q(m)
t |

identified by tokenized path t (denoted as m/wm of t). In Figure 3, node q1 from
the query has 6 leaves, which is also the upperbound number of path matches for
q1, i.e, |Q(1)|. Since q1 consists of 2 tokenized leaf-root paths VAR/TIMES/ADD
and VAR/ADD, q1 is linked to two posting lists, each associated with a partial
score upperbound (5 and 1).

Each posting list maps to a token path t ∈ T with a dynamic counter for the
number of query nodes referring to it (initially |Qt|). Query nodes are pruned
by our algorithm when its subtree width is no longer greater than the current
threshold, because the corresponding subexpression cannot be in the top-K re-
sults. In this case the reference counter decreases. A posting list is removed if
its reference counter is less than one.

Each posting list entry identified by an ExpID stores n and wn,t = |D(n)
t |

values of subtree token path t rooted at n (denoted as n/wn of t). As an
example, in Figure 3, the hit OPT (of ExpID 12) has 5 paths tokenized as
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Fig. 3. Indices for formula search with dynamic pruning. For MaxRef strategy, the top
posting list is the only one in the requirement set. The bottom two posting lists are
advanced by skipping to next candidate ExpID.

t = VAR/TIMES/ADD, 2 rooted at d4 and 3 rooted at d1. The information
(d1/3, d4/2) is stored with corresponding posing list t. In our implementation,
each posting list is traversed by an iterator (iters[t]), and its entries are read by
iters[t].read() from the current position accessed by iterator.

Query processing is described in Algorithm 1. RequirementSet returns se-
lected iterators of the requirement set. Assignment according to different pruning
strategies is described in Section 4. In the MaxRef strategy, we sort posting lists
by descending MaxRef values, and take as many posting lists as possible into
non-requirement set from the lowest MaxRef value. At merging, a candidate ID
is assigned by the minimal ExpID of current posting list iterators in the re-
quirement set. Requirement set iterators are advanced by one using the next()
function, while iterators in the non-requirement set are advanced directly to the
ID equal to or greater than the current candidate by the skipTo() function. In
Figure 3 for example, the posting list corresponding to VAR/TIMES/ADD is
in the requirement set under the MaxRef strategy, while the other two are not:
Document expression 13 and 15 will be skipped if the next candidate is 90. For
ease of testing termination, we append a special ExpID MaxID at the end of
each posting list, which is larger than any ExpID in the collection.

At each iteration, a set of hitNodes is inferred containing query nodes as-
sociated with posting lists whose current ExpIDs are candidate ID. qryNode-
Match calculates matches for hit nodes according to equation 5, pruning nodes
whose maximum matching size is smaller than than previously examined nodes.
Given query hit node q1 in Figure 3, function qryNodeMatch returns

max
n∈Td

ν(G(1,n)) = max(min(5, 2) + min(1, 2), min(5, 3)) = 3

Then the algorithm selects the best matched query node and its matched width
(i.e., widest in Algorithm 1) is our structural similarity w∗Q,D.

After obtaining w∗Q,D, we compute a metric for the similarity of symbols

(e.g., to differentiate E = mc2 and y = ax2) and penalize larger formulas, to
produce a final overall similarity score [23] for ranking. Because of this additional
layer, we need to relax our upperbound further. According to the overall scoring



Accelerating Substructure Similarity Search 9

function in [23], our relaxing function u can be defined by assuming perfect
symbol similarity score in overall scoring function, specifically

u(w) =
w

|leaves(Tq)|+ w

[
(1− η) + η

1

log(1 + nd)

]
(9)

where in our setting, parameters η = 0.05, nd = 1. Whenever threshold θ is up-
dated, we will examine all the query nodes, if a query node m has an upperbound
less or equal to the threshold, i.e., u(m) ≤ θ, then the corresponding subtree of
this node is too “small” to make it into top K results. As a result, some of the
posting lists (or iterators) may also be dropped due to zero reference.

Algorithm 1 Formula searching algorithm with pruning
1: function qryNodeMatch(iters, m, candidate, widest, θ)
2: nodeMatch[ ] := 0; ` := | leaves(m)| . ` is the leftover estimated upperbound.
3: for each m/wm of tokenized path t rooted at m do
4: Let i be the iterator index associated with t
5: if iters[i].expID < candidate then
6: iters[i].skipTo(candidate)

7: if iters[i].expID = candidate then
8: for each n/wn of t from iters[i].read() do
9: nodeMatch[n] := nodeMatch[n] + min(wm, wn)

10: ` := `− wm;
11: estimate := max(nodeMatch) + ` . Update estimation.
12: if estimate ≤ widest or u(estimate) ≤ θ then
13: return 0
14: return max(nodeMatch)

15:
16: function FormulaSearch(iters, strategy)
17: θ := 0; reqs := RequirementSet(θ, strategy)
18: heap := data structure to hold top K results
19: while true do
20: candidate := minimal ID in current expIDs of reqs
21: if candidate equals MaxID then . Search terminated, return results.
22: return top K results

23: Let G(Q,D,E) be the hit path set bipartite graph.
24: widest := 0; hitNodes := {root end(q) : (q, d) ∈ E}
25: for m in hitNodes do . Calculate maximum match for each hit query node.
26: if | leaves(m)| ≤ widest then
27: continue
28: maxMatch := qryNodeMatch(iters, m, candidate, widest, θ)
29: if maxMatch > widest then widest := maxMatch . Find the widest width.
30: if widest > 0 then
31: score := calculate final score (including symbol similarity). . See [23].
32: if heap is not full or score > θ then
33: Push candidate or replace the lowest scored hit in heap.
34: if heap is full then . Update current threshold.
35: θ := minimal score in current top K results
36: Drop small query nodes and unreferenced iterators.
37: reqs := RequirementSet(θ, strategy) . Update requirement set.

38: for iters[i] in reqs do . Advance posting list iterators.
39: if iters[i].expID = candidate then iters[i].next()
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6 Evaluation

We first evaluate our system5 on the NTCIR-12 Wikipedia Formula Brows-
ing Task [20] (NTCIR-12 for short), which is the most current benchmark for
formula-only retrieval. The dataset contains over 590,000 math expressions taken
from English Wikipedia. Since work in formula retrieval is relatively new, there
are only 40 queries in NTCIR-12 that can be compared with other published
systems. However, these queries are well designed to cover a variety of math
expressions in different complexity. There are 20 queries containing wildcards
in this task (using wildcard specifier \qvar to match arbitrary subexpression
or symbols, e.g., query “\qvar{a}2 + \qvar{b}3” can match “x2 + (y + 1)3”).
We add support for wildcards by simply treating internal nodes (representing a
rooted subexpression) of formulas as additional “leaves” (by ignoring their de-
scendants), and the wildcard specifiers in a query are treated as normal leaves
to match those indexed wildcard paths.

Since the corpus of NTCIR-12 is not large enough to show the full impact
of pruning, we also evaluate query run times on a corpus containing over 1
million math related documents/threads from Math StackExchange (MSE) Q&A
website6 and we run the same query set from NTCIR-12. Run times are shown
for the posting list merging stage (e.g., time for parsing the query into OPT
is excluded) and unless specified, posting lists are compressed and cached into
memory. Each system had five independent runs, and we report results from
overall distribution. The resulting uncompressed index size for NTCIR-12 and
MSE corpora are around 2 GB and 16 GB in size, with 961,604 and 5,764,326
posting lists respectively. The (min, max, mean, standard deviation) for posting
list lengths are (1, 262,309, 16.95, 737.84) and (1, 7,916,296, 73.74, 9736.72).

Table 1 reports run time statistics. Non-pruning (exhaustive search) baselines
with K = 100 are also compared here. Almost consistently, GBP-LEN strategy
achieves the best efficiency with smaller variance. This is expected since GBP-
LEN models the skipping possibility better than GBP-NUM. Although GBP-
NUM gives a tighter theoretic upperbound than MaxRef, it only maximizes
the number of posting lists in the non-requirement set and may lead to bad
performance when these posting lists are short.

There are a few times the best minimal run times are from other strategies,
for those with meaningful gaps, i.e., in Wiki dataset of non-wildcard queries when
K = 1000, MaxRef outperforms in standard deviation and maximum run time
to a notable margin; however, it likely results from a small threshold due to large
K, so that the efficiency on the small sized NTCIR dataset is less affected by
pruning (small θ means less pruning potential) compared to the time complexity
added from assigning to the requirement set. The latter is more dominant in GBP
runs. In wildcard queries, however, many expressions can match the query thus
the threshold value is expected to be larger than that in the non-wildcard case.

5 Source code: https://github.com/approach0/search-engine/tree/ecir2020
6 MSE corpus: https://www.cs.rit.edu/~dprl/data/mse-corpus.tar.gz

https://github.com/approach0/search-engine/tree/ecir2020
https://www.cs.rit.edu/~dprl/data/mse-corpus.tar.gz
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Table 1. Query merge time performance (in milliseconds) for different strategies.

Runs Non-wildcards Wildcards
K Strategy µ σ median min max µ σ median min max

W
ik

i
D

at
as

et

100 Baseline 540.12 569.44 360.50 7.00 2238.00 426.73 383.47 225.50 8.00 1338.00
100 MaxRef 90.29 74.14 79.00 3.00 312.00 145.50 121.19 136.00 7.00 573.00

GBP-NUM 84.90 80.44 52.50 3.00 321.00 138.82 102.55 135.00 9.00 428.00
GBP-LEN 67.49 61.40 45.00 2.00 218.00 125.27 97.28 103.50 9.00 404.00

200 MaxRef 107.71 82.64 102.00 5.00 322.00 160.10 121.40 149.00 9.00 583.00
GBP-NUM 105.34 99.51 71.50 5.00 357.00 155.52 110.61 153.00 8.00 479.00
GBP-LEN 89.63 83.20 62.00 5.00 330.00 142.78 103.11 143.50 9.00 446.00

1000 MaxRef 154.51 93.75 157.50 6.00 361.00 211.86 140.01 186.00 10.00 662.00
GBP-NUM 159.80 143.70 120.50 6.00 626.00 208.91 136.42 178.50 10.00 591.00
GBP-LEN 144.25 126.95 105.00 6.00 622.00 195.70 122.25 176.00 9.00 536.00

M
S

E
D

at
as

et

100 Baseline 15134.10 15186.78 11161.00 157.00 55499.00 13450.57 12554.19 7075.50 304.00 47513.00
100 MaxRef 1083.23 1274.23 745.50 28.00 5922.00 3188.66 2458.91 2925.00 85.00 10412.00

GBP-NUM 1202.24 1240.21 815.00 37.00 4987.00 2943.79 2025.96 2987.00 84.00 8775.00
GBP-LEN 562.83 635.26 382.50 24.00 2313.00 2257.95 1491.59 2346.50 86.00 4494.00

200 MaxRef 1261.21 1368.93 1012.50 30.00 6439.00 3416.77 2753.09 3032.50 160.00 12412.00
GBP-NUM 1378.19 1398.08 998.50 39.00 5863.00 3174.93 2283.05 3125.00 159.00 10099.00
GBP-LEN 697.32 739.11 478.00 27.00 2925.00 2504.90 1683.16 2382.50 159.00 6049.00

1000 MaxRef 2030.05 1746.17 1796.50 53.00 7816.00 4123.26 3510.01 3473.00 287.00 16981.00
GBP-NUM 1952.52 1746.05 1530.50 60.00 7197.00 3786.89 2744.99 3493.50 281.00 11323.00
GBP-LEN 1217.16 1083.53 764.50 47.00 3756.00 3304.69 2403.09 2812.00 285.00 9895.00

System
Non-Wildcard Wildcard All queries
Full Partial Full Partial Full Partial

MCAT .5678 .5698 .4725 .5015 .5202 .5356
Tangent-S .6361 .5872 .4699 .5368 .5530 .5620
base-best .6726 .5950 - - - -
base-opd-only .6586 .5153 - - - -
Ours (pruning) .6586 .5173 .3678 .3973 .5132 .4573
Ours (exhaustive) .6586 .5173 .3678 .3973 .5132 .4573

Fig. 4. Bpref [4] scores. Bpref chosen because we did not participate in NTCIR-12 and
did not contribute to the pooling.
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Fig. 5. Average run times on the same machine (Environment: Intel Core i5 @ 3.60GHz
per core, 16 GB memory and SSD drive) for NTCIR-12 Wiki Formula Browsing Task.
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Secondly, we have compared our system effectiveness (Figure 4) and efficiency
(Figure 5) with Tangent-S [5], MCAT [11] and our baseline system without
pruning [23], which are all structure-based formula search engines that have
obtained the best published Bpref scores on NTCIR-12 dataset. In addition,
ICST system [7] also obtains effective results for math and text mixed task,
but they do training on previous Wiki dataset and their system is currently not
available.

All systems are evaluated in a single thread for top-1000 results. We use
our best performance strategy, i.e., GBP-LEN, having an on-disk version with
posting lists uncompressed and always read from disk, and an in-memory ver-
sion with compression. For the baseline system, only 20 non-wildcard queries are
reported because it does not support wildcards. We compare the baseline best
performed run (base-best) which uses costly multiple tree matching as well as
its specialized version (base-opd-only) which considers only the largest matched
tree width (see equation 2). Tangent-S has a few outliers as a result of its costly
alignment algorithm to rerank structure and find the Maximum Subtree Sim-
ilarity [22], its non-linear complexity makes it expensive for some long queries
(especially in wildcard case). And MCAT reportedly has a median query execu-
tion time around 25 seconds, using a server machine and multi-threading [11].
So we remove Tangent-S outliers and MCAT from runtime boxplot. For space,
we only include the faster base-opd-only baseline in Figure 5.

We outperform Tangent-S in efficiency even if we exclude their outlier queries,
with higher Bpref in non-wildcard fully relevant results. Our efficiency is also
better than the baseline system, even if the latter only considers less complex
non-wildcard queries. However, our overall effectiveness is skewed by bad perfor-
mance of wildcard queries because a much more expensive phase is introduced
to boost accuracy by other systems to handle inherently difficult “structrual
wildcards.”

Our pruning strategies are rank-safe (pruning and exhaustive version shows
the same Bpref scores) but there is a minor Bpref difference between ours and
baseline (base-opd-only) due to parser changes we have applied to support wild-
cards (e.g., handle single left brace array as seen in a wildcard query) and they
happen to slightly improve accuracy in partially relevant cases.

7 Conclusion

We have presented rank-safe dynamic pruning strategies that produce an upper-
bound estimation of structural similarity in order to speedup formula search
using subtree matching. Our dynamic pruning strategies and specialized in-
verted index are different from traditional linear text search pruning methods
and they further associate query structure representation with posting lists. Our
results show we can obtain substantial improvement in efficiency over the base-
line model, while still generating highly relevant non-wildcard search results.
Our approach can process a diverse set of structural queries in real time.



Accelerating Substructure Similarity Search 13

References

1. Anh, V.N., Moffat, A.: Pruned query evaluation using pre-computed impacts. In:
Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 372–379. ACM (2006)

2. Antonio Mallia, M.S., Suel, T.: An experimental study of index compression and
daat query processing methods. In: European Conference on Information Retrieval
(ECIR 2019). Springer (2019)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query evalu-
ation using a two-level retrieval process. In: Proceedings of the twelfth international
conference on Information and knowledge management. pp. 426–434. ACM (2003)

4. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 25–32. ACM (2004)

5. Davila, K., Zanibbi, R.: Layout and semantics: Combining representations for
mathematical formula search. In: Proceedings of the 40th International ACM SI-
GIR Conference on Research and Development in Information Retrieval. pp. 1165–
1168. ACM (2017)

6. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In:
Proceedings of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval. pp. 993–1002. ACM (2011)

7. Gao, L., Yuan, K., Wang, Y., Jiang, Z., Tang, Z.: The math retrieval system of
ICST for NTCIR-12 MathIR task. In: NTCIR (2016)

8. Jonassen, S., Bratsberg, S.E.: Efficient compressed inverted index skipping for dis-
junctive text-queries. In: European Conference on Information Retrieval. pp. 530–
542. Springer (2011)

9. Kamali, S., Tompa, F.: Structural similarity search for mathematics retrieval. pp.
246–262 (07 2013)

10. Kenny Davila, Ritvik Joshi, S.S.V.G., Zanibbi, R.: Visual search using line-of-
sight graphs: Application to math formula images. In: European Conference on
Information Retrieval (ECIR 2019). Springer (2019)

11. Kristianto, G.Y., Topic, G., Aizawa, A.: Mcat math retrieval system for ntcir-12
mathir task. In: NTCIR (2016)

12. Lin, X., Gao, L., Hu, X., Tang, Z., Xiao, Y., Liu, X.: A mathematics retrieval system
for formulae in layout presentations. In: Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval. SIGIR
’14, ACM, New York, NY, USA (2014)

13. Macdonald, C., Ounis, I., Tonellotto, N.: Upper-bound approximations for dynamic
pruning. ACM Transactions on Information Systems (TOIS) 29(4), 17 (2011)

14. Miller, B.R., Youssef, A.: Technical Aspects of the Digital Library of Mathemati-
cal Functions. Annals of Mathematics and Artificial Intelligence 38(1-3), 121–136
(2003), https://link.springer.com/article/10.1023/A:1022967814992

15. Shan, D., Ding, S., He, J., Yan, H., Li, X.: Optimized top-k processing with global
page scores on block-max indexes. In: Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining. pp. 423–432. WSDM ’12, ACM, New
York, NY, USA (2012)
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