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ABSTRACT: We explore the possibility that lepton family numbers and baryon number are
such good symmetries of Nature because they are the global remnant of a spontaneously bro-
ken gauge symmetry. An almost arbitrary linear combination of these symmetries (together
with a component of global hypercharge) can be consistently gauged, if the Standard Model
(SM) fermion content is augmented by three chiral SM singlet states. Within this framework
of U(1) extensions of the SM one generically expects flavour non-universality to emerge in
the charged leptons, in such a way that naturally prevents lepton flavour violation, by align-
ing the mass and weak eigenbases. For quarks, all the SM Yukawa couplings responsible for
their observed masses and mixings arise at the renormalisable level. We perform fits to show
that models in this class can explain Ry« and the other neutral current B anomaly data
if we introduce a heavy vector-like quark to mediate the required quark flavour violation,
while simultaneously satisfying other constraints from direct Z’ searches at the LHC, Bg me-
son mixing, a number of electroweak precision observables, and neutrino trident production.
Within this symmetry-motivated framework of models, we find interesting implications for
the flavour anomalies; notably, any axial couplings of the Z’ to electrons and muons must
be flavour universal, with the flavour universality violation arising solely from the vector-like
couplings. We also comment on the generation of neutrino masses in these models.
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1 Introduction

The renormalisable Standard Model (SM) lagrangian possesses a number of accidental con-
tinuous global symmetries, namely baryon number symmetry, U(1)p, and three individual
lepton number symmetries, U(1)e, U(1),, and U(1),. These accidental symmetries are a
great success of the SM, since they appear to be extremely good symmetries of Nature that
are borne out by (almost) all particle physics experiments to date. The bounds on baryon
number-violating processes, most famously from proton decay [1], and on lepton flavour vi-
olating (LFV) processes such as u — ey, u — eee, and 7 — pup, are very strong [1], and



are forecast to strengthen further at future experiments [2]. There is only one hint from the
world of particle physics to suggest that any of these accidental symmetries are in fact bro-
ken, and that is the inference of non-zero neutrino masses from the observation of neutrino
oscillations.!

This therefore begs the question: why are these such good symmetries of Nature? As
soon as we begin to write down higher-dimension operators in the SM effective field theory
(SMEFT), we find that these accidental symmetries of the renormalisable SM lagrangian are
broken. The lepton number symmetries are broken already at dimension five, by the inclusion
of a Weinberg operator of the form (LH)?/A, where A denotes the cut-off scale of the SMEFT.
Baryon number is broken at dimension six by four-fermion operators such as QQQL/A%.

Thus, the first possibility is that U(1)p and U(1)r, are such good symmetries simply
because the cut-off A of the SMEFT is very high with respect to energy scales E probed by
current particle physics experiments, such as the LHC, so that even dimension five operators
are suppressed by a factor F/A < 1. While such a scenario certainly remains a viable
possibility, it is a rather pessimistic one for particle physicists to swallow, for it implies, by
and large, that any new physics beyond the Standard Model (BSM) is likely lying out of reach
of current colliders.

The second and more intriguing possibility is that, in some extended BSM theory that
arises due to new physics at a scale Appyy, these global symmetries remain accidental at
the level of the renormalisable lagrangian. If this is the case, one would expect a natural
separation between the scale Appyy of those higher-dimension operators which respect these
global symmetries, and the scale Appy > Appyvy of those operators which violate them (where
the reason for these names shall soon be apparent).? In such a scenario, the true cut-off Appyy
of the SMEFT can in fact be brought much lower in energy than the scale at which U(1) 5 and
U(1)r, are violated. While this second option is certainly favoured by the biases of optimistic
model builders, until recently there has been no physics case for favouring either one of these
two hypotheses over the other.

Fortunately, this impasse is now being challenged by the recent emergence of a set of in-
triguing discrepancies between SM predictions and experimental measurements, in the neutral
current decays of B mesons, which would seem to favour the second of the two possibilities just
discussed. For example, the ratio of branching ratios Ry, = BR(B — K®)u*u~)/BR(B —
K (*)e+e_) is equal to unity in the SM to the percent level, for di-lepton invariant mass
squared bin ¢ € [1.1,6] GeV?, but LHCb has measured [3, 4] Rx = 0.846700570-01% and

LOf course, the violation of baryon number in fundamental interactions is ultimately essential if we are to
understand the matter-antimatter asymmetry, and thus the evolution of structure in our Universe.

2 One might try to pursue a middle way between these two options, and suggest that there exists such
a hierarchy of scales in the SMEFT, with U(1)g- or U(1)r,-violating operators being suppressed by some
cut-off scale Aprpv > Apruv, not because of any underlying gauge symmetry, but simply because of small
couplings in the EFT (in other words, one chooses to forgo the expectation from naive dimensional analysis
(NDA), and the ‘second scale’ really signifies the existence of very small couplings ¢ such that the ratio
Avruv/c ~ Avrv > Avruv). This approach is at least consistent, in the sense that the smallness of the
couplings ¢ can be radiatively stable in the low-energy EFT.



Ry~ = 0.69f8:é% + 0.05 in this ¢? bin, corresponding to deviations from the SM by approxi-
mately 2.50 each. LHCb has also measured Ri+ = 0.66f8:(1)% + 0.03 for the low momentum
bin ¢ € [0.045,1.1] GeV?, which is again about 2.5¢ under the SM prediction [3]. There
are further notable discrepancies with the SM predictions in measurements of BR(Bs — juj1)
[5-8], and in B — K*u™u~ angular observables such as P/ [9-12]. For a comprehensive
survey of these anomalies in the decays of neutral B mesons, which we henceforth refer to
collectively as the ‘neutral current B anomalies’ (NCBAs), see e.g. [13].

Taken together, these measurements point towards lepton flavour universality violation
(LFUV) between e and pu.® But crucially, there is no evidence for LFV. Thus, these tantalising
first hints of BSM physics at the LHC seem to respect the accidental global symmetries of the
SM, despite violating lepton flavour universality. The magnitude of the deviations from the
SM in the various NCBAs suggests there is new physics at a cut-off scale of order Arpyy ~ 30
TeV [13, 21-25] or thereabouts (most pessimistically, constraints from perturbative unitarity
imply the new physics scale cannot be larger than about Appuy ~ 80 TeV [26]). This energy
scale is probed at the LHC by measurements of many rare flavour observables, not just those
mentioned above, and there are no other signs of new physics at this scale, and certainly no
evidence for the violation of U(1)p or U(1)r,. In this way, if the NCBAs persist in the wake
of future measurements (from LHCb, Belle II, and others [27]), and if these or any other new
anomalies continue to respect U(1)p and U(1)z,, it would seem to suggest that the SM’s
global symmetries U(1)p and U(1)r, are likely a consequence of some underlying dynamics,
such as a gauge symmetry.

If we adopt such an optimistic interpretation of the NCBAs, then which symmetry might
one gauge, which can both explain the NCBAs and would also underwrite these global sym-
metries? At the level of the SMEFT, the NCBA data can be explained by BSM contributions
to the following four-fermion operators

Lysee = C7(5vpbr)(€y’er) + Cr(507,01) (€rY er) +
CL(527ob0) (LY’ 1r) + CRr(5LYpbL) (FRY  1R), (1.1)

where the SM contribution is €M = C#5M ~ 8.64/(36 TeV)? and C;’SM ~ Cl’é’SM =
—0.18/(36 TeV)? (borrowing the numerics from Ref. [28]), which is due to one-loop W ex-
change. Global fits to the data favour a significant BSM contribution to C%', and are consistent
with non-zero BSM contributions to the other three operators [13, 21-25]. One simple pos-
sibility is that all these operators receive BSM contributions due to the tree-level exchange
of a heavy Z’ vector boson, which couples to muons and (possibly) electrons, in addition to
possessing a flavour violating coupling to bs. While the NCBAs can also be explained by
tree-level leptoquark exchange or by various loop-induced processes, in this paper we shall
restrict our attention to Z’ models, in which the Z’ arises from a spontaneously broken,
flavour-dependent U (1) gauge symmetry, which we shall denote henceforth by U(1)x.

3There are also experimental hints of LFUV between 7 and light leptons (e/p) in charged current B meson
decays to D® 7y [14-20]. However, we shall only consider the neutral current anomalies in this paper.



There are many possible U(1)x symmetry groups that can be gauged in order to explain
the NCBAs, and the literature on such models has grown vast (see e.g. Refs. [29-53] for an
incomplete list). In this work, we shall make a number of simplifying assumptions before
arriving at a new framework of SMxU(1)x theories in which the protection of the SM’s
accidental symmetries is built-in. Firstly, we explore only U(1)x charge assignments which
allow a SM-like Yukawa sector for the quarks, at the renormalisable level. Within such an
approach we make no attempt to shed light upon the peculiar flavour structure of the SM,
which features large hierarchies in fermion mass parameters and the quark mixing angles. On
the other hand, we avoid having to delve more deeply into the model building to explain the
origin of Yukawa couplings if they are to be banned at the renormalisable level, as they are
in e.g. Refs. [53-55].

In the lepton sector, we shall require that only the diagonal charged lepton Yukawa
couplings are U(1)x-invariant, and thus present in the renormalisable lagrangian. This is
achieved (given only a single Higgs, possibly charged under U(1)x) by requiring the different
family leptons have different U (1) x charges, but that the differences between the left-handed
and right-handed lepton charges are family universal. Such a charge assignment automati-
cally implies LFUV, since the Z’ couples differently to each lepton family. Furthermore, in
banning all the off-diagonal charged lepton Yukawa couplings (at the renormalisable level),
the charged lepton mass eigenbasis is aligned with the weak eigenbasis,* and hence no lepton
flavour violating neutral currents will be induced in the physical mass basis. Thus, the very
same U(1)x gauge symmetry which introduces LFUV also prevents LFV, in opposition to
the claims made in Ref. [56].> We must also require our U(1)x symmetry be free of all gauge
anomalies, including mixed and gravitational anomalies.% In these senses, the SMxU (1)
theories we shall define may be regarded as technically ‘complete’, minimal extensions of the
SM, albeit with an unexplained flavour structure as in the SM itself.

What is the most general SMxU(1)x theory which satisfies these criteria? In the spirit
of minimality, we want to add as few chiral states as possible beyond those of the SM. The
most minimal option, of course, is to add no BSM states at all (beyond the Z’, and a heavy
scalar field @ introduced to spontaneously break U(1)x). In this case, it has been known
for a long time that the only anomaly-free U(1)x charge assignments consistent with our
criteria correspond to gauging L; — L;, the difference of any pair of lepton numbers [59].7

4The PMNS mixing must come entirely from the neutrino sector of the model.

A salient point here is that even when a gauge symmetry is spontaneously broken, this does not imply
there is not a global part of that gauge symmetry that remains unbroken (when considering only its action on
fermions). This is the case, for example, with the global part of the hypercharge symmetry of the SM after
electroweak symmetry breaking.

5We note in passing that in many Z’ models which are necessarily only low-energy EFTs (for example,
because they do not permit a gauge-invariant Yukawa sector), it is not essential to cancel gauge anomalies at
low energies; it might be possible in such models for anomaly cancellation to be restored in the high-energy
theory by e.g. ‘integrating in’ a set of heavy chiral fermions, or by the Green Schwarz mechanism [57, 58].
In our setup, we seek to embed our Z’ in a fully renormalisable extension of the SM, and thus anomaly
cancellation is for us an essential requirement.

"In fact, while this statement is ‘common lore’ amongst physicsts, we shall discover in §2 that, under these



The particular choice of gauging L, — L. offers a compelling Z’" explanation of the NCBAs
(after flavour violating couplings to quarks are introduced, for example through effective
non-renormalisable interactions), which moreover underwrites the SM’s global lepton number
symmetries with a gauge symmetry in the manner described above [31, 37]. The Z’ boson of
such a model can even mediate interactions with a dark sector; connecting the NCBAs with
the dark matter problem through such a gauged L, — L; leads to a highly-testable model
with rich phenomenology [60].

The next minimal option is to introduce a ‘dark sector’ of SM singlet chiral fermion
states, which are charged only under U(1)x. We shall here consider augmenting the SM
matter content with up to three such states. Since the extra states are chiral only with
respect to the U(1)x symmetry, they do not spoil the cancellation of anomalies in the SM
gauge sector. Nonetheless, these states contribute to two out of the six anomaly coefficients
involving U(1)x, and their inclusion can thus be used to cancel two anomaly coefficients
that would otherwise be non-zero, thereby opening up a wider space of anomaly-free charge
assignments beyond just L; — L;. Within this setup, there is a four-parameter family of such
anomaly-free U(1)x symmetries that can be gauged, generated by

Tx =ayTy —acTpy3r, —auTps3-r, —arTpj3-r,, (1.2)

where ae,a,,ar and a, are rational coefficients, and Ty denotes the generator of (global)
hypercharge. We may rewrite this generator in terms of the generators of the accidental
global symmetries of the SM, as

e +a, +a
Tx = ZaiTLi - (E;T> Tp +ay Ty, (1.3)
)

where here a; € {ac, a,,ar}. This intriguing result, which we shall review in §2, was originally
derived in Ref. [61], in which the three chiral dark states were interpreted as right-handed

8 To summarise, if one allows the addition of three SM singlet states to ‘soak

neutrinos.
up’ anomalies, then the most general anomaly-free U(1)x charge assignment for the SM
fermions, which allows a fully generic quark Yukawa sector and a strictly diagonal charged
lepton Yukawa matrix, corresponds to gauging an almost arbitrary linear combination of the
(otherwise accidental) global symmetries of the SM (including the ‘global part’ of hypercharge
symmetry). The word ‘almost’ indicates an important caveat, that the linear combination

in (1.3) is not entirely arbitrary; in particular, the component of baryon number is fixed by

conditions, one may gauge a slightly larger symmetry, of the form (L; — L;)+aY, where Y denotes hypercharge
and a is any rational number.

8A three-parameter subset of these gauge symmetries, in which it was assumed that ay = 0, was also
considered in Ref. [62] (and subsequently in Refs. [63, 64], for example), with the goal of explaining the
neutrino masses and mixing parameters. In our setup, we shall not interpret the three chiral dark states
as right-handed neutrinos; rather, we shall suggest that neutrino masses may arise from a rather different
mechanism - see Appendix A. Various other models in which more than one of the global SM symmetries is
gauged have also been considered in the literature, e.g. in Refs. [65, 66].



the components of each of the lepton numbers. This means, for example, that one cannot
gauge B + L, which is of course anomaly-full. As long as the coeflicients {a.,a,,a,} are all
different, gauging such a symmetry implies LFUV, while preventing LFV.

In the rest of this paper, we develop Z’ models based on gauging U(1)yx symmetries in
the family defined by (1.2), and explore their phenomenology. In some sense, these models
provide a wide generalisation of the L, — L; model, and so several aspects of our setup shall
be borrowed from Ref. [31] (such as the mechanism for generating quark flavour violating
couplings of the Z’ to b3). We show in §4 that these models make a distinctive prediction for
the structure of the NCBAs, which may be decomposed into a flavour non-universal vector
coupling to leptons, plus a flavour-universal axial component (if ay- # 0). Furthermore, if this
axial component of the anomaly is non-vanishing, the Z’ inevitably must acquire tree-level
couplings to valence quarks. We extract new global fits to the NCBA data using flavio [67],
in terms of the parameters of our model. We identify a physically motivated benchmark
scenario in order to interpret these multi-dimensional fits, by fixing a, = 1 and a, = 0, and
compute other important phenomenological bounds in §5 at this benchmark point in our
parameter space, before concluding.

Our goal in this paper is not to explore the phenomenology of these theories completely;
rather, we are content to demonstrate that our framework leads to rich phenomenology, as
hinted at above, and that there is interesting allowed parameter space, thereby laying the
groundwork for possible future studies.

In Appendix A we discuss how light neutrino masses might naturally arise within our
framework, which induce lepton flavour violation at the higher scale Argpy. This involves a
more in-depth examination of the dark sector of the theory, for the more enthusiastic of our
readers.

2 A new framework for LFUV without LFV

We consider an extension of the SM by a flavour-dependent U(1)x gauge symmetry, under
which all SM fields plus three SM singlet chiral fermions (which we will denote by I/f%) may
be charged a priori. The U(1l)x symmetry will be spontaneously broken by the vacuum
expectation value (vev) ve of a SM singlet scalar field ®, at around the TeV scale, leading to
a heavy Z’ gauge boson. We require:

1. That the assignment of U(1)x charges is anomaly-free.
2. That all Yukawa couplings in the quark sector are permitted at the renormalisable level.

3. That the flavour-dependent U(1)x gauge symmetry protects each individual lepton
number symmetry, and thus forbids lepton flavour violating (LFV) processes. This is
achieved by aligning the mass eigenbasis of charged leptons with the weak eigenbasis.
Thus, we require that only the diagonal elements are present in the charged lepton
Yukawa matrix (at the renormalisable level), which in turn requires lepton flavour uni-
versality violation (LFUV) between all three families.



We write the fermion fields (including the three SM singlets) as the following representations
of the gauge group SU(3) x SU(2)p, x U(1)y x U(1)x:

gh ~(3,2,1/6,Q,), uk~(3,1,2/3,Qu), dif~(3,1,-1/3,Qu),

EZLN (1727_1/2562[5)’ 61}‘2'\’(1713_1’Qei)7 V%{N (1’17O7QVi)7

where the index ¢ € {1,2,3} denotes the family. Our assumptions regarding fully generic
quark Yukawa couplings imply the quark charges under U(1)x are flavour universal, whereas
our mechanism for preventing LF'V requires the lepton charges are flavour non-universal. The
scalar sector of the theory contains the Higgs and the scalar ®, which carry the representations

H ~ (1a27_1/2aQH)7 O ~ (]-a 1,0,62(1))-

The charges under U(1)x, denoted by the set of Qs, are all assumed to be rational numbers.”

In such an extension of the SM by a (flavour-dependent) U(1) x gauge symmetry, there are
six independent anomaly coefficients which must vanish, corresponding to the six (potentially
non-vanishing) triangle diagrams involving at least one U(1) y gauge boson: SU(3)? x U(1)y,
SU2)2 x U)x, UM)2 x U(l)x, U(l)y x U(1)%, U(1)%, and the mixed gauge-gravity
anomaly involving U(1)x. Thus, anomaly cancellation implies a system of six non-linear
equations over the eighteen chiral fermion charges listed above.!? By rescaling the gauge cou-
pling, we may take these rational charges to be integers, and then apply arithmetic methods
(such as those introduced in Ref. [68]) to solve the resulting system of non-linear Diophantine
equations.

In fact, it shall turn out that because of the heavy restrictions we are enforcing from the
Yukawa sector, the subspace of anomaly-free solutions that we are interested in is essentially
picked out by a strictly linear system of equations, and so may be extracted using basic linear
algebra; thus, employing the Diophantine methods outlined in Ref. [68] in this case would be
something like overkill.

We begin by enforcing the constraints on the charges coming from the Yukawa sector. As
already noted, requiring a renormalisable quark Yukawa sector implies that qr, ug, and dgr
have flavour-universal U(1)x charges, which we denote by Qq, Qu, and Qg. Then, requiring
renormalisable Yukawas for up and down quarks, and diagonal charged lepton Yukawas in each
generation, implies the following five linear constraints (which are all linearly independent)
on the remaining ten charges:

Qq — Qu = Qu,
Qq - Qd - _QH7
Qu — Q. = —Qp, ie{1,2,3}. (2.1)

Tf the charges under U(1)x are not rational numbers, then such matter content cannot arise from any
unified gauge theory with semi-simple gauge group G. There are good reasons to assume that such a unified
theory ultimately describes the interactions of elementary particles in the ultraviolet.

90ne may of course add arbitrary scalars or vector-like fermions without affecting anomaly cancellation.



We are thus reduced, by these linear constraints, to a five-parameter family of charges. As
might be expected, this family of charge assignments corresponds to gauging an arbitrary
linear combination of the five accidental global symmetries of the SM Yukawa sector: U(1)p,
U(1)e, U(1),, and U(1)7, and (the global part of) hypercharge, U(1)y. But such a charge
assignment is not yet anomaly-free, an issue that we shall now remedy.

Firstly, it is helpful to notice that the three SM singlet dark states appear in just two
of the six anomaly cancellation equations. Specifically, these are the (linear) gauge-gravity
anomaly, whose coefficient is proportional to

3
Agrav = 18@(1 - QQU - 9Qd + 2(26281' - Qei - Qlﬂ% (2'2)

i=1

and the (cubic) U(1)3% anomaly, with coefficient proportional to

3
Acubic = 18Q3 — 9Q5 — 9Q% + ) ~(2Q5 — Q% — Q%)) (2.3)
=1

Thus, the charges of the SM fermions on their own must satisfy the other four anomaly
equations independently.

Of these, three are linear, and moreover out of these three linear constraints, only one
turns out to be linearly-independent from (2.1).!! This additional linear constraint has the
effect of fixing the component of baryon number in terms of the other symmetries (in such
a way that excludes the gauging of B + L, which is well known to be anomaly-full). We are
thus reduced by this subset of the anomaly cancellation equations to a four-parameter family
of solutions. A particularly suggestive parametrisation for the SM fermion charges, in terms
of four rational numbers ac, a,, a-, and ay, is recorded in the first ten rows of the following:

" This additional constraint can be taken to be either the U(1)3 x U(1) x anomaly equation or the SU(2)% x
U(1)x anomaly equation or indeed a linear combination of these two, but not the SU(3)? x U(1)x anomaly
equation.



Field Gsm ( ) x
4 | (3,2,1/6) |Q Qg = (—ae —ay —ar)/9+ay /6
uby | (3,1,2/3) |Qu = (—aec —a, —ar)/9+ 2ay /3
(3,1,-1/3) Qd_( ae—a#—aT)/9—ay/3
( )QEI—CLG*QY/2
2 1(1,2,-1/2)|Qpe = a, — ay /2
( )C?gS:aT—ay/2
e}% (1717_1) Qel = Qe — QY
e%% (1,1,-1) Qez =a, —ay
e% (1,1,-1) Qes =a, —ay
H [(1,2,-1/2)|Qy = —ay /2
1,1,0) |Qn

(2.4)

Uk ( Q1 = ae

V3 (1,1,0) |Q,2=aq,

vy | (1,1,0) Qs = ar
(

17 170) Q@ =1 .
Qr/r| (3,2,1/6) |Qo = —Qo + Qg

where in the bottom five rows we have also included the states in our ‘dark sector’ here for
completeness; there are the three dark chiral fermion states v¢, which are SM singlets, the
scalar ® whose role it is to spontaneously break U(1)x by acquiring a vev, and a vector-
like heavy fermion denoted (), which plays an important role in introducing quark flavour
violation into the interactions of the Z’, which we shall discuss in §3.1.

The coefficient of the U(1)3 x U(1)y anomaly, which we have not yet considered, is
proportional to the quadratic expression

3
Aquad = 3@3 - 6Q12/, + 3@5 + Z( gi - Q?ﬁ)a (25)

=1

Somewhat surprisingly (or perhaps not), when we substitute into (2.5) the general solution
parametrised in (2.4), we find that Aquaq = 0 for any values of (ae, ay,,ar,ay) € Q.

At this stage, we turn to the two anomalies which are sensitive to the dark sector chiral
fermions y}é, via the anomaly coefficients in (2.2, 2.3). If we substitute in the charge assign-
ment in (2.4), which we have derived as the most general charge assignment for the SM sector
fermions (that is consistent with the other constraints from anomaly cancellation and the
Yukawa sector), we obtain

3 3
Agray = e +ay +ar — Z Qi and Acubic = ai’ + ai + ai — Z Qii- (2.6)
i=1 =



In the absence of the dark sector fermions (QM:O), the only possible solution'? to Aeypic = 0
is to choose one of a., a,, and a; to be zero, and the other two to sum to zero; ay remains
unconstrained. This also satisfies Agray = 0, and thus returns anomaly-free solutions of the
form a(L; — L;) +bY . But by introducing the three dark sector fermions, we can absorb any
remaining anomalies in Agpay or Acupic by ascribing them charges

le = e, QVQ = Qu, Qu3 = Gr, (27)

or any permutation thereof, which would correspond to the lepton numbers of right-handed
neutrinos, with one assigned to each generation.'® The anomaly-freedom of this charge as-
signment was originally shown in Ref. [61].

The charge assignment in (2.4) corresponds to gauging a U(1)x symmetry generated by

e +a, +ar

Ty = aeTLe + CL'LLTLH + aTTLT — < 3

) T + ay Ty, (28)

i.e. an almost arbitrary linear combination of the accidental symmetries of the SM, namely
baryon number, the three individual lepton numbers, and the global part of hypercharge (with
that linear combination being ‘orthogonal’ to B+ L). Of course, this is by no means a miracle;
the very fact that these quantities are accidental symmetries of the SM lagrangian implies
that the Yukawa sector is invariant under precisely these symmetries. What is surprising, at
least to us, is that an (almost) arbitrary linear combination of these global symmetries can
be made anomaly-free, and thus can be gauged, with only a minimal extension of the SM
field content by three chiral SM singlets.

Provided that a., a,, and a, are all different, in other words that the charge assignment
violates lepton flavour universality in all three families, the charged lepton Yukawa matrix
will be strictly diagonal; thus, the same symmetry which introduces LFUV simultaneously
prevents LE'V.

3 Towards a model for the B anomalies

In this Section, we develop SMxU(1)x gauge theories in this family into phenomenologi-
cal models capable of explaining the NCBAs. For ease of reference, we summarise the full

12Tt is a rather famous theorem in number theory that a3 + ai + a2 = 0, where a., au, and ar are three
rational numbers, implies aca, ar = 0.

13We are not claiming that the assignment of the dark sector fermion charges in (2.7) is the only solution
to the pair of equations (2.6); rather, we are content that there is always guaranteed to be a solution to all
the anomaly equations with dark sector charges of this form. Indeed, for certain rational values of the triple
(Ge, ay, ar) it is known that other non-trivial solutions exist [69]. In particular, if we rescale the gauge coupling
(without loss of generality) such that (ac,a,,a.) and {Q,:} are all integers, then an algorithmic method has
been developed in Ref. [69] for finding all solutions to (2.6) for the six numbers (awamaﬂQ,ﬂ,Q,ﬂ,st).
Examples include (5, —4, —4,—1, -1, -1), (6, —5,—5,—3,—2,1), and (11, -9, -9, —4, —4,1) [69]. In the present
paper we wish to be able to vary (ae, a,, a-) freely within the rationals, in order to carry out fits to the NCBA
data; in this situation, there do not necessarily exist any ‘non-trivial’ solutions to (2.6) beyond the charge
assignment (2.7) that we choose. Nonetheless, we shall reconsider such ‘non-trivial solutions’” when we come
to discuss neutrino masses in Appendix A.
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lagrangian of the model in Eq. (3.18).

In order to mediate the flavour-changing neutral current interactions in (1.1), we must
introduce flavour-changing quark couplings into our framework. Since the U(1)x gauge sym-
metry couples universally to the three quark generations, this cannot be achieved simply by
the CKM mixing between the weak and mass eigenbases. The same issue afflicts (for example)
models based on gauging L, — L, (in which the Z’ doesn’t couple directly to quarks at all).
We shall thus generate quark flavour violation in our model by following a similar procedure
to that found in Ref. [31], which in turn is based on the ‘effective operator’ approach first
suggested in Ref. [70]. We will then go on to describe the mass mixing between the neutral
gauge bosons, specifically the Z and the Z’, that occurs in these theories when ay # 0, for
which we largely follow Refs. [53, 55].

3.1 Quark flavour violation

We introduce a heavy'# vector-like quark field, denoted @, whose left- and right-handed
components both transform in the representation

QL/R ~ (37 27 1/67 QQ)

of the SU(3) x SU(2)r, x U(1)y x U(1)x gauge symmetry. In other words, other than the
U(1)x charge and its vector-like nature, the field @ is a ‘heavy copy’ of the quark doublet
field ¢z, in the SM. Indeed, it shall be convenient to decompose @ into its SU(2), components,
viZ.

QL= (uiv d4L)T7 Qr = (uéfliv d%%)Tv (31)

where the index anticipates that we shall soon view u‘i and d‘i as fourth family quark fields.
Because @) is a vector-like fermion, it does not spoil the anomaly cancellation in our setup.
Together with the fields already described above, this completes the field content of our
framework of models, as recorded in (2.4).

Given the quantum numbers of @ and of the SM quark fields, we can write down the
following terms in the lagrangian, which result in effective mass terms after both ® and the
Higgs acquire their vevs:

L2 = |(Yp)iyardrHe + (Yu)i @iLU%;H} + Lmix, Liix = —mQQ + (Y0i 7,Qr® + h.c),

(3.2)
where H¢ = (HT, —H")T. The term —mgQQ is simply a vector-like mass term for Q. The
first two terms within the square brackets are the usual Yukawa couplings for the down and
up quarks, while the second term in Ly« leads to mass mixing between the vector-like quark
and the SM quarks. Just like the SM Yukawa couplings (Yp);;, the Yg; are (possibly complex)
dimensionless Yukawa couplings, one for each down-type quark, which are parameters of the
model. The U(1)x charge of Qg (and hence also Q1) is then fixed by U(1)x-invariance of

14%We shall clarify exactly what we mean by ‘heavy’ shortly.

— 11 —



(3.2), to be QQ = Qo+ Qq, as recorded in (2.4). To simplify our analysis, we shall assume
the limit where m¢g > |ve Yil.

We may package together these terms into 4 by 4 quark mass matrices. We shall assume
that we have first rotated in quark space to a basis where the SM 3 by 3 Yukawa matrix
(YDp)i; is diagonalised, viz. (Yp):j — diag(Yy, Ys, Ys) for the down quarks. The resulting 4 by
4 mass matrix for the down quarks is then given by

mq 0 O €aMmQ

_ 0 ms 0 e
LD -, (M) g dB, where My = ms 0 €amq | (3.3)

0 0 mbeme
0 0 0 mg

where A = {1,2,3,4}, m; = 1\’}% (where v is the usual Higgs vev), and the mixing parameters

va¥oi 1, given our limit of large m¢g. We here use notation where the primed fields

mov2
are current eigenstates, while the unprimed ones denote the physical mass eigenstates. We

€

may diagonalise this 4 by 4 mass matrix completely with a further bi-unitary transformation
of the form

' = Ud . Ul M MU = M2,
{ f: LoL — U;MdUR =M; — { ? ? =L ~o (3.4)
d', = Updp UL MIMUR = M2,

hence the unitary matrices Uy, and Ug can be extracted from the eigenvectors of Mdei and
MLMd respectively. To leading order in the small expansion parameters ¢; we find the simple

expressions
1 0 0 ¢ 1000
0 1 0 € 0100 i€
Uy = “liofe ), Ur = +o (2 (3.5)
0 0 1 € mg 0010 mg
—€; —€; —¢ 1 0001

Terms of O(e?) in U, are in principle important when discussing flavour violation, but as
we shall soon see, we do not in fact need to compute them. Concerning the rotation in the
right-handed down quarks, we keep Ur = 1, justified by the smallness of the quark masses
compared to mg.

From these mixing matrices, we can compute, from now on neglecting higher order terms
in the ¢; parameters, the couplings of the Z'!5 to down quarks within our model. Because
the SM quarks have universal U(1)x charges, in the primed basis defined above (in which the
SM Yukawa matrices Yp and Yy are already diagonalised), we have the following hadronic

15Tn the following formulae, Z’ denotes the physical heavy gauge boson, which is a mass eigenstate. As we
shall soon see, this is equal to the gauge field for U(1)x, which shall be denoted X,,, up to small corrections
~ O(m%/m%).
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couplings of the 7/,
Loz = gx Z40ij (Qq 'y Prd’ + Qq Wy Pl 4+ Qg 'y Prd? + Q,, UiWO‘PRU'j>
+gXZ&QQ (E47“PLd’4 + E4’y°‘PLu’4 + E4’y°‘PRd’4 + U4VO‘PRU’4> ,(3.6)

where gx denotes the gauge coupling for U(1)x. Rotating to the mass basis, we obtain the
following couplings of the Z’ to the three SM quark families, indexed as usual by i € {1,2,3},

Loz O gxZ, (Lg.’) 4y Prd + R 3y Prd + LY @y Pru? + R Ei'yaPRuj> . (3.7

where the 3 by 3 matrices of Z’ couplings to the down quarks are given by

Q, 0 0 0
0Q, 0 0 &
LY = (Up)] g (UL)sj, R = Qady. (3.8)
7 10 0Q 0 ’ 7 ’
00 0 Qq/ 4
The matrices of Z' couplings to the up quarks are
Ly = (vegvt) . RG = Qusy (3.9)

where V' is the CKM matrix, and the index A € {1,2,3,4}.
To extract the flavour violating effects, which are of order O(e?), we can subtract from
the 4 by 4 matrix E%)g = diag(Qy, Qq, @y, Qq) (defined such that ng) = (UL)IAE%)B(UL)B]-)

the flavour universal component equal to Qq5 Ap- Using also the unitarity of Up, we then

extract the flavour violating piece of Lz(j) to be (where i # j):

000 0
Yo.Y
i [ooo o U A 7 AN
(UL)iA 000 0 (UL)BJ - (QQ - Qq)€i€j - — 2mé] Vyp (310)

000Qo—Qq/ 4p

where we used the fact that QQ — Qq = —Qq> = —1. Of particular interest from the point of
view of the NCBAs, there is a coupling of the Z’ to b3, of the form

Yo, Yo,
S
2mQ

Loz O gsb31.207"br, where gy, = —gxv3

(3.11)

Of course, within our setup there is no rotation between the mass and weak eigenbasis for
the charged leptons because the U(1)x-invariant Yukawa terms are strictly diagonal. Thus,
we only have diagonal couplings of the Z’ to charged leptons, with the charges as defined in
(2.4), which result in LFUV without LFV.
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3.2 7 — 7' mixing

Provided ay # 0, the Higgs carries U(1)x charge in our framework of models. This leads
to mass mixing between the SM Z boson and the Z’, which shall ultimately result in the Z
inheriting some small flavour non-universality in its couplings to leptons. The universality of
Z couplings to leptons is tightly constrained by precision measurements at LEP, which shall
provide an important bound on our model when ay # 0. To derive the following formulae
for this Z — Z’ mixing, we closely follow Refs. [53, 55].
As we have already set out, the U(1)x gauge symmetry is spontaneously broken by the
SM singlet complex scalar ® acquiring its vev. We shall here denote the original U (1) x gauge
boson by X, reserving the name ZL for the physical boson which is a mass eigenstate. The
mass terms for the heavy gauge bosons come, of course, from the kinetic terms of the scalar
fields H and P,
Ly 1in = (D*H)'(D,H) + (D*®)*(D,®), (3.12)

where the covariant derivatives are

/
D,H = 0,H — i <~;’T“W5 - %Bu - aYQQXXM> H,& ~— D,®= (3, —iQogxX,)®. (3.13)
Here, as usual, g and ¢’ denote the gauge couplings for SU(2);, and U(1)y respectively.
Expanding the scalar fields about their vevs in (3.12), we find the following mass matrix for

the neutral gauge bosons:

g —99 ayg'gx
M =—| —99 g —ayggx . (3.14)
ayg'gx —ayggx a3 g% (1 +4Q3v3/ @?/UQ)

We rotate to the mass basis of physical neutral gauge bosons, (A, Z,, ZL)T =A,= OTA;L,
where the orthogonal matrix O is

cos @, —sinf, cosa, sinb, sina,
O =] sinf, cosf,cosa, —cosly,sina, |, (3.15)
0 sin o, COS

where 6,, is the Weinberg angle (such that tané,, = ¢’'/g), and «, is the Z-Z’ mixing angle.
The masses of the Z and Z’ boson are then the two non-zero eigenvalues of the above mass
matrix. The mass of the Z’ is

vay gx 4@2 U2 A
myr ~ 29 1+ 2<I) ;D ~ gX‘Q<1>”l}q> = gxUo, (316)
ag-v
and the mixing angle is
2
sin o, & avgx <mz> , (3.17)
92 +g/2 my



where we are working in the limit that mz > m .

This concludes the description of our framework of models. In summary, the full la-
grangian may be written as

1
L= Lsm — EXWXW + Lmix + Lgzr + Loz + LH& 1in — V (H, @) + Laark, (3.18)

where Lgy denotes the SM lagrangian (but with the Higgs kinetic and potential terms re-
moved), X, = 0, X, — 8VXM,16 Lmix may be read off from (3.2), L,z from (3.6), LH® kin
from (3.12), and Lyz denotes the (flavour-diagonal, but flavour non-universal) Z’ coupling
to leptons, given by

3
Loz = ng; Z (Q@z ZZ’}/O‘PL”' + Q@i ?i’yaPLVi + Qei F’yaPjo + Qyi fi")/aPRl/]) , (3.19)
i=1
where we have included here the Z’ couplings to the dark states 1/}%. We summarise the
Feynman rules associated with the important new physics couplings of the Z’ boson to SM
fermions in Fig. 1, for the reader’s convenience. Finally, V(H, ®) is a scalar potential which
determines the vevs of H and ® (but which we do not specify beyond that), and L£g.,x denotes
any terms in the lagrangian involving dark states only. All that remains to specify the model
fully is a discussion of how the neutrino mass sector may arise. Such a discussion involves
a rather in-depth analysis of the dark sector of the theory (encoded in Lgak), and would be
something of a digression at this stage, so we relegate this discussion to Appendix A.
The following two Sections are devoted to exploring the phenomenological consequences
of this setup.

4 Implications for the B anomalies

After integrating out the heavy Z’ boson, we obtain BSM contributions to a host of dimension
six Wilson operators in the SMEFT which are capable of explaining the observed NCBAs,
depending on the values of the coefficients ac, a,, a-, and ay. In §4.1 we will present the
contributions to the relevant Wilson coefficients within our framework of models, which we
shall see carry a particular structure allowing both vectorial and axial currents (but where
the axial contributions must be lepton flavour universal). We then present results of our
global fits to the NCBA data using flavio [67] in §4.2, after making a number of (physically
well-motivated) simplifying assumptions to cut down our parameter space.

4.1 The anatomy of the B anomalies within our framework

At a generic point in the parameter space we are considering, the following four operators
(all of which couple only to the left-handed bs current) are all present:

Lisee = CF(50vpb1) (€07 er) + Cr(507,01) (€rY er) +
CrL(LYpbr) (B’ ur) + CR(3T7pbL) (FRY 1R), (4.1)

16Note that we have assumed that any kinetic mixing between the Z and Z’ gauge fields is set to zero.
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I d'

7' 7'
= igx7,(Qui Py + Qi Pr) = 19x7,(QPr + QiPr)
ft dz’
u' Q
A ®
= 1gx7(QuPr + QuPR) - — — — =1iYpPp
U qi

= igsbﬁ/pPL

Figure 1. The Feynman rules associated with the most important couplings of the Z’' and the
scalar SM singlet field ® to the SM quarks and leptons. Top left: coupling of the Z’ to leptons; top
right /center left: leading flavour diagonal couplings of the Z’ to quarks; center right: couplings of ®
to the quarks and the vector-like fermions; bottom: effective flavour violating couplings of the Z’ to
quarks.

where the coefficients are

YouYg, YooV,
2= — mes o= — mes (4o — ay/2) (4.2)
Q Q
YouYg, YooY,
Cf = =g Quo = ——2 3% (a0 —ay) (43)
me, ZmQ

where « is the lepton flavour index av = {e, u, 7}. We may convert these Wilson coefficients
into the more conventional basis of vectorial and axial currents, corresponding to Cg =

(CF+C%)/2 and Cfy = —(Cf — C)/2, for which we find:

Yo, 3
C§ = — 27”2@ <aa — 4ay> , (4.4)
YouYs
Csy = " ay. 4.5
10 8m2Q ay (4.5)

This choice of basis makes clear that the NCBAs have an interesting, and simple, structure
within our framework of models. A few noteworthy points are:
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4.2

e The LFUV must come entirely from the vectorial current.

e There may nonetheless be an axial current contribution, but this is lepton flavour uni-

versal. Indeed, this feature can be traced back to our initial assumptions regarding
the renormalisable Yukawa sector, which implied that the differences between the left-

handed and right-handed lepton charges were family universal.

e The presence of this axial contribution requires ay # 0, which then implies (i) that there

is Z-7' mixing (since Qg = —ay/2), and so important constraints from LEP lepton
flavour universality measurements, and (ii) that there are necessarily couplings of the
Z' to valence quarks, as can be deduced from the charges in (2.4), and so important
constraints from LHC direct searches in say pp — ppu.

e If we wish to remove couplings of the Z’ to quarks in order to loosen the constraints

from direct searches, we require both that ay = 0 (thus removing any axial component
in the Wilson coefficients, as above) and that a4 a,+a, = 0. Thus, in this limit, there
are only two independent parameters, which we can choose to be any two of (ae, ay, ar).

e The expressions (4.4, 4.5) for the Wilson coefficients do not depend on the parameter

v, but only on the parameters from the gauge sector and from the mixing sector. The
dependence on both vg and gx happens to cancel between the factors of My in the
denominator and the couplings in the numerator.

Global fits at a benchmark point in the parameter space

Within this general class of models we have formulated, there is a large number of a priori

free parameters. We have:

e Irom the gauge sector: gx, ae,a,,ar,ay.
e Irom the mixing sector: Ygq, Ygs, You, mq-

e From the scalar sector: vg + ...,

where the ... indicates additional parameters appearing the extended scalar potential, which

we shall not be concerned with here. To thoroughly explore the phenomenology in all these

parameters is a complicated task; in this paper we shall not attempt such a complete phe-

nomenological characterisation of this parameter space. Rather, we prefer to make a number

of well-motivated simplifying assumptions to cut down the parameter space. In this way, we

shall define a “benchmark” region in our parameter space which is most relevant for the B

anomalies and related phenomenology, and we shall find that there is room in this region to

evade all current experimental constraints while remaining highly predictive.

The assumptions we make are as follows:
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1. a, = 1. This is in some sense a choice of normalisation, also made in Ref. [31], which
forces a non-zero new physics contribution in the coupling of the Z’ to muons. While
there remains a logical possibility for fitting the ‘theoretically clean’ ratios R, with
a, = 0 and new physics only in the electron couplings, the inclusion of other NCBA
data (for example P! in B — K*puu decays, and BR(Bs — pu1)) strongly favours new
physics (or at least a sizable component) in the muon channel.

2. ar = 0. The NCBAs concern only electrons and muons, and so are largely insensitive
to the tauon couplings. Thus, the value of a, shall have no effect on the global fits we
will perform, and so it is convenient to set a, = 0 at the outset.

3. Ypq = 0. Fitting the NCBAs requires both Yp, and Y, are non-zero, but does not
require a non-zero coupling Ypy. By choosing to set Y, = 0, we prevent new flavour
violation beyond the SM in processes involving the down quark. With this choice we
are therefore automatically safe from the bounds on e.g. kaon and B; mixing. Note
that this assumption, like the others we are making, is not forced upon us by the data,
but is a sensible choice which we make to reduce the parameter space.

4. gx is irrelevant for low energy processes. In the limit |Yg,vs| < mg which we are
assuming, all the effects induced by the Z’ exchange are independent of gx (since two
powers of gx from the gauge vertices in the numerator are always cancelled by two
powers of gx in the denominator from the mass of the gauge boson my = gxve). If
the mass of the Z’ is not too high, then the coupling gx and ve do indeed become
two independent parameters, since bump searches for the Z’ depend on my itself.
Nonetheless, if we are in the régime myz > myz,'” then direct searches for the Z’ only
depend on the contact 4-fermion operators, independent of gx. We shall see in §5.1
that there is such a régime in our parameter space in which the Z’ couplings remain
perturbative (in the sense that the Z' width is less than, say, 30% of its mass, or
thereabouts).

D. YQbYQ*s as a single parameter. Each of the couplings Yg;, and Ygs appear only in the
combination YY), in both the Wilson coefficients Cg' and Cfj given in (4.4, 4.5), and
in the BSM contribution to By mixing (see §5.2), which provides the main constraint
sensitive to the quark flavour violation.

Given these assumptions, we perform global fits to the NCBA data in the plane of a,
versus ay, using flavio [67]. The remaining physical parameters affect the NCBAs only
through the overall normalisation of the Wilson coefficients (via the combination Y, Y,/ mé)

"More precisely, if the mass of the Z’ is greater than that probed by direct searches, which is currently ~
6 TeV [71]. We discuss these direct searches in §5.1.
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Figure 2. Global fits showing the 1o and 20 regions in the a. vs. ay plane, for fixed a, = 1 and
ar = 0, from a Gaussian approximation of the likelihood that was generated using flavio. For the
plot on the left-hand-side, only the observables Ry, Rx+, BR(Bs — pp), and BR(B — X £0) were
included in the fit. For the plot on the right-hand-side, we also include all the branching ratios and
C P-averaged angular observables of exclusive semileptonic b decays into the fit.

which, for the purpose of fitting, we write as

o 4G + Qem 3
Cg = —\/5 ‘/th;S_ZLﬂ' C (aa - Zay> ) (46)
4GF Qlem ay
Ciy = ——=VupVi—C —. 4.7
10 \/5 tbVts An 4 ( )

The normalisation C' is extracted point-by-point from the fit.

The results of the fit are shown in Fig. 2. Details of the fit procedure are given in
Appendix B. In the plot on the left-hand-side, only a subset of ‘clean observables’ (i.e. for
which the theoretical uncertainties are smaller) are included in the fit. These clean observables
are Ry, Ri~, and the branching ratios BR(Bs — pp), BR(B — Xspup) and BR(B — Xsee).
The dark (light) blue region extends to the 1o (20) best fit contour. Interestingly, we find
that a very large region of the parameter space in (ae,ay) allows a good fit to these clean
LFU ratios. Indeed, we find two disconnected ‘lobes’ in the parameter space which fit the
data at the 20 level. In the plot on the right-hand-side, we further include all the branching
ratios of the exclusive semileptonic branching ratios B — Kuu, B — K*uu, By — ¢up and
Ay — App, as well as all CP-averaged angular observables in those decay modes into the
fit. We see that the inclusion of additional variables beyond R (. has a dramatic effect on
the fit, as indicated by the shaded 1o and 2¢ regions in green, where now a definite quasi-
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Observables in fit Qe a, ar ay C

Clean 0.49 1 0 1.66 1.51

All 059 1 0 087 201

Table 1. Best-fit values for a. and ay, subject to the choices a, = 1 and a, = 0. The value C gives
the overall normalisation of the Wilson coefficients at the best-fit point, see eqs. (4.6) and (4.7). The
first line is for the fit to a subset of ‘clean observables’, corresponding to the left-hand-plot of Fig. 2.
The second line, for all observables, corresponds to the right-hand-plot of Fig. 2. We select the latter
best-fit point as our primary ‘benchmark point’ in parameter space from hereon.

Qq Qu Qd QZl Qﬁ QZS Qel Q62 QeS QH
-0.03 040 -047 0.16 057 -0.44 -0.28 0.13 -0.87 -0.44

Table 2. Charges for all the SM fields at our benchmark point in parameter space (ac, a,,ar,ay) =
(0.59,1,0,0.87), which we obtained by fitting for (a.,ay) subject to a, = 1, a, = 0, and using all
observables in the fit. This corresponds to the bottom line in Table 1.

elliptical region in parameter space is selected. From hereon, we shall choose this best-fit
point as our primary ‘benchmark’ for further study, at which we shall consider the impact of
other important experimental constraints in §5. The best-fit values for a., ay, and the overall
normalisation C' are recorded in Table 1.

We can draw some interesting conclusions from these global fits, particularly from the fit
to all observables which appears to select a clear preferred region. Firstly, while we see that a
reasonable fit can be obtained with new physics only in the muon (which corresponds to the
point a, = ay = 0, which lies within the 20 contour), there is strong pull to include some new
physics component in the electron. Furthermore, independently of a., we see that the fit also
favours turning on a significant component ay > 0, which we know gives a flavour-universal
contribution to Cg and Cqg.

5 Other phenomenological constraints

In addition to fitting the NCBAs, there are several important phenomenological constraints
on our model. These come from high-py LHC searches for the Z’ (e.g. in pp — uu), Bs
meson mixing, a number of electroweak precision observables (in particular, LFU precision
measurements in the Z boson couplings from LEP, and the measurement of the p-parameter),
and neutrino trident production. In this Section we shall consider each of these constraints
in turn.
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In the same spirit as above, our goal here is not to characterise the phenomenology of these
models in all detail, but rather to analyse the general structure of the different constraints
within our framework, and to show as a ‘proof of principle’ that there is a viable parameter
space. Thus, we shall present the theoretical expressions relevant to each constraint and
comment on their form, and we are content to extract the numerical bounds only at our
benchmark point in the parameter space. Recall that this benchmark point corresponds to
the second line of Table 1, for which the charges are listed in Table 2.

5.1 Direct searches at the LHC

The strongest Z’ bounds from direct searches at the LHC can be obtained by interpreting
recent ATLAS searches for resonances in both the pp — u™p~ and pp — eTe™ channels in
139 fb~! of 13 TeV data [71], which extend up to a dilepton invariant mass of 6 TeV.'® The
constraints on a number of simple Z’ models coming from these ATLAS searches have recently
been computed in Ref. [75], and if we wished to calculate an accurate bound from direct
searches valid for any value of the coupling gx, then we should follow a similar methodology.

For our purposes in this paper, we first note that if my ~ gxve exceeds 6 TeV, then the
constraints from these direct bump searches do not apply directly. In this region of parameter
space, which we shall refer to as the ‘contact régime’, the high-pr tail of the dimuon invariant
mass-squared distribution is of course still sensitive to the Z’, but its effect may be computed
using a simple EFT calculation involving the four-fermion effective operators which couple
the final state lepton pair to a quark pair in the initial state [76]. We must first establish that
this régime is even accessible within our framework; in other words, we must show that the
Z' mass can be as heavy as 6 TeV.

As we shall see in §5.2, there is an upper bound on the vev vg from Bg mixing of ap-
proximately vy < 4 TeV; there is also an upper bound on the coupling gx, beyond which the
Z' becomes strongly coupled and perturbativity breaks down, which we shall now estimate.
This bound is approached when the width I'z/ of the Z’ resonance becomes broad, which we
take to be when I'z//mz = 0.3 or so. To calculate I'z/, we need the partial width of the Z’
decaying into a pair of massless fermions ff, which in the limit where mz > 2m, is given
by Fé’f = C’gg(chmZ//(Mﬂ), where C' = 3 for quarks and C' = 1 for leptons, and Qf denotes
the U(1)x charge of the fermion f, as recorded in (2.4), and, at our benchmark point in

19

parameter space, in Table 2. Summing over all the SM fermion species,"™” we obtain

Ty

myg:

~ 0.071g%, (5.1)

and so perturbativity breaks down for couplings as large as gx ~ 1/0.3/0.071 ~ 2.1. We may
therefore consider large-ish couplings in the window 1.5 < gx < 2.1 for which the contact

8 There are also less constraining Z’ searches from ATLAS on smaller data sets in other channels, such as
a pair of Z' — tf searches in 36.1 fb™! of 13 TeV data [72, 73] which extend out to 5 TeV, and a Z" — 777~
search in 10 fb™! of 8 TeV data [74] which extends out to 2.5 TeV.

190ther decay modes of the Z', for example to ZH, can be shown to be subleading.
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régime is accessible, with the Z’ couplings remaining perturbative. In this régime we can
compute the bound on vg using an EFT approach. This is in some sense the weakest possible
bound on vg coming from direct searches, at least at our benchmark point in parameter space.

In Ref. [76], bounds are tabulated for each semi-leptonic four-fermion operator using
such an EFT approach, considered one operator at a time, which are valid in this contact
régime.?’ For the benchmark point we are considering however, there are of course multiple
relevant four-fermion operators turned on, with the dominant couplings due to the following
three operators (we adopt the normalisation of Wilson coefficients used in Ref. [76] for ease
of comparison):

1)
¢ Cay e Cuyie
o (G vuar)(GiA"07), - (dRYudR) (G207, — = (a RYuuR) (GEA"07).
(5.2)

Within our framework, the Wilson coefficients are given by
2 2 2
(1 VU oA A VT A A V% A A
CQ11€22 - 21% QqQZQa Cd11€22 - 21}(21) QdQEQa Cu11€22 - 2,0% QuQ@Q' (5'3)

Using the most recent 139 fb~* ATLAS search described above [71], and including the con-
tributions to the pp — ¢/~ cross-section from all four-fermion operators, one obtains the
bound

vg > 3.1 TeV (5.4)

at the 95% C.L.2! We shall see that this provides one of the most important bounds on the
model at the benchmark point, alongside bounds from the p-parameter and from B mixing
which we compute next.

5.2 Neutral meson mixing

The quark flavour violation that mediates b — s transitions, which is a necessary ingredient
for explaining the NCBAs, immediately results in a BSM contribution to Bs meson mixing.
Within our framework of Z’ models there is a contribution from tree level exchange of the Z’,
in addition to a contribution from scalar box diagrams involving ®. This is exactly analogous
to the meson mixing constraints derived in Ref. [31], which we here follow.??

The mixing amplitude Mo for the Bs; meson system takes the form

My, g -1
V5 (162(%‘45) 50) Crs (5.5)

2ONote that the bounds in Ref. [76] were computed using an ATLAS search on 36 fb™! of 13 TeV data from
2017 [77], which was superseded by the 2019 search published in Ref. [71].

213We are very grateful to David Marzocca for performing this calculation and providing us with the result.

22Given our simplifying assumption Yoa = 0, there are no analogous bounds from kaon or By mixing. There
are nonetheless bounds from D mixing, though these are less constraining than those from B, mixing, since
the coefficient of the latter is inextricably tied to fitting the NCBAs. In particular, we find that D mixing
constraints are much weaker than the ones from Bs mixing as long as there is a slight hierarchy in the couplings,
viz. |YQ5| < |YQb‘.
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where myy is the mass of the W boson and Sy ~ 2.3 is a SM loop function. The Wilson

coefficient C’gSL is given by

2 1
O = (YouYi )2 [ 22 v — = . 5.6
LL ( Qb Qs) <m4Q + 16712m22 ( )

Here, the first term on the right-hand-side is due to the Z’ exchange, which scales somewhat
unusually like v%; the two powers of vg in the denominator from the Z’ propagator are
compensated by four powers of vg in the numerator arising from the square of the coupling
Jsb = —gXUC%YQbYé‘S/(Qmé). The second term on the right-hand-side is due to the 1-loop box
diagram.

While the mass difference AM; o |Mj2| is measured with excellent precision, AM, TP =
(17.757 £ 0.021)/ps [78], the SM prediction comes with a sizable uncertainty. Recent work
using sum rule calculations of hadronic matrix elements quotes AMSM = (18.571-2) /ps [79].
If we instead use the lattice average of hadronic matrix elements from [80] (see also [81, 82])
as well as V| = (39.9 £ 1.4) x 107323 we find AMSM = (17.7 + 1.4) /ps. This leads to the

following bounds at 95% C.L.

M M
0.85 < ’ 91:13/[ < 1.15 (based on [79]) , 0.87 < ‘ 91:13/[ < 1.18 (our evaluation) . (5.7)
12 12

Within our framework, we see that the reasonable agreement of the SM prediction for By
mixing with the data, which precludes too large a BSM contribution to Mo, provides an
upper bound on the parameter vg, which cannot therefore be pushed arbitrarily high.?* Given
the constraints from direct searches place a lower bound of 3.1 TeV on vg (see §5.1), we have
bounds squeezing the parameter vg from both sides. For the purposes of this paper, we seek
only to show that there is a viable window of parameter space for ve between these bounds,
for which it is sufficient to consider our benchmark point in parameter space (see Table 2).
The B; mixing constraints on ve at the benchmark point are shown in Fig. 3, in the
plane of Re(YQbYCSS) vs. mg. In these plots, the shaded green regions show the 1o and 20
best fit regions to the NCBA data, using all the observables, as discussed in §4. Note that
the overall normalisation of the Wilson coefficients, which is extracted from the fit to the
NCBAs, is proportional to YQbYés /m2Q from (4.4, 4.5). Hence the green regions correspond
to bands with approximately fixed gradient (given the log scale of the plot). Each of the
dashed contours then show the upper bounds on vg coming from B mixing. Thus, if we take
the central value of the fit to the NCBAS using all observables, we see that the maximum
value of v is between 3 and 3.5 TeV, depending of the precise Bs; mixing bound that is

23This value is a conservative combination of the inclusive determination of |V.s| quoted in [1] and the two
recent exclusive determinations from [83] and [84]. The sizable discrepancy between the inclusive and exclusive
values is taken into account by rescaling the uncertainty by a factor 2.6, following the PDG prescription.

#4Note also that the right-hand-side of (5.6) does not depend on any of the parameters from our U(1)x
gauge sector (i.e. gx,ae,Qyu,ar, Or ay ), but only on the parameters from the mixing and scalar sectors.
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Figure 3. Constraints from By mixing on vg, in the plane of Re(YQbYQ*s) vs. mq. The shaded green
regions show the 1o and 20 best fit regions to the NCBA data, using either the SM prediction of AM
from [79] (right plot) or using our evaluation (left plot), as discussed in §4. In both plots, the dashed
contours show the upper bounds on vg in TeV coming from B mixing. The dark grey regions cannot
be made compatible with B, mixing for any ve.

imposed. If we fit the NCBAs at the 1o (20) contours, we can loosen these constraints to
vp < 4TeV (ve < 5TeV) respectively.

In the dark grey region in the upper left corner, Bg mixing is never in agreement with
measurements for any value of vg, because the (vgp-independent) 1-loop contribution to (5.6)
saturates the bound on its own.

Thus, at the benchmark point the model is tightly squeezed by the combination of con-
straints on vg from direct searches and Bg mixing, but there remains a viable window of
unexcluded parameter space. Of course, one expects that by deviating from the benchmark
point this viable window can be widened (or narrowed); however, a comprehensive analysis
of the parameter space is beyond the scope of this paper.

5.3 Electroweak precision observables

Here we discuss two important constraints coming from electroweak precision observables
(EWPOs), namely measurements of LFU in the Z couplings, and a constraint from the p-
parameter. In general, these constraints from EWPOs arise due to the coupling of the Higgs
to U(1)x, and so can be eased by dialling down the value of the parameter ay which sets the
QH; while ay is not essential for fitting the NCBA data, it is, interestingly, the parameter
that determines the size of the axial component (i.e. the Wilson coefficient Cf})) of the flavour
anomalies, which recall is necessarily flavour universal within our framework.
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5.3.1 LFU of Z couplings

As we discussed in §3.2, the Z contains a small admixture of the U(1)x gauge boson X
provided ay # 0, and thus inherits some flavour non-universality in its couplings. Flavour
non-universality in the leptonic decays of the Z are constrained by the LEP measurement [1]

I'(Z —efe)
R = 0.999 £+ 0.003 R=——-. 5.8
LEP ; F(Z N [LJF,Ui) ( )
In the models we are considering, the ratio of partial widths is
erer |2 €RER |2

Himodel = |ghEPE|2 4 | ghRFE 2

where géf is the coupling of the physical Z boson to the fermion pair ff. One can obtain
the couplings géf by first writing down the terms in the lagrangian which couple the charged
leptons to the neutral bosons B, W3, and X:

3

-1 1 1 1 I, .

LD Z [5 <—29W3 - 59,13 + 5(2% — aY)QXX) Pl +0 (—g'B + (a; — ay)gx X) Prl’
i—1

(5.10)
We then rotate to the mass basis, and from X = sin a, Z +cos a, Z’, this results in Z couplings
that are suppressed by sin .. To leading order in sin «,, we find the couplings are:

g =k + %(2% — ay)gx sina;,
- %(2% _ ay)gx sin o, (5.11)
9F" = kr + (ae — ay)gx sin o,
g,gRMR = kR + (a“ _ ay)gX sin a,.
where 1 1
RL = —59¢08 O + 59/ sinfy  and kg = g'sinby, (5-12)

correspond to the couplings in the SM. We expand Ry,04e1 to leading order in sin o, to find

N 2gx sina (kg + KkRr)(ae — ay)

. 5.13
n% + I€2R ( )

Rmo del = 1

After substituting in (3.16, 3.17) for sina, and my/, and the central experimental values
g = 0.64 and ¢’ = 0.34, this becomes:

2

Rinodel = 1+ 1.7957 [(“*‘_ae)ay} m%. (5.14)
Uy

Comparison with the LEP limits at the 95% C.L. yields the bounds:

(5.15)

Vo - { 1.73 TeV, if (ay — ac)ay >0,

|(ay — ac)ay| 1.46 TeV, if (ay — ac)ay < 0.
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Of course, the bound vanishes when either a. = a, (in which case the Z’, and thus the Z
also, couples universally to electrons and muons), or when ay = 0 (in which case the Higgs
becomes uncharged, and so there is no Z — Z’ mixing).

At our benchmark point (see Table 2) we have (ac, a,, ar,ay) = (0.59,1,0,0.87), and thus
(ay — ae)ay = 0.357 > 0, so comparing with the first bound in (5.15) yields the constraint

vp > 1.03 TeV. (5.16)
This bound is therefore much weaker than that from direct searches computed in §5.1.

5.3.2 The p-parameter

The Z — Z' mixing, which occurs at points in our parameter space where ay # 0, also alters
the mass of the Z boson away from the SM prediction. In particular, the p-parameter is no
longer equal to unity at tree-level when ay # 0. Global fits to electroweak precision data give
the experimental constraint [1]

p = 1.00039 +£ 0.00019. (5.17)

The diagonalisation of the neutral gauge boson mass matrix carried out in §3.2 gives a smaller
eigenvalue my,%% which is identified with the Z mass, that satisfies [85]

2

2 2 2 o2 My 2
m cos” a, +my sin® a, = o2l pmz, (5.18)
where recall the mixing angle is sin o, = —29X_ (my /my)* + O((mz/my)*), and the W

/92+g/2

boson mass is my = vg/2 as in the SM. This results in the constraint

v > SOWMZ 44 TeV (5.19)

~ /g2 + 9/2
at the 95% C.L. limit. At the benchmark point in parameter space (ay = 0.87) this constraint
is in fact very aggressive, implying
ve > 3.9 TeV, (5.20)

even stronger than the constraint from direct searches - though still consistent with the 1o
best fit to the NCBAs (see Fig. 3). Of course, this constraint becomes weaker as one deviates
away from the benchmark point we have studied in the direction of decreasing ay .

5.4 Neutrino trident production

The neutrino induced production of a di-lepton pair in the Coulomb field of a heavy nucleus,
a.k.a. neutrino trident production, is known to be an important constraint on models with
gauged muon number [86]. Muonic tridents, v, — v, up have been measured at the CCFR

250f course, the third eigenvalue of (3.14) is identically zero, corresponding to the massless photon.
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experiment [87]. The quoted experimental value for the cross section corresponds to a 95%

C.L. limit of
o (Vy = Vuipt) coFR

oV — VMNM)%A(/ZIFR

The modifications of the trident cross section at the CCFR experiment coming from the

0.26 <

<1.38, (5.21)

exchange of a virtual Z’ gauge boson can be written as [88]

o(Vy = Vultit)ccFR N (14 4sin? Oy + Agy)? + 1.13 (1 — Aga)?

o~ ) 5.22
oV = Vi) g (1+ 4sin? Oy)2 +1.13 (5:22)
where the new physics corrections to the effective couplings Agy and Agy are in our model
given by
3 v?
Agy = (ay— —ay ) (2a, —ay) — , (5.23)
4 Vg
1 v?
AgA = —Zay (2(1” — ay) 5 - (524)
Vo

At our benchmark point, the CCFR measurement given above implies the bound
vg > 0.27 TeV. (5.25)

This bound is considerably weaker than the ones from electroweak precision observables and
from direct searches at the LHC.

6 Conclusions

We have proposed a new framework of Z’ models based on gauging an almost arbitrary linear
combination of the accidental U (1) symmetries of the SM, i.e. baryon number and individual
lepton numbers, as well as global hypercharge. Within this framework of models, the new
physics associated with the Z’ at the TeV scale respects these global symmetries of the SM,
whose breaking is therefore postponed until some even higher energy scale Appy (at which
neutrino masses are generated). Such a scenario is hinted at by the recent observations of
possible new physics in rare B meson decays, since all these anomalous measurements respect
the accidental symmetries of the SM.

The conservation of lepton flavour, in particular, is naturally linked in these models to
a violation of lepton flavour universality at the scale Appyy at which the Z’ resides (since
non-universal lepton charges are required to align the weak and mass eigenbases for charged
leptons, which protects lepton flavour). Such a Z’ model therefore offers a tempting explana-
tion of the neutral current B anomaly data, in which lepton flavour universality is observed
to be violated between e and p in b — s transitions, and we explore this possibility. The
requisite quark flavour violation is introduced through a heavy vector-like quark state.

In the rest of the paper we explored the phenomenology of these models. Our analysis
of the parameter space is not comprehensive. Rather, we were content to point out some
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interesting features that are common to all these models, such as the freedom to add a
flavour-universal axial component to the B anomaly fit. We then made a number of well-
motivated assumptions to restrict the parameter space to a region of particular relevance to
explaining the neutral current B anomalies, and by performing a global fit in this region we
extracted a benchmark point in our space of models, at which to examine the phenomenology
more carefully. At this benchmark point the Z’ couples to both left-handed and right-handed
electrons and muons. We have shown that the model is consistent at this benchmark point
with bounds from direct LHC searches, B mixing, electroweak precision observables, and
neutrino trident production.

Finally, in an Appendix we discuss how neutrino masses can be generated in such a
setup, which involves a rather detailed construction of a dark sector. One can thence relate
neutrino masses to the high energy scale Apry at which the accidental symmetries of the SM
are eventually broken within our framework. This gives an estimate Appy ~ 10° TeV, which
is indeed much heavier than the scale Appyy ~ 1 TeV of new physics associated with the 7/,
and so is therefore consistent with our original hypothesis that Appy > Apruyv.

An important next step would be to carry out a more comprehensive study of the phe-
nomenological constraints on the parameter space of these models; for example, one might
like to incorporate constraints from electroweak precision observables such as the p-parameter
into the global fit to the flavour anomaly data, since we have seen that such precision observ-
ables do provide important constraints on our parameter space, in particular on the value of
the parameter ay.

Another promising future direction is to explore an alternative ‘benchmark scenario’ to
the one we considered in this paper, in which the couplings of the Z’ to light quarks are set to
zero, thereby significantly loosening up the constraints from direct searches at the LHC. This
requires ay = 0 and a.+a,+a; = 0, and so leaves two independent parameters to scan over in
our fit to the flavour anomaly data. Given a, is essentially unconstrained phenomenologically,
one would most likely want to freely scan over values of a. and a, (setting a, = —a. — ay).
Setting ay = 0 also has the consequence of removing the tree-level Z—Z’ mixing, and so would
also relax the bounds from electroweak precision observables (such as that coming from the
p-parameter), which we found to be stringent constraints for large values of ay. We therefore
expect the phenomenology to be much more open in this region than in the benchmark we
chose to study in this paper. Of course, taking this limit has significant implications for the
flavour anomalies, since it also removes the possibility of any axial component in the flavour
anomaly explanation. This scenario gives a simple illustration of the interesting interplay
between different experimental constraints and the character of the flavour anomalies within
our framework of gauging the accidental symmetries of the SM.
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A Neutrino masses and the dark sector

Recall that a primary goal of this paper was to extend the SM in a way that preserves its
global symmetries, in particular U(1)p and each individual lepton number U(1)r,, which
are experimentally tested to very high precision. From this premise, we arrived at the four-
parameter family of anomaly-free U(1)x charge assignments recorded in (2.4), for which
the alignment of the charged lepton mass basis with the weak eigenbasis leads to a natural
protection of lepton numbers, while at the same time predicting lepton flavour universality
violation.

Nonetheless, we know that the lepton number symmetries cannot, ultimately, be exact
symmetries of Nature, due to one important observation: the measurement of neutrino os-
cillations. Within the framework we have put forward in this paper, there is (by design)
no lepton flavour violation in charged leptons, at least at the renormalisable level to which
we have worked so far, and so we are led to suppose that all the observed lepton flavour
violation (as parametrized, for example, by the PMNS matrix elements) must originate from
the neutrino sector. Recall that in addition to the left-handed weakly-interacting neutrinos
of the SM there are three right-handed SM singlet states in our setup, which we introduced
to ‘soak up’ the U (1)§( and gravitational anomalies; the natural interpretation of these dark
states is to identify them as right-handed neutrinos, which are charged only under the U(1) x
gauge syminetry.

The measurement of neutrino mass-squared differences of the order 1073 eV? does not,
however, point us ambiguously towards an energy scale Appy (to use the terminology intro-
duced in §1) at which the lepton number symmetries become broken, because such a cut-off
scale is highly dependent on the physical mechanism which gives rise to the neutrino mass
terms. However, with the charge assignments presented in (2.4), we in fact find a neutrino
mass sector that is in tension with our hypothesis that Appy resides much higher than the
TeV scale (Appuy) associated with the Z’ boson and corresponding LFUV effects, where
Apruv ~ vs. In this Section we shall explain why there is such a tension in the neutrino sec-
tor, before sketching how the dark sector of the model can be altered to resolve this tension,
and thus give a compelling account of neutrino masses and the eventual breaking of lepton
number symmetries.

The reason for the apparent tension is as follows. Firstly, one can use the three dark
states 1/}% to write down a diagonal matrix of renormalisable Yukawa couplings for neutrinos,
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of the form?¢ .
,Cyuk = Z inZLHI/}é. (Al)
i=1
We can also write down Majorana mass terms involving the SM singlet states 1/}%, possibly
with insertions of the scalar field ® to soak up the U(1)x charge, depending on the particular
values of ae, a,, and a,. For example, in the benchmark case that we defined in §4.2 (and
have studied phenomenologically in §5), we can write down the following operators

Lataj D a(T%) O*v3 + B(Th) D v + Y M (T%)° v}, (A.2)

where M indicates a mass scale which is a priori unrelated to any other scale in the theory,
and the couplings «, 3, and ~ are all dimensionless coefficients. After spontaneous breaking of
U(1)x, the dimension four operators in (A.2) lead to Majorana mass terms with coefficients
set by the scale vg, which we know is of order a few TeV.

These effective Majorana operators break lepton flavour symmetries, in this case U(1),
and U(1),, at the scale of vg. Now, if this lepton number violation were confined to the dark
sector states this would not pose the problem, since from the point of view of the SM fields
the SM’s accidental global symmetries would remain intact up to the higher scale A;py. But
that is not the case, because the dark states V% necessarily interact with the charged leptons
¢; through the diagonal Yukawa interactions at a low energy scale,?” and we therefore have no
natural mechanism for preserving lepton flavour symmetries in the SM sector up to the high
scale Appy. Thus, the tension arises precisely because of the interplay between the lepton
flavour violating Majorana interactions with the Yukawa couplings which couple the dark
sector to the SM.

A.1 Alternative dark sectors

It is possible to resolve this tension by exploring alternative dark sectors.?® To see how
this can be done, recall that the dark sector states 1/}!2 were introduced to ‘soak up’ the non-
vanishing gauge (and gauge-gravity) anomalies. We introduced three dark states because that
was sufficient to guarantee cancellation of all anomalies for any choice of the four rational
coefficients (ae, ay, ar, ay) - see equations (2.6, 2.7).

We here remark in passing that whatever extra chiral states we introduce the ‘soak up’
any field theory anomalies are better off being dark, for two reasons. Even if we added SM
non-singlet states that were chiral only under U(1) x, these states would be on the one hand
dangerous from the point of view of phenomenology, since they would acquire masses set by

260f course, even if the Yukawa couplings y; were tiny, these terms on their own cannot explain the neutrino
mass sector, because the PMNS matrix features large mixing angles.

2TOne rather unsatisfying resolution to this problem is that there is in fact a discrete Zz symmetry which
bans these Yukawa interactions.

28We note in passing that the idea of using extra chiral states which ‘soak up’ gauge anomalies to serve as
dark matter has been explored before in the context of gauging U(1)p_r [89-92]. In this paper, we do not
consider dark matter phenomenology.
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vy ~ 3 TeV multiplied by Yukawa-like dimensionless couplings (and so might easily have
masses of 1 TeV or lower), for which the experimental bounds on, say, coloured states are
strong (see for example recent bounds from gluino searches [93]), and on the other hand
less useful from the point of view of soaking up anomalies, since (for example) an SU(3)
triplet would always appear in (2.6) with a multiplcity factor of 3. If the added states were
completely chiral under the SM the situation is worse still, because their masses would then
be set by the Higgs vev v, which is very problematic for LHC phenomenology even if such
states were colourless.

However, as we noted above (see footnote 12), the assignment of dark charges in (2.7)
does not provide the only solution to the Diophantine equations (2.6). As we there observed,
for particular values of (ae,a,,ar) there may be other solutions for the dark charges which
soak up the anomalies; generically, these other solutions will not allow Yukawa couplings of
the form (A.1), and in this way may circumvent the tension presented above. We will at times
refer to these other solutions as ‘non-trivial solutions’ to (2.6), since the choice made in (2.7)
is trivial from the number theory perspective. Indeed there are even non-trivial solutions
with only two dark states,? and certainly there will be many more if we allow say four or
more dark states. The general solutions presented in Ref. [69] can be adapted to generate
solutions to this pair of equations at will, for any number (greater than one) of chiral dark
states.

To furnish us with a concrete example of such an alternative dark sector, consider the
benchmark case we set up in §4.2. By normalising to a,, = 1 and setting a, = 0 for simplicity,3"
we found the best-fit point

(Ge,ap,ar,ay) = (0.59,1,0,0.87), (A.3)

by performing a global fit to the NCBA data (see Fig. 2), where we assumed the anomalies
in (2.6) were soaked up by states with charges Q, =059, Qe =1, and Q5 = 0 (i.e.
exploiting the ‘trivial solution’ to the anomaly equations). But now consider an anomaly-free
model with an alternative dark sector, also with three dark chiral fermion states, in which

(A.4)

N N N 3 1 1 7 21
(aeaauaaﬁQulaQuQaQu3) = ( >’

1= - — ==
5772074720720

corresponding to a non-trivial rational solution to the anomaly cancellation equations (2.6).
This alternative anomaly-free charge assignment coincides (very nearly) with the benchmark
case when restricted to the SM fields, and so shares the same phenomenology. The dark
sector is however very different, which leads to a different story concerning neutrino masses,
which we shall soon explain.

2%For example, with only two dark states vy and v%, there are anomaly-free solutions with
(Ge,apu,ar, -0, —Qyz) equal to (any permutation of) the sets (7,8, -9, —1,—5), (9,—2,—10, —4,7), etc.

39We emphasize that the choice a, = 0 was really just to simplify the discussion and the notation, rather than
simplify the physics; the value of ar does not affect any of the relevant phenomenological bounds computed in
§5.
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The crucial point is that with these dark sector charges we can no longer write down
renormalisable Yukawa couplings of the form (A.1) which couple the dark sector to the SM
fermions. At the renormalisable level, the neutrinos are now strictly massless, and we must
pass to the SMEFT to explain the origin of neutrino masses.

Before we do so, we should first give masses to the dark states. While massless dark
fermions of this kind are not in conflict with data from collider experiments, they would have
profound consequences for the cosmological evolution of the Universe. To avoid a detailed
analysis of the cosmological constraints, one can make the dark fermions heavy by introducing
a pair of extra dark scalars transforming in representations

3 21
~(1,1,0, = ~(1,1,0, — A.
X1 ( ) 707 5) ’ X2 < ) 707 10) ( 5)

of SU(3) x SU(2)r, x U(1)y x U(1)x, which are both assumed to acquire non-vanishing vevs
upon spontaneous breaking of the U(1)x gauge symmetry. One may then write down the
following dimension four operators involving pairs of dark fermions and a single dark scalar

0 x0
Laark D ME™ () xa0%, MPE~ 00 |, (A.6)

00 x

where here y, indicates either of the dark scalars in (A.5). MK is a rank-3 mass matrix

and so leads to three non-zero masses for the dark fermions, all at the scale of U(1)x breaking
(i.e. the TeV scale).

A.2 Neutrino masses: estimating the scale of lepton flavour violation

If for simplicity we take ay = 9/10 (which is close to the best-fit value of ay = 0.87 obtained
in §4.2), the left-handed lepton doublets have the rational charges

Qpn = 3/20, Qp = 11/20, and Qup = —2/5, (A7)

which are, by construction, numerically almost equal to the charges in the benchmark case
as recorded in Table 2.

One can show that mass terms involving left-handed neutrinos first appear at dimension
six in the SMEFT, due to lepton flavour violating operators of the form

A%ZV GHE Hya, (A.8)

where again y, here denotes any dark scalar charged under U(1)x. After spontaneous break-
ing of U(1)x, these dimension six operators reduce to the familiar dimension five Weinberg
operators. Note the appearance of the scale Ajpy in this EFT expansion; recall Ay gy reflects
the scale of new physics which may break the global symmetries of the SM, in particular
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lepton flavour, in other words the scale at which our Z’ model breaks down. The lower scale
Arruv ~ 1 TeV is the cut-off scale at which the SMEFT breaks down, being resolved at
short-distances by our Z’ model.

We can populate the mass matrix c;; up to a single zero, viz.

if we introduce three more dark scalars transforming in representations

1 3 23
X3 < 3 707 5> y X4 ( ) 705 4> y X5 < ; aOa 20) ’ ( O)

which is known to be a sufficiently dense texture to accommodate present data on neutrino
masses and mixings. We emphasize that our construction of a viable dark sector in this
Appendix is intended as a proof of principle, and we do not intend for this setup to be
understood as being in any way a ‘minimal choice’.?!

Finally, we can now estimate the higher cut-off scale Arryv associated with lepton flavour
violation, using the scale of neutrino masses. At the level of naive dimensional analysis we
require

02v¢

s ~my, ~ 1077 TeV = Appy 2 10° TeV, (A.11)

Afpy
which sure enough far exceeds the TeV scale associated with the Z’ and LFUV effects such
as the measurements of Ry (.).

B Details of the fit to rare B decay data

In this Appendix we provide details about the fit to rare B meson decay data that we perform
to identify the preferred parameter space of our model.

We carry out two fits in the 3-dimensional parameter space of Wilson coefficients C,
C§ and Cf, = C%) = Cyp using flavio [67]. In fit 1, we include the measurements of LFU
ratios R and Ry~ from LHCD [3, 4] and Belle [94, 95], the combination of the By — uu
branching ratio from [13], that includes data from LHCb, CMS, and ATLAS [5-8], as well as
measurements of the branching ratios of the inclusive decays B — X /¢ from BaBar [96] and
Belle [97]. We find a compact region of parameter space that is compatible with the considered
data and we approximate the best fit region by a multivariate Gaussian. The corresponding

31For example, one could rescale the U(1)x charge of the scalar field ® introduced in the main text to play
the role of one of the five scalars y, discussed in this Appendix, thereby eliminating one scalar, as long as one
shifts the gauge coupling gx and the charge QQ of the vector-like quark accordingly.
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central values for the Wilson coefficients, their uncertainties and the correlation matrix are

Cl =0.37+£0.76 1 0.950.34
C§=113+078, p=1095 1 029]| ,  “clean observables” . (B.1)
Cho = 0.63 £ 0.29 0.340.29 1

In fit 2, we include in addition measurements of the branching ratios of the exclusive semilep-
tonic decays B* — K*uu, B® — Kupu, B® — K*%uu, B* — K**uu, By — ¢up and
Ay — App, as well as all available measurements of CP averaged angular coefficients in these
decays from LHCb, CMS, and ATLAS [10-12, 98-104]. The best fit region is given by

Cl = —0.71 4+ 0.24 1 0.650.19
C§=0124035 , p=[065 1 019 ,  “all observables” . (B.2)
Cio = 0.44 +0.19 0.190.19 1

Using egs. (4.6) and (4.7), the best fit regions in the parameter space of the Wilson coefficients
can be mapped onto the model parameters a., ay, and C. The result is shown in Fig. 2 for
the a. vs. ay plane, profiling over the normalisation factor C.
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