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We consider a framework where the Standard Model is augmented by a second SUð2Þ scalar doublet and
by a real scalar singlet that, protected by a Z2 symmetry, provides a particle dark matter candidate. We show

that this setup allows for doubly blind spots at both collider searches for anomalies in the Higgs invisible

decay width, and at direct dark matter detection. The blind spots originate from cancellations between

interfering diagrams featuring different neutral scalar exchanges and from cancellations driven by the two-

Higgs doublet structure in the vertex coupling the singlet state with the Standard-Model-like Higgs. We

demonstrate that the blind spots arise in a wide and generic array of realizations for the two-Higgs doublet

model, including scenarios with a nontrivial flavor structure. We provide analytical formulas that describe

the location of the blind spots in the theory parameter space, and we discuss the resulting phenomenology.
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I. INTRODUCTION

The physical origin and nature of the dark matter (DM)

that permeates the universe and underpins the formation

and evolution of structure is at present unknown (see

e.g., [1,2] for a review). A compelling possibility is that

of weakly interacting massive particles (WIMPs) [3], new

massive particles, neutral or close-to-neutral under electro-

magnetic and strong interactions, but possibly charged, or

mixed with particles which are charged under weak

interactions. Perhaps the most minimal possibility of the

former is a new, very massive SU(2) multiplet (a possibility

known as “minimal DM” [4]), and of the latter is a new real

scalar singlet (S) that interacts via a quartic coupling with

the standard model (SM) Higgs [5–11]. Here, we will be

concerned with this second possibility.

Part of the appeal of WIMPs is that they are, generically,

in thermal equilibrium in the early universe, eventually

decoupling (freezing out) with an abundance that often is in

the correct range to explain the observed amount of DM in

the universe. While a far-ranging program of direct and

indirect searches for WIMPs has been under way for

decades now, no conclusive signal has yet been reported

[12–16]: strong constraints exist as a result. In particular,

the simple possibility of a singlet scalar mentioned above

(SMþ S) is very strongly constrained; see e.g., [17].

Here, we consider a slight extension of the singlet scalar

DMmodel to a framework where the SM is enriched with a

second Higgs doublet (two-Higgs doublet model, or

2HDM) in addition to the real scalar singlet (we thus

dub this scenario 2HDMþ S). This case’s phenomenology

is significantly richer, ultimately because multiple new

particles now couple to the DM candidate. In particular,

here we are concerned with the possibility that blind spots

arise in the 2HDMþ S as a result of either (i) destructive

interference between diagrams involving different neutral

scalars or (ii) exact cancellations in the S coupling to the

SM-like Higgs.

Blind spots have been pointed out in the literature

before; see e.g., [18–29] in the context of supersymmetry

and [30,31] in the context of a two-Higgs doublet model.

However, the central point we make here is that the blind

spots in the 2HDMþ S scenario are largely generic; i.e.,

they arise in a wide variety of realizations for the imple-

mentation of the specific 2HDM. Second, we point out that

blind spots pertain to both collider searches (where one

looks for a deviation of the invisible Higgs decay width

from standard expectations) and direct DM detection, and

that, on occasion, the two blind spots can overlap.

The outline of our study is as follows: In Sec. II we lay

out the basic ingredients and parameters of the 2HDMþ S
model that we will discuss. In Sec. III we give an in-depth

look at how to form blind spots in a generic 2HDMþ S
setup. In Sec. IV we consider the broader implication of

these blind spots and how they can open up parameter

space that has previously been ruled out. Finally, we

conclude in Sec. V.
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II. GENERIC TWO HIGGS DOUBLET

MODEL + SINGLET

We consider a 2HDM with a generic flavor structure,

augmented with a real scalar singlet charged under a Z2

discrete symmetry: This means that we extend the SM with

a second Higgs doublet that can also couple to the SM

fermions, as well as a scalar singlet. We consider the most

generic Lagrangian for a 2HDM [32]. The part of the

Lagrangian that describes the Yukawa couplings of the two

Higgs doublets, ϕ1 and ϕ2, with the SM fermions in a

generic 2HDM looks like

−LYuk ¼
X

i;j

ðλuijðQ̄iujÞϕ̃1 þ λdijðQ̄idjÞϕ1 þ λeijðl̄iejÞϕ1

þ λ0uijðQ̄iujÞϕ̃2 þ λ0dijðQ̄idjÞϕ2 þ λ0eijðl̄iejÞϕ2Þ
þ H:c:; ð1Þ

for ϕ1 the “SM-like” SU(2) doublet and ϕ2 the additional

doublet, and ϕ̃i ¼ iσ2ϕ
�
i . After electroweak symmetry

breaking, assuming no CP violation, the 2HDM results

in five physical Higgs bosons: a light neutral scalar h
(which we identify with the 125 GeV Higgs), a heavy

neutral scalar H (heavy Higgs), a pseudoscalar A, and two

charged Higgs bosons H�.
The flavor structures in 2HDMs are determined by the

choice of Yukawa matrices λu, λ0u, and λd, λ0d, which then

fix the couplings of the fermions to the various Higgs

bosons. Common choices of these Yukawa matrices lead to

four well studied models with “natural flavor conserva-

tion”: type 1A, type 2A, flipped A, and lepton-specific A.

The common aspect of these models is that they avoid

flavor-changing neutral currents at tree level. This is

achieved by coupling all three generations of one type

of fermion to the same Higgs doublet [33]. The four ways

that this can be done are shown in Table I.

One can also construct models that allow for flavor-

changing neutral currents while being experimentally con-

sistent, such as flavorful 2HDMs (F2HDM) [34–37] (for

related models see e.g., [38–41]). F2HDMs differ from the

models with natural flavor conservation in that they treat the

third generation independently from the first two gener-

ations; this means that the third generation fermions couple

dominantly to the opposite Higgs doublet than their first and

second generation counterparts. There are four F2HDMs,

mirroring the four flavor diagonalmodels, referred to as type

1B, type 2B, flipped B, and lepton-specific B. For an in-

depth discussion see [36]. The flavor structures of the four

flavorful models are summarized in Table I.

As we will see, the flavor structure of the quarks has the

largest impact on the phenomenology of the DM in these

models. Of the eight possibilities discussed above (four

“type A” models and four “type B” models) there are only

four different ways to couple the quarks. Both up- and

down-type quarks can be coupled in the same way (type

1A=B, lepton-specific A=B) or they can be coupled in the

opposite way (type 2A=B, flipped A=B). Therefore, with-
out loss of generality, for this analysis we will focus on the

type 1A=B and type 2A=B models as they represent the

four unique ways to couple the quarks.

The characteristic pattern of Higgs couplings to the SM

quarks in the different types of 2HDMs is determined by

two angles: α and β, where α is the mixing between the two

neutral scalar components of the doublets ϕ1 and ϕ2, and

tan β ¼ v1=v2 is the ratio of the vacuum expectation values

of ϕ1 and ϕ2. The corresponding terms in the Lagrangian

which contain the physical scalar Higgs bosons and quarks

can be written as

L ⊃
X

q

q̄ qðyq;hhþ yq;HHÞ; ð2Þ

where yq;h and yq;H represent the flavor diagonal couplings

of the quarks q to the SM-like and heavy Higgs, respec-

tively. As discussed, these couplings are characteristic for a

given type of 2HDM. Concretely, in our four example

scenarios, the couplings of the SM-like Higgs can be

expressed in terms of α and β as

yt;h ¼
mt

v

cos α

sin β
all types; ð3aÞ

yb;h ¼
mb

v
×

(

cosα
sin β

type 1A; 1B

− sin α
cos β

type 2A; 2B
; ð3bÞ

ycðuÞ;h ¼
mcðuÞ
v

×

(

cos α
sin β

type 1A; 2A

− sin α
cos β

type 1B; 2B
; ð3cÞ

ysðdÞ;h ¼
msðdÞ
v

×

(

cos α
sin β

type 1A; 2B

− sin α
cos β

type 1B; 2A
; ð3dÞ

TABLE I. Summary of the way in which the SM quarks and

leptons couple to the Higgs doublets Φ and Φ
0 in each of the

considered models. In the models with natural flavor conserva-

tion (A), all three generations of each fermion type couple to the

same Higgs doublet. In the flavorful models (B), the first two

generations and the third generation couple to different Higgs

doublets.

Model u; c t d; s b e; μ τ

Type 1A ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

Type 1B ϕ2 ϕ1 ϕ2 ϕ1 ϕ2 ϕ1

Type 2A ϕ1 ϕ1 ϕ2 ϕ2 ϕ2 ϕ2

Type 2B ϕ2 ϕ1 ϕ1 ϕ2 ϕ1 ϕ2

Flipped A ϕ1 ϕ1 ϕ2 ϕ2 ϕ1 ϕ1

Flipped B ϕ2 ϕ1 ϕ1 ϕ2 ϕ2 ϕ1

Lepton-specific A ϕ1 ϕ1 ϕ1 ϕ1 ϕ2 ϕ2

Lepton-specific B ϕ2 ϕ1 ϕ2 ϕ1 ϕ1 ϕ2
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where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1
þ v2

2

p

≃ 246 GeV is the SM Higgs vacuum

expectation value (VEV). For the heavy Higgs boson we

have

yt;H ¼ mt

v

1

tan β

sin α

cos β
all types; ð4aÞ

yb;H ¼ mb

v
×

� 1

tan β
sin α
cos β

type 1A; 1B

tan β cos α
sin β

type 2A; 2B
; ð4bÞ

ycðuÞ;H ¼
mcðuÞ
v

×

� 1

tan β
sin α
cos β

type 1A; 2A

tan β cosα
sin β

type 1B; 2B
; ð4cÞ

ysðdÞ;H ¼
msðdÞ
v

×

� 1

tan β
sin α
cos β

type 1A; 2B

tan β cosα
sin β

type 1B; 2A
: ð4dÞ

Additional small corrections to the couplings are present

in the flavorful models (type 1B and type 2B). They are

proportional to small ratios of fermion masses and can be

found in [36].

The other ingredient in the framework we consider here

is a real scalar singlet S, which is assumed to be charged

under a discrete Z2 symmetry. This scalar singlet only

interacts with the SM through the “Higgs portal,” i.e.,

through gauge-invariant, renormalizable operators of the

type S2ϕ†
iϕj. The terms in the scalar potential that contain

the singlet S are

VS ¼ m2

SS
2 þ λSS

4 þ λS1 jϕ1j2S2 þ λS2 jϕ2j2S2

þ ðλS12ϕ
†

1
ϕ2 þ λ�S12ϕ

†

2
ϕ1ÞS2: ð5Þ

We assume that m2

S is positive such that S does not obtain a

vacuum expectation value and the Z2 symmetry that

stabilizes S remains unbroken. The quartic interactions

between the singlet S and the doublets ϕ1 and ϕ2 are

parametrized by the real couplings λS1 and λS2 and the in

general complex coupling λS12 .

In order to obtain the couplings of the DM S to the

physical Higgs bosons the Lagrangian must be rotated to

the mass basis. Defining the interactions with the mass

eigenstates as

L ⊃ S2ðhgSSh þHgSSH þ AgSSAÞ; ð6Þ

we find

gSSh ¼ vðλS1 sin β cos α − λS2 cos β sin αþ ReðλS12Þ
× ðcos β cos α − sin β sin αÞÞ; ð7aÞ

gSSH ¼ vðλS1 sin β sin αþ λS2 cos β cos α

þ ReðλS12Þðsin β cos αþ cos β sin αÞÞ; ð7bÞ

gSSA ¼ −vℑðλS12Þ: ð7cÞ

In the following we will assume that the tree-level scalar

potential conserves CP, and therefore set ℑðλS12Þ ¼ 0, such

that there are no couplings between the dark matter and a

single pseudoscalar Higgs. This choice has little impact on

our main results. The pseudoscalar interactions lead to spin

dependent dark matter scattering, and the corresponding

bounds are several orders of magnitude weaker than those

from spin independent scattering mediated by the scalars.

III. EXPERIMENTAL CONSTRAINTS

AND BLIND SPOTS

We consider four constraints on the framework under

consideration: the thermal relic density of the dark matter

candidate (which we enforce to be reflective of the

universal dark matter density), spin-independent direct

detection, indirect detection via gamma-ray observations,

and invisible Higgs decays. Other DM models with

extended Higgs sectors can also be constrained by

di-Higgs þ missing transverse energy (MET) searches,

but these constraints are weak in this model [42]. In this

section we show how the parameters of this model can

conspire such to create blind spots in the constraints from

direct detection experiments and invisible Higgs decays.

The relic density refers to the abundance of DM particles

left over from freeze-out in the early universe versus the

inferred abundance of cosmological DM. The latter was

measured by PLANCK (utilizing other data sets as well) to

beΩh2 ¼ 0.1198� 0.0015 [43]. Any viable DM candidate

must predict the relic density to be no greater than Ωh2,
barring modification to the universe’s expansion history. In

our model we consider a standard freeze-out scenario

where the DM is in thermal equilibrium with the SM in

the early universe, which we assume to be radiation

dominated. At this time the DM can annihilate into SM

particles, but eventually falls out of thermal equilibrium

leaving behind some relic abundance.

DM is abundant in many astrophysical objects, and the

annihilation of DM into SM particles can generically lead

to an excess of gamma rays. Indirect detection searches for

signatures of DM in gamma ray spectra, and sets con-

straints on DM models in the absence of any significant

excess over background [12–15]. Notice that the annihi-

lation of DM into SM particles is a relevant process for both

determining the relic abundance and understanding indirect

detection, so these two processes are correlated, even

though the relevant center-of-mass energy for the thermal

decoupling process is biased at slightly larger values since

the decoupling happens at finite temperature.

Direct detection experiments use nucleons as a target for

DM to scatter. When the DM scatters off of nuclei, the latter

subsequently recoil; this recoil can then be measured and

provides information on the mass and coupling of the DM

(see e.g., [44] for a recent review). In simple scalar DM

models the Higgs mediates the DM-nucleon interaction via

direct interaction with the light constituent quarks of the
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nucleons, or through heavy quark loops with gluons, as

shown in Fig. 1. The addition of a second Higgs doublet

allows for a second mediator to this process and, generi-

cally, the scattering amplitudes can destructively interfere,

leading to suppression in the direct detection bounds. This

is one of the blind spots we consider below.

Low mass DM, mS <
1

2
mh, can also be produced at

colliders through the decay of the SM-like Higgs h → SS,
which results in an invisible decay of the Higgs. Both the

ATLAS and CMS experiments are searching for invisible

Higgs decays and are setting bounds on the Higgs to the

invisible branching ratio [45,46]. The most stringent direct

bound comes from CMS and reads BRðh → invisibleÞ
<19% [45]. The decay rate of h → SS is determined in

large part by the coupling of gSSh, the effective coupling of

the Higgs to the DM. Similar to direct detection, there exist

regions of parameter space in our model which make gSSh
small, effectively avoiding invisible Higgs constraints. This

is the second type of blind spot we will consider.

A. Blind spots in direct detection

First, we consider the blind spot in direct detection

experiments. The spin-independent DM scattering cross

section (σSIDM) on a nucleon N reads

σSIDM¼ 1

8πðmNþmSÞ2

×

�

�

�

�

X

X¼h;H

gSSXm
2
N

m2
X

�

X

q¼u;d;s

yq;XfTqþ
X

q¼c;b;t

2

27
yq;XfTG

��

�

�

�

2

:

ð8Þ

The parameters yq;X represent the couplings of the quarks

to the SM-like Higgs and heavy Higgs and are given in

Eqs. (3) and (4). The couplings of the DM to the Higgs

bosons, gSSX, are given in Eq. (7). The parameters fTq and

fTG represent the nucleon form factors for the quarks

interacting with the nucleons in the detector [47], and other

calculations of these parameters can be found in [48,49].

Blind spots occur for σSIDM ¼ 0, so we must have that

gSSh

gSSH

m2
H

m2

h

¼−

P

q¼u;d;syq;HfTqþ
P

q¼c;b;t
2

27
yq;HfTG

P

q¼u;d;syq;hfTqþ
P

q¼c;b;t
2

27
yq;hfTG

: ð9Þ

Note that to obtain this condition no statement has been

made about the flavor structure of the 2HDM. Therefore,

this cancellation is a generic feature of 2HDMþ S models

and is ultimately fixed by the choice of quartic scalar

couplings λS1 , λS2 , and λS12 ; the flavor structure (“type”) of

2HDM; and the 2HDM parameters α, β, and mH. Although

this is a generic feature of any flavor structure, here we

focus on the type 1A, type 1B, type 2A, and type 2B

structures. As discussed above, the type 1A=B and type

2A=B models represent the four ways of coupling the

quarks in the standard flavor conserving 2HDMs and

flavorful 2HDMs. By analyzing these four models we

obtain a representative overview of the phenomenology of

the blind spots in 2HDMþ S models and how they are

affected by the choice of flavor structure.

In Fig. 2 we show where the direct detection cancellation

arises in the λS1 vs λS2 plane for an exemplary choice of the

other model parameters: mH ¼ 300 GeV, cosðβ − αÞ ¼ 0,

tan β ¼ 5, and λS12 ¼ 0. The choice cos ðβ − αÞ ¼ 0 [or

more generally, cos ðβ − αÞ ≪ 1] corresponds to SM-like

FIG. 1. The two leading order Feynman diagrams that con-

tribute to the direct detection cross section. Left: tree-level

scattering of the singlet S, through either the SM-like or heavy

Higgs off of light quarks ql. Right: scattering of the DM through

loops of heavy quarks qh with the gluons in the nucleon.

FIG. 2. Bands corresponding to the position of the direct

detection blind spot in the plane of the quartic scalar couplings

λS1 and λS2 . The finite widths of the shown bands correspond to a

variation of the nuclear form factors by 1σ. We show the blind

spot regions in four types of 2HDMs: type 1A (orange line), 2A

(purple line), 1B (red line), and 2B (green line).
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couplings of the light Higgs boson h. This is motivated by

the good agreement of Higgs couplings measurements at

the LHC with SM predictions [50–57]. Setting the coupling

λS12 to zero can be enforced by a Peccei-Quinn–type

symmetry acting on the Higgs doublets [58].

The width of the bands in Fig. 2 corresponds to a 1σ

variation of the nucleon form factors [47]. For type 1A

models the cancellation occurs for a larger hierarchy

between λS1 and λS2 as compared to other types of models.

This is because all the couplings to the heavy Higgs are

subleading in this model, causing the cancellation between

the diagrams occurring at smaller values of gSSh, and hence
generally smaller values of λS1 . The other three flavor

structures all have similar values for quartic couplings in

the cancellation regions as the heavy Higgs plays a larger

role forcing gSSh to take on larger values than in the type 1A
model. The precise location of the cancellation regions also

depends on the choice of tan β andmH. Larger values ofmH

generically require larger values of λS2 for the cancellation

to occur.

Note that the cancellation arises if one of the two quartic

couplings λS1 or λS2 are negative. Negative terms in the

potential can lead to the potential being unbounded from

below, meaning there could exist field directions for

which the potential goes to negative infinity. To study this

possibility, we parametrize the three neutral scalar direc-

tions as follows:

S ¼ R cos θ; ð10Þ

ϕ0

1
¼ R sin θ cosϕ; ð11Þ

ϕ0

2
¼ R sin θ sinϕ; ð12Þ

and study the positivity of the largest powers of R, which is

R4, in the potential on the sphere defined by the angles θ;ϕ.
The requirement that the potential be positive as R → ∞

then reads

λS1 sin θ
2 cos θ2 cosϕ2 þ λS2 sin θ

2 cos θ2 sinϕ2

þ λS cos θ
4 þ 2λS12 sin θ

2 cos θ2 sinϕ cosϕ

þ λ1

2
sin θ4 cosϕ4 þ λ2

2
sin θ4 sinϕ4

þ λ345 sin θ
4 cosϕ2 sinϕ2 > 0; ð13Þ

where the λi, i ¼ 1;…; 5 are quartic couplings in the

2HDM potential as defined in [32] and λ345 ¼
λ3 þ λ4 þ λ5. In the region of interest to us, λS1 takes

smaller values compared to λS2 . For this reason we take λS1
to be negative; under this assumption and assuming that λS,

λ1, λ2, λ345 are Oð1Þ and positive, then Eq. (13) can always
be satisfied, and thus the potential is stable.

B. Blind spots in invisible Higgs decays

The second blind spot occurs for invisible Higgs decays.

The decay width of the Higgs to the DM is given by

Γðh → SSÞ ¼ g2SSh
32πmh

�

1 − 4
m2

S

m2

h

�

1=2

: ð14Þ

From this expression it is clear that we have a blind spot

centered around gSSh ¼ 0. Using Eq. (7) we see that this

cancellation occurs when

λS1
λS2

¼ tan α

tan β
; ð15Þ

where we have set λS12 ¼ 0. For simplicity, we keep this

choice for the remainder of the analysis, but note that this

gives no fundamental difference to the analysis. Blind spots

exist for any choice of λS12 and are simply shifted in the

parameter space when λS12 ≠ 0.

By imposing that the invisible Higgs branching ratio

BRðh → SSÞ < 0.19 [45], we find that gSSh=v has to be less
than Oð0.1Þ (the exact value changes depending on the

choice of mS). We show, in Fig. 3, under which conditions

the direct detection cancellations overlap with parameter

space where gSSh is sufficiently small to avoid invisible

Higgs decay constraints. We show this for the DM matter

mass ofmS ¼ 45 GeV, with various choices for λS1 and λS2
(corresponding to the four panels in Fig. 3). Invisible Higgs

decays exclude the region shaded in blue, with the exact

cancellation line in dashed blue. The bound and the

cancellation line depend on the choice of λS1 and λS2 but

are independent of the type of 2HDM. Overlaid are the

direct detection blind spots that occur for our four bench-

mark 2HDMs for two masses of the heavy Higgs mH ¼
300 GeV or mH ¼ 1000 GeV. For a heavy Higgs mass of

300 GeV, the direct detection cancellation in the type 2A,

type 1B, and type 2B occurs for values of tan β outside the

shown plot range.

The type 1A model avoids the constraints most easily

as regardless of the parameters of the model the cancel-

lation regions for direct detection and invisible Higgs

decay are generally very similar. As mentioned above, in

the type 1A model the quarks primarily couple to the

SM-Higgs and thus the direct detection cancellation is

driven by gSSh being small just as invisible Higgs decay.

For the other models we see that generally as λS1 is

lowered, the bound from the invisible Higgs decays is

weakened. However, as we will see below, this also

generally coincides with regions of parameter space where

the DM is overabundant. With this in mind the most

promising parameter space for “double blind spots”

occurs for moderate values of λS1 and λS2 .
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C. Fine-tuning of the blind spots

The question of how “natural” the blind spots we point

out are is connected to what extent the parameters must be

finely tuned for those blind spots to occur. Fine-tuning

refers to scenarios in which a single or several parameters

must take on very specific values in order for a model to be

consistent. The presence of accidental cancellations in our

model could be associated with potentially large fine-

tuning. One way to quantify the fine-tuning of a function

is to employ the quantity [59]

gðx⃗Þ ¼
X

n

i¼1

�

�

�

�

xi

fðxiÞ
∂fðxiÞ
∂xi

�

�

�

�

; ð16Þ

where gðx⃗Þ is the amount of tuning in the function fðx⃗Þ. We

show the fine-tuning of our model in Fig. 4, where xi ¼ λSi ,

i ¼ 1; 2, considering both the direct detection cross section
and the invisible Higgs width. Generally, the tuning is mild

in both models, but as expected the tuning gets very large

directly at the cancellation lines. As we will discuss later

based on current experimental constraints, one does not

necessarily need to live exactly on this constraint, particu-

larly for higher darkmattermasses. So, there is still probable

parameter space that does not suffer from large fine-tuning.

However, for low mass DM the tuning can be quite large.

IV. PHENOMENOLOGY OF BLIND SPOTS

In order to better understand the physical parameter

space of the blind spots and the resulting phenomenology,

we study the cancellations in the context of the four

2HDMs discussed above (type 1A, type 2A, type 1B, type

2B). We implement the four models in the micrOMEGAs

framework [60], modifying the default inert doublet model

of micrOMEGAs to have the coupling structures under

consideration, and use this to calculate the relic density and

indirect detection limits. The direct detection cross section

and invisible Higgs decay strengths are calculated analyti-

cally from the expressions in Eqs. (8) and (14).

FIG. 3. Regions of parameter space in the cos β − α vs tan β plane with blind spots for invisible Higgs decays for DM mass

mS ¼ 45 GeV and heavy Higgs massmH ¼ 300 GeV ormH ¼ 1000 GeV. The region excluded by invisible Higgs decays is shaded in

blue, with the exact cancellation line in dashed blue. The bound and the cancellation line depend on the choice of λS1 and λS2 but are

independent of the 2HDM flavor structure. Overlaid are the direct detection blind spots that occur for our four benchmark 2HDMs.
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We explore the parameter space of the quartic couplings

λS1 and λS2 for various choices of the dark matter mass mS,

the 2HDM parameters cosðβ − αÞ and tan β, and the type

of 2HDM.

In Fig. 5, we focus on the type 1A model and vary

mS ¼ 10; 30; 50; 300; 1000 GeV for fixed cosðβ − αÞ ¼ 0,

tan β ¼ 5 (as in Fig. 2). The white regions are allowed by

all constraints. We see that generally as the DM mass is

FIG. 4. The fine-tuning of the direct detection blind spot (left) and the invisible Higgs decay blind spot (right) in the λS1 vs λS2 plane,

for the type 1A model. The darker regions represent areas of higher tuning. For direct detection the black lines show the contours for the

tuning, and the blue line shows where the exact cancellation lies. For invisible Higgs decays the black lines show the contours for the

tuning, and the pink line shows the exact cancellation.

FIG. 5. Constraints in the λS1 vs λS2 plane in the type 1A model for cosðβ − αÞ ¼ 0, tan β ¼ 5,mH ¼ 300 GeV, and various increasing

values of dark matter mass mS. The color coding of the various constraints is specified in the legend.
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increased, the constraints on the model are weakened. The

two phenomenologically distinct regions of parameter

space are when the DM mass is below and above half

the Higgs mass. IfmS >
1

2
mh, the constraints from invisible

Higgs decays are automatically avoided. The constraints

from direct detection are also particularly strong for the

chosen lighter dark matter masses, mS ¼ 10; 30; 50 GeV.

For those masses only a thin band close to the direct

detection blind spot corresponds to viable parameter space.

With this in mind, in the following we consider two

benchmark masses of mS ¼ 45 GeV and mS ¼ 300 GeV.

In Fig. 6 we show how the parameter space varies for

different angles cosðβ − αÞ and tan β. We observe that

moderate values of tan β are favorable for these scenarios.

As tan β gets small, the couplings of the quarks to the heavy

Higgs increases (for the type 1A model), which causes

destructive interference between the annihilation channels

of DM through SM-like and heavy Higgs which constrains

small values of tan β (this is specific to the type 1A model).

We do not find viable parameter space for tan β ≳ 10 due to

stronger constraints from direct detection and the relic

density. This gives us a sweet spot for moderate values of

tan β where the DM can efficiently annihilate in the

early universe. cosðβ − αÞ has only a small impact on

the results, making the relic density only slightly more

constraining. Considering this along with the constraints on

the 2HDM parameter space, as shown in [36], we focus on

the benchmark case of cosðβ − αÞ ¼ 0; tan β ¼ 5 in the

following.

In Fig. 7 we show the constraints for fixed dark matter

mass mS ¼ 45 in the different types of 2HDMs. In the type

2A, type 1B, and type 2B models, the low DM mass

regions are still highly constrained by the combination of

relic density, direct detection, and invisible Higgs decays.

In particular, in the region where DM is not overabundant

the direct detection blind spots and the invisible Higgs

blind spots do not overlap in these types. Only in the type

1A model do we have a viable doubly blind spot, where

direct detection and invisible Higgs decays are simulta-

neously avoided. However, in order for this doubly blind

spot to occur we see that the fine-tuning must be quite high

as shown in Fig. 4. Although the doubly blind spot only

occurs for one of the benchmark models, it is still in stark

contrast to simple SMþ SWIMP models where this region

is ruled out by both direct detection and invisible Higgs

decays.

Future experiments prove promising for the remaining

parameter space of this low mass dark matter. Projections

FIG. 6. Constraints in the λS1 vs λS2 plane in the type 1A model for a dark matter mass mS ¼ 45 GeV and heavy Higgs mass

mH ¼ 300 GeV, varying the values for cosðβ − αÞ, tan β. The color coding of the constraints is as in Fig. 5.
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from the high luminosity LHC (HL-LHC) show a future

sensitivity of BRðh → SSÞ < 0.025 [61] and future direct

detection experiments which will improve the measurement

of the nucleon cross section by more than an order of

magnitude [62,63]. Given this sensitivity nearly all masses

such that mS <
1

2
mh will be probed.

Finally the benchmark case of a heavy dark matter mass

mS ¼ 300 GeV is shown in Fig. 8 for the four types of

2HDMs. In this high mass region DM direct detection

constraints are alleviated in a much larger portion of

parameter space for all four flavor structures and the

invisible Higgs constraint is completely absent. This shows

that for a variety of flavor structure when the DM mass is

high we can expect the direct detection blind spot to open

up a large portion parameter space. This blind spot becomes

more confined as one lowers the DM mass and more

generous as one increases the mass. Similarly, the relic

density constraints are much weaker for the high mass DM

candidates. Overall, this leads to some viable parameter

space in all four benchmark models. Additionally, the

viable parameter space in the high DM mass regime can

exist quite far from the cancellation lines, where the fine-

tuning is low, unlike the low mass case where the viable

parameter space only occurs in high fine-tuning regions.

We also see that the nonstandard flavor structures of the

type B models allow for an even more generous parameter

space than the traditional flavor diagonal structures for the

high mass DM benchmark. As discussed in the low mass

case, future direct detections will continue to constrain this

parameter space; however, without the additional constraint

from invisible Higgs decays, there will still be a large

amount of parameter space.

It is important to remember that for all DM masses

explored above, the SMþ S model is already excluded by

FIG. 7. Constraints in the λS1 vs λS2 plane for dark matter mass mS ¼ 45 GeV, heavy Higgs mass mH ¼ 300 GeV, cosðβ − αÞ ¼ 0,

and tan β ¼ 5. We show type 1A (top left), type 2A (top right), type 1B (bottom left), and type 2B (bottom right). The color coding of the

constraints is as in Fig. 5.
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either direct detection or invisible Higgs decays (outside of

the resonant region). So, by adding a second Higgs doublet

we provide regions of parameter space where DM candi-

dates can exist at much lower masses than are possible in

the SMþ S case. Additionally, although we explored

several fixed flavor structures, the cancellations can occur

for any generic flavor structur, and are in no way associated

with only the structures considered here.

V. CONCLUSIONS

The WIMP DM paradigm is a simple explanation to the

question of the nature of the dark matter in the universe.

However, in recent years such a paradigm has come under

greater and greater pressure as a result of constraints from

direct detection experiments as well as from results on the

invisible Higgs decay modes. In this work we presented a

model where one can take advantage of a second Higgs

doublet in order to evade the constraints which invalidate

most regions of parameter space of simpler WIMP models

based on the existence of a singlet scalar field.

In particular, we find at DMmasses below half the Higgs

mass mS <
1

2
mh that one can evade both direct detection

and invisible Higgs decay constraints for flavor structures

that are type 1A–like as a result of generic blind spots

producing exact or approximate cancellations. Such can-

cellations depend in detail on the choice of the 2HDM

parameters cosðβ − αÞ, tan β, and mH, but generally persist

when the couplings of the fermions are primarily associated

with the SM-like Higgs.

We also consider the scenario where the DM mass is

large,mS >
1

2
mh, where we find that direct detection can be

avoided for all considered 2HDM flavor structures. This

primarily arises because one no longer needs to avoid the

constraints imposed by invisible Higgs decays. Generically,

we see that as the dark matter mass increases, the parameter

FIG. 8. Constraints in the λS1 vs λS2 plane formS ¼ 300 GeV,mH ¼ 300 GeV, cosðβ − αÞ ¼ 0, and tan β ¼ 5. We show type 1A (top

left), type 2A (top right), type 1B (bottom left), and type 2B (bottom right). The color coding of the constraints is as in Fig. 5.
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space further opens up. There is also a weak dependence on

the choice of cosðβ − αÞ, tan β, and mH. Mostly these

choices affect the constraint of the relic density. Smaller

values of cosðβ − αÞ and tan β typically result in a more

open parameter space.

Overall, we find that with the inclusion of a second

Higgs doublet one can access a much larger range of DM

masses than in simpler models. This depends somewhat on

the flavor structure of these models; however, in all the

flavor structures considered, blind spots that facilitate the

evasion of direct detection and collider constraints do exist,

and, more generally, as we showed, blind spots can exist in

any generic 2HDM setup.
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