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Stem cells, including mesenchymal stem cells and pluripotent stem cells, have attracted considerable attention
in tissue engineering and regenerative medicine primarily because of their unique ability in self-renewal and
multilineage differentiation. However, stem cells also have important secretory functions that form a special-
ized in vivo microenvironment and direct tissue development and regeneration. Extracellular matrices (ECMs)
derived from stem cells retain the functional properties of their native environment and exhibit unique signaling
that mediates stem cell self-renewal and lineage commitment. Stem cell-derived ECMs (scECMs) also have
tunable properties corresponding to their developmental stages, suggesting that their lineage- and develop-
mental specificity can be engineered for a wide range of applications. Hence, there is a growing interest in
reconstructing stem cell microenvironment through decellularization and obtaining decellularized matrices that
exhibit unique biological properties. This article summarizes recent advances in the use and understanding of
scECMs. Moreover, future directions to extend the spectrum of applications of stem-derived ECMs in tissue
engineering by comprehensively elucidating and engineering their regulatory function is highlighted.
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Impact Statement

Stem cells bear unique potency for multilineage differentiation as well as the capacity to secrete a vast amount of regulatory
molecules. At different developmental stages, the extracellular matrices (ECMs) secreted by stem cells regulate their
microenvironment and direct tissue development. The decellularization of stem cells effectively preserves ECM functional
properties and can provide suitable templates to regulate stem cell fate decision, which can hardly be reproduced using
single ECM proteins or synthetic scaffolds. This review highlights the unique regulatory functions of stem cell-derived
ECMs, which can serve as novel sources of highly bioactive materials for tissue engineering and cell therapy.

Introduction

IN RECENT YEARS, stem cells, including adult mesenchy-
mal stem cells (MSCs) and pluripotent stem cells (PSCs),
have emerged as promising tools for tissue engineering,
drug screening, and disease modeling.' MSCs, derived from
connective tissues such as bone marrow stroma, adipose
tissues, and umbilical cords, have differentiation potentials
along adipogenic, osteogenic, and chondrogenic lineages.”
MSC:s also have broad trophic activities, including immune
regulatory properties, the secretion of various growth factors
that can stimulate the differentiation of endogenous progeni-
tors in tissues, and proangiogenic function.” Due to these

unique properties, MSCs have been tested in more than 1000
clinical trials (www.clinicaltrials.gov) to treat a variety of
diseases.

Different from MSCs, PSCs, including embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs),
have extensive self-renewal ability and lineage-specific
differentiation potential into cells from all the three germ
layers.® Due to the ability to recapitulate embryonic devel-
opment, PSCs provide a unique platform for drug screening,
pathological disease modeling, and stem cell therapy.’

Both MSCs and PSCs share two defining properties of
stem cells: the ability to self-renewal and to differentiate
into specific lineages, which enable MSCs to maintain
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ACELLULAR MATRICES DERIVED FROM STEM CELLS

normal mesenchymal tissue turnover and for PSCs to gen-
erate all tissue types.®® These processes are in a large part
sustained by the interactions between stem cells and their
extracellular microenvironments.'”

In vivo, MSCs in the bone marrow interact with a com-
plex extracellular matrix (ECM) network, which can re-
model with time and release endogenous and exogenous
signaling molecules to support hematopoietic stem cells and
induce lineage-specific differentiation.'"'> Similarly, PSC
proliferation and differentiation recapitulate embryonic tis-
sue development and are accompanied by dynamic re-
modeling of ECMs and local gradients of morphogens.'*™"
Hence, ECM proteins and regulatory factors surrounding
stem cells form a regulatory niche and play essential roles in
modulating stem cell fate.'®!'” Understanding and recapit-
ulating the characteristics of stem cell microenvironment
should significantly improve our ability to control stem cell
fate in tissue regeneration and cell therapy.

In culture, both MSCs and PSCs are able to secrete a
large amount of endogenous ECMs, which reflect their de-
velopmental stages'®?° and the characteristics of their
in vivo microenvironments.*"** Decellularization of tissues
or cultured cells can effectively preserve intact ECM pro-
teins and the bound regulatory growth factors while re-
moving cellular components (DNA, lipids, etc.) that could
lead to immunogenicity in vivo (Fig. 1).>>7>> The stem cell-
derived ECMs (scECM) can be readily obtained from cul-
tured stem cells through decellularization and have been
shown to contain a broad spectrum of paracrine and auto-
crine factors.'*1%?*2% These acellular matrices have been
shown to retain specific signaling cues and structural fea-
tures that direct stem cell fate in vitro and tissue regenera-
tion in vivo.'>'*?’! Decellularized ECMs have also been
used as coating agents or directly as 3D scaffolds to con-
struct functional tissues.'®*>=* This review investigates
the roles of decellularized matrices derived from MSCs and
PSCs in modulating stem cell fate decisions. Specifically,
recent advances are summarized to understand the specific
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molecules and signaling of decellularized matrices toward a
better utilization of sScECMs as versatile bioactive scaffolds
in tissue engineering and regeneration.

Stem Cell-Derived Extracellular Matrices
and Their Role in Directing Stem Cell Fate Decisions

In vivo, stem cells reside in specialized niches that are
known to regulate stem cell fate throughout their life span.'
Among various niche factors, such as cytokines, cell-cell
contacts, and adhesion molecules, ECMs play a central role
in orchestrating endogenous and exogenous signals. The
ECM network not only provides structural support but also
regulates stem cell behaviors through biochemical compo-
sition, sequestration of bioactive factors, and presentation of
biomechanical cues.'®

The biochemical composition of ECMs regulates stem
cell proliferation and differentiation through EC—integrin
interactions (Fig. 1A). Indeed, to sustain self-renewal, hu-
man PSCs (hPSCs) are usually grown on Matrigel (the main
component is laminin) or vitronectin through binding with
a6B1 or avP5 integrins, respectively.>®>” Similarly, a com-
bination of collagen I, collagen IV, fibronectin, and laminin
or vitronectin was reported to promote the propagatlon of
human ESCs (hESCs) at the undifferentiated state.” Mouse
ESCs remain at an undifferentiated state on collagen type I
and type IV or poly-p-lysine, while they spontaneously
differentiate on laminin and fibronectin due to different
ECM-integrin interactions.” Conversely, neural differenti-
ation of hESCs was shown to be promoted on laminin, while
a mixture of fibronectin and vitronectin favored endodermal
commitment and collagen type IV-induced mesodermal
differentiation.'>*%*! For MSCs, cell proliferation was dif-
ferentially regulated on collagen type IV, vitronectin, fi-
bronectin, and laminin that is mediated by multiple B1
integrins or avB3 integrin for vitronectin.**** In addition,
osteogenic differentiation of MSCs was found to be pro-
moted on collagen type I and vitronectin. However,
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the denatured form of collagen I favors adipogenic differ-
entiation due to integrin-mediated signaling,**** while
chondrogenic differentiation is promoted on collagen type 11
and chondroitin sulfate.*’

ECMs not only support cell adhesion through integrin
binding but also enhance the stability of growth factors by
providing the binding sites that can regulate their release
and prolong biological potency (Fig. 1B).'®4® Binding with
ECMs also potentiates the effects of growth factors com-
pared with their unbounded counterparts. The enhancement
of growth factor activity through ECM binding has been
observed for hepatocyte growth factor (HGF), bone mor-
phogenetic protein (BMP)-2 and -4, and acidic fibroblast
growth factor (FGF) during hESC hepatic differentiation.*’
Our prior study evaluated matrix-bound FGF-2 and the re-
sults show that ECMs decellularized from human MSCs
retain their binding capacity to both exogenous and en-
dogenous FGF-2.'® Similarly, the release of endogenous
BMP-2 and insulin-like growth factor (IGF)-1 from decel-
lularized matrix of bone marrow and adipose tissue-derived
MSCs was demonstrated to enhance osteogenic differenti-
ation of reseeded MSCs.*®

The topography of the ECMs is also a potent regulator
of stem cell fate (Fig. 1C, D). The nanostructure of the
substrates was shown to affect the binding of ECM proteins
such as fibronectin and laminin due to local curvature,
which influences the adsorption of ECM proteins.***° In
addition, osteogenesis of MSCs was enhanced on rough
surfaces while smooth surfaces favored adipogenesis of
MSCs. Similarly, the self-renewal of hESCs was promoted
on smooth surfaces (with roughness of 1 nm) whereas rough
surfaces (with roughness of 150 nm) led to spontaneous dif-
ferentiation through signal transduction through E-cadherin-
mediated cell—cell interactions.’™' These observations
indicate that mimicking the nanostructure of cellular mi-
croenvironment may be able to predict the stem cell fate.

Recently, the mechanical property of ECMs was found to
play a critical role in lineage commitment of stem cells.>?
The increased matrix stiffness (e.g., 34 kPa) was shown to
enhance osteogenic differentiation of MSCs, while soft sub-
strates (e.g, 1kPa) favored chondrogenesis or adipo-
genesis.”> > This indicates that MSC differentiation due
to mechanical cues (i.e., elastic modulus) primarily corre-
sponds to in vivo localization of the cells. The induced os-
teogenesis of MSCs on stiff ECMs may mimic what occurs
in the bone marrow. For mouse ESCs, soft matrices can
support self-renewal by generating low cell-matrix tractions
and low cellular stiffness, while hard substrates can induce
the differentiation toward mesodermal and endodermal lin-
eages.’®” In contrast, hESC propagation at undifferentiated
state was promoted on stiff substrates by activation of
paralogous proteins, Yes-associated protein (YAP)-tran-
scriptional coactivator with a PDZ-binding domain (TAZ),
while mesodermal, endodermal, and ectodermal differenti-
ations were differentially induced in an elastic modulus-
dependent manner.’®*>° YAP-TAZ has been recognized
recently as a potent regulator for mechanotransduction sig-
naling in stem cells.®*!

Different from simple ECM mixtures, the sScECMs have
specific functional and signaling capacity that cannot be
readily reproduced using single ECM proteins or synthetic
matrices.'**** The dynamic ECM remodeling and the se-
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questration and release kinetics of ECM—growth factor in-
teractions actively coordinate the signaling cascade during
stem cell self-renewal and lineage commitment, providing a
broader spectrum of signaling specificity corresponding to
the specific tissue development stage that is absent in ECMs
derived from somatic cells.'>?"**%66% These properties
provide the opportunity to tailor ScECM properties for spe-
cific in vitro and in vivo applications. For example, trans-
plantation of MSC-derived ECMs was reported to enhance
bone repair in vivo by extending site-specific human MSC
retention, and substantially improved clinical outcome.?*%*
hPSC-derived ECMs have also been shown to contain
growth factors acting on the transforming growth factor
(TGF)-B/Nodal pathways, which can sug)ort hPSC propa-
gation and suppress tumor phenotype.®>®> The dynamic
interactions of scECMs with paracrine and autocrine growth
factors constitute unique microenvironments to regulate
stem cell fate decisions.

Derivation and Characterization of scECMs
Decellularization methods

Preserving the biochemical, biological, and biophysical
properties of scECM is a focus of current ECM research,
and various decellularization methods developed for soma-
tic tissues and organs have been tested for stem cell cultures
(Table 1).23 Among these methods, mechanical disruption
and chemical agent treatments have been mostly used to
remove cellular materials while retaining signaling mole-
cules and structural properties.

Mechanical decellularization methods include freeze
dryin§ through lyophilization, sonication, or pressuriza-
tion.>>%%7 Freeze-drying cycles were reported to disrupt
cell membrane and release intracellular materials (e.g.,
DNA, organelles) of PSC-derived embryoid bodies (EBs).%¢
This method also demonstrates the partial retention of ECM
proteins such as collagen and glycosaminoglycans (GAGs)
as well as ECM-bound growth factors, such as TGF-f1,
IGF-1, and vascular endothelial growth factor (VEGF).68
However, freeze drying, sonication, or pressurization may
alter the ECM protein structure (such as collagen fibers) and
the mechanical properties of ECMs.%”%

Chemical methods use agents such as Triton X-100, so-
dium deoxycholate (SDC), and sodium dodecyl sulfate
(SDS) to remove cellular materials (Table 1). Triton X-100
can break DNA—protein, lipid-lipid, and lipid—protein con-
nections in various stem cell organizations.'”**’" Studies
have shown that the decellularization by Triton X-100 does
not alter ECM structure and that the decellularized ECMs
retain their capacity to bind and maintain the bioactivity of
growth factors. For example, Triton X-100 does not change
laminin self-assembly,”" the binding of fibronectin to gela-
tin and heparin,”* or the heparin-binding affinity of vi-
tronectin.”>’* This nonionic detergent also enables the
retention of platelet-derived growth factor (PDGF), BMP-4,
epidermal growth factor (EGF), FGF-2, HGF, and VEGF,
and preserves the bioactivity of the bound growth factors
such as FGF-2.75"77 However, Triton X-100 may denature
GAG content and affect collagen fiber structure.’® Both SDS
and SDC can solubilize the cell and nucleic membranes. But
SDS tends to denature the ECM proteins such as fibronectin
and decrease the factor-binding affinities to the ECMs such
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as FGF-2, VEGF, and TGF-B1.”> SDC was reported to be
more disruptive than SDS, leading to the degradation of
ECM structure and GAGs, limiting the growth factor reten-
tion.”® Bases such as calcium hydroxide, sodium sulfide, and
sodium hydroxide can solubilize cytoplasmic components
and disrupt nucleic acids.”® However, bases are reported to
partially remove the growth factors and alter the ECM
mechanical properties. Alternatively, DNAses and RNAses
are able to cleave cellular nucleic acids without affecting the
protein content of ECMs and have been commonly used
in deriving scECMs.”® Altogether, mechanical and chemical
decellularization methods can efficiently remove cellular
materials. However, the retention of ECM proteins, growth
factors, and mechanical properties is highly variable among
various methods and cell or tissue sources, and thus need to
be evaluated for particular applications. Taken together,
while mechanical methods are preferred for the decellular-
ization of large tissues, chemical treatments (e.g., Triton
X-100) that diffuse more efficiently into small stem cell
aggregates or monolayers may be more effective to preserve
regulatory function of native scECMs (Table 1).

Decellularized ECM characterizations

To ensure the efficiency of decellularization processes,
scECMs are usually characterized by the absence of re-
maining cellular DNA, which is achieved by direct staining
and quantitative imaging using base-intercalating molecules
(e.g., Picgreen) after standard DNA isolation procedures
(e.g., phenol/chloroform).*® The ultrastructure of scECMs
are usually assessed using scanning electron microscopy,
and the mechanical properties can be measured using atomic
force microscopy or dynamic mechanical analysis by ap-
plying a sinusoidal stress.?’

Cell-derived ECMs are undefined materials containing
numerous proteins and their characterizations provide im-
portant information to elucidate the signaling molecules.
While enzyme-linked immunosorbent assays and immuno-
cytochemistry are usually used to quantify a restricted num-
ber of proteins, the critical components of acellular ECMs
can be identified using proteomics analysis based on mass
spectrometry (MS) to delineate the shared and distinct
components in ECMs at different stages of stem cell de-
velopment.”*®'~8 To identify the critical components of
acellular ECMs, proteomic analysis based on MS has been
used to delineate the shared and distinct components in
ECMs at different stages of stem cell development.?®-3!'=%*
However, efficient solubilization of the ECM compounds,
the retention of their integrity, and accurate characteriza-
tions of their complexity remain a critical challenge to
date.?®*? Decellularized ECMs from MSCs undergoing os-
teogenic differentiation (osteoECM) and MSCs treated with
ascorbic acid (aaECM) were analyzed by MS.'* Up to 45%
of proteins were annotated by Gene Ontology as ECM
proteins, and 26% had molecular functions of ECM struc-
tural constitutes. aaECM was found to contain twice as
much collagen and GAGs compared with osteoECM. The
ECMs were also able to release the immobilized growth factors,
including HGF, FGF, VEGF, and interleukin (IL)-8 especially
for aaECM.'? The ECMs produced by MSCs overexpressing
active component of Notch signaling (i.e., NICD) were found to
secrete a higher amount of fibronectin, fibrilin, febulin, and
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several collagen subtypes and exhibit the enhanced neuropro-
tective function.®” Proteomic analysis was also performed to
compare functional patterns of MSC-derived ECMs from dif-
ferent donors and tissue sources, such as bone marrow, amniotic
fluid, or adipose tissue.*> Consistent ECM profiles were ob-
served among different donors, demonstrating the possibility of
off-the-shell ECM production.”

For PSCs, proteomic analysis has been performed to
elucidate the ECM proteins and growth factors that are in-
volved in hPSC self-renewal and differentiation. The ECMs
derived from the feeder fibroblasts were characterized to
identify the proteins (e.g., heparin sulfate proteoglycan) re-
sponsible for hPSC propagation.*® The undifferentiated
hPSCs were found to deposit complex ECMs with a 57%
overlap with the ECMs secreted by the supportive fibroblast
feeders.®” Our study compared the proteomics of ECMs
derived from undifferentiated PSC aggregates (AGQG),
spontaneous embryoid bodies (EBs), and aggregates of PSC-
derived neural progenitor cells (NPCs). NPC-ECMs are more
distinctly different (27% of individually expressed proteins)
compared with AGG-ECMs (16%) and EB-ECMs (12%).%* All
these studies demonstrate distinct ECM microenvironment are
generated at different stages of PSC development. Moreover,
recent proteomic analysis reveals significant changes in the
structure of proteoglycans produced upon differentiation of
hESCs toward endoderm and mesoderm lineage.®®

Regulation of Stem Cell Fates on Tissue-Specific
Acellular Matrices

scECM studies are largely based on the knowledge
learned from tissue-specific acellular matrices (tSECMs). In
addition, the plasticity of MSCs and PSCs can be demon-
strated by culturing on tsECMs. Moreover, to show the
differences between scECMs and tsECMs, it is necessary to
discuss the work done for tsECMs first.

Mesenchymal stem cell proliferation and differentiation
on tsECMs

Decellularized matrices derived from somatic tissues re-
tain the cues of original tissue sources and can direct the
lineage-specific differentiation of MSCs (Table 2). Indeed,
MSCs seeded on decellularized bone matrix have higher
differentiation efficiency toward osteogenic lineage com-
pared with cells on tendon-derived matrix.** ECMs derived
from adipose tissue or cartilage were also shown to in-
duce MSC differentiation into adipocytes or chondrocytes,
respectively.”®°* However, the molecular mechanisms in-
volved in the modulation of MSC behaviors on a particular
decellularized matrix are still not well understood. For
various tsSECMs, collagen type I is the most characterized
ECM protein preserved after decellularization and its
abundance may contributes to the increased MSC prolifer-
ation on acellular ECMs.** The direct interactions between
ECM proteins of the decellularized matrices (e.g., collagen)
and specific integrins (e.g., a2B1) of MSCs have been
shown to regulate extracellular signal-regulated kinases
(ERK)1/2 signaling and promote osteogenic differentia-
tion.”* Besides collagen I, most decellularized matrices used
for MSC culture show the retention of GAGs, which pre-
serve binding sites for adhesion molecules (e.g., fibronectin
and vitronectin) and heparin-binding growth factors, such as
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ACELLULAR MATRICES DERIVED FROM STEM CELLS

FGF-2, PDGF, VEGF (binds perlecan, heparin, dermatan
sulfate, chondroitin sulfate, etc.), and TGF-B (binds dec-
orin).”>*® Finally, the mechanical strength of acellular
ECMs was found comparable to native tissues, indicating
that acellular ECMs can provide mechanical properties re-
quired to reconstruct the desired tissue.”’ Nonetheless, better
understanding of the intrinsic biochemical and biomechan-
ical properties of a particular decellularized matrix in reg-
ulating MSC fate decisions is still in need.

Pluripotent stem cell proliferation and differentiation
on tsECMs

Similar to MSCs, seeding of PSCs on tsECMs induces
the commitment into the lineages of ECM tissue sources
(Table 3). For instance, decellularized cardiac matrices were
reported to preserve heart tissue signaling network and induce
hESC differentiation toward cardiac lineage.”® Reconstruct-
ing myocardium and vascular structures was demonstrated
using human iPSC-derived cardiovascular progenitor cells to
repopulate the decellularized heart matrices.”®*® The heart
construct responded to B-adrenergic agonist isoproterenol and
displayed electrophysiology and mechanical properties of
heart tissue.”® Decellularized matrices derived from lung or
kidney were reported to promote the commitment of ESCs
and iPSCs into epithelial tubules or renal cells.'”'% The
ECMs derived from the fibroblast feeders were also shown to
support the self-renewal of hPSCs during long-term cul-
ture,’ 2.59.86.104 while the ECM of ARPE19 cells increased
hPSC differentiation toward retinal pigment epithelial
cells.'® Proteomics analysis identified heparin sulfate pro-
teoglycan as a core ECM component responsible for hPSC
self-renewal.®® The ECM composition and the controlled
modulus of islet cell-derived matrices have shown to direct
hESC differentiation into islet B cells.'® These data indicate
that tsECMs can at least partially recapitulate the signaling
network of the tissue source to support stem cell self-renewal
or direct lineage-specific differentiation.?*'%’

Signaling Mediated by scECMs

Different from tsECMs, scECMs contain unique signaling
networks that regulate self-renewal and lineage specification
during tissue develozpment and recapitulate specific stem cell
microenvironment.'” Understanding these signaling networks
should better control the in vitro culture environment and
coax the in vivo development of the transplanted stem cells.

Endogenous signaling in MSC-derived extracellular
matrices

MSCs secrete a large amount of ECMs forming an
instructive microenvironment in vivo and in vitro for self-
renewal and lineage commitment (Fig. 2). At an undifferenti-
ated state, MSCs were found to secrete collagen type I, colla-
gen type IV, vitronectin, and laminin."®'%® During adipogenic
differentiation, MSCs were shown to increase the expression
levels of collagen type III, decorin, and nidogen."” Chondro-
genic differentiation of MSCs was reported to increase the
secretion of collagen type I, II, X, aggrecan, and cartilage
oligomeric protein.''* Differently, MSC osteogenic differen-
tiation was shown to enhance the secretion of collagen IV,
laminin, hydroxyapatite, calcium, and magnesium salt.''*- !
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MSC:s also secrete a large amount of growth factors, such
as TGF-B1, FGF-2, VEGF, and PDGF,'"? which interact
with ECMs and participate in the paracrine and autocrine
signaling that regulate MSC proliferation and differentia-
tion.''? In addition, the culture time and donor age may play
a primary role in the quality of MSC-derived ECMs.'"
Upon osteogenic differentiation, MSCs upregulate the se-
cretion of stromal cell-derived factor (SDF)-4, connec-
tive tissue growth factor (CTGF), BMP-2, and FGF-18, as
autocrine signaling to promote osteogenesis.*®!'>~1'7 How-
ever, osteogenic and chondrogenic differentiations of MSCs
were reported to reduce the secretion of proangiogenic
factors, for example, PDGF, TGF-f, and FGF-2, and neu-
rotrophic factors, for example, brain-derived neurotrophic
factor (BDNF) and glial cell-derived neurotrophic factor.
Using microfluidics-based chambers, MSCs can secrete
endogenous regulatory factors that elevate adipogenic genes
CEBPA, CEBPB, PPARG, and LPL, while the exact factors
were not reported.'"”

Besides growth factors, MSCs and their derivatives also
differentially secrete antioxidant molecules such as super-
oxide dismutase protein SOD3, which may endogenously
regulate cell survival and proliferation.'** The MSC-derived
ECMs also exhibit the antioxidant effects and were reported
to decrease the intracellular levels of reactive oxygen spe-
cies in reseeded MSCs, which may contribute to the in-
creased cell proliferation and survival, 2122 However, the
intrinsic signaling in MSC-derived ECMs still needs to be
further characterized.

Endogenous signaling in PSC-derived ECMs

Similar to MSCs, PSCs produce a large amount of en-
dogenous ECM proteins, such as fibronectin, laminin, col-
lagen type IV, vitronectin, and GAGs, which regulate PSC
fate decision through cell adhesion and/or binding with
paracrine and autocrine factors (e.g., Lefty and Activin A)
(Fig. 3).9%!%7126 The paracrine and autocrine factors (e.g.,
Lefty and TGF—P) have been shown to deposit in endoge-
nous ECMs®>!12>1277129 anq regulate the survival and the
repopulation ability of neural progenitors.'*>'*! The char-
acteristics of PSC-derived ECMs can be influenced by lin-
eage specifications.®'**'3 For example, the expression
level of ECM proteins was found to be upregulated upon
spontaneous differentiation.'® Cerberus, a small antagonist
of BMP, was detected in the secretome and ECMs of PSCs
undergoing cardiac differentiation but not neural differen-
tiation.>'** The lineage-specific cells derived from PSCs,
such as NPCs, are known to secrete trophic factors such as
BDNF and FGF-2 to stimulate neurogenesis.'>>'*® The
ECMs derived from PSC aggregates at early or late stages of
differentiation exhibit different signaling capacities, sug-
gesting the influence of developmental stage on ECM
characteristics.'*2%37%-13% For instance, the upregulation of
collagen type IV and laminin was found during endodermal
specification.®® The specific lineage differentiation of ESCs
into ectodermal (using retinoic acid) or mesodermal (using
BMP-4) cells can further enhance the exgression of fibro-
nectin, vitronectin, and collagen type IV.'

Concomitantly, PSCs also secrete a large amount of en-
dogenous growth factors, which regulate PSC self-renewal
and lineage commitment.'?> For instance, hESCs were
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FIG. 2. The specific composition and
biological functions of MSC-derived ECM.
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reported to secrete low levels (ng-pg/mL) of IGF-2, TGF-
B1, FGF-2, HGF, nerve growth factor, and Wnt ligands to
sustain the self-renewal.'”’ Differently, mouse ESCs were
reported to secrete leukemia growth factor (LIF), Lefty,
Nodal, Wnt, and cyclophilin A, which can support self-
renewal and OCT-4 expression.'**'*® The paracrine
factor FGF-4 was also reported for early commitment of
mouse ESCs.'*? The secreted growth factors have been
shown to actively interact with ECMs in PSC culture.
For example, the presence of regulators in TGF-B/Nodal
and Wnt signaling pathways, Lefty A and B, Cerberus,
and sFRP1/2, were observed in hPSC-conditioned ma-
trix.°>®* These studies demonstrate the presence of a
unique spectrum of signaling molecules in PSC-derived
ECMs.

Biological functions of scECMs

scECMs provide a stimulating microenvironment for
reseeded cell expansion, differentiation, and cytokine secre-

mESCs

FIG. 3. The specific composition and
biological functions of PSC-derived ECM.
PSCs secrete the specific combination of
ECM proteins and growth factors at undif-
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tion (Table 4). MSC-derived ECMs were reported to im-
prove MSC proliferation compared with 2D plastic dishes,
possibly through antioxidant molecules and bound growth
factors, such as FGF-2, TGF-B, and VEGF.'>!® Decel-
lularized ECMs from MSCs were also reported to upregu-
late the expression of integrins o2 and PS5 and activate
ERK1/2 signaling in the reseeded MSCs.'?! In addition,
ECMs derived from MSCs can increase osteogenic differ-
entiation, potentially through the retained growth factors
(e.g., BMP-2) and the combination of ECM proteins (e.g.,
collagen type I).'®%9*122 Indeed, proteomics analysis re-
veal that the composition of ECM proteins (e.g., tenascin C,
vitronectin, fibronectin, etc.) and immobilized molecules
(e.g., TGF-B, CTGF, CYR61) are responsible for the os-
teoinductive properties of MSC-ECMs.'”” The chondro-
genic potential of MSCs can be enhanced on MSC-derived
ECMs possibly due to the upregulation of TGF-B receptor
I1.'2! MSC-ECMs have also been found to stimulate cyto-
kine secretion, including angiopoietin-1 (ANG-1), SDF-1,
and IL-8 from the reseeded MSCs, and ANG-2, VEGF, and

T i 'Noda_l'
ES SIS oS
Lt e ek phiin )y — PSC reseeding
- *Proliferation
- (HGF) +Self-renewal
IGF-1i oy TFGF -2
hPSCs - TR e ()
—-uor“___'..._..t.ﬂ‘:\\
Spontaneous EBs PSC reseeding
*Mesodermal

differentiation

ferentiated and various differentiated stages. PSCs
Decellularization of PSC-secreted ECM

complexes can provide 3D scaffolds bearing

signaling specificity along the embryonic

‘ -
Mesodermal/cardiac W Cerberus
differentiation e

; . PSC reseeding
tissue development. PSC, pluripotent stem +Enhanced three-
cell. Color images are available online. Neural germ layer
differentiation —- e — differentiation
ror2 BONF P—
Fibronectin \f\ Laminin Low concentration

\’\ Collagen type IV \’\ Glycosaminoglycan (GAGs)

\I"\ Vitronectin

Medium concentration

Bound growth factors High concentration



(panunuod)

(uorssaidxe gxuny pue
‘dS9d ‘d'TV) UONeRUdIHIPp

uonewlIoj AUojod
PaseaIdu] (SUOnIPUOd
Q0IJ-WINISS JOpun

wiMeISTTHD
0] QOmmHNQEOU ut Eom

9} JO SSauY3INOI paseaIour
*HOHN Suturejuod 0o1-x

161 1P 12 URD{RY o1u0309)s0 pasearou]  uonerdjijord DSIA poasealou] UOJLIL], JUSUIBAI) [BOTWYD) SOSIN-ING SOSIN-ING
uonouny (ADHA)
orauoi3ueord pue (uorssardxa INe k!
€11y ‘dSdI ‘S Py 9y} JO uonezLLloeIeyd ou SOSIN-ING
ULIRZIY ‘dTV) UONBNUSISJJIP “SYNd Pue ‘HO"HN ‘001-X paonpul
¢z 1P 12 Y20H o1U9509)S0 PaseaIoU] uonerdjiold paonpay UOJLL], JUSUNEAI) [BITWYD) SOSIN-INF A[reoruagoarsQ
(8-T1
‘1-4dS ‘I-DNV) uonaioss
QuUID0JAD pasearou] ‘(Sururels JuowjeISud ULId)-3Uo] ADAA PUe ‘4Dd ‘dDH
O PY [10) UONBNUAIJJIP pauoddns ‘uorsuedxa ‘SOYDS ‘UdTL[[00 paure}al S[[90 WIS
oruagodipe pue (Surures [199 €D paseaiou] ‘oprxoIpAy wnruowwe ‘001-¥X onerodojewoy
21 1P 12 Z1IM3Id  BSSO3] UOA) DIU509)S0 pasearou]  uonerafrjoid DSIN pasearouf UOJLL], JUSUNEAI) [BITWIYD ‘SOSIN-ING SOSIN-INFG
(Suturess O poy
[10) uonenuaixjyip oswadodipe
pasearoop ((3urure)s
dTV pue g pay ULezIy)
UOIBTJUAIJJIP OIU509)SO pue uorssardxa WDH
(6-XOS ‘¥ g-aD1-oydsoyd ¢g pue gr unour 9} JO UOIBZIIAOBIBYD OU
‘SDVYD) UONENUSISYJIP pue $-yHSS parendardn “9SYNA ‘HOVHN Pu® 001-X
1z 1P 12 1d oruagoIpuoyd paouequy ‘uonerayrjoid DS posearou] UOJLI], JJUSUIEBAI) [BOTWAY)) DSIN-IND SOSIN-INFG
(uorssaxdxa
X119)S0 pue gXNNY I 2dA) uaSe[joo pue
paseasour) Jouuew juspuadop uL1099(] ‘uBdA[31q unodUoIqy
-ULISOJUI UB UI ‘UOTIBNUIIJIP paarasaxd osyN( ‘001-X
v 1V 12 STIR(QJ O11509)S0 9SBAIOU] ‘a’N UOJLL], :JUSWILAN) [BOIWAY)) SOSIN-ING SOSIN-INFG
Al pue ‘T odKy
uo3e[[09 ‘UOIIOAUONIA ‘UIUTUIR]
(Surure)s SSO] UOA pue § PAY ‘unosuolqy ‘g-JH pourejar
ULIBZI[Y) UOHBNUSIYJIP “SYNd ‘HO"HN ‘001-X
o BN pue wry] o1u9309)S0 paseaIou] uonjerdjrjoid pasearou] UOJLL], JUQUIEAI) [BOTWAY)) SOSIN-ING SOSIN-ING
unosuoIqy ‘Jqdd PUe ‘ADFA
(uorssardxa 4 pue ‘d-IDL ‘T-dINg pourejar S[[90 WIS
oe1 1P 12 ‘dSd ‘1-dINd) UOonenuaIJJIp ‘uonsadp YNA Aq pamoj[oj juowe31| [ejuopord
UBIPUIARY OI}SB[QOJUOPO PAsBAIOU] ‘aN SISAT JUQUIBaI) [BOTWY) pue dind [ejuaq SOSIN dind 1ejuaq
saroads ua3Lxo uruIwe| ‘uroauoIqy
(uonaroas dAnoeaI Jo uorssardxa ‘TI1 uaSe[[0o ‘T uagde[od jo
BAIN ASBAIOUT) UOTIRI)UIIIJJIP $S9[ p[0JInoj ‘uonerdjrjoid uorssaxdxa ‘HOYHN ‘001-X
a1 17 12 °H oruo3ojeday asearou] Ul 9SBAIOUI P[OJOAL] UOJLL], JUSUIBAI) [BOTWAYD) SOSIN-ING SOSIN-ING
SOSIN
Joy UONDRUI[JIP 1120 WIS U0 122[f7 uonyv.afijosd XLIDW ADIN]]20D 2y Jo sanj4adodd  204mM0S []20 papaasay 204n08 WHT

1129 wa3s uo 1227

pup poyiau UoYDZLIDING]I(]

NOILILONNH TVOIDOTOIg dIdH ], ANV STTdD) WHLS IWOdd dIATII(J SHOIILVIA dVINTTIOVILXH ddZIdvVINTIIOI( " 414V ],

*KTuo osn [euosiod 10, "07/zz/01 e woo qndiraqar) mmm wolj 7'L7 811 €L Aq papeojumoq

413



(panunuod)

o1 17 12 1188

0oWIASCPIN pue
ue3ue3N

oy 1V 12 23pIn3zQ

oc1 17 12 E1UND

1e 1P 12
O[[ISB)-Z310]

o IV 12 Sueyz

NmL.NNw ]2 ruansSnd

Sp[ojJeos

DA d€ QY) uo (WIoposawr
10} UIUNOB-0 pue {UWLIAPOIId
10§ T[] urngqni-g {WIdpopu
10J 7-XOd) uonenuaraljip
I9AB] WIS-99IY) PaseaIou]

‘N

uorssaxdxa uedai33e
pue [qINVT PeseaIoul pue |
ad£y uaSeq[oo paonpar :NDHP
UM PIJBOD S9A00IS0URU

Uo SISUOZ0IPUOYD PaseaIou]
(uorssaxdxa | ua3e[[09)
UOTIBTIUQIJJIP OIUST09)SO
pajoword NDHP paonput
Aqreo1uago91so ((uorssardxa

A-4vdd) uonenuaryip
oruasodipe pajoword

INDFP peonput Ajfesruagodipy

UOTJBIIUSIJJIP

O119309150 pajowoxd

INDH PoALISp padnpul Hy

‘{(ueoa133e pue J[ ua3e[[0d Jo

uo1ssa1dXa) UOTIRNUAIIJIP

oruagoipuoyd pajoword
INDHP PoALISp-oIudS0Ipuoy))

(40db-19 4q

painseauwr ‘uorssordxa
A-¥vdd pue $ddvd
PaseaIOul) UOTJBIIUSIJJIP

oragodipe pasearouf
(Surureys o3ew109ISO
pue § poy ULBZI[Y)

S[[99 €1.E pue TOSIND
UM paredwiod UOT)RNIUAISIJIP
O119309150 pajowoxd

€COSING Wol} paALISp SINDH

S9IpOq proAIquua

‘AN

PaIBaI-pIOR JIOUNAI WOIJ
SINDH 1daoxa ‘uonerajrjoxd
[190 ur a3ueyd> oN

soouew Jo uonerndodax
pue ‘uorsaype ‘Jusawryorlie
ise[qoiqy pajowoxd SINDH

sonseld a1njno
anssn uo uey) NDAP

uo uonersjrjoid refruurg

INDH PoALISp padnpul [y
ueyy uonerajijoid pajowoid

1099 NDHP- PIAHIIP

Paonpur-o1ud3oIpuoy))

Sd

-NAD JO IequInu PaseIouT
‘uonerayijoid paureiay

S[[®2 €1.¢ pPue COSIND Wwoly

PIALIOP SINDH oU) ey

uoneiajjoid ajowoid s[[ed
€COSINA WOI PIALISP SINDH

DO pue ‘UndduonIA ‘ururue|
‘unosuoiqy ‘AJ uagde[od jo

uonearasald 9SYNA ‘001-X
UOJLLT, :JUduBaI) [BOTWay))

uonisodwod NOH

JO UONBZLIIOBIBYD OU ‘3UI[DAD
Mmey)/ezea1y 10 uoneziydok|
:JuUaUIEaN) TEOTURYIIN

SOA00I30UBU JO UOIIORIIP oY)

ur pausife a1Mm s1qy NDHAP
‘UIuIwe] pue uonddAUOIqY

‘Al pue ‘I ‘T uade[[od
paardsaid ‘HOYHN ‘001-X
UOJIIL], :JUdUIIBAL) [BOTWIAYD)

SOVD

poonpar ‘A 2dA) ua3ejoo

‘1 od£3 uage[oo ‘ururwe|
‘unosuolqy paArasaid (ourok|3
‘opAyoprereren|s ‘mey)
/92331) ‘HO"HN ‘001-X UOILL],
:JUoWIBAN} [BOIWAYD/[BIISAYJ

uoneziuesio

Ioqy pue ‘proe oruoIn[eAy
pue ueda133e ‘unouoIqy ‘I|
pue [ 2d4) uagde[[0o paroaasiad
“9SYNA ‘HO"HN ‘001-X
UOJLL], :JUSWIBAN) [BOIWAY))
unoaUoIqy PaseaIddp pue
‘UTUTWE] PIsealoul QuIdk[3
‘opAyoprereIn[3 ‘so[oAkd
MRY)/QZIAI) SYNY “OSVNA
‘HOHN ‘001-X uoii],
uaunean [edrsAydyeoruay)

sueoA[Soajoid pue

unoouoiqy ‘1 2dA) uaderjod jo

uoneatasald ‘HOYHN ‘001-X
UOJLL], :JUduean) [edruay)

sOSHW

S1Se[q0IqY €LE

SOSIN-ING

SOSIN-V

SOSIN-ING
pue sHSIN-V

SOSIN-V

SOSIN
POALIOP-BIUAIR[]

S9IpOq proAIquua
pue sa1e3a133e DSH

$A1poq proAiquig
$OSd

SoA0OISOoURU

uo paimyno sOSI-INYG

SOSIN-V poonput

A[1eo1u9309)50

pue A[resa3odipe

‘QAnRIRJI[OI]

SOSIN-ING

pue SHSIN-V_poaonpur
AJreotuagoIpuoyd

pue v

SOSIN-V

poonpul-A[[eoruagodipy

aury

¢LE ‘(SOSIN-LJd.Lu)

€ZOSINA ‘TOSIND
:SQUI] [[90 PoZI[e}IoWw]

oy

uouPIULAp 1122 Wid1s U0 192[f7

uonyv.afijosd
1120 w218 uo 1927

XLDW ADJN]]20D 2y Jo sarjiadosd
pup poyiau UoUDZIUDING122(]

224N0S ]2 papaasay

204108 WHH

(QEANIINOD)) ‘{ ATdV],

*KTuo osn [euosiod 10, "07/zz/01 e woo qndiraqar) mmm wolj 7'L7 811 €L Aq papeojumoq

414



*T JO10B] PAALIOP-[[29 [ewons ‘I-4dS ‘€11 urjoid rewosoqur ‘c 114y ‘I Joidodar v1aq 10joe) Yimol3 Suruiojsuen jo uuoy parejAtoydsoyd ‘ryg-101-oydsoyd <1008} pasuop-wnroyids juowdid ‘4qdd
{[190 1031uagold [eInau ‘DN ‘] ®Ieq junqgns ururwe] [NV 1 uneioy ‘¢ (g unnopour ‘g- ‘urajoxdoers Surpuiq-undaur ‘gsqy <urajordoydsoydorers unuap ‘gsq ‘ukroydoydsoyd sunuop
‘ddd ‘SI[90 WIS J[OI[[0F [BIUAP ‘SOSAC ‘S[[90 WIS [RWAYOUISIW MmoLrew duoq ‘DSN-ING (1 unatodoidue ‘[-ONV S[[90 WIS [BWAYOUISIW PIALIP-anss1) asodipe ‘DSN-V PIoe 91qI00se QY

1py 1P 12 SUSH

o1 1742
BIUPIYBAOIA

g 17 12 UBX

oz 17 12 11vS

(111 urnqny-g pue |

-1ysesnjyl ‘ASN ‘9-XVd) SOdN

-DSHY WoIj PoALIdp JNDH U0
UOTBTIUQISJJIP [eIndu pasueyuyg

(uotssaxdxa 1Y ‘1 “89)
UOTIBTIUAISJJIP SANKO0UNBISY

Sp[ojJeos
NDH dg 2y} uo (uorssaxdxa
III ul[nqm-g pue unsoN)
SOSdMY pue SHSHW popassal
)oq I0J UOTIBIIUIIP [eInou
soonpur Ajqeiojard dnoiS DN
Sp[ojJeos
DA dg ay) uo (uorssardxa
I1 urnqni-g) uonenuaIojyip
[eUOINAU PadNpaI
Sun{uI[SSOI)) ‘UOTJBIIUSIIJIP
[euoinau pajowoxd

SOdN WOL} PaALISp SINDH

‘AN

RONCL
WOIJ PIALIDP SAAO0UIBINY

JO 90UQISAUIS PAKB[A(]

sOSdM

pue sOSHW pIpIssal
yjoq I1o0J uonerajrjoid [[oo
poonpai Joyuadold [einou

-OSd WOl PaALLp NDH

S[[oo
Popa9sal Jo uonjerdroid
Ppadnpal sSHAN-DSd
woIj PAALIRP SINDH

[eMAUI-J[3S DSJU

Al

ad£y uageq[oo pue ‘unosuoiqy

‘1 UaSe[[0d ‘SHYD paule}al
PSYN( ‘Ierem paziuorop
‘HOYHN :juswiean [eorway)

uruIue] ‘unoduoIqy
‘TIA pue [ 2dA1 uae[[od
paurejar (103qIyur aseajord
‘OdS :udunean [edrway)
103081} orydonomau
paALIdp-uoInau ‘urojoxd
aand9jordoinou juspuadop
-Kanoe ‘uedtdA[S ‘1g

uruiwe] ‘g eydie AT uade[[od

arow ssaxdxe SHJN WOy

POATIOP SINDH 9SVNA ‘001-X

UOJLL], [JUSWIIEaI) [BdTWY))

uonisodwod
INDH Y} JO UOTBZLI)OBIRYD
Ou 3SYNA ‘001-X

UOJLL], [JUSWIIERI}) [EdTWY))
S1-4Dd pue

‘SN19gI9)) ‘10308J Y1MoI3 anssn
QAT}OAUUOD ‘g puUe Y Ao ‘7
pue | surojoid poje[aI-po[ZZLyy

PauIe)al ‘UONNOS AIOA0DI

RONG (¢

sOSHY

sOSdM
sOSHUW

sOSqw
WOIJ POALIOP

s10yua3oad [einaN

s1o0yuag3oxd
[BIN3U PIALIOP-)SHY

sise[qoIqy
PoALIP-DSHY

s1oyuagoad

[BIN_U PIALISP DS

puE S9IpOq PIOAIqUId
pue sa1e32133e DS

s1oyuagoxd

[eINAU PIATIOP-DSH
pu® ‘sarpoq proLiquia
‘so1e3a133e DSH

(@r-rg) sosdwy pue

21?12 SAUYSnH ‘a’N Jo Qoueuajurewr oy} Joddng [[9D Judwiean [BIIWAY)) SDSHY (1VD pue gH) sOSHY
SPIoJJess INDH SDVDS
g 2yr uo (uorssardxo unsaN puR ‘Urulwe| ‘undduoIqy
PUE “dV ‘S-dDA ‘8-dDA *Al ‘T 244} ud3e[[od
‘KInAyoeIg) UONEIIUIISIIP uonerajroid pue paurelar DS ‘SAS ‘001-X
e 1P 12 40D IoAe] w1ag-2a1) paytoddng juowyor)e Je[N[[ed IYIIH UOJLL], :JUdUIjeas} [BIIWAYD) sOSHW SaIpoq proAiqug
Joy uouDUI[JIp 1120 Wid1s U0 102[fq uonyv.afijosd X1DW ADJN]]20D 2y Jo sanjsadodd  204n0S []20 papaasay 204n0S WOHH

1120 wais uo 123ff

pUv poy1au UouDLIDING2I2(]

(QEANIINOD) ' ATdV],

*KTuo osn [euosiod 10, "07/zz/01 e woo qndiraqar) mmm wolj 7'L7 811 €L Aq papeojumoq

415



Downloaded by 73.118.27.2 from www.liebertpub.com at 10/22/20. For personal use only.

416

HGF from reseeded hematopoietic stem cells, providing a
mimetic bone marrow ECM environment that supports their
long-term engraftment.'?

Similarly, acellular matrices from different PSC orga-
nizations retain endogenous ECM proteins and exoge-
nous morphogens such as retinoic acid, which can accelerate
three-germ layer commitment through the re%ulation of re-
tinoic acid receptor signaling (Table 4).'"*® In addition,
decellularized ECMs derived from undifferentiated ESCs
support the reseeded ESC self-renewal in the absence of
exogenous LIF." This indicates a possible retention of au-
tocrine regulatory molecules such as LIF on decellularized
matrices. For hPSCs, endogenous ECMs deposited on Ma-
trigel were shown to support the propagation of hPSCs due
to the retention of the paracrine and autocrine factors such
as Gremlin and Cerberus (antagonists of BMP signaling).®>
For directed differentiation, the ECMs of PSC-derived fi-
broblasts were reported to promote keratinocyte differenti-
ation by modulating TGF-P1 signaling.'*® Of interest, it was
recently found that the cues provided by ECMs of neural
differentiated PSCs direct the differentiation of MSCs.'*!
Altogether, these data indicate that scECMs retain the spe-
cific cues along tissue development and are able to uniquely
regulate cellular differentiation, providing the dynamic re-
ciprocal interactions among stem cells, ECM, and growth
factors.

Engineering scECMs

Modulation of biochemical and biomechanical
properties of ECMs

The functionality of acellular matrices can be improved
by the addition of exogenous regulatory molecules that can
bind to ECM proteins. For instance, the decellularized ma-
trices could be functionalized by exogenous growth factors
(e.g., FGF-2) bound to the heparin-binding domains of
GAGs.'*? The newly retained growth factors demonstrate
prolonged retention and controlled delivery to the reseeded
stem cells.'*? Similarly, the retention of exogenous retinoic
acid in ESC-derived ECMs promotes the commitment of
reseeded ESC to the three germ layers.'” Moreover, acel-
lular ECMs can be functionalized with exogenous bioma-
terials such as collagen or hyaluronan, which were shown to
promote PSC differentiation toward cardiac lineage.'**'**
The combination of inorganic materials and cell-derived
ECMs results in the formation of novel hybrid scaffolds,
providing synergic biochemical and biophysical cues regu-
lating stem cell differentiation.'*’

The mechanical properties of ECM scaffolds can be mod-
ified by crosslinking. The crosslinking of decellularized
matrices not only promotes ECM stability but also increases
the elastic modulus, that is, stiffness.'*® The stiffness of
ECMs modulated by crosslinking was reported to promote
hypertrophic differentiation and matrix calcification of
chondrogenically induced MSCs and enhance osteogenic
differentiation."*”'*® In addition, crosslinking of endoge-
nous ECM through glycation regulates the mechanical
properties of ECMs without altering the osteogenic differ-
entiation potential of the reseeded cells."*® Among various
crosslinking methods, crosslinking of acellular matrices
by genipin was shown to have similar microstructure and

SART ET AL.

mechanical properties but lower cytotoxicity compared
with crosslinking by glutaraldehyde.'*® Our previous study
shows that the stiffness of endogenous PSC-derived ECMs,
modulated by genipin crosslinking, regulates neural speci-
fication of ESC-derived neural progenitors.”® Similarly, it
has been shown that the crosslinking degree of the scaffolds
regulates early commitment of PSCs in a stiffness-
dependent manner.>®

Modulation of culture conditions before
decellularization

Stem cell culture conditions regulate the secretory profiles
of ECMs and growth factors. First, the directed differenti-
ation of stem cells regulates the properties of ECMs that
can induce commitment of reseeded undifferentiated cells
toward the phenotype of cells that have been used to gen-
erate scECMs. For instance, the scECMs of adipogenically,
osteogenically, or chondrogenically differentiated MSCs
promote the differentiation of undifferentiated MSCs toward
adipocytes, osteoblasts, or chondrocytes.>>*%1159 While
the composition of differentiated scECMs needs character-
izations, the results indicate that the scECMs contain spe-
cific structural and regulatory proteins that promote directed
commitment of the reseeded cells. Similar observations
have been made with the ECMs of PSCs that commit to
neural differentiation, which can promote neuronal differ-
entiation of the reseeded cells.?%-2%8%141

While MSCs are usually grown and differentiated as
monolayers, the MSC aggregates enhance the secretory
profiles (e.g., VEGF, FGF-2, HGF, etc.) as well as the dif-
ferentiation potential along adipogenic, chondrogenic, and
osteogenic lineages.'*"'*? Similarly, undifferentiated hESC
aggregates showed the enhanced expression of E-cadherin,
Tra-1-60, and Oct-4 compared with monolayers, indicating
potential re%ulation of autocrine signaling by cellular or-
ganization.'”> Moreover, PSC and MSC aggregates were
shown to regulate lineage commitment through differen-
tial accumulation of endogenous factors.'>* Indeed, con-
fined microwell cultures containing accumulated factors
were observed to induce endodermal and ectodermal spec-
ification, while suspension cultures with limited local
concentrations of endogenous morphogens were observed
to dominantly induce mesodermal specification.'>* Simi-
larly, the nanogrooved surfaces regulate structural organi-
zation and the compositions of ECM fibers of MSCs,
leadin§ to chondrogenic differentiation of the reseeded
cells.'>®

Dynamic cultures of stem cells in bioreactors or within
biomaterials can modulate their secretome profiles as well.
Indeed, undifferentiated MSCs display the enhanced secre-
tion of VEGF and FGF-2 as well as ECM remodeling under
flow shear stress.!® Similarly, under exposure to mechani-
cal stresses, hESCs secrete high levels of TGF-B1, Activin
A, and Nodal, which can inhibit spontaneous differentia-
tion.">” In addition, oxygen tension is able to regulate the
growth factor secretion from MSCs such as VEGF, PDGF,
or FGF-2, and the secretion of collagen type I and fibro-
nectin.'®'*® PSCs were shown to increase the secretion of
VEGF under hypoxia (1% 02).159 Hence, modulation of
stem cell culture conditions may increase the bioactivity
of scECMs by regulating secretory function.'®®
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Conclusions and Perspectives

scECMs have unique properties and have demonstrated
significant potential in regenerative medicine. The wide-spread
applications of scECM, however, depend on addressing several
important questions underlying their functional properties. (i)
First, in-depth characterization of the biochemical and bio-
mechanical properties of sScECM remains a challenge because
of large variations in scECM derivation methods. Advanced
proteomic tools will provide important insights in scECM
properties and in understanding scECM—cell interactions. (ii)
Additionally, scECMs directly obtained from stem cell cultures
may have low mechanical strength and poor structural and
functional stability, which significantly limit their applications.
Methods that can functionalize sScECMs while preserving their
innate properties should significantly improve their properties.
(iii) In most studies, scECMs were used as 2D substrates,
whereas recent works have demonstrated that sScECMs can also
serve as 3D scaffolds (Table 4). Thus, there is a need to better
characterize the bioactive function of scECMs depending on
their configurations in cultures (2D vs. 3D). (iv) To date,
scECM derivation has been primarily carried out in the labo-
ratory with low efficiency and reproducibility. Massive pro-
duction of scECM has been very challenging. Research on
scalable and robust biomanufacturing methods should signifi-
cantly improve the regeneration medicine and therapeutic use
of scECMs. The advances in these areas play important roles in
fully understanding ECM microenvironment of stem cells and
in establishing technologies to obtain ad equate biomimetic
ECM-stem cell constructs for clinical applications.
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