TISSUE ENGINEERING: Part B Volume 26, Number 5, 2020 © Mary Ann Liebert, Inc. DOI: 10.1089/ten.teb.2019.0349

REVIEW ARTICLE

Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function

Sébastien Sart, PhD, 1,2 Richard Jeske, BS,3 Xingchi Chen, MS,3 Teng Ma, PhD,3 and Yan Li, PhD3

Stem cells, including mesenchymal stem cells and pluripotent stem cells, have attracted considerable attention in tissue engineering and regenerative medicine primarily because of their unique ability in self-renewal and multilineage differentiation. However, stem cells also have important secretory functions that form a specialized *in vivo* microenvironment and direct tissue development and regeneration. Extracellular matrices (ECMs) derived from stem cells retain the functional properties of their native environment and exhibit unique signaling that mediates stem cell self-renewal and lineage commitment. Stem cell-derived ECMs (scECMs) also have tunable properties corresponding to their developmental stages, suggesting that their lineage- and developmental specificity can be engineered for a wide range of applications. Hence, there is a growing interest in reconstructing stem cell microenvironment through decellularization and obtaining decellularized matrices that exhibit unique biological properties. This article summarizes recent advances in the use and understanding of scECMs. Moreover, future directions to extend the spectrum of applications of stem-derived ECMs in tissue engineering by comprehensively elucidating and engineering their regulatory function is highlighted.

Keywords: extracellular matrix, pluripotent stem cells, mesenchymal stem cells, decellularization, secretome

Impact Statement

Stem cells bear unique potency for multilineage differentiation as well as the capacity to secrete a vast amount of regulatory molecules. At different developmental stages, the extracellular matrices (ECMs) secreted by stem cells regulate their microenvironment and direct tissue development. The decellularization of stem cells effectively preserves ECM functional properties and can provide suitable templates to regulate stem cell fate decision, which can hardly be reproduced using single ECM proteins or synthetic scaffolds. This review highlights the unique regulatory functions of stem cell-derived ECMs, which can serve as novel sources of highly bioactive materials for tissue engineering and cell therapy.

Introduction

In RECENT YEARS, stem cells, including adult mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), have emerged as promising tools for tissue engineering, drug screening, and disease modeling. MSCs, derived from connective tissues such as bone marrow stroma, adipose tissues, and umbilical cords, have differentiation potentials along adipogenic, osteogenic, and chondrogenic lineages. MSCs also have broad trophic activities, including immune regulatory properties, the secretion of various growth factors that can stimulate the differentiation of endogenous progenitors in tissues, and proangiogenic function. Due to these

unique properties, MSCs have been tested in more than 1000 clinical trials (www.clinicaltrials.gov) to treat a variety of diseases.

Different from MSCs, PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have extensive self-renewal ability and lineage-specific differentiation potential into cells from all the three germ layers.⁶ Due to the ability to recapitulate embryonic development, PSCs provide a unique platform for drug screening, pathological disease modeling, and stem cell therapy.⁷

Both MSCs and PSCs share two defining properties of stem cells: the ability to self-renewal and to differentiate into specific lineages, which enable MSCs to maintain

¹Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.

²Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France.

³Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA.

normal mesenchymal tissue turnover and for PSCs to generate all tissue types. 8,9 These processes are in a large part sustained by the interactions between stem cells and their extracellular microenvironments. 10

In vivo, MSCs in the bone marrow interact with a complex extracellular matrix (ECM) network, which can remodel with time and release endogenous and exogenous signaling molecules to support hematopoietic stem cells and induce lineage-specific differentiation. ^{11,12} Similarly, PSC proliferation and differentiation recapitulate embryonic tissue development and are accompanied by dynamic remodeling of ECMs and local gradients of morphogens. ^{13–15} Hence, ECM proteins and regulatory factors surrounding stem cells form a regulatory niche and play essential roles in modulating stem cell fate. ^{16,17} Understanding and recapitulating the characteristics of stem cell microenvironment should significantly improve our ability to control stem cell fate in tissue regeneration and cell therapy.

In culture, both MSCs and PSCs are able to secrete a large amount of endogenous ECMs, which reflect their developmental stages^{18–20} and the characteristics of their *in vivo* microenvironments. ^{21,22} Decellularization of tissues or cultured cells can effectively preserve intact ECM proteins and the bound regulatory growth factors while removing cellular components (DNA, lipids, etc.) that could lead to immunogenicity *in vivo* (Fig. 1). ^{23–25} The stem cell-derived ECMs (scECM) can be readily obtained from cultured stem cells through decellularization and have been shown to contain a broad spectrum of paracrine and autocrine factors. ^{14,16,24,26} These acellular matrices have been shown to retain specific signaling cues and structural features that direct stem cell fate *in vitro* and tissue regeneration *in vivo*. ^{12,19,27–31} Decellularized ECMs have also been used as coating agents or directly as 3D scaffolds to construct functional tissues. ^{19,32–34} This review investigates the roles of decellularized matrices derived from MSCs and PSCs in modulating stem cell fate decisions. Specifically, recent advances are summarized to understand the specific

molecules and signaling of decellularized matrices toward a better utilization of scECMs as versatile bioactive scaffolds in tissue engineering and regeneration.

Stem Cell-Derived Extracellular Matrices and Their Role in Directing Stem Cell Fate Decisions

In vivo, stem cells reside in specialized niches that are known to regulate stem cell fate throughout their life span. ¹² Among various niche factors, such as cytokines, cell–cell contacts, and adhesion molecules, ECMs play a central role in orchestrating endogenous and exogenous signals. The ECM network not only provides structural support but also regulates stem cell behaviors through biochemical composition, sequestration of bioactive factors, and presentation of biomechanical cues. ^{16,35}

The biochemical composition of ECMs regulates stem cell proliferation and differentiation through EC-integrin interactions (Fig. 1A). Indeed, to sustain self-renewal, human PSCs (hPSCs) are usually grown on Matrigel (the main component is laminin) or vitronectin through binding with α6β1 or ανβ5 integrins, respectively. 36,37 Similarly, a combination of collagen I, collagen IV, fibronectin, and laminin or vitronectin was reported to promote the propagation of human ESCs (hESCs) at the undifferentiated state. 38 Mouse ESCs remain at an undifferentiated state on collagen type I and type IV or poly-D-lysine, while they spontaneously differentiate on laminin and fibronectin due to different ECM-integrin interactions.³⁹ Conversely, neural differentiation of hESCs was shown to be promoted on laminin, while a mixture of fibronectin and vitronectin favored endodermal commitment and collagen type IV-induced mesodermal differentiation. ^{13,40,41} For MSCs, cell proliferation was differentially regulated on collagen type IV, vitronectin, fibronectin, and laminin that is mediated by multiple \beta1 integrins or αvβ3 integrin for vitronectin. 42,43 In addition, osteogenic differentiation of MSCs was found to be promoted on collagen type I and vitronectin. However,

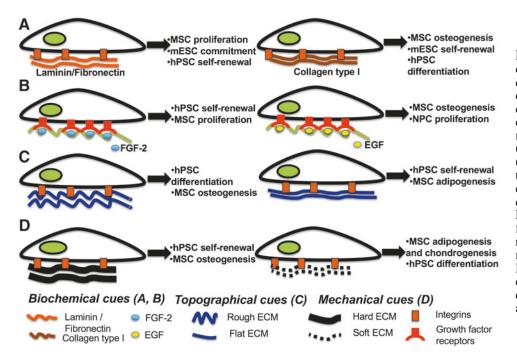


FIG. 1. Regulation of stem cell fate decisions by ECM cues. (A) Regulation of stem cell proliferation and differentiation by the biochemical composition; (B) the immobilized growth factors; (C) the topography; and (**D**) the mechanical properties of the ECM. ECM, extracellular matrix; EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2; hPSC, human pluripotent stem cell; mESC, mouse embryonic stem cells; MSC, mesenchymal stem cell; NPC, neural progenitor cell. Color images are available online.

the denatured form of collagen I favors adipogenic differentiation due to integrin-mediated signaling, 42,44 while chondrogenic differentiation is promoted on collagen type II and chondroitin sulfate. 45

ECMs not only support cell adhesion through integrin binding but also enhance the stability of growth factors by providing the binding sites that can regulate their release and prolong biological potency (Fig. 1B). 18,46 Binding with ECMs also potentiates the effects of growth factors compared with their unbounded counterparts. The enhancement of growth factor activity through ECM binding has been observed for hepatocyte growth factor (HGF), bone morphogenetic protein (BMP)-2 and -4, and acidic fibroblast growth factor (FGF) during hESC hepatic differentiation.⁴ Our prior study evaluated matrix-bound FGF-2 and the results show that ECMs decellularized from human MSCs retain their binding capacity to both exogenous and endogenous FGF-2. 18 Similarly, the release of endogenous BMP-2 and insulin-like growth factor (IGF)-1 from decellularized matrix of bone marrow and adipose tissue-derived MSCs was demonstrated to enhance osteogenic differentiation of reseeded MSCs.46

The topography of the ECMs is also a potent regulator of stem cell fate (Fig. 1C, D). The nanostructure of the substrates was shown to affect the binding of ECM proteins such as fibronectin and laminin due to local curvature, which influences the adsorption of ECM proteins. Haddition, osteogenesis of MSCs was enhanced on rough surfaces while smooth surfaces favored adipogenesis of MSCs. Similarly, the self-renewal of hESCs was promoted on smooth surfaces (with roughness of 1 nm) whereas rough surfaces (with roughness of 150 nm) led to spontaneous differentiation through signal transduction through E-cadherinmediated cell–cell interactions. These observations indicate that mimicking the nanostructure of cellular microenvironment may be able to predict the stem cell fate.

Recently, the mechanical property of ECMs was found to play a critical role in lineage commitment of stem cells.⁵² The increased matrix stiffness (e.g., 34 kPa) was shown to enhance osteogenic differentiation of MSCs, while soft substrates (e.g., 1 kPa) favored chondrogenesis or adipogenesis. 53-55 This indicates that MSC differentiation due to mechanical cues (i.e., elastic modulus) primarily corresponds to *in vivo* localization of the cells. The induced osteogenesis of MSCs on stiff ECMs may mimic what occurs in the bone marrow. For mouse ESCs, soft matrices can support self-renewal by generating low cell-matrix tractions and low cellular stiffness, while hard substrates can induce the differentiation toward mesodermal and endodermal lineages. 56,57 In contrast, hESC propagation at undifferentiated state was promoted on stiff substrates by activation of paralogous proteins, Yes-associated protein (YAP)-transcriptional coactivator with a PDZ-binding domain (TAZ), while mesodermal, endodermal, and ectodermal differentiations were differentially induced in an elastic modulusdependent manner. 58,59 YAP-TAZ has been recognized recently as a potent regulator for mechanotransduction signaling in stem cells. ^{60,61}

Different from simple ECM mixtures, the scECMs have specific functional and signaling capacity that cannot be readily reproduced using single ECM proteins or synthetic matrices. ^{14,25,62} The dynamic ECM remodeling and the se-

questration and release kinetics of ECM-growth factor interactions actively coordinate the signaling cascade during stem cell self-renewal and lineage commitment, providing a broader spectrum of signaling specificity corresponding to the specific tissue development stage that is absent in ECMs derived from somatic cells. 12,27,29,46,63 These properties provide the opportunity to tailor scECM properties for specific in vitro and in vivo applications. For example, transplantation of MSC-derived ECMs was reported to enhance bone repair in vivo by extending site-specific human MSC retention, and substantially improved clinical outcome. 25,64 hPSC-derived ECMs have also been shown to contain growth factors acting on the transforming growth factor (TGF)-β/Nodal pathways, which can support hPSC propagation and suppress tumor phenotype. 62,65 The dynamic interactions of scECMs with paracrine and autocrine growth factors constitute unique microenvironments to regulate stem cell fate decisions.

Derivation and Characterization of scECMs

Decellularization methods

Preserving the biochemical, biological, and biophysical properties of scECM is a focus of current ECM research, and various decellularization methods developed for somatic tissues and organs have been tested for stem cell cultures (Table 1).²³ Among these methods, mechanical disruption and chemical agent treatments have been mostly used to remove cellular materials while retaining signaling molecules and structural properties.

Mechanical decellularization methods include freeze drying through lyophilization, sonication, or pressurization. ^{23,66,67} Freeze-drying cycles were reported to disrupt cell membrane and release intracellular materials (e.g., DNA, organelles) of PSC-derived embryoid bodies (EBs). ⁶⁶ This method also demonstrates the partial retention of ECM proteins such as collagen and glycosaminoglycans (GAGs) as well as ECM-bound growth factors, such as TGF-β1, IGF-1, and vascular endothelial growth factor (VEGF). ⁶⁸ However, freeze drying, sonication, or pressurization may alter the ECM protein structure (such as collagen fibers) and the mechanical properties of ECMs. ^{67,69}

Chemical methods use agents such as Triton X-100, sodium deoxycholate (SDC), and sodium dodecyl sulfate (SDS) to remove cellular materials (Table 1). Triton X-100 can break DNA-protein, lipid-lipid, and lipid-protein connections in various stem cell organizations. 19,23,70 Studies have shown that the decellularization by Triton X-100 does not alter ECM structure and that the decellularized ECMs retain their capacity to bind and maintain the bioactivity of growth factors. For example, Triton X-100 does not change laminin self-assembly, ⁷¹ the binding of fibronectin to gelatin and heparin, ⁷² or the heparin-binding affinity of vitronectin. ^{73,74} This nonionic detergent also enables the retention of platelet-derived growth factor (PDGF), BMP-4, epidermal growth factor (EGF), FGF-2, HGF, and VEGF, and preserves the bioactivity of the bound growth factors such as FGF-2.^{75–77} However, Triton X-100 may denature GAG content and affect collagen fiber structure. ⁷⁸ Both SDS and SDC can solubilize the cell and nucleic membranes. But SDS tends to denature the ECM proteins such as fibronectin and decrease the factor-binding affinities to the ECMs such

Table 1. Summary of the Different Decellularization Methods (Advantages and Disadvantages)

Decellularization method	Effect on DNA removal	Effect on ECM protein retention	Effect on ultrastructure, topography, and mechanical properties	Effect on growth factor retention in ECMs	Effect on GAG retention	Ref.
Mechanical methods Freeze drying	Efficient DNA removal	Partial retention of ECM proteins (collagens)	Alteration of protein structure and ECM mechanical properties	Partial retention of growth factors, for example, TGF-\(\beta\)1.	Partial retention of GAGs	Badylak et al. ^{23,161} Ngangan and McDevitt ⁶⁶ Hirata and Vamacka ⁶⁷
Sonication	Efficient DNA removal	Partial retention of ECM proteins	Alteration of protein structure and	N.D.	Denaturation of GAGs	Azhim et al. ¹⁶²
Hydrostatic pressure	Efficient DNA removal	Partial retention of ECM proteins (collagens)	Retained structure and mechanical properties	N.D.	Retention of GAGs	Wu et al. ¹⁶³ Hashimoto et al. ¹⁶⁴ Watanabe et al. ¹⁶⁵
Chemical methods SDS	Efficient DNA removal	Partial retention of ECM proteins	Denaturation of ECM proteins	Limited retention of growth factors	Denaturation of GAGs	He <i>et al.</i> ¹⁶⁶ Haas and Culp ⁷²
SDC	Efficient DNA	Limited retention of FCM proteins	Denaturation of ECM	Limited retention of	Denaturation of GAGs	Fischer et al. 167
Triton X-100	Efficient DNA removal	Partial retention of ECM proteins (collagens)	Partial preservation of ECM structure	Retention of growth factors, for example, PDGF, BMP-4, EGF, FGF-2, HGF, and VEGF	Denaturation of GAGs	Freire and Coelho-Sampaio ⁷¹ Haas and Culp ⁷² Barnes <i>et al.</i> ⁷³ Peterson ⁷⁴ Wolf <i>et al.</i> ⁷⁵
Calcium hydroxide Sodium sulphide Sodium hydroxide	Efficient DNA removal Efficient DNA removal Efficient DNA removal	Limited retention of ECM proteins Limited retention of ECM proteins Limited retention of ECM proteins	Alteration of ECM mechanical properties Alteration of ECM mechanical properties Alteration of ECM mechanical properties	Limited retention of growth factors Limited retention of growth factors Limited retention of growth factors	Denaturation of GAGs Denaturation of GAGs Denaturation of GAGs	Brown et al. 'o Chun et al. '77 Liao et al. '78 Badylak 161 Sengyoku et al. 168 Badylak 161 Crapo et al. 80 Crapo et al. 80 Crapo et al. 80

BMP, bone morphogenetic protein; ECM, extracellular matrix; EGF, epidermal growth factor; FGF, fibroblast growth factor; GAGs, glycosaminoglycans; HGF, hepatocyte growth factor; IGF, insulin-like growth factor; N.D., not determined; PDGF, platelet-derived growth factor; SDC, sodium deoxycholate; SDS, sodium dodecyl sulfate; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor.

as FGF-2. VEGF, and TGF-\(\text{B1}\). T2 SDC was reported to be more disruptive than SDS, leading to the degradation of ECM structure and GAGs, limiting the growth factor retention. ⁷⁶ Bases such as calcium hydroxide, sodium sulfide, and sodium hydroxide can solubilize cytoplasmic components and disrupt nucleic acids.²³ However, bases are reported to partially remove the growth factors and alter the ECM mechanical properties. Alternatively, DNAses and RNAses are able to cleave cellular nucleic acids without affecting the protein content of ECMs and have been commonly used in deriving scECMs.⁷⁹ Altogether, mechanical and chemical decellularization methods can efficiently remove cellular materials. However, the retention of ECM proteins, growth factors, and mechanical properties is highly variable among various methods and cell or tissue sources, and thus need to be evaluated for particular applications. Taken together, while mechanical methods are preferred for the decellularization of large tissues, chemical treatments (e.g., Triton X-100) that diffuse more efficiently into small stem cell aggregates or monolayers may be more effective to preserve regulatory function of native scECMs (Table 1).

Decellularized ECM characterizations

To ensure the efficiency of decellularization processes, scECMs are usually characterized by the absence of remaining cellular DNA, which is achieved by direct staining and quantitative imaging using base-intercalating molecules (e.g., Picgreen) after standard DNA isolation procedures (e.g., phenol/chloroform). The ultrastructure of scECMs are usually assessed using scanning electron microscopy, and the mechanical properties can be measured using atomic force microscopy or dynamic mechanical analysis by applying a sinusoidal stress. 20

Cell-derived ECMs are undefined materials containing numerous proteins and their characterizations provide important information to elucidate the signaling molecules. While enzyme-linked immunosorbent assays and immunocytochemistry are usually used to quantify a restricted number of proteins, the critical components of acellular ECMs can be identified using proteomics analysis based on mass spectrometry (MS) to delineate the shared and distinct components in ECMs at different stages of stem cell development.^{29,81–84} To identify the critical components of acellular ECMs, proteomic analysis based on MS has been used to delineate the shared and distinct components in ECMs at different stages of stem cell development. 29,81-84 However, efficient solubilization of the ECM compounds, the retention of their integrity, and accurate characterizations of their complexity remain a critical challenge to date. 29,82 Decellularized ECMs from MSCs undergoing osteogenic differentiation (osteoECM) and MSCs treated with ascorbic acid (aaECM) were analyzed by MS. 12 Up to 45% of proteins were annotated by Gene Ontology as ECM proteins, and 26% had molecular functions of ECM structural constitutes. aaECM was found to contain twice as much collagen and GAGs compared with osteoECM. The ECMs were also able to release the immobilized growth factors, including HGF, FGF, VEGF, and interleukin (IL)-8 especially for aaECM. 12 The ECMs produced by MSCs overexpressing active component of Notch signaling (i.e., NICD) were found to secrete a higher amount of fibronectin, fibrilin, febulin, and several collagen subtypes and exhibit the enhanced neuroprotective function. ⁸² Proteomic analysis was also performed to compare functional patterns of MSC-derived ECMs from different donors and tissue sources, such as bone marrow, amniotic fluid, or adipose tissue. ^{29,85} Consistent ECM profiles were observed among different donors, demonstrating the possibility of off-the-shell ECM production. ²⁹

For PSCs, proteomic analysis has been performed to elucidate the ECM proteins and growth factors that are involved in hPSC self-renewal and differentiation. The ECMs derived from the feeder fibroblasts were characterized to identify the proteins (e.g., heparin sulfate proteoglycan) responsible for hPSC propagation. 86 The undifferentiated hPSCs were found to deposit complex ECMs with a 57% overlap with the ECMs secreted by the supportive fibroblast feeders.⁸⁷ Our study compared the proteomics of ECMs derived from undifferentiated PSC aggregates (AGG), spontaneous embryoid bodies (EBs), and aggregates of PSCderived neural progenitor cells (NPCs). NPC-ECMs are more distinctly different (27% of individually expressed proteins) compared with AGG-ECMs (16%) and EB-ECMs (12%). 84 All these studies demonstrate distinct ECM microenvironment are generated at different stages of PSC development. Moreover, recent proteomic analysis reveals significant changes in the structure of proteoglycans produced upon differentiation of hESCs toward endoderm and mesoderm lineage.⁸⁸

Regulation of Stem Cell Fates on Tissue-Specific Acellular Matrices

scECM studies are largely based on the knowledge learned from tissue-specific acellular matrices (tsECMs). In addition, the plasticity of MSCs and PSCs can be demonstrated by culturing on tsECMs. Moreover, to show the differences between scECMs and tsECMs, it is necessary to discuss the work done for tsECMs first.

Mesenchymal stem cell proliferation and differentiation on tsECMs

Decellularized matrices derived from somatic tissues retain the cues of original tissue sources and can direct the lineage-specific differentiation of MSCs (Table 2). Indeed, MSCs seeded on decellularized bone matrix have higher differentiation efficiency toward osteogenic lineage compared with cells on tendon-derived matrix.⁸⁹ ECMs derived from adipose tissue or cartilage were also shown to induce MSC differentiation into adipocytes or chondrocytes, respectively. 90-93 However, the molecular mechanisms involved in the modulation of MSC behaviors on a particular decellularized matrix are still not well understood. For various tsECMs, collagen type I is the most characterized ECM protein preserved after decellularization and its abundance may contributes to the increased MSC proliferation on acellular ECMs. 42 The direct interactions between ECM proteins of the decellularized matrices (e.g., collagen) and specific integrins (e.g., $\alpha 2\beta 1$) of MSCs have been shown to regulate extracellular signal-regulated kinases (ERK)1/2 signaling and promote osteogenic differentiation. 94 Besides collagen I, most decellularized matrices used for MSC culture show the retention of GAGs, which preserve binding sites for adhesion molecules (e.g., fibronectin and vitronectin) and heparin-binding growth factors, such as

TABLE 2. MESENCHYMAL STEM CELL EXPANSION AND DIFFERENTIATION ON DECELLULARIZED MATRIX DERIVED FROM TISSUES OR CULTURED SOMATIC CELLS

MSC source		Decellularization method	Properties of the acellular matrix	Effect on MSC proliferation	Effect on MSC differentiation	Ref.
Tendon Tendon ECM: Physical/ chemical treatment: freeze/ thaw +DNAse	in ECM: Physical/ mical treatment: freeze v +DNAse	_	Preserved collagen	Fivefold increase	Tendinous for tendon-derived ECM (SCX, EYA2); bone-derived	Yin et al. ⁸⁹
Bone marrow ECM: Chemical treatment: NaOH, SDS	marrow ECM: mical treatment:)H, SDS				ECM: osteogenic differentiation (Runx2, Osteocalcin)	,
Adipose tissue Physical/chemical treatment: Freeze dry, DNAse	al/chemical treatment:		Preservation of collagen	Support proliferation	Tenogenic differentiation (SCX, TNMD, TNC expression)	Yang et al. ¹⁶⁹
Adipose tissue Physical/chemical treatment: Freeze/thaw, NaCl, trypsin/ EDTA, Triton X-100	sal/chemical treatment: sze/thaw, NaCl, trypsin/ FA, Triton X-100		Preserved collagen, GAG, VEGF	Support proliferation	Support adipogenic differentiation (Oil Red O staining)	Wang et al. ¹⁷⁰
Adipose tissue Physical/chemical treatment: α -amylase, lyophilization	eal/chemical treatment: nylase, lyophilization		Preservation of collagen	N.D.	Support adipogenic differentiation (GPDH, PPAR- γ , lipoprotein lipase expression)	Yu et al.º0
Adipose tissue Chemical treatment: Lauroyl sarcosinate, DNase, RNase, Triton X-100	ical treatment: Lauroyl osinate, DNase, RNase, on X-100		Preservation of collagen and elastin; Partial degradation of collagen IV and laminin	Support adhesion and proliferation	Adipogenic differentiation and vascularization (Oil Red O staining)	Flynn <i>et al.</i> ¹⁷¹
Adipose tissue Physical/chemical treatment: povidone-iodine, trypsin- EDTA, Guanidine, SDC, SDS, tributyl phosphate, freeze/thaw	•	7	Absence of residual MHCs, retained collagen II and proteoglycans, retained thermal stability and elasticity	N.D.	Chondrogenic differentiation (SOX-9 expression)	Giraldo-Gomez et al. ¹⁷²
Annulus fibrosus Chemical treatment: trypsin, ribozyme, Triton X-100, acetic acide. Crosslinking with genipin, chitosan, and FGF-2 incorporation	ical treatment: trypsin, zzyme, Triton X-100, ic acide. Crosslinking 1 genipin, chitosan, and 2-2 incorporation		N.D.	Increased proliferation (1.5-fold)	Increased ECM expression (collagen type I and II, aggrecan)	Liu <i>et al.</i> ¹⁷³
		_	Retained structural integrity and water absorption	Increased proliferation	Increased expression of collagen type I, DMP-1, and DSPP	Bakhtiar <i>et al.</i> ¹⁷⁴
nt: ol,	•	12	Retained sGAG, collagens, α-elastin, VEGF	Retained proliferation, increased metabolic activity	N.D.	Ventura et al. ¹⁷⁵

(continued)

Table 2. (Continued)

Ref.	Zhang et al. ¹⁷⁶	Bai <i>et al.</i> ¹⁷⁷	Talovic <i>et al.</i> ¹⁷⁸	Zhao et al.	Hashimoto et al. ¹⁶⁴	Yang <i>et al.</i> ¹⁷⁹	Dzobo <i>et al.</i> ¹⁸⁰	Li <i>et al.</i> ⁹²	Mao et al. ⁹³
Effect on MSC differentiation	Increased adipogenic differentiation (perilipin, PPAR- γ , and	oppression of I Cx43, and ransients	Increased expression of myogenic proteins (myoD, myogenin,	mgiogenesis xpression)	Increased osteogenic differentiation (threafold higher ALD)	n d	chondrogenic tiation (Sox-9, <i>p</i> -TGF-βRII, ged1, collagen	_	Increased chondrogenic of differentiation on chondrocyte-dECM (collagen II and SOX-9). Increased collagen I on fibroblast-dECM; Increased osteogenic differentiation on osteoblast-dECM (ALP activity)
Effect on MSC proliferation	Increased proliferation (twofold)	Increased proliferation	Increased proliferation	No difference from controls	Increased proliferation	Support proliferation	Reduced proliferation Delayed senescence	Increased proliferation (twofold)	N.D.
Properties of the acellular matrix	Increased fibronectin and laminin expression posternal volume	Retained GAGs and ECM structure, collagen type I and III, fibronectin,	N.D.	Preservation of collagens, no change in the	Preservation of collagens	Retained GAGs and collagen type II	N.D.	Preserved GAG, collagen, and fibronectin	Retained structure, GAGs and collagen type II (chondrocyte-derived dECM), fibronectin (fibroblast-derived dECM)
Decellularization method	Physical/chemical treatment: freeze/thaw, trypsin, benzonase, isopropanol	Chemical treatment: SDS, Triton X-100, pepsin-HCl solutions	Chemical treatment: Triton X-100, NH ₄ OH, acetic acid	Physical/chemical treatment: Freeze dry, DNAse	Physical/chemical treatment: Hydrostatic pressure	Chemical treatment: EDTA, Triton X-100, DNAse, RNAse	Chemical treatment: Triton X-100, NH ₄ OH	Physical/chemical treatment: Triton X-100, Freeze/thaw, NH ₄ OH	Physical/chemical treatment: Na ₂ HPO ₄ , NP-40
MSC	Adipose tissue	Adipose tissue	Bone marrow	Bone marrow	Bone marrow	Bone marrow	Adipose tissue	Bone marrow	Bone marrow
ECM source	Adipose tissue	Heart	Skeletal muscle	Abdominal skin	Bone	Cartilage	Cultured cells Fibroblasts (WI-38)	Osteoblasts (MC3T3-E1)	Primary fibroblasts, osteoblasts and chondro-cytes

ALP, alkaline phosphatase; CBFA1, core-binding factor alpha 1; dECM, decellularized extracellular matrix; DMP-1, dentin matrix acidic phosphoprotein 1; DSPP, dentin sialophosphoprotein; EYA2, eyes absent homolog 2; GPDH, glycerol-3-phosphate dehydrogenase; MHC, major histocompatibility complex; MSC, mesenchymal stem cell; PPAR-7, peroxisome proliferator-activated receptor-7; Runx2, runt-related transcription factor 2; SCX, scleraxis; SOX-9, sex-determining region Y-box 9; TNC, tenascin C; TNMD, tenomodulin.

FGF-2, PDGF, VEGF (binds perlecan, heparin, dermatan sulfate, chondroitin sulfate, etc.), and TGF- β (binds decorin). Finally, the mechanical strength of acellular ECMs was found comparable to native tissues, indicating that acellular ECMs can provide mechanical properties required to reconstruct the desired tissue. Nonetheless, better understanding of the intrinsic biochemical and biomechanical properties of a particular decellularized matrix in regulating MSC fate decisions is still in need.

Pluripotent stem cell proliferation and differentiation on tsECMs

Similar to MSCs, seeding of PSCs on tsECMs induces the commitment into the lineages of ECM tissue sources (Table 3). For instance, decellularized cardiac matrices were reported to preserve heart tissue signaling network and induce hESC differentiation toward cardiac lineage. 98 Reconstructing myocardium and vascular structures was demonstrated using human iPSC-derived cardiovascular progenitor cells to repopulate the decellularized heart matrices. 28,99 The heart construct responded to \beta-adrenergic agonist isoproterenol and displayed electrophysiology and mechanical properties of heart tissue.²⁸ Decellularized matrices derived from lung or kidney were reported to promote the commitment of ESCs and iPSCs into epithelial tubules or renal cells. $^{100-103}$ The ECMs derived from the fibroblast feeders were also shown to support the self-renewal of hPSCs during long-term culture, 52,59,86,104 while the ECM of ARPE19 cells increased hPSC differentiation toward retinal pigment epithelial cells. 105 Proteomics analysis identified heparin sulfate proteoglycan as a core ECM component responsible for hPSC self-renewal.⁸⁶ The ECM composition and the controlled modulus of islet cell-derived matrices have shown to direct hESC differentiation into islet β cells. These data indicate that tsECMs can at least partially recapitulate the signaling network of the tissue source to support stem cell self-renewal or direct lineage-specific differentiation. ^{29,107}

Signaling Mediated by scECMs

Different from tsECMs, scECMs contain unique signaling networks that regulate self-renewal and lineage specification during tissue development and recapitulate specific stem cell microenvironment. ¹² Understanding these signaling networks should better control the *in vitro* culture environment and coax the *in vivo* development of the transplanted stem cells.

Endogenous signaling in MSC-derived extracellular matrices

MSCs secrete a large amount of ECMs forming an instructive microenvironment *in vivo* and *in vitro* for self-renewal and lineage commitment (Fig. 2). At an undifferentiated state, MSCs were found to secrete collagen type I, collagen type IV, vitronectin, and laminin. During adipogenic differentiation, MSCs were shown to increase the expression levels of collagen type III, decorin, and nidogen. Ohondrogenic differentiation of MSCs was reported to increase the secretion of collagen type I, II, X, aggrecan, and cartilage oligomeric protein. Differently, MSC osteogenic differentiation was shown to enhance the secretion of collagen IV, laminin, hydroxyapatite, calcium, and magnesium salt.

MSCs also secrete a large amount of growth factors, such as TGF-\u00e31, FGF-2, VEGF, and PDGF, 112 which interact with ECMs and participate in the paracrine and autocrine signaling that regulate MSC proliferation and differentiation. 113 In addition, the culture time and donor age may play a primary role in the quality of MSC-derived ECMs. 114 Upon osteogenic differentiation, MSCs upregulate the secretion of stromal cell-derived factor (SDF)-4, connective tissue growth factor (CTGF), BMP-2, and FGF-18, as autocrine signaling to promote osteogenesis. 46,115-117 However, osteogenic and chondrogenic differentiations of MSCs were reported to reduce the secretion of proangiogenic factors, for example, PDGF, TGF-β, and FGF-2, and neurotrophic factors, for example, brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Using microfluidics-based chambers, MSCs can secrete endogenous regulatory factors that elevate adipogenic genes CEBPA, CEBPB, PPARG, and LPL, while the exact factors were not reported.119

Besides growth factors, MSCs and their derivatives also differentially secrete antioxidant molecules such as super-oxide dismutase protein SOD3, which may endogenously regulate cell survival and proliferation. The MSC-derived ECMs also exhibit the antioxidant effects and were reported to decrease the intracellular levels of reactive oxygen species in reseeded MSCs, which may contribute to the increased cell proliferation and survival. However, the intrinsic signaling in MSC-derived ECMs still needs to be further characterized.

Endogenous signaling in PSC-derived ECMs

Similar to MSCs, PSCs produce a large amount of endogenous ECM proteins, such as fibronectin, laminin, collagen type IV, vitronectin, and GAGs, which regulate PSC fate decision through cell adhesion and/or binding with paracrine and autocrine factors (e.g., Lefty and Activin A) (Fig. 3). ^{62,123–126} The paracrine and autocrine factors (e.g., Lefty and TGF- β) have been shown to deposit in endogenous ECMs^{65,125,127–129} and regulate the survival and the repopulation ability of neural progenitors. ^{130,131} The characteristics of PSC-derived ECMs can be influenced by lineage specifications. ^{62,132,133} For example, the expression level of ECM proteins was found to be upregulated upon spontaneous differentiation. 19 Cerberus, a small antagonist of BMP, was detected in the secretome and ECMs of PSCs undergoing cardiac differentiation but not neural differentiation. 62,134 The lineage-specific cells derived from PSCs, such as NPCs, are known to secrete trophic factors such as BDNF and FGF-2 to stimulate neurogenesis. 135,136 The ECMs derived from PSC aggregates at early or late stages of differentiation exhibit different signaling capacities, suggesting the influence of developmental stage on ECM characteristics. 19,20,63,70,134 For instance, the upregulation of collagen type IV and laminin was found during endodermal specification. 63 The specific lineage differentiation of ESCs into ectodermal (using retinoic acid) or mesodermal (using BMP-4) cells can further enhance the expression of fibronectin, vitronectin, and collagen type IV.¹⁹

Concomitantly, PSCs also secrete a large amount of endogenous growth factors, which regulate PSC self-renewal and lineage commitment. 125 For instance, hESCs were

Table 3. Pluripotent Stem Cell Expansion and Differentiation on Decellularized Matrix Derived from Tissues or Cultured Somatic Cells

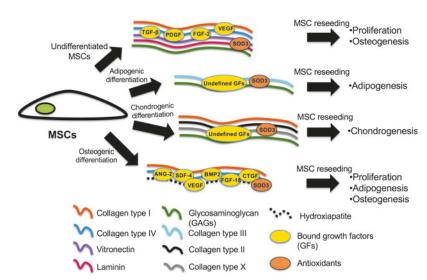

ECM source	PSC source	Decellularization method	Properties of the acellular matrix	Effect on PSC proliferation and differentiation	Ref.
Tissues Kidney and lung	hESCs	Chemical treatment: 1% SDS, Triton X-100	Preservation of dermcidin, defensin, TGF-β, EGF-7, and heparin-binding growth factor-2; collagen, keratin, vimentin, vitronectin	Epithelial tubule (DPEP1, HS6T1, CLCN7, FABP1 etc.); lung differentiation (BPI and MUC5B)	Nakayama <i>et al.</i> ¹⁰⁰
Kidney	mESCs	Chemical treatment: Triton X-100 and SDS, DNase, sodium chloride	Preservation of collagen type IV and laminin	Differentiation into endothelial cells and epithelial cells (renal cells, Pax-2, and Ksp-cadherin expression): Iumen formation	Ross et al. 101
Kidney	mESCs	Chemical treatment: SDS, Triton X-100, benzonase	Retained laminin, fibronectin, collagen type IV, and heparan sulfate proteoglycan; retained tubules, blood vessels, and olomeruli structures	mESCs differentiated into mesanephric mesenchyme cells matured into kidney cells (cytokeratin and KSP expression) and formed tubule mornhology	Sambi <i>et al.</i> ¹⁰²
Kidney	hiPSCs	Chemical treatment: SDS, DNAse	Personnel aminin and collagen I; retained heparin-binding growth factors (VEGF, FGF-2, BMP-2, HGF, PDGF-BB, TGF-8)	Increased endothelial differentiation (CD144 and CD31 coexpression) on dECM with VEGF	Ullah <i>et al.</i> ¹⁸¹
Heart	hESCs	Chemical treatment: SDS	Contain collagen I to collagen VI, elastin, fibrinogen, fibronectin and laminin, fibrillin-1, fibulin-5, proteoglycans, and decorin heparan sulfate	Cardiac differentiation (Titin M8, desmoplakin expression)	DeQuach <i>et al.</i> ¹⁸²
Heart	hiPSC derived cardio-vascular progenitors	Chemical treatment: SDS followed by Triton X-100	Typical ECM proteins such as fibronectin, laminin, and collagen II remained; ECM had filament-like appearance	About 70% cardiomyocytes; normal electrophysiology and drug response, expression of sarcomeric α-actinin and cardiac troponin T, etc.	Lu <i>et al.</i> ²⁸
Heart	hiPSCs	Chemical treatment: SDS	Retention of collagen type IV and elastin	Improved cardiac maturation (α-sarcomeric actinin, troponin T, myosin heavy chain Nkx2.5)	Garreta <i>et al</i> .
Heart	hiPSCs	Chemical treatment: SDS, Triton×100, EDTA	Preservation of fibrinogen, laminin, and collagen III; preservation of the ECM texture and orientation of the decellularized heart	Improved cardiac maturation (e.g., expression of cTnT and MYH6, atrial markers)	Wang <i>et al.</i> ¹⁸³
Ventricle heart or umbilical cords	hiPSC-derived cardiomyocytes	Chemical treatment: SDS (heart), CHAPS-EDTA (umbilical cord)	N.D.	Increased contractility on decellularized heart tissues; better cell alignment on decellularized umbilical cords	Park <i>et al.</i> ¹⁸⁴
Heart	hiPSC-derived cardio-myocytes	Physical/chemical treatment: hyper/hypo tonic NaCl, trypsin, Triton X-100, lyophilization and solubilization in HCl and pepsin	Retained collagen type I III and GAG, the mechanical properties of dECM was similar to adult heart	Increased contractile function (TNNT2, MYL2/MYL7 ratio), excitation–contraction coupling (CASQ2); better cellular alignment	Goldfracht <i>et al.</i> ¹⁸⁵

Table 3. (Continued)

Ref.	Hong et al. ¹⁸⁶	Park <i>et al.</i> ¹⁸⁷	Hirata and Yamaoka ⁶⁷	Jaramillo <i>et al.</i> ¹⁰³	Wan <i>et al.</i> ¹⁸⁸	Abraham et al 86,104	rolanam et at.	$\operatorname{Kim} et al.^{59}$	Narayanan et al.	Sthanam <i>et al.</i> ⁵²	McLenachan et al. ¹⁰⁵
Effect on PSC proliferation and differentiation	Retain cell proliferation; differentiation into functional cardiomyocytes (α-MHC, MLC2v, ANP, and field potential)	Increased maturation of iPSC-hepatoprogenitor toward hepatocyte phenotype (AFP and ALB)	Increased hepatogenic differentiation (AFP, ALB, TAT, etc.)	Preservation of collagen and GAGs Increased expression of hepatogenic makers: CYP3A4, CYP2B6, FOXA1/2, HHEX, HNF4, LHR1, PBDC1, CK18, AFP, HNF6, CEBDP, albumin	Improved maturation into pancreatic β cells (insulin expression)	Support long-term self-renewal (Oct-4	NANOG, and SOX-2 expression)		Insulin secreting β cell differentiation	ECM from MEF reduced Oct-4 expression as a function of the ECM stiffness; Increased osteogenic differentiation in an ECM stiffness-dependent manner	Similar expression of PAX-6, MITF, and OTX2 to culture on geltrex, but increased expression of RPE65
Properties of the acellular matrix	Preserved collagen fiber network. Elastin was only preserved on ventricle tissue-derived ECMs	Preservation of collagen and GAGs; more than 40 different liver-derived growth factors were preserved after liver decellularization	Preservation of collagen type III and of the mechanical properties of the native tissue	Preservation of collagen and GAGs	Preservation of collagen type I, collagen type IV, laminin, fibronectin, sGAGs	Collagen I collagen III fibronectin	and HSPG	Preservation of fibrinectin, laminin, collagen type I, and vitronectin	Collagen IV, fibronectin and laminin	Retained fibronectin and collagen type I; the stiffness and amount of fibronectin and collagen type I on ECM were a function of the initial gelatin concentration used for MEF expansion	Comparable composition (fibronectin, vitronectin, collagen IV and V, laminin-25) and microstructure than Buch's membrane
Decellularization method	Chemical treatment: SDS, Triton X-100, trypsin	Chemical treatment: SDS	Physical/chemical treatment: Pressurization at 1000 MPa, Dnase I, MgCl ₂ , EDTA	Chemical treatment: SDS, Triton X-100, pepsin	Chemical treatment: Triton X-100, ammonium hydroxide	Chemical treatment:	NH4OH treatment	Chemical treatment: Triton X-100, NH ₄ OH, genipin crosslinking	Chemical treatment: NH ₄ OH treatment	Chemical treatment: ammonium hydroxide, Triton X-100	Chemical treatment: deoxycholate, DNAse
PSC source	mESCs (clone	Porcine iPSCs	miPSCs	hiPSCs	miPSCs	hFSC.		hESC	hESCs	mESCs	hiPScs
ECM source	Anterior tibial muscle (ATM) and ventricle tissues	Liver	Liver	Liver	Pancreas	Cultured cells Fibroblasts	1 101 001 4313	Fibroblasts	RIN5F cells (islet cell line)	Mouse embryonic fibroblasts (MEF)	Retinal pigment epithelium cells (ARPE19 cell line)

AFP, alpha-fetoprotein; ALB, albumin; ANP, atrial natriuretic peptide; BPI, bactericidal/permeability-increasing protein; CEBP, CCAAT enhancer-binding protein; CK, cytokeratin; CLCN7, chloride voltage-gated channel 7; cTn7, troponin T; CYP, cytochrome P450; DPEP1, dipeptidase 1; EMT, epithelial to mesenchymal transition; FABP1, fatty acid-binding protein 1; FOX, forkhead box protein; hESC, human induced pluripotent stem cells; HNF, hepatocyte nuclear factor; HS6T1, heparan sulfate 6-0-sulfotransferase 1; HSPG, heparin sulfate proteing spindle protein; LHR1, liver receptor homolog 1; mESC, mouse embryonic stem cell; α-MHC, myosin light chain α; miPSC, mouse-induced pluripotent stem cell; MTF, microphthalmia-associated transcription factor; MLC2v, myosin regulatory light chain 2; MUC5B, mucin 5B; MYH, myosin heavy chain; MYL, myosin light chain; Nkx2.1, NK2 homeobox 1; Nkx2.5, NK2 homeobox 5; OTX2, orthodenticle homeobox 2; Pax-2, paired box gene 2; PAX-6, paired box protein 6; RPE65, retinoid isomerohydrolase; sGAG, sulfated glycosaminoglycan; TAT, tyrosine aminotransferase; TNNT2, troponin 2.

FIG. 2. The specific composition and biological functions of MSC-derived ECM. MSCs secrete the specific combination of ECM proteins and growth factors at undifferentiated and various differentiated stages. Decellularization of MSC-secreted ECM complexes can provide 3D scaffolds bearing unique biochemical and biological signaling in stem cell microenvironment. Color images are available online.

reported to secrete low levels (ng-pg/mL) of IGF-2, TGF- β 1, FGF-2, HGF, nerve growth factor, and Wnt ligands to sustain the self-renewal. ¹³⁷ Differently, mouse ESCs were reported to secrete leukemia growth factor (LIF), Lefty, Nodal, Wnt, and cyclophilin A, which can support self-renewal and OCT-4 expression. ^{134,138} The paracrine factor FGF-4 was also reported for early commitment of mouse ESCs. ¹³⁹ The secreted growth factors have been shown to actively interact with ECMs in PSC culture. For example, the presence of regulators in TGF- β /Nodal and Wnt signaling pathways, Lefty A and B, Cerberus, and sFRP1/2, were observed in hPSC-conditioned matrix. ^{62,84} These studies demonstrate the presence of a unique spectrum of signaling molecules in PSC-derived ECMs.

Biological functions of scECMs

scECMs provide a stimulating microenvironment for reseeded cell expansion, differentiation, and cytokine secre-

tion (Table 4). MSC-derived ECMs were reported to improve MSC proliferation compared with 2D plastic dishes, possibly through antioxidant molecules and bound growth factors, such as FGF-2, TGF-β, and VEGF. 12,18 Decellularized ECMs from MSCs were also reported to upregulate the expression of integrins $\alpha 2$ and $\beta 5$ and activate ERK1/2 signaling in the reseeded MSCs. 121 In addition, ECMs derived from MSCs can increase osteogenic differentiation, potentially through the retained growth factors (e.g., BMP-2) and the combination of ECM proteins (e.g., collagen type I). ^{18,32,94,122} Indeed, proteomics analysis reveal that the composition of ECM proteins (e.g., tenascin C, vitronectin, fibronectin, etc.) and immobilized molecules (e.g., TGF-β, CTGF, CYR61) are responsible for the osteoinductive properties of MSC-ECMs. 107 The chondrogenic potential of MSCs can be enhanced on MSC-derived ECMs possibly due to the upregulation of TGF-β receptor II. 121 MSC-ECMs have also been found to stimulate cytokine secretion, including angiopoietin-1 (ANG-1), SDF-1, and IL-8 from the reseeded MSCs, and ANG-2, VEGF, and

FIG. 3. The specific composition and biological functions of PSC-derived ECM. PSCs secrete the specific combination of ECM proteins and growth factors at undifferentiated and various differentiated stages. Decellularization of PSC-secreted ECM complexes can provide 3D scaffolds bearing signaling specificity along the embryonic tissue development. PSC, pluripotent stem cell. Color images are available online.

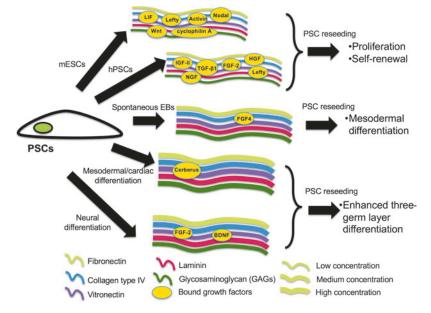


Table 4. Decellularized Extracellular Matrices Derived from Stem Cells and Their Biological Function

	Table 4. Decellularize	TABLE 4. DECELLULARIZED EXTRACELLULAR MATRICES DERIVED FROM STEM CELLS AND THEIR BIOLOGICAL FUNCTION	VED FROM STEM CELLS AND TH	HEIR BIOLOGICAL FUNCTION	
ECM source	Reseeded cell source	Decellularization method and properties of the acellular matrix	Effect on stem cell proliferation	Effect on stem cell differentiation	Ref.
MSCs BM-MSCs	BM-MSCs	Chemical treatment: Triton X-100, NH ₄ OH; expression of collagen I, collagen III, fibronectin, laminin	Fivefold increase in proliferation; fourfold less expression of reactive oxygen species	Increase hepatogenic differentiation (increase urea secretion)	He <i>et al.</i> ¹⁸⁹
Dental pulp MSCs	Dental pulp and periodontal ligament stem cells	Chemical treatment: Lysis followed by DNA digestion; retained BMP-2, TGF-β, VEGF, and PEDF, fibronectin	N.D.	Increased odontoblastic differentiation (DMP-1, DSP, and DPP expression)	Ravindran et al. ¹⁹⁰
BM-MSCs	BM-MSCs	Chemical treatment: Triton X-100, NH ₄ OH, DNAse; retained FGF-2, fibronectin, laminin, vitronection, collagen type I, and IV	Increased proliferation	Increased osteogenic differentiation (Alizarin Red S and von Kossa staining)	Kim and Ma ¹⁸
BM-MSCs	BM-MSCs	Chemical treatment: Triton X-100, DNAse; preserved fibronectin biglycan, Decorin and collagen type I	N.D.	Increase osteogenic differentiation; in an integrin- dependent manner (increased RUNX2 and osterix expression)	Decaris et al. ⁹⁴
BM-MSCs	BM-MSC	Chemical treatment: Triton X-100 and NH4OH, DNAse; no characterization of the ECM	Increased MSC proliferation; upregulated SSEA-4 and integrin α2 and β5 expression	Enhanced chondrogenic differentiation (GAGs, phospho-TGF-β RII, SOX-9) and osteogenic differentiation (Alizarin Red D and ALP staining); decreased adipogenic differentiation (Oil Red O staining)	
BM-MSCs	BM-MSCs; hematopoietic stem cells	Chemical treatment: Triton X-100, ammonium hydroxide; retained collagen, sGAGs, HGF, FGF, and VEGF	Increased MSC proliferation; Increased CD34 ⁺ cell expansion, supported long-term engraftment	Increased osteogenic (von Kossa staining) and adipogenic differentiation (Oil Red O staining); Increased cytokine secretion (ANG-1, SDF-1, IL-8)	
Osteogenically induced BM-MSCs	BM-MSCs	Chemical treatment: Triton X-100, NH ₄ OH, and DNAse; no characterization of the ECM	Reduced proliferation	Increased osteogenic differentiation (ALP, Alizarin Red S, IBSP, RPL13 expression) and proangionenic (VEGF) function	
BM-MSCs	BM-MSCs	Chemical treatment: Triton X-100 containing NH ₄ OH; increased roughness of the ECM in comparison to CELLstart TM	Increased MSC proliferation under serum-free conditions; Increased colony formation	Increased osteogenic differentiation (ALP, BSP, and Runx2 expression)	Rakian <i>et al.</i> ¹⁹¹

			(
ECM source	Reseeded cell source	Decellularization method and properties of the acellular matrix	Effect on stem cell proliferation	Effect on stem cell differentiation	Ref.
Immortalized cell lines: CMSC2, DMSC23 (hTERT-MSCs), 3T3 line	Placenta-derived MSCs	Chemical treatment: Triton X-100, NH ₄ OH; preservation of collagen type I, fibronectin and proteoglycans	ECMs derived from DMSC23 cells promote proliferation than the ECMs derived from CMSC2 and 3T3 cells	ECMs derived from DMSC23 promoted osteogenic differentiation compared with CMSC2 and 3T3 cells (Alizarin Red S and Octobinate etaining)	Kusuma <i>et al.</i> ¹⁹²
Adipogenically-induced A-MSCs A-MSCs	A-MSCs	Chemical/physical treatment: Triton X-100, NH ₄ OH, DNAse, RNAse freeze/thaw cycles, glutaraldehyde, glycine; increased laminin,	Retained proliferation, increased number of CFU- Fs	Increased adipogenic differentiation (increased EABP4 and PPAR- γ expression, measured by RT-qPCR)	Zhang et al. ³⁰
AC and chondrogenically induced A-MSCs and BM-MSCs	A-MSCs and BM-MSCs	Chemical treatment: Triton X-100, NH ₄ OH, DNAse; persevered collagen type I and II, fibronectin, aggrecan and hyaluronic acid, and fiber organization	Chondrogenic-induced derived -dECM better promoted proliferation than AC induced derived ECM	Chondrogenic-derived dECM promoted chondrogenic differentiation (expression of collagen II and aggrecan); AC induced derived ECM promoted osteogenic differentiation	Perez-Castrillo et al. ³¹
Proliferative, adipogenically and osteogenically induced A-MSCs	A-MSCs	Physical/chemical treatment: Triton X-100, NH ₄ OH, freeze/ thaw, gluataraldehyde, glycine; preserved fibronectin, laminin, collagen type I, collagen type IV, reduced	Similar proliferation on dECM than on tissue culture plastics	Adipogenically induced dECM promoted adipogenic differentiation (PPAR- γ expression); osteogenically induced dECM promoted osteogenic differentiation (collagen I expression)	Guneta et al. ¹⁵⁰
BM-MSCs cultured on nanogrooves	BM-MSCs	Chemical treatment: Triton X-100, NH ₄ OH; preserved collagen I, II, and IV, fibronection and laminin. dECM fibers were aligned in the direction of nanogrooves	N.D.	Increased chondrogenesis on nanogrooves coated with dECM: reduced collagen type I and increased LAMB1 and aggrecan expression	Ozguldez et al. ¹⁵⁵
Embryoid bodies	3T3 fibroblasts	Mechanical treatment: Lyophilization or freeze/thaw cycling; no characterization of ECM composition	ECMs promoted fibroblast attachment, adhesion, and repopulation of matrices	N.D.	Ngangan and McDevitt ⁶⁶
ESC aggregates and embryoid bodies	mESCs	Chemical treatment: Triton X-100, DNAse; preservation of collagen IV, fibronectin, laminin, vitronectin, and GAG	No change in cell proliferation, except ECMs from retinoic acid-treated embryoid bodies	Increased three-germ layer differentiation (FOX-2 for endoderm; β-tubulin III for ectoderm; and α-actinin for mesoderm) on the 3D ECM scaffolds	Sart <i>et al.</i> ¹⁹

Table 4. (Continued)

		IABLE 4. (CONTINUED)	ONTINUED)		
ECM source	Reseeded cell source	Decellularization method and properties of the acellular matrix	Effect on stem cell proliferation	Effect on stem cell differentiation	Ref.
Embryoid bodies	mESCs	Chemical treatment: Triton X-100, SDS, SDC; retained collagen type I, IV, fibronectin, laminin, and sGAGs	Higher cellular attachment and proliferation	Supported three-germ layer differentiation (Brachyury, FGF-8, FGF-5, AFP, and Nestin expression) on the 3D ECM scaffolds	Goh <i>et al.</i> ³³
hESCs (H9 and CA1) and hiPSCs (BJ-1D)	hESCs	Chemical treatment: Cell recovery solution; retained frizzled-related proteins 1 and 2, Lefty A and B, connective tissue growth factor, Cerberus, and FGF-15	Support the maintenance of hPSC self-renewal	N.D.	Hughes <i>et al.</i> ⁶²
ESC aggregates, embryoid bodies, and ESC-derived neural progenitors	Neural progenitors derived from mESCs	Chemical treatment: Triton X-100, DNAse; no characterization of the ECM composition	ECMs derived from PSC-NPCs reduced proliferation of reseeded cells	ECMs derived from NPCs promoted neuronal differentiation; Crosslinking reduced neuronal differentiation (β-tubulin III expression) on the 3D ECM scaffolds	Sart et al. ²⁰
PSC aggregates and embryoid bodies and PSC derived neural progenitors	mESCs hiPSCs	Chemical treatment: Triton X-100, DNAse; ECMs derived from NPCs express more collagen IV alpha 2, laminin B1, glypican, activity-dependent neuroprotective protein, neuron-derived neurotrophic factor	ECM derived from PSC- neural progenitor reduced cell proliferation for both reseeded mESCs and hiPSCs	NPC group preferably induces neural differentiation for both reseeded mESCs and hiPSCs (Nestin and β-tubulin III expression) on the 3D ECM scaffolds	Yan <i>et al.</i> ⁸⁴
hESC-derived fibroblasts	hESCs	Chemical freatment: SDC, protease inhibitor; retained collagen type I and VII, fibronectin, laminin	Delayed senescence of keratinocytes derived from hESCs	Keratinocytes differentiation (e.g., K14, K10 expression)	Movahednia et al. ¹⁴⁰
hESC-derived neural progenitors	DFSCs	Chemical treatment: NH ₄ OH, deionized water, DNAse; retained GAGs, collagen I, fibronectin, and collagen type IV	N.D.	Enhanced neural differentiation on ECM derived from hESC- NPCs (PAX-6, NSE, Musashi- 1 and β-tubulin III)	Heng <i>et al.</i> ¹⁴¹

AC, ascorbic acid; A-MSC, adipose tissue-derived mesenchymal stem cells; ANG-1, angiopoietin 1; BM-MSC, bone marrow mesenchymal stem cells; DFSCs, dental follicle stem cells; DPP, dentine phosphoproryn; DSP, dentin sialophosphoprotein; IBSP, integrin-binding sialoprotein; IL-8, interleukin 8; K14, keratin 14; LAMB1, laminin subunit beta 1; NPC, neural progenitor cell; PEDF, pigment epithelium-derived factor; phospho-TGF-βRII, phosphorylated form of transforming growth factor beta receptor II; RPL13, ribosomal protein L13; SDF-1, stromal cell-derived factor 1.

HGF from reseeded hematopoietic stem cells, providing a mimetic bone marrow ECM environment that supports their long-term engraftment. 12

Similarly, acellular matrices from different PSC organizations retain endogenous ECM proteins and exogenous morphogens such as retinoic acid, which can accelerate three-germ layer commitment through the regulation of retinoic acid receptor signaling (Table 4). 19,33 In addition, decellularized ECMs derived from undifferentiated ESCs support the reseeded ESC self-renewal in the absence of exogenous LIF. 19 This indicates a possible retention of autocrine regulatory molecules such as LIF on decellularized matrices. For hPSCs, endogenous ECMs deposited on Matrigel were shown to support the propagation of hPSCs due to the retention of the paracrine and autocrine factors such as Gremlin and Cerberus (antagonists of BMP signaling).⁶² For directed differentiation, the ECMs of PSC-derived fibroblasts were reported to promote keratinocyte differentiation by modulating TGF-β1 signaling. 140 Of interest, it was recently found that the cues provided by ECMs of neural differentiated PSCs direct the differentiation of MSCs. 141 Altogether, these data indicate that scECMs retain the specific cues along tissue development and are able to uniquely regulate cellular differentiation, providing the dynamic reciprocal interactions among stem cells, ECM, and growth factors.

Engineering scECMs

Modulation of biochemical and biomechanical properties of ECMs

The functionality of acellular matrices can be improved by the addition of exogenous regulatory molecules that can bind to ECM proteins. For instance, the decellularized matrices could be functionalized by exogenous growth factors (e.g., FGF-2) bound to the heparin-binding domains of GAGs. 142 The newly retained growth factors demonstrate prolonged retention and controlled delivery to the reseeded stem cells. 142 Similarly, the retention of exogenous retinoic acid in ESC-derived ECMs promotes the commitment of reseeded ESC to the three germ layers. 19 Moreover, acellular ECMs can be functionalized with exogenous biomaterials such as collagen or hyaluronan, which were shown to promote PSC differentiation toward cardiac lineage. 143,144 The combination of inorganic materials and cell-derived ECMs results in the formation of novel hybrid scaffolds, providing synergic biochemical and biophysical cues regulating stem cell differentiation. 145

The mechanical properties of ECM scaffolds can be modified by crosslinking. The crosslinking of decellularized matrices not only promotes ECM stability but also increases the elastic modulus, that is, stiffness. ¹⁴⁶ The stiffness of ECMs modulated by crosslinking was reported to promote hypertrophic differentiation and matrix calcification of chondrogenically induced MSCs and enhance osteogenic differentiation. ^{147,148} In addition, crosslinking of endogenous ECM through glycation regulates the mechanical properties of ECMs without altering the osteogenic differentiation potential of the reseeded cells. ¹⁴⁹ Among various crosslinking methods, crosslinking of acellular matrices by genipin was shown to have similar microstructure and

mechanical properties but lower cytotoxicity compared with crosslinking by glutaraldehyde. ¹⁴⁶ Our previous study shows that the stiffness of endogenous PSC-derived ECMs, modulated by genipin crosslinking, regulates neural specification of ESC-derived neural progenitors. ²⁰ Similarly, it has been shown that the crosslinking degree of the scaffolds regulates early commitment of PSCs in a stiffness-dependent manner. ⁵⁸

Modulation of culture conditions before decellularization

Stem cell culture conditions regulate the secretory profiles of ECMs and growth factors. First, the directed differentiation of stem cells regulates the properties of ECMs that can induce commitment of reseeded undifferentiated cells toward the phenotype of cells that have been used to generate scECMs. For instance, the scECMs of adipogenically, osteogenically, or chondrogenically differentiated MSCs promote the differentiation of undifferentiated MSCs stoward adipocytes, osteoblasts, or chondrocytes. 25,30,31,150 While the composition of differentiated scECMs needs characterizations, the results indicate that the scECMs contain specific structural and regulatory proteins that promote directed commitment of the reseeded cells. Similar observations have been made with the ECMs of PSCs that commit to neural differentiation, which can promote neuronal differentiation of the reseeded cells.

While MSCs are usually grown and differentiated as monolayers, the MSC aggregates enhance the secretory profiles (e.g., VEGF, FGF-2, HGF, etc.) as well as the differentiation potential along adipogenic, chondrogenic, and osteogenic lineages. ^{151,152} Similarly, undifferentiated hESC aggregates showed the enhanced expression of E-cadherin, Tra-1-60, and Oct-4 compared with monolayers, indicating potential regulation of autocrine signaling by cellular organization. 153 Moreover, PSC and MSC aggregates were shown to regulate lineage commitment through differential accumulation of endogenous factors. 154 Indeed, confined microwell cultures containing accumulated factors were observed to induce endodermal and ectodermal specification, while suspension cultures with limited local concentrations of endogenous morphogens were observed to dominantly induce mesodermal specification. 154 Similarly, the nanogrooved surfaces regulate structural organization and the compositions of ECM fibers of MSCs, leading to chondrogenic differentiation of the reseeded cells.13

Dynamic cultures of stem cells in bioreactors or within biomaterials can modulate their secretome profiles as well. Indeed, undifferentiated MSCs display the enhanced secretion of VEGF and FGF-2 as well as ECM remodeling under flow shear stress. Similarly, under exposure to mechanical stresses, hESCs secrete high levels of TGF- β 1, Activin A, and Nodal, which can inhibit spontaneous differentiation. Is In addition, oxygen tension is able to regulate the growth factor secretion from MSCs such as VEGF, PDGF, or FGF-2, and the secretion of collagen type I and fibronectin. Restriction 18,158 PSCs were shown to increase the secretion of VEGF under hypoxia (1% O₂). Hence, modulation of stem cell culture conditions may increase the bioactivity of scECMs by regulating secretory function.

Conclusions and Perspectives

scECMs have unique properties and have demonstrated significant potential in regenerative medicine. The wide-spread applications of scECM, however, depend on addressing several important questions underlying their functional properties. (i) First, in-depth characterization of the biochemical and biomechanical properties of scECM remains a challenge because of large variations in scECM derivation methods. Advanced proteomic tools will provide important insights in scECM properties and in understanding scECM-cell interactions. (ii) Additionally, scECMs directly obtained from stem cell cultures may have low mechanical strength and poor structural and functional stability, which significantly limit their applications. Methods that can functionalize scECMs while preserving their innate properties should significantly improve their properties. (iii) In most studies, scECMs were used as 2D substrates, whereas recent works have demonstrated that scECMs can also serve as 3D scaffolds (Table 4). Thus, there is a need to better characterize the bioactive function of scECMs depending on their configurations in cultures (2D vs. 3D). (iv) To date, scECM derivation has been primarily carried out in the laboratory with low efficiency and reproducibility. Massive production of scECM has been very challenging. Research on scalable and robust biomanufacturing methods should significantly improve the regeneration medicine and therapeutic use of scECMs. The advances in these areas play important roles in fully understanding ECM microenvironment of stem cells and in establishing technologies to obtain ad equate biomimetic ECM-stem cell constructs for clinical applications.

Disclosure Statement

No competing financial interests exist.

Funding Information

This work is supported by ERC starting grant and partially by the National Science Foundation of USA (NSF CAREER 1652992, NSF 1743426, and NSF 1917618).

References

- 1. Pittenger, M.F., Mackay, A.M., Beck, S.C., *et al.* Multilineage potential of adult human mesenchymal stem cells. Science **284**, 143, 1999.
- Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145, 1998.
- Takahashi, K., Tanabe, K., Ohnuki, M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861, 2007.
- 4. Dominici, M., Le Blanc, K., Mueller, I., *et al.* Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy **8**, 315, 2006.
- 5. Caplan, A.I., and Correa, D. The MSC: an injury drugstore. Cell Stem Cell **9**, 11, 2011.
- Serra, M., Brito, C., Correia, C., et al. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30, 350, 2012.
- Engle, S.J., and Puppala, D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12, 669, 2013.

- 8. Yin, J.Q., Zhu, J., and Ankrum, J.A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 3, 90, 2019.
- Wu, S.M., and Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13, 497, 2011.
- Guilak, F., Cohen, D.M., Estes, B.T., et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17, 2009.
- Ferguson, C.M., Miclau, T., Hu, D., et al. Common molecular pathways in skeletal morphogenesis and repair. Ann N Y Acad Sci 857, 33, 1998.
- Prewitz, M.C., Seib, F.P., von Bonin, M., et al. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat Methods 10, 788, 2013.
- 13. Nowotschin, S., and Hadjantonakis, A.K. Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr Opin Genet Dev **20**, 420, 2010.
- 14. Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science **326**, 1216, 2009.
- 15. Chhabra, S., Liu, L., Goh, R., *et al.* Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids. PLoS Biol **17**, e3000498, 2019.
- Rozario, T., and DeSimone, D.W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341, 126, 2010.
- 17. Edri, R., Gal, I., Noor, N., *et al.* Personalized hydrogels for engineering diverse fully autologous tissue implants. Adv Mater **31**, e1803895, 2019.
- 18. Kim, J., and Ma, T. Autocrine fibroblast growth factor 2-mediated interactions between human mesenchymal stem cells and the extracellular matrix under varying oxygen tension. J Cell Biochem **114**, 716, 2013.
- Sart, S., Ma, T., and Li, Y. Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 20, 54, 2014.
- Sart, S., Yan, Y., Li, Y., et al. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomater 30, 222, 2016.
- 21. Bejoy, J., Song, L., Wang, Z., *et al.* Neuroprotective activities of heparin, heparinase III, and hyaluronic acid on the Aβ42-treated forebrain spheroids derived from human stem cells. ACS Biomater Sci Eng **4**, 2922, 2018.
- Yan, Y., Bejoy, J., Marzano, M., et al. The use of pluripotent stem cell-derived organoids to study extracellular matrix development during neural degeneration. Cells 8, 242, 2019.
- 23. Badylak, S.F., Taylor, D., and Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13, 27, 2011.
- 24. Badylak, S.F., Freytes, D.O., and Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater **5**, 1, 2009.
- Hoch, A.I., Mittal, V., Mitra, D., et al. Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells. Biomaterials 74, 178, 2016.
- Barker, T.H. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials 32, 4211, 2011.

27. Burdick, J.A., Mauck, R.L., Gorman, J.H., 3rd, *et al.* Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med **5**, 176ps174, 2013.

- Lu, T.Y., Lin, B., Kim, J., et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4, 2307, 2013.
- Ragelle, H., Naba, A., Larson, B.L., et al. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128, 147, 2017.
- Zhang, Z., Qu, R., Fan, T., et al. Stepwise adipogenesis of decellularized cellular extracellular matrix regulates adipose tissue-derived stem cell migration and differentiation. Stem Cells Int 2019, 1845926, 2019.
- 31. Perez-Castrillo, S., Gonzalez-Fernandez, M.L., Lopez-Gonzalez, M.E., *et al.* Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation. Ann Anat **220**, 60, 2018.
- 32. Decaris, M.L., Binder, B.Y., Soicher, M.A., *et al.* Cell-derived matrix coatings for polymeric scaffolds. Tissue Eng Part A **18**, 2148, 2012.
- 33. Goh, S.K., Olsen, P., and Banerjee, I. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One **8**, e61856, 2013.
- 34. Shakouri-Motlagh, A., O'Connor, A.J., Brennecke, S.P., *et al.* Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater **55**, 1, 2017.
- Sart, S., Agathos, S.N., and Li, Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 29, 1354, 2013.
- 36. Rowland, T.J., Miller, L.M., Blaschke, A.J., *et al.* Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev **19**, 1231, 2010.
- 37. Li, Y., Gautam, A., Yang, J., *et al.* Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev **22**, 1497, 2013.
- 38. Brafman, D.A., Shah, K.D., Fellner, T., *et al.* Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev **18**, 1141, 2009.
- 39. Hayashi, Y., Furue, M.K., Okamoto, T., *et al.* Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells **25**, 3005, 2007.
- Ma, W., Tavakoli, T., Derby, E., et al. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 8, 90, 2008.
- 41. Brafman, D.A., Phung, C., Kumar, N., *et al.* Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ **20**, 369, 2013.
- Mathews, S., Bhonde, R., Gupta, P.K., et al. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 84, 185, 2012.
- Gronthos, S., Simmons, P.J., Graves, S.E., *et al.* Integrinmediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28, 174, 2001.

44. Mauney, J., and Volloch, V. Progression of human bone marrow stromal cells into both osteogenic and adipogenic lineages is differentially regulated by structural conformation of collagen I matrix via distinct signaling pathways. Matrix Biol 28, 239, 2009.

- 45. Tamaddon, M., Burrows, M., Ferreira, S.A., et al. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Sci Rep 7, 43519, 2017.
- 46. Wei, W., Li, J., Chen, S., *et al.* In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B **5**, 2468, 2017.
- Ghaedi, M., Duan, Y., Zern, M.A., et al. Hepatic differentiation of human embryonic stem cells on growth factor-containing surfaces. J Tissue Eng Regen Med 8, 886, 2014.
- 48. Gonzalez-Garcia, C., Sousa, S.R., Moratal, D., *et al.* Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf B Biointerfaces **77**, 181, 2010.
- Giamblanco, N., Martines, E., and Marletta, G. Laminin adsorption on nanostructures: switching the molecular orientation by local curvature changes. Langmuir 29, 8335, 2013.
- 50. Massumi, M., Abasi, M., Babaloo, H., et al. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Eng Part A 18, 609, 2012.
- Chen, W., Villa-Diaz, L.G., Sun, Y., et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6, 4094, 2012.
- Sthanam, L.K., Barai, A., Rastogi, A., et al. Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials 119, 9, 2017.
- Engler, A.J., Sen, S., Sweeney, H.L., et al. Matrix elasticity directs stem cell lineage specification. Cell 126, 677, 2006.
- 54. Shih, Y.R., Tseng, K.F., Lai, H.Y., et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26, 730, 2011.
- Lanniel, M., Huq, E., Allen, S., et al. Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter 7, 6501, 2011.
- 56. Chowdhury, F., Li, Y., Poh, Y.C., *et al.* Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One **5**, e15655, 2010.
- 57. Evans, N.D., Minelli, C., Gentleman, E., *et al.* Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater **18**, 1, 2009; discussion 13–14.
- Zoldan, J., Karagiannis, E.D., Lee, C.Y., et al. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32, 9612, 2011.
- Kim, I.G., Gil, C.H., Seo, J., et al. Mechanotransduction of human pluripotent stem cells cultivated on tunable cellderived extracellular matrix. Biomaterials 150, 100, 2018.
- Dupont, S., Morsut, L., Aragona, M., et al. Role of YAP/ TAZ in mechanotransduction. Nature 474, 179, 2011.
- Yang, C., Tibbitt, M.W., Basta, L., et al. Mechanical memory and dosing influence stem cell fate. Nat Mater 13, 645, 2014.
- 62. Hughes, C., Radan, L., Chang, W.Y., et al. Mass spectrometry-based proteomics analysis of the matrix

- microenvironment in pluripotent stem cell culture. Mol Cell Proteomics **12**, 1924, 2012.
- 63. Nair, R., Ngangan, A.V., Kemp, M.L., *et al.* Gene expression signatures of extracellular matrix and growth factors during embryonic stem cell differentiation. PLoS One **7**, e42580, 2012.
- 64. Zeitouni, S., Krause, U., Clough, B.H., *et al.* Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci Transl Med **4,** 132ra155, 2012.
- 65. Postovit, L.M., Margaryan, N.V., Seftor, E.A., et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci U S A 105, 4329, 2008.
- Ngangan, A.V., and McDevitt, T.C. Acellularization of embryoid bodies via physical disruption methods. Biomaterials 30, 1143, 2009.
- 67. Hirata, M., and Yamaoka, T. Hepatocytic differentiation of iPS cells on decellularized liver tissue. J Artif Organs **20**, 318, 2017.
- 68. Lu, H., Hoshiba, T., Kawazoe, N., *et al.* Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials **32**, 2489, 2011.
- 69. Sheridan, W.S., Duffy, G.P., and Murphy, B.P. Optimum parameters for freeze-drying decellularized arterial scaffolds. Tissue Eng Part C Methods **19**, 981, 2013.
- Nair, R., Shukla, S., and McDevitt, T.C. Acellular matrices derived from differentiating embryonic stem cells.
 J Biomed Mater Res A 87, 1075, 2008.
- Freire, E., and Coelho-Sampaio, T. Self-assembly of laminin induced by acidic pH. J Biol Chem 275, 817, 2000.
- 72. Haas, R., and Culp, L.A. Binding of fibronectin to gelatin and heparin: effect of surface denaturation and detergents. FEBS Lett **174**, 279, 1984.
- 73. Barnes, D.W., Reing, J.E., and Amos, B. Heparin-binding properties of human serum spreading factor. J Biol Chem **260**, 9117, 1985.
- 74. Peterson, C.B. Binding sites on native and multimeric vitronectin exhibit similar affinity for heparin the influence of self-association and multivalence on ligand binding. Trends Cardiovasc Med **8**, 124, 1998.
- 75. Wolf, M.T., Daly, K.A., Reing, J.E., *et al.* Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials **33**, 2916, 2012.
- 76. Brown, B.N., Freund, J.M., Han, L., et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17, 411, 2011.
- 77. Chun, S.Y., Lim, G.J., Kwon, T.G., *et al.* Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials **28**, 4251, 2007.
- 78. Liao, J., Joyce, E.M., and Sacks, M.S. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials **29**, 1065, 2008.
- Nair, R., Ngangan, A.V., and McDevitt, T.C. Efficacy of solvent extraction methods for acellularization of embryoid bodies. J Biomater Sci Polym Ed 19, 801, 2008.
- 80. Crapo, P.M., Gilbert, T.W., and Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials **32**, 3233, 2011.
- 81. Byron, A., Humphries, J.D., and Humphries, M.J. Defining the extracellular matrix using proteomics. Int J Exp Pathol **94**, 75, 2013.
- 82. Harvey, A., Yen, T.Y., Aizman, I., et al. Proteomic analysis of the extracellular matrix produced by mesen-

- chymal stromal cells: implications for cell therapy mechanism. PLoS One **8**, e79283, 2013.
- Devaud, Y.R., Avilla-Royo, E., Trachsel, C., et al. Label-free quantification proteomics for the identification of mesenchymal stromal cell matrisome inside 3D poly(ethylene glycol) hydrogels. Adv Healthc Mater 7, e1800534, 2018.
- 84. Yan, Y., Martin, L., Bosco, D., *et al.* Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials **73**, 231, 2015.
- 85. Roubelakis, M.G., Pappa, K.I., Bitsika, V., et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16, 931, 2007.
- 86. Abraham, S., Riggs, M.J., Nelson, K., *et al.* Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. Acta Biomater **6**, 4622, 2010.
- 87. Soteriou, D., Iskender, B., Byron, A., *et al.* Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J Biol Chem **288**, 18716, 2013.
- 88. Gasimli, L., Hickey, A.M., Yang, B., *et al.* Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta **1840**, 1993, 2014.
- 89. Yin, Z., Chen, X., Zhu, T., *et al.* The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater **9**, 9317, 2013.
- Yu, C., Bianco, J., Brown, C., et al. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials 34, 3290, 2013.
- 91. Martinello, T., Bronzini, I., Volpin, A., *et al.* Successful recellularization of human tendon scaffolds using adiposederived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med **8**, 612, 2014.
- Li, M., Zhang, T., Jiang, J., et al. ECM coating modification generated by optimized decellularization process improves functional behavior of BMSCs. Mater Sci Eng C Mater Biol Appl 105, 110039, 2019.
- 93. Mao, Y., Hoffman, T., Wu, A., *et al.* Cell type-specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds. J Mater Sci Mater Med **28**, 100, 2017.
- 94. Decaris, M.L., Mojadedi, A., Bhat, A., *et al.* Transferable cell-secreted extracellular matrices enhance osteogenic differentiation. Acta Biomater **8**, 744, 2012.
- 95. Sugahara, K., Mikami, T., Uyama, T., *et al.* Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol **13**, 612, 2003.
- 96. Hildebrand, A., Romaris, M., Rasmussen, L.M., *et al.* Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J **302(Pt 2)**, 527, 1994.
- 97. Zhao, Y., Zhang, Z., Wang, J., *et al.* Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs **36**, 247, 2012.
- 98. Ng, S.L., Narayanan, K., Gao, S., *et al.* Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials **32**, 7571, 2011.
- 99. Garreta, E., de Onate, L., Fernandez-Santos, M.E., *et al.* Myocardial commitment from human pluripotent stem

- cells: rapid production of human heart grafts. Biomaterials **98,** 64, 2016.
- 100. Nakayama, K.H., Lee, C.C., Batchelder, C.A., et al. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One 8, e64134, 2013.
- 101. Ross, E.A., Williams, M.J., Hamazaki, T., et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20, 2338, 2009.
- 102. Sambi, M., Chow, T., Whiteley, J., et al. Acellular mouse kidney ECM can be used as a three-dimensional substrate to test the differentiation potential of embryonic stem cell derived renal progenitors. Stem Cell Rev 13, 513, 2017.
- 103. Jaramillo, M., Yeh, H., Yarmush, M.L., et al. Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). J Tissue Eng Regen Med 12, e1962, 2018.
- 104. Abraham, S., Sheridan, S.D., Miller, B., et al. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnol Prog 26, 1126, 2010.
- 105. McLenachan, S., Hao, E., Zhang, D., et al. Bioengineered Bruch's-like extracellular matrix promotes retinal pigment epithelial differentiation. Biochem Biophys Rep 10, 178, 2017.
- 106. Narayanan, K., Lim, V.Y., Shen, J., et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: Differentiation to insulin-secreting beta cells. Tissue Eng Part A 20, 424, 2014.
- 107. Baroncelli, M., van der Eerden, B.C., Kan, Y.Y., et al. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization. J Cell Physiol 233, 387, 2018.
- 108. Grayson, W.L., Zhao, F., Izadpanah, R., et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207, 331, 2006.
- 109. Chiellini, C., Cochet, O., Negroni, L., *et al.* Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol **9**, 26, 2008.
- 110. Grassel, S., Ahmed, N., Gottl, C., *et al.* Gene and protein expression profile of naive and osteo-chondrogenically differentiated rat bone marrow-derived mesenchymal progenitor cells. Int J Mol Med **23**, 745, 2009.
- 111. Schneider, R.K., Puellen, A., Kramann, R., *et al.* The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials **31**, 467, 2010.
- 112. Roche, S., D'Ippolito, G., Gomez, L.A., *et al.* Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm **440**, 72, 2013.
- 113. Ng, F., Boucher, S., Koh, S., et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112, 295, 2008.
- 114. Sun, Y., Li, W., Lu, Z., et al. Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB J 25, 1474, 2011.

115. Kabiri, M., Kul, B., Lott, W.B., *et al.* 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem Biophys Res Commun **419**, 142, 2012.

- 116. Hamidouche, Z., Fromigue, O., Nuber, U., et al. Autocrine fibroblast growth factor 18 mediates dexamethasoneinduced osteogenic differentiation of murine mesenchymal stem cells. J Cell Physiol 224, 509, 2010.
- 117. Kim, J.M., Kim, J., Kim, Y.H., et al. Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol 228, 216, 2013.
- 118. Bara, J.J., McCarthy, H.E., Humphrey, E., et al. Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Eng Part A 20, 147, 2014.
- 119. Hemmingsen, M., Vedel, S., Skafte-Pedersen, P., *et al.* The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells. PLoS One **8**, e63638, 2013.
- 120. Nightingale, H., Kemp, K., Gray, E., *et al.* Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev **21**, 2026, 2012.
- 121. Pei, M., He, F., and Kish, V.L. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng Part A 17, 3067, 2011.
- 122. Lai, Y., Sun, Y., Skinner, C.M., et al. Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev 19, 1095, 2010
- 123. Hunt, G.C., Singh, P., and Schwarzbauer, J.E. Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells. Exp Cell Res 318, 1820, 2012.
- 124. Chen, S.S., Fitzgerald, W., Zimmerberg, J., et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 25, 553, 2007.
- 125. Przybyla, L., and Voldman, J. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. Annu Rev Anal Chem (Palo Alto Calif) 5, 293, 2012.
- 126. Laperle, A., Hsiao, C., Lampe, M., *et al.* Alpha-5 laminin synthesized by human pluripotent stem cells promotes self-renewal. Stem Cell Reports **5**, 195, 2015.
- 127. Moledina, F., Clarke, G., Oskooei, A., et al. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc Natl Acad Sci U S A 109, 3264, 2012.
- 128. Denef, C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol **20,** 1, 2008.
- 129. Giuffrida, D., Rogers, I.M., Nagy, A., *et al.* Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif **42**, 788, 2009.
- 130. Park, S.M., Jung, J.S., Jang, M.S., et al. Transforming growth factor-beta1 regulates the fate of cultured spinal cord-derived neural progenitor cells. Cell Prolif 41, 248, 2008.
- 131. Discher, D.E., Mooney, D.J., and Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science **324**, 1673, 2009.
- 132. Sachlos, E., and Auguste, D.T. Embryoid body morphology influences diffusive transport of inductive

- biochemicals: a strategy for stem cell differentiation. Biomaterials **29**, 4471, 2008.
- 133. Bratt-Leal, A.M., Carpenedo, R.L., and McDevitt, T.C. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25, 43, 2009.
- 134. Farina, A., D'Aniello, C., Severino, V., et al. Temporal proteomic profiling of embryonic stem cell secretome during cardiac and neural differentiation. Proteomics 11, 3972, 2011.
- Martino, G., and Pluchino, S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 7, 395, 2006.
- 136. Hawryluk, G.W., Mothe, A.J., Chamankhah, M., *et al.* In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev **21**, 432, 2012.
- 137. Bendall, S.C., Hughes, C., Campbell, J.L., *et al.* An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics **8**, 421, 2009.
- 138. Guo, Y., Graham-Evans, B., and Broxmeyer, H.E. Murine embryonic stem cells secrete cytokines/growth modulators that enhance cell survival/anti-apoptosis and stimulate colony formation of murine hematopoietic progenitor cells. Stem Cells 24, 850, 2006.
- 139. Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M., et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from selfrenewal to lineage commitment. Development 134, 2895, 2007.
- 140. Movahednia, M.M., Kidwai, F.K., Zou, Y., et al. Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span. Tissue Eng Part A 21, 1432, 2015.
- 141. Heng, B.C., Gong, T., Wang, S., *et al.* Decellularized matrix derived from neural differentiation of embryonic stem cells enhances the neurogenic potential of dental follicle stem cells. J Endod **43**, 409, 2017.
- 142. Seif-Naraghi, S.B., Horn, D., Schup-Magoffin, P.J., *et al.* Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater **8**, 3695, 2012.
- 143. Turner, W.S., Wang, X., Johnson, S., et al. Cardiac tissue development for delivery of embryonic stem cell-derived endothelial and cardiac cells in natural matrices. J Biomed Mater Res B Appl Biomater 100, 2060, 2012.
- 144. Duan, Y., Liu, Z., O'Neill, J., et al. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 4, 605, 2011.
- 145. Kim, I.G., Hwang, M.P., Du, P., et al. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials 50, 75, 2015.
- 146. Jiang, T., Ren, X.J., Tang, J.L., et al. Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C Mater Biol Appl 33, 3514, 2013.
- 147. Bian, L., Hou, C., Tous, E., *et al.* The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials **34**, 413, 2013.

- 148. Murphy, C.M., Matsiko, A., Haugh, M.G., *et al.* Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater **11**, 53, 2012.
- 149. Mitra, D., Fatakdawala, H., Nguyen-Truong, M., et al. Detection of pentosidine cross-links in cell-secreted decellularized matrices using time resolved fluorescence spectroscopy. ACS Biomater. Sci. Eng 3, 1944, 2017.
- 150. Guneta, V., Zhou, Z., Tan, N.S., et al. Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 6, 168, 2017.
- 151. Frith, J.E., Thomson, B., and Genever, P.G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods **16**, 735, 2010.
- 152. Bhang, S.H., Cho, S.W., La, W.G., *et al.* Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials **32**, 2734, 2011.
- 153. Singh, H., Mok, P., Balakrishnan, T., *et al.* Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res **4**, 165, 2010.
- 154. Giobbe, G.G., Zagallo, M., Riello, M., et al. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells. Biotechnol Bioeng 109, 3119, 2012.
- 155. Ozguldez, H.O., Cha, J., Hong, Y., *et al.* Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells. Biomater Res **22**, 32, 2018.
- 156. Bassaneze, V., Barauna, V.G., Lavini-Ramos, C., et al. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev 19, 371, 2010.
- 157. Saha, S., Ji, L., de Pablo, J.J., *et al.* TGFbeta/Activin/ Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J **94**, 4123, 2008.
- 158. Grayson, W.L., Zhao, F., Bunnell, B., *et al.* Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun **358**, 948, 2007.
- 159. Lee, S.W., Jeong, H.K., Lee, J.Y., *et al.* Hypoxic priming of mESCs accelerates vascular-lineage differentiation through HIF1-mediated inverse regulation of Oct4 and VEGF. EMBO Mol Med **4**, 924, 2012.
- 160. Sart, S., Bejoy, J., and Li, Y. Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochem **59**, 276, 2017.
- 161. Badylak, S.F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42, 1517, 2014.
- 162. Azhim, A., Ono, T., Fukui, Y., et al. Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Conf Proc IEEE Eng Med Biol Soc 2013, 6953, 2013.
- 163. Wu, P., Nakamura, N., Kimura, T., et al. Decellularized porcine aortic intima-media as a potential cardiovascular biomaterial. Interact Cardiovasc Thorac Surg 21, 189, 2015.
- 164. Hashimoto, Y., Funamoto, S., Kimura, T., et al. The effect of decellularized bone/bone marrow produced by

- high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials **32**, 7060, 2011.
- 165. Watanabe, N., Mizuno, M., Matsuda, J., et al. Comparison of high-hydrostatic-pressure decellularized versus freezethawed porcine menisci. J Orthop Res 37, 2466, 2019.
- 166. He, M., Callanan, A., Lagaras, K., et al. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. J Biomed Mater Res B Appl Biomater 105, 1352, 2017.
- Fischer, I., Westphal, M., Rossbach, B., et al. Comparative characterization of decellularized renal scaffolds for tissue engineering. Biomed Mater 12, 045005, 2017.
- 168. Sengyoku, H., Tsuchiya, T., Obata, T., et al. Sodium hydroxide based non-detergent decellularizing solution for rat lung. Organogenesis 14, 94, 2018.
- 169. Yang, G., Rothrauff, B.B., Lin, H., et al. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34, 9295, 2013.
- 170. Wang, L., Johnson, J.A., Zhang, Q., *et al.* Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater **9**, 8921, 2013.
- 171. Flynn, L., Semple, J.L., and Woodhouse, K.A. Decellularized placental matrices for adipose tissue engineering. J Biomed Mater Res A 79, 359, 2006.
- 172. Giraldo-Gomez, D.M., Garcia-Lopez, S.J., Tamay-de-Dios, L., *et al.* Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. Mater Sci Eng C Mater Biol Appl **105**, 110142, 2019.
- 173. Liu, C., Jin, Z., Ge, X., *et al.* Decellularized annulus fibrosus matrix/chitosan hybrid hydrogels with basic fibroblast growth factor for annulus fibrosus tissue engineering. Tissue Eng Part A **25**, 1605, 2019.
- 174. Bakhtiar, H., Pezeshki-Modaress, M., Kiaipour, Z., et al. Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process. Dent Mater 36, 76, 2020.
- 175. Ventura, R.D., Padalhin, A.R., Park, C.M., *et al.* Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C Mater Biol Appl **104**, 109841, 2019.
- 176. Zhang, Z., Cai, J., Li, Y., *et al.* External volume expansion adjusted adipose stem cell by shifting the ratio of fibronectin to laminin. Tissue Eng Part A **26**, 66, 2019.
- 177. Bai, R., Tian, L., Li, Y., *et al*. Combining ECM hydrogels of cardiac bioactivity with stem cells of high cardiomyogenic potential for myocardial repair. Stem Cells Int **2019**, 6708435, 2019.
- 178. Talovic, M., Patel, K., Schwartz, M., *et al.* Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. J Tissue Eng Regen Med **13**, 1830, 2019.
- 179. Yang, Q., Peng, J., Guo, Q., *et al.* A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials **29**, 2378, 2008.
- 180. Dzobo, K., Turnley, T., Wishart, A., et al. Fibroblast-derived extracellular matrix induces chondrogenic differentiation in human adipose-derived mesenchymal stromal/stem cells in vitro. Int J Mol Sci 17, E1259, 2016.

181. Ullah, I., Abu-Dawud, R., Busch, J.F., et al. VEGF—supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials 216, 119283, 2019.

- 182. DeQuach, J.A., Mezzano, V., Miglani, A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5, e13039, 2010.
- 183. Wang, Q., Yang, H., Bai, A., *et al.* Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction. Biomaterials **105**, 52, 2016.
- 184. Park, J., Anderson, C.W., Sewanan, L.R., et al. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomater 102, 220, 2020.
- 185. Goldfracht, I., Efraim, Y., Shinnawi, R., *et al.* Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater **92**, 145, 2019.
- 186. Hong, X., Yuan, Y., Sun, X., et al. Skeletal extracellular matrix supports cardiac differentiation of embryonic stem cells: a potential scaffold for engineered cardiac tissue. Cell Physiol Biochem 45, 319, 2018.
- 187. Park, K.M., Hussein, K.H., Hong, S.H., *et al.* Decellularized liver extracellular matrix as promising tools for transplantable bioengineered liver promotes hepatic lineage commitments of induced pluripotent stem cells. Tissue Eng Part A **22**, 449, 2016.
- 188. Wan, J., Huang, Y., Zhou, P., et al. Culture of iPSCs derived pancreatic beta-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial. Biomed Res Int 2017, 4276928, 2017.
- 189. He, H., Liu, X., Peng, L., et al. Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. Biomed Res Int 2013, 406871, 2013.
- Ravindran, S., Zhang, Y., Huang, C.C., et al. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Eng Part A 20, 92, 2014.
- 191. Rakian, R., Block, T.J., Johnson, S.M., et al. Native extracellular matrix preserves mesenchymal stem cell "stemness" and differentiation potential under serum-free culture conditions. Stem Cell Res Ther 6, 235, 2015.
- 192. Kusuma, G.D., Brennecke, S.P., O'Connor, A.J., et al. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLoS One 12, e0171488, 2017.

Address correspondence to: Yan Li, PhD Department of Chemical and Biomedical Engineering FAMU-FSU College of Engineering Florida State University 2525 Pottsdamer Street Tallahassee, FL 32310

E-mail: yli4@fsu.edu

Received: January 2, 2020 Accepted: March 3, 2020 Online Publication Date: April 28, 2020