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Figure 1: StereoDRNet enables estimation of high quality depth maps that opens the door to high quality reconstruction by

passive stereo video. In this figure we compare the output from dense reconstruction [15] built form depth maps generated

by StereoDRNet, PSMNet [2] and a structured light system [23] (termed Ground Truth). We report and visualize point-to-

plane distance RMS error on the reconstructed meshes with respect to the ground truth demonstrating the improvement in

reconstruction over the state-of-the-art.

Abstract

We propose a system that uses a convolution neural net-

work (CNN) to estimate depth from a stereo pair followed

by volumetric fusion of the predicted depth maps to pro-

duce a 3D reconstruction of a scene. Our proposed depth

refinement architecture, predicts view-consistent disparity

and occlusion maps that helps the fusion system to produce

geometrically consistent reconstructions. We utilize 3D di-

lated convolutions in our proposed cost filtering network

that yields better filtering while almost halving the compu-

tational cost in comparison to state of the art cost filtering

architectures. For feature extraction we use the Vortex Pool-

ing architecture [24]. The proposed method achieves state

of the art results in KITTI 2012, KITTI 2015 and ETH 3D

stereo benchmarks. Finally, we demonstrate that our sys-

tem is able to produce high fidelity 3D scene reconstructions

that outperforms the state of the art stereo system.

1. Introduction

Depth from stereo vision has been heavily studied in

computer vision field for the last few decades. Depth es-

†Work performed during internship at Facebook Reality Labs.

timation has various applications in autonomous driving,

dense reconstruction and 3D objects and human tracking.

Virtual Reality and Augmented Reality systems require

depth estimations to build dense spatial maps of the environ-

ment for interaction and scene understanding. For proper

rendering and interaction between virtual and real objects

in an augmented 3D world, the depth is expected to be both

dense and correct around object boundaries. Depth sensors

such as structured light and time of flight sensors are of-

ten used to build such spatial maps of indoor environments.

These sensors often use illumination sources which require

power and space that exceeds the expected budget of an en-

visioned AR system. Since these sensors use infrared vi-

sion, they do not work well in bright sun light environment

or in presence of other infrared sources.

On the other hand, the depth from stereo vision systems

have a strong advantage of working in both indoors and

in sunlight environments. Since these systems use passive

image data, they do not interfere with each other or with

the environment materials. Moreover, the resolution of pas-

sive stereo systems is typically greater than the sparse pat-

terns used in structured light depth sensors, so these meth-

ods have capabilities to produce depth with accurate ob-
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ject boundaries and corners. Due to recent advancements in

camera and mobile technology the image sensors have dra-

matically reduced in size and have significantly improved

in resolution and image quality. All these qualities makes

passive stereo system a better fit for being a depth estima-

tor for a AR or VR system. However, stereo systems have

their own disadvantages, such as ambiguous predictions in

texture-less or repeating/confusing textured surfaces. In

order to deal with these homogeneous regions traditional

methods make use of handcrafted functions and optimize

the parameters globally on the entire image. Recent meth-

ods use machine learning to derive the functions and it’s

parameters from the data that is used in training. As these

functions tend to be highly non-linear, they tend to yield

reasonable approximations even on the homogeneous and

reflective surfaces.

Our key contributions are as follows:

• Novel Disparity Refinement Network: The main mo-

tivation of our work is to predict geometrically consistent

disparity maps for stereo input that can be directly used

by TSDF-based fusion system like KinectFusion [15] for

simultaneous tracking and mapping. Surface normals

are an important factor in fusion weight computation in

KinectFusion-like systems, and we observed that state of

the art stereo systems such as PSMNet produces disparity

maps that are not geometrically consistent which negatively

affect TSDF fusion. To address this issue, we propose a

novel refinement network which takes geometric error Eg ,

photometric error Ep and unrefined disparity as input and

produces refined disparity (via residual learning) and the

occlusion map.

• 3D Dilated Convolutions in Cost Filtering: State of

the art stereo systems such as PSMNet[2] and GC-Net[7]

that use 3D cost filtering approach use most of the compu-

tational resources in the filtering module of their system.

We observe that using 3D dilated convolutions in all three

dimensions i.e (width, height, and disparity channels) in a

structure shown in Fig. 4 gave us better results with less

compute (refer to Table.1).

• Other Contributions: We observe that Vortex Pooling

compared to spatial pyramid pooling (used in PSMNet)

provides better results (refer to ablation study 2). We found

the exclusion masks used to filter non-confident regions

of ground truth for fine-tuning our model as discussed in

Sec 4.4 to be very useful in obtaining sharp edges and

fine details in disparity predictions. We achieve 1.3 - 2.1

cm RMSE on 3D reconstructions of three scenes that we

prepared using structured light system proposed in [23].

2. Related Work

Depth from stereo has been widely explored in the

literature, we refer interested readers to surveys and meth-

ods described in [20]. Broadly speaking stereo matching

can be categorized into computation of cost metrics, cost

aggregation, global or semi-global optimization [4] and

refinement or filtering processes. Traditionally global cost

filtering approaches used discrete labeling methods such

as Graph Cuts [11] or used belief propagation techniques

described in [10] and [1]. Total Variation denoising [19]

has been used in cost filtering by methods described in

[26], [16] and [14].

The state of the art in disparity estimation techniques use

CNNs. MC-CNN [27] introduced a Siamese network to

compare two image patches. The scores on matching was

used along with the semi-global matching process [4]

to predict consistent disparity estimation. DispNet [13]

demonstrates an end-to-end disparity estimation neural

network with a correlation layer (dot product of features)

for stereo volume construction. Liang et al. [12] improved

DispNet by introducing novel iterative filtering process.

GC-Net [7] introduces a method to filter 4D cost using a

3D cost filtering approach and the soft argmax process to

regress depth. PSMNet [2] improved GC-Net by enriching

features with better global context using pyramid spatial

pooling process. They also show effective use of stacked

residual networks in cost filtering process.

Xie et al. [24] introduce vortex pooling which is an

improvement of the atrous spatial pooling approach used

in Deep lab [3]. Atrous pooling uses convolutions with

various dilation steps to increase receptive fields of a CNN

filter. The vortex pooling technique uses average pooling

in grids of varying dimensions before dilated convolutions

to utilize information from the pixels which were not used

in bigger dilation steps. The size of average pool grids

grows with the increase in dilation size. We use the feature

extraction described in Vortex pooling and improve the cost

filtering approach described by PSMNet.

Our proposed refinement network takes geometric error

Eg , photometric error Ep and unrefined disparity as input

and produces refined disparity (via residual learning) and

the occlusion map. Refinement procedures proposed in

CRL [17], iResNet [12], StereoNet [8] and FlowNet2 [5]

only use photometeric error (either in image or feature

domain) as part of the input in the refinement networks. To

the best of our knowledge we are the first to explore the

importance of geometric error and occlusion training for

disparity refinement.

3. Algorithm

In this section we describe our architecture that predicts

disparity for the input stereo pair. Instead of using a generic

encoder-decoder CNN we break our algorithm into feature

extraction, cost volume filtering and refinement procedures.
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3.1. Feature Extraction

The feature extraction starts with a small shared weight

Siamese network which takes input as images and encodes

the input to a set of features. As these features will be used

for stereo matching we want them to have both local and

global contextual information. To encode local spatial in-

formation in our feature maps we start by downsampling

the input by use of convolutions with stride of 2. Instead of

having a large 5 × 5 convolution we use three 3 × 3 filters

where first convolution has stride of 2. We bring the reso-

lution to a fourth by having two of such blocks. In order

to encode more contextual information we choose Vortex

Pooling [24] on the learned local feature maps Fig. 3. Each

of our convolutions are followed by batch normalization and

ReLU activation except on the last 3x3 convolution on the

spatial pooling output. In order to keep the feature infor-

mation compact we keep the feature dimension size as 32

throughout the feature extraction process.

3.2. Cost Volume Filtering

We use the features extracted in the previous step to pro-

duce a stereo cost volume. While several approaches in the

literature ([7],[13]) use concatenation or dot products of the

stereo features to obtain the cost volume, we found simple

arithmetic difference to be just as effective.

While the simple argmin on the cost should in princi-

ple lead to the correct local minimum solution, it has been

shown several times in literature [16], [4],[20] that it is

common for the solution to have several local minima. Sur-

faces with homogeneous or repeating texture are particu-

larly prone to this problem. By posing the cost filtering as a

deep learning process with multiple convolutions and non-

linear activations we attempt to resolve these ambiguities

and find the correct local minimum.

We start by processing our cost volume with a 3× 3× 3
convolution along the width, height and depth dimensions.

We then reduce the resolution of the cost by a convolution

with stride of 2 followed by convolutions with dilation 1, 2,

4 in parallel. A convolution on the concatenation of the di-

lated convolution filters is used to combine the information

fetched from varying receptive fields.

Residual learning has been shown to be very effective

in disparity refinement process so we propose a cascade of

such blocks to iteratively improve the quality of our dispar-

ity prediction. We depict the entire cost filtering process as

Dilated Residual Cost Filtering in Fig. 4. In this figure no-

tice how our network is designed to produce k = 3 disparity

maps labeled as dk.

Our network architecture that supports refinement

predicts disparities for both left and right view as separate

channels in disparity predictions dk. Note that we construct

the cost for both left and right views and concatenate them

before filtering; this ensures that the cost filtering method

is provided with cost information for both views. Please

refer to Table 3 in supplementary text for exact architecture

details.

3.3. Disparity Regression

In order to have a differentiable argmax we use soft

argmax as proposed by GC-Net [7]. For each pixel i the

regressed disparity estimation di is defined as a weighted

softmax function:

di =
N∑

d=1

d e−Ci(d)

N∑

d′=1

e−Ci(d
′)

, (1)

where Ci is the cost at pixel i and N is the maximum dis-

parity. The loss Lk for each of the proposed disparity maps

dk (as shown in Fig. 4) in our dilated residual cost filtering

architecture, relies on the Huber loss ρ and is defined as:

Lk =

M∑

i

ρ(dki , d̂i) , (2)

where dki and d̂i are the estimated and ground truth disparity

at pixel i, respectively and M is the total number of pixels.

The total data loss Ld is defined as:

Ld =

3∑

k=1

wkLk , (3)

where wk is the weight for each disparity map dk.

3.4. Disparity Refinement

In order to make the disparity estimation robust to oc-

clusions and view consistency we further optimize the es-

timate. For brevity we label the third disparity prediction

d3 (k = 3) described in Sec. 3.2 for left view as Dl and for

right view as Dr. In our refinement network we warp the

right image Ir to left view via the warp W and evaluate the

image reconstruction error map Ep for the left image Il as:

Ep = |Il −W (Ir, Dr)| . (4)

By warping Dr to the left view and using the left disparity

Dl we can evaluate the geometric consistency error map Eg

as:

Eg = |Dl −W (Dr, Dl)| . (5)

While we could just reduce these error terms directly into

a loss function, we observed significant improvement by us-

ing photo-metric and geometric consistency error maps as

input to the refinement network as these error terms are only

meaningful for non occluding pixels (only pixels for which

the consistency errors can be reduced).

Our refinement network takes as input left image Il, left

disparity map Dl, image reconstruction error map Ep and
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Figure 2: StereoDRNet network architecture pipeline.

Figure 3: StereoDRNet Vortex Pooling architecture derived

from [24].

geometric error map Eg . We first filter left image and recon-

struction error and left disparity and geometric error map

Eg independently by using one layer of convolution fol-

lowed by batch normalization. Both these results are then

concatenated and followed by atrous convolution [18] to

sample from a larger context without increasing the network

size. We used dilations with rate 1, 2, 4, 8, 1, and 1 respec-

tively. Finally a single 3 × 3 convolution without ReLU or

batch normalization is used to output an occlusion map O

and a disparity residual map R. Our final refined dispar-

ity map is labeled as Dref . We demonstrate our refinement

network in Fig. 5 and provide exact architecture details in

Table 2 of our supplementary text.

We compute the cross entropy loss on the occlusion map

O as Lo

Lo = H(O, Ô) , (6)

where Ô is the ground truth occlusion map.

The refinement loss Lr is defined as

Lr =
M∑

i

ρ(dri , d̂i) , (7)

where dri is the value for a pixel i in our refined disparity

map Dref and M is the total number of pixels.

Our total loss function L is defined as

L = Ld + λ1Lr + λ2Lo , (8)

where λ1 and λ2 are scalar weights.

3.5. Training

We implemented our neural network code in PyTorch.

We tried to keep the training of our neural network similar

to one described in PSMNet [2] for ease of comparison. We

used Adam optimizer [9] with β1 = 0.9 and β2 = 0.999 and

normalized the image data before passing it to the network.

In order to optimize the training procedure we cropped the

images to 512x256 resolution. For training we used a mini-

batch size of 8 on 2 Nvidia Titan-Xp GPUs. We used w1 =

0.2, w2 = 0.4, w3 = 0.6, λ1 = 1.2 and λ2 = 0.3 weights in

our proposed loss functions Eq. 3 and Eq. 8.

4. Experiments

We tested our architecture on rectified stereo datasets

such as SceneFlow, KITTI 2012, KITTI 2015 and ETH3D.

We also demonstrate the utility of our system in building

3D reconstruction of indoor scenes. See the supplementary

material for additional visual comparisons.

4.1. SceneFlow Dataset

SceneFlow [13] is a synthetic dataset with over 30, 000
stereo pairs for training and around 4000 stereo pairs for

evaluation. We use both left and right ground truth dispari-

ties for training our network. We compute the ground truth

occlusion map by defining as occluded any pixel with dis-

parities inconsistency larger than 1 px. This dataset is chal-

lenging due to presence of occlusions, thin structures and

large disparities.

In Fig. 6 we visually compare our results with PSM-

Net [2]. Our system infers better structural details in the

disparity image and also produces consistent depth maps

with significantly less errors in homogeneous regions. We

further visualize the effect of our refinement network in our

supplementary section.
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Figure 4: Proposed dilated cost filtering approach with residual connections.

Figure 5: StereoDRNet refinement architecture.

Figure 6: Disparity prediction comparison between our net-

work (Stereo-DRNet) and PSMNet [2] on the SceneFlow

dataset. The top row shows disparity and the bottom row

shows the EPE map. Note how our network is able to re-

cover thin and small structures and at the same times shows

lower error in homogeneous regions.

Table 1 shows a quantitative analysis of our architec-

ture with and without refinement network. Stereo-DRNet

achieves significantly lower end point error while reduc-

ing computation time. Our proposed cost filtering ap-

proach achieves better accuracy with significantly less com-

pute, demonstrating the effectiveness of the proposed di-

lated residual cost filtering approach.

Ablation study: In Table 2 we show a complete EPE break-

down for different parts of our network on the SceneFlow

dataset. Both vortex pooling and refinement procedure add

marginal performance gains. Co-training occlusion map

with residual disparity drastically improves the mean end

point disparity error of the final disparity from 0.93 px to

0.86 px. Passing only the photometric error into the refine-

ment network actually degrades the performance.

Method EPE Total FLOPS 3D-Conv FLOPS FPS

CRL[17] 1.32 - - 2.1

GC-Net[7] 2.51 8789 GMac 8749 GMac 1.1

PSMNet[2] 1.09 2594 GMac 2362 GMac 2.3

Ours 0.98 1410 GMac 1119 GMac 4.3

Ours-Ref 0.86 1711 GMacs 1356 GMacs 3.6

Table 1: Quantitative comparison of the proposed Stereo-

DRNet with the state of the art methods on the SceneFlow

dataset. EPE represent the mean end point error in dispar-

ity. FPS and FLOPS (needed by the convolution layers) are

measured on full 960 × 540 resolution stereo pairs. No-

tice even our unrefined disparity architecture outperforms

the state of the art method PSMNet [2] while requiring sig-

nificantly less computation.

4.2. KITTI Datasets

We evaluated our method on both KITTI 2015 and

KITTI 2012 datasets. These data sets contain stereo pairs

with semi-dense depth images acquired using a LIDAR sen-

sor that can be used for training. The KITTI 2012 dataset

contains 194 training and 193 test stereo image pairs from

static outdoor scenes. The KITTI 2015 dataset contains 200

training and 200 test stereo image pairs from both static and

11790



Network Architecture SceneFlow KITTI-2015

Pooling
Cost Filtering Refinement

EPE Val Error(%)
d
1

d
2

d
3

Ep Eg Lo

Pyramid X 1.17 2.28

Vortex X 1.13 2.14

Vortex X X 0.99 1.88

Vortex X X X 0.98 1.74

Pyramid X X X 1.00 1.81

Vortex X X X X 1.03 -

Vortex X X X X 0.95 -

Vortex X X X X X 0.93 -

Vortex X X X X X X 0.86 -

Pyramid X X X X X X 0.96 -

Table 2: Ablation study of network architecture settings on

SceneFlow and KITTI-2015 evaluation dataset.

Method
2px 3px Avg Error

Time(s)
Noc All Noc All Noc All

GC-NET[7] 2.71 3.46 1.77 2.30 0.6 0.7 0.90

EdgeStereo[21] 2.79 3.43 1.73 2.18 0.5 0.6 0.48

PDSNet[22] 3.82 4.65 1.92 2.53 0.9 1.0 0.50

SegStereo[25] 2.66 3.19 1.68 2.03 0.5 0.6 0.60

PSMNet[2] 2.44 3.01 1.49 1.89 0.5 0.6 0.41

Ours 2.29 2.87 1.42 1.83 0.5 0.5 0.23

Table 3: Comparison of disparity estimation from Stereo-

DRNet with state of the art published methods on KITTI

2012 dataset.

Method
All(%) Noc(%)

Time(s)
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

DN-CSS[6] 2.39 5.71 2.94 2.23 4.96 2.68 0.07

GC-NET[7] 2.21 6.16 2.87 2.02 5.58 2.61 0.90

CRL[17] 2.48 3.59 2.67 2.32 3.12 2.45 0.47

EdgeStereo[21] 2.27 4.18 2.59 2.12 3.85 2.40 0.27

PDSNet[22] 2.29 4.05 2.58 2.09 3.69 2.36 0.50

PSMNet[2] 1.86 4.62 2.32 1.71 4.31 2.14 0.41

SegStereo[25] 1.88 4.07 2.25 1.76 3.70 2.08 0.60

Ours 1.72 4.95 2.26 1.57 4.58 2.06 0.23

Table 4: Comparison of disparity estimation from Stereo-

DRNet with state of the art published methods on KITTI

2015 dataset.

dynamic outdoor scenes.

Training and ablation study: Since KITTI data sets con-

tain only limited amount of training data, we fine tuned our

model on the SceneFlow dataset. In our training we used

80% stereo pairs for training and 20% stereo pairs for eval-

uation. We demonstrate the ablation study of our proposed

method on KITTI 2015 dataset Table 2. Note how our pro-

posed dilated residual architecture and the use of Vortex

pooling for feature extraction consistently improve the re-

Method
All Noc

1px 2px 4px RMSE 1px 2px 4px RMSE

PSMNet[2] 5.41 1.31 0.54 0.75 5.02 1.09 0.41 0.66

iResNet[12] 4.04 1.20 0.34 0.59 3.68 1.00 0.25 0.51

DN-CSS[6] 3.00 0.96 0.34 0.56 2.69 0.77 0.26 0.48

Ours 4.84 0.96 0.30 0.55 4.46 0.83 0.24 0.50

Table 5: Comparison of disparity estimation from Stereo-

DRNet with state of the art published methods on ETH 3D

dataset.

sults. We did not achieve significant gains by doing refine-

ment on KITTI datasets as these datasets only contain la-

beled depth for sparse pixels. Our refinement procedure im-

proves disparity predictions using view consistency checks

and sparsity in ground truth data affected the training pro-

cedure. We demonstrate that data sets with denser training

data enabled the training and fine-tuning of our refinement

model.

Results: We evaluated our Dilated residual network with-

out filtering on both these datasets and achieved state of the

art results on KITTI 2012 Table 3 and comparable results

with best published method on KITTI 2015 Table 4. On

KITTI 2015 dataset the three columns D1-bg, D1-fg and

D1-all mean that the pixels in the background, foreground,

and all areas, respectively, were considered in the estimation

of errors. We perform consistently well in D1-bg meaning

background areas, we achieve comparable results with state

of art method in all pixels and better results in non-occluded

regions. On KITTI 2012 dataset ”Noc” means non occluded

regions and ”All” mean all regions. Notice, that we perform

comparable against SegStereo [25] on KITTI 2015 but way

better in KITTI 2012 dataset.

4.3. ETH3D Dataset

We again used our pre-trained network trained on Scene-

flow dataset and fine-tuned it on the training set provided

in the dataset. ETH dataset contains challenging scenes of

both outside and indoor environment. According to our Ta-

ble 5 we perform best on almost half of the evaluation met-

rics, our major competitor in this evaluation was DN-CSS

[6]. Although, we observe that this method did not perform

well on KITTI 2015 data set Table 4. Notice, as this data

set contained dense training disparity maps of both stereo

views we were able to train and evaluate our refinement net-

work on this data set.

4.4. Indoor Scene Reconstruction

We use the scanning rig used in recent work [23] for

preparing ground truth dataset for supervised learning of

depth and added one more RGB camera to the rig to obtain

a stereo image pair. We kept the baseline of the stereo pair

to be about 10cm. We trained our StereoDRNet network on
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SceneFlow as described in section 4.1 and then fine tuned

the pre-trained network on 250 stereo pairs collected in the

indoor area by our scanning rig. We observed that the net-

work to quickly adapted to our stereo rig with a minimal

amount of fine-tuning.

For preparing ground truth depth we found rendered

depth from complete scene reconstruction to be a better es-

timate than the live sensor depth which usually suffers from

occlusions and depth uncertainties. Truncated signed dis-

tance function (TSDF) was used to fuse live depth maps

into a scene as described in [15].

Figure 7: We show a training example with the left image,

ground truth depth and the exclusion mask. Note that the

glass, mirrors and the sharp corners of the table are excluded

from training as indicated by the yellow pixels in the occlu-

sion mask. Note, that this example was not part of our actual

training set.

Figure 8: This figure demonstrates that our StereoDRNet

network produces better predictions on thin reflective legs

of the chair and some portions of the glass. We used oc-

clusion mask predicted by our network to clip occluding

regions. Yellow region in the ground truth are the regions

that belong to our proposed exclusion mask.

The infrared-structure light depth sensors are known

to be unresponsive to dark and highly reflective surfaces.

Moreover, the quality of TSDF fusion is limited to the res-

Figure 9: This figure demonstrates 3D reconstruction of a

living room in an apartment prepared by TSDF fusion of

the predicted depth maps from our system. We visualize

two views of the textured mesh and surface normals in top

and bottom rows respectively.

olution of the voxel size. Hence we expect the reconstruc-

tions to be overly smooth in some areas such as table cor-

ners or sharp edges of plant leaves. In order to avoid con-

taminating our training data with false depth estimation, we

use a simple photometric error threshold to mask out the

pixels from training where the textured model projection

color disagrees with the real images. We show one such ex-

ample in Fig. 7 where glass, mirrors and the sharp corners

of the table are excluded from training. Although, the sys-

tem from Whelan et al. [23] can obtain ground truth planes

of mirrors and glass we avoid depth supervision on them in

this work as it is beyond the scope of a stereo matching pro-

cedure to obtain depth on reflectors.

We demonstrate visualizations of the depth predictions from

the stereo pair in Fig. 8. Notice, our prediction is able to re-

cover sharp corners of the table, thin reflective legs of the

chair and several thin structures in kitchen dataset as a re-

sult of filtering process used in training. It is interesting to

see that we recover the top part of the glass correctly but not

the bottom part of the glass which suffers from reflections.

The stereo matching model simply treats reflectors as win-

dows in presence of reflections.

Results and evaluations: We demonstrate visualizations of

full 3D reconstruction of a living room in an apartment pre-

pared by TSDF fusion of the predicted depth maps from

our system in Fig. 9. For evaluation study we prepared

three small data sets that we refer as “Sofa and cushions”

demonstrated in Fig. 1, “Plants and couch” and “Kitchen

and bike” demonstrated in Fig. 10. We report point-to-

plane root mean squared error (RMSE) of the reconstructed

3D meshes from fusion of depth maps obtained from PSM-

Net [2] and our refined network. We obtain a RMSE of

1.3 cm on the simpler “Sofa and cushions” dataset. Note

that our method captured high frequency structural details
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Figure 10: Comparison of 3D reconstruction using fusion of depth maps from our StereoDRNet network (middle), PSM-

Net [2] (right) and depth maps from the structured light system (left) described in [23] (termed Ground Truth). We report and

visualize point-to-plane distance RMS error on the reconstructed meshes with respect to the ground truth mesh. Dark yellow

boxes represent the regions where our reconstruction yields details that the structured light sensor or PSMNet were not able

to capture. Light yellow boxes represent regions where StereoDRNet outperforms PSMNet.

on the cushions which were not captured by PSMNet or

the structured light sensor. “Plants and couch” represents

a more difficult scene as it contained a directed light source

casting shadows. For this dataset StereoDRNet obtained

2.1 cm RMSE whereas PSMNet obtained 2.5 cm RMSE.

Notice, that our reconstruction is not only cleaner but pro-

duces minimal errors in the shadowed areas (shadows cast

by book shelf and left plant). “Kitchen and bike” dataset

cluttered and contains reflective objects making it the hard-

est dataset. While our system still achieved 2.1 cm RMSE,

the performance of PSMNet degraded to 2.8 cm RMSE. No-

tice, that our reconstruction contains the faucet (highlighted

by yellow box) in contrast to the structured light sensor and

PSMNet reconstructions. For all evaluations we used ex-

actly the same training dataset for fine-tuning our Stereo-

DRNet and PSMNet.

5. Conclusion

Depth estimation from passive stereo images is a chal-

lenging task. Systems from related work suffer in regions

with homogeneous texture or surfaces with shadows and

specular reflections. Our proposed network architecture

uses global spatial pooling and dilated residual cost filtering

techniques to approximate the underlying geometry even in

above mentioned challenging scenarios. Furthermore, our

refinement network produces geometrically consistent dis-

parity maps with the help of occlusion and view consistency

cues. The use of perfect synthetic data and careful filtering

of real training data enabled us to recover thin structures and

sharp object boundaries. Finally, we demonstrate that our

passive stereo system, when used for building 3D scene re-

constructions in challenging indoor scenes, approaches the

quality of state-of-the-art structured light systems [23].
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