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Abstract

We consider the distributed optimization problem, where
a group of agents work together to optimize a common
objective by communicating with neighboring agents and
performing local computations. For a given algorithm,
we use tools from robust control to systematically analyze
the performance in the case where the communication
network is time-varying. In particular, we assume only
that the network is jointly connected over a finite time
horizon (commonly referred to as B-connectivity), which
does not require connectivity at each time instant. When
applied to the distributed algorithm DIGing, our bounds
are orders of magnitude tighter than those available in
the literature.

1 Introduction

Many recent and emerging applications in multi-agent
systems require groups of agents to cooperatively solve
problems. Examples of agents include computing nodes,
robots, or mobile sensors connected in a network. In this
paper, we consider the distributed optimization problem,
where each agent i € {1,...,n} has a local function f; :
R? — R, and agents cooperate to minimize the sum of
the functions over all agents,

n
ml;lel%}ilze z:Zlfl(y) (1)
Each agent is capable of evaluating its local gradient Vf;,
communicating information with neighboring agents, and
performing local computations. This problem is relevant
in applications such as large-scale machine learning [2],
distributed spectrum sensing [1], and sensor networks [7].
We are interested in cases where the communication
network among agents is time wvarying, which occurs
in mobile agents with range-limited communication and
systems with noisy and unreliable communication.
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In the past several years, numerous algorithms have
been proposed for distributed optimization (see [8] and
the reference therein). While some algorithms have been
studied in the time-varying scenario [5,9], the analysis is
typically performed on a case-by-case basis, resulting in
lengthy convergence proofs and conservative bounds. On
the other hand, the recent work [8] provides a systematic
framework for deriving convergence bounds for a large
class of distributed algorithms; this approach yields a
straightforward comparison between various algorithms,
but the analysis requires the network to be connected at
every iteration, which is often unrealistic.

In this work, we provide a systematic analysis in the
time-varying scenario for distributed algorithms whose
state update is synchronous, homogeneous across agents,
time invariant, and linear in the state, local gradient, and
a weighted average among neighbors. Unlike [8], we only
assume that the union of every B consecutive networks is
connected; this assumption is common in the consensus
literature and is often referred to as B-connectivity [3,4].
Our main contributions are the following.

e Generality. Our analysis applies to a large class of
distributed algorithms, allowing for straighforward
comparisons without deriving lengthy convergence
proofs for each algorithm individually.

o Tightness. For the gradient tracking algorithm
DIGing [5,6], we improve on existing bounds. While
the available bounds scale with the number of agents
n (and become vacuous as n — 00), our bounds are
orders of magnitude tighter and independent of n.

In Section 2, we state our assumptions on the local
functions and communication network, as well as describe
the class of algorithms considered. We then describe our
analysis and present our main result in Section 3. We
conclude with a case study for DIGing in Section 4, where
we compare our results with those in the literature.

Notation. We use 1 and 0 to denote the n x 1 vectors
of all ones and zeros, and R™*™ (§™) to denote the set
of m x m real (symmetric) matrices. A matrix A € S™
is denoted positive (semi)definite by A > 0 (A > 0).
We denote the vertical concatenation of a list of matri-
ces or vectors by vcat(Ay,..., A,)"T = [A] All.
Subscripts ¢ and j refer to agents, and index k denotes
the discrete time index. For a signal z;(k) on agent i
at time k, we denote the aggregation over all agents as



(k) = veat(zy (k), . .., zn(k)).

2 Problem setup

We now discuss the objective functions, communication
networks, and algorithms that we consider in this paper.

2.1 Objective function

We assume that the objective function has the form (1),
where each agent i can evaluate its local gradient Vf;.
Furthermore, we assume that the gradient of each local
function satisfies the following sector bound.

Assumption 1. There exist parameters 0 < m < L such
that each local function f; is continuously differentiable
and satisfies the inequality

T
(vfz(y) - vfi(yopt) -m (y - yopt))

X (Vfi(y) — Vfi(Yopt) — L (y — yopt)) <0

for all y € R?, where yopr € R? is the optimizer of (1).

Remark. One way to satisfy Assumption 1 is if each
Vf; is L-Lipschitz continuous and each f; is m-strongly
convex, though in general, Assumption 1 is much weaker.

The condition ratio x := L/m captures how much the
curvature of the objective function varies. If f; is twice
differentiable, then k is an upper bound on the condition
number of the Hessian V2f;. In general, as k — oo, the
functions become poorly conditioned and are therefore
more difficult to optimize using first-order methods.

2.2 Communication network

We represent the communication network among agents
as a time-varying directed graph. Each agent corresponds
to a node in the graph, and a directed edge from node
i to node j indicates that agent ¢ sends information to
agent j. Each agent processes the communicated data
by computing a weighted sum of the information from
its neighbors (the set of agents from which it receives
information). We characterize this diffusion process by
a gossip matrizx W (k) € R"*" where the discrete time
index k denotes the iteration of the algorithm. We make
the following assumptions on the gossip matrices.

Assumption 2. The set of gossip matrices {W(k)}32,
satisfies the following properties at each iteration k.

1. Graph sparcity: W;;(k) = 0 if agent ¢ does not
receive information from agent j at time k.

2. Weight-balanced: W (k)1 =W (k)1 = 1.
W(k)[ls < 1.

4. Joint-spectrum property: There exists a positive
integer B and a scalar o € [0, 1), called the spectral
gap, such that

3. Spectrum property: ||%11T —

k+B-1

HW

1/B

11T < o.

Remark. Our assumption on the gossip matrices does
not require the graph to be connected at each iteration if
B > 1 and is common in the consensus and distributed
optimization literature; see [4,5].

2.3 Algorithm

We now describe a broad class of algorithms that may
be used to have the group of agents solve the distributed
optimization problem (1), where each agent may perform
local computations and communicate with neighboring
agents. At each iteration k, each agent i has a local state
variable x;(k) € R®*? that it updates as follows:

xi(k+1) A B, B, i (k)
ui(k) = Vfi(vi(k)), (2b)
= Z Wi (k) z; (k) (2¢)
j=1
The local gradient Vf; is evaluated! at y;(k) € R*9

n (2b), and the quantity z;(k) € R°*? is transmitted
to neighboring agents in (2c). We also allow for linear
state-input invariants to be enforced with

n

> (Foxj(k) + Fyuy(k)) = 0.

j=1

(2d)

Such invariants typically arise from requiring a particular
initialization for the algorithm.

The matrices A € R**¢, D,,, € R™! and D,, € R*¢
are square with the other matrices having compatible
dimensions. Here, s is the number of local states on each
agent and c is the number of variables that each agent
communicates with its neighbors at each iteration.

We want each agent’s trajectory of algorithm (2) to
converge to the optimizer of the distributed optimization
problem (1), that is, y;(k) — yops for all ¢ € {1,...,n}.
To obtain this, we need (i) the algorithm to have a fixed
point corresponding to the optimal solution, and (ii) the
trajectory to converge to this fixed point. Existence of
such a fixed point places requirements on the structure
of the algorithm, which we characterize in the following
proposition; we prove the result in the Appendix.

Proposition 1. An algorithm of the form (2) has a fixed
point such that yf = ... =y% and Y., Vf;(y;) = 0 for
any local functions and any set of weight-balanced gossip
matrices if and only if the algorithm matrices satisfy

A-1T B,
null C. D.,—1I||nrow([Cy, Dy])# {0} (3a)
F, 0
B, A-1T
and [ Dy, | € col Cy (3b)
DZu CZ

I'We interpret the gradient Vf; as a mapping from R1X? to R1x4,



Figure 1: Block diagram used to analyze a distributed algorithm over a B-connected communication network. The
algorithm is unravelled over B time steps, where we have introduced the virtual signal w(k) (dashed lines) to multiply
the gossip matrix W (k) at each iteration (this signal is used only in the analysis and is not part of the algorithm).

3 A systematic analysis

We now describe our systematic method for analyzing the
convergence properties of an algorithm of the form (2)
when the communication network is B-connected (that
is, satisfies Assumption 2). We first motivate our analysis
with the main ideas and then state our main result.

3.1 Motivation

The main idea behind our analysis is to first unravel the
algorithm for B time steps, and then to systematically
search for a Lyapunov function for this unravelled system
using linear matrix inequalities.

Consider the first B iterations of the algorithm as
shown in Figure 1, where the matrix

A B, B,
G=1|Cy Dyy Dy, (4)
CZ DZ’M DZU

describes the algorithm update in (2a). In the diagram,
we have introduced the virtual signal w; (k) on agent 7 at
iteration k, defined recursively by

wi(k+1) = Z Wi (k) w; (k)

with w;(0) = z;(0). While this virtual signal is not part
of the algorithm, we make use of it in the analysis.

To prove convergence of this unravelled system, we
search for a quadratic Lyapunov function of the form

V) =(¢ E11TePr+(I-111N®Q)¢), ()

consensus disagreement

where £ is the state of the unravelled system. The first
term in V' describes the state in the consensus direction,
that is, the component of the agents’ states which are in
agreement, and is characterized by the matrix P. The
second term describes the disagreement directions, which
are all directions orthogonal to the consensus direction,
and is characterized by the matrix Q. If there exist P

and @ such that the function is both positive definite and
sufficiently decreasing along trajectories of the algorithm,
then V is a valid Lyapunov function that we can use
to certify convergence of the state to a fixed point. For
algorithms satisfying the conditions in Proposition 1, this
fixed point corresponds to the optimal solution of the
distributed optimization problem as desired.

To find a valid Lyapunov function, we systematically
search over the matrices P and () using linear matrix
inequalities. Such LMIs arise by replacing any nonlinear
and/or unknown blocks in Figure 1 with constraints on
their input and output signals. In particular, we use the
following:

o The input y(k) and output u(k) of the gradient of
the objective function satisfy a quadratic inequality
from Assumption 1.

o The inputs z(k) and w(k) and corresponding outputs
v(k) and w(k + 1) of the gossip matrix W (k) satisty
a quadratic inequality due to the spectrum property
in Assumption 2.

o The input w(0) and output w(B) of the product
5:01 W () satisfy a quadratic inequality due to the
joint spectrum property in Assumption 2.

Note that we include the virtual signal w(k) in order to
make use of the joint spectrum property. Our analysis
then consists of solving two LMIs, the consensus LMI
which searches for P and the disagreement LMI which
searches for Q.

Remark. We could use a modified version of the joint
spectrum constraint from Assumption 2 in our analysis.
For example, if the Laplacian L(k) = I — W (k) satisfies
k+B—1

IT <
l=k

then we would instead define the virtual signal w(k) by
the recursion w(k + 1) = L(k)w(k) with w(0) = 2(0),
which would require modifying the quadratic inequalities
involving w(k) accordingly.

1/B
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3.2 Main result

Given an algorithm of the form (2), parameters (m, L)
from Assumption 1 and (o, B) from Assumption 2, and a
prospective convergence rate p € (0, 1), we now construct
the consensus and disagreement LMIs used to find the
matrices P and @ in (5) and then state our main result.

Map from basis to iterates. To construct the LMIs,
we first define a set of matrices that map the basis

ni(k) = veat(z;(k), u; (k), ..., u;(k + B — 1), v(k), ...,
vi(k+ B —1),wi(k+2),...,wi(k+ B)) (6)

to the corresponding iterates of the algorithm. The basis
has size b x d, where b = s—c+ B (2c+1) (recall that s is
the number of states on each agent and c is the number
of variables communicated per iteration). In particular,
we define the sets of matrices

u(f) € RV tefo,...,B—1}
v(f) € RO ¢e€{0,...,B—1}
w(l) € Re*P ¢e0,...,B}
x(¢) € R¥*XP te{0,...,B}
y(f) € RM*? te{0,...,B—1}
z(f) € RO*® ¢tc{0,...,B—1}
such that the concatenated matrix
veat(z(0),w(0),...,u(B —1),v(0),...,
v(B—1),w(2),...,w(B))

is the bx b identity matrix, w(0) = z(0) and w(1) = v(0),
and the matrices satisfy the algorithm update

xz(l+1) x(f)
yl0) | =G |ul®)]|, te{0,...,B—1},
z(() v(()

where G is defined in (4). These matrices are constructed
such that multiplying each matrix on the right by the
basis vector (6) yields the corresponding iterate.

Lyapunov function. Using these matrices, we define
the matrices mapping the basis vector to the current and
next state of the Lyapunov function as

& = veat(z(0), u(0), ..., u(B — 2),v(0),...,v(B - 2))
&, =vcat(z(1),u(l),...,u(B —1),v(1),...,v(B - 1))
with dimensions a x b, where a = s + (¢ + 1)(B — 1).

Consensus LMI. Let the matrix ¥ be a basis for

vecat(x(0),...,xz(B —1)
nU"([IB ®F: Ip® k] vcatgu(OL u(B - 1)3])
N null(vcat(U(O) —2(0),...,v(B) — z(B)))

N nuII(vcat(w(O) —w(l),...,w(B) —w(B+ 1)))

The consensus LMI is then

0= X(P,)\) (7a)
0<P (7b)
0< A0 tef{o,...,B-1} (7c)

with variables P € S® and A\(¢) € R, where the symmetric
matrix X is given by

XN =T (€lPe, - (€7PO)

R RAHAE

with Mo = [ 20 1471].

Disagreement LMI. The disagreement LMI is

0= Y(Q,R,S,N) (82)
0<Q (8)
0=<R (8¢)
0=<5() te{0,...,.B—1} (8d)
0<A) te{0,...,B—1} 8e)

(
with variables @ € S%, R € S¢, S(¢) € §?¢, and A\({) € R
where the b X b symmetric matrix Y is given by

Y(Q,R,S,\) =€.Q&, —p*(£'Q&)

w(0)]" w(0)
4 [w(B)] (M, ® R) [w(B)}
=0 77 2(0)
+3 “’((5)) (My @ S(0)) 11‘}’((5))
=0 w(e+1) w(l+1)

with My = [2;” 0] and Mo = [§ % ].

Remark. The consensus and disagreement LMIs are
coupled through the variable A(¢).

We now use the consensus and disagreement LMIs to
state our main result, which characterizes the worst-case
convergence rate of algorithm (2); we prove the result in
the Appendix.

Theorem 1 (Main result). Consider the optimization
problem (1) solved using a distributed algorithm of the
form (2) that satisfies the fixed-point conditions (3), and
suppose that Assumptions 1-2 hold. If the consensus and
disagreement LMIs in (7) and (8) are feasible for some
scalar p > 0, then for any initial condition, there exists a
constant v > 0 such that

s (k) = aF || <~ p" (9)
for all agents ¢ € {1,...,n} and all iterations & > 0,

where z} is a fixed point corresponding to the optimal
solution of (1).
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Figure 2: Upper bound on the number of iterations to converge for DIGing as a function of the spectral gap o with
condition ratio £ = 10 and connectivity parameter B € {1,2,3} using Theorem 1 (solid lines) and the bound from
the original DIGing paper [5, Theorem 3.14] (dashed lines) with the stepsize o chosen to optimize the bound in the
DIGing paper (left) and Theorem 1 (right). Note that the bound in the DIGing paper depends on the number of
agents; we use n = 2 for the plot on the left, and the bound is vacuous for the stepsizes used in the plot on the right.

4 Case study: DIGing

To illustrate our results, we applied our analysis to the

gradient tracking algorithm DIGing [5,6], which has been

analyzed under the same assumptions?.

The DIGing algorithm is given by the recursion
z(k+1) =W(k)z(k) — ay(k)
ylk+1)=W(k)y(k) + Vf(a:(k + 1)) - Vf(x(k))

with initial condition y;(0) = Vf;(z;(0)) and stepsize a.

If we define the state as vcat(z;(k),y;(k), Vfi(z:(k))),
then DIGing is equivalent to our algorithm form (2) with

[0 —a 0 i0il1l 0]

: 0 0 —-1i1i0 1

4 B“iB” 0 0 0i1i0 0
Cy Dy“iDy” =10 =« 0 :i0i1 0O
gz DzuEDzv 1 O 0 000
T u 0 1 0:i0i0 0
|0 1 -1:0 |

From the dimensions of the matrices, we see that each
agent has s = 3 state variables and communicates ¢ = 2
variables to neighbors at each iteration.

We compare our convergence bound from Theorem 1
with that from the original DIGing paper [5, Thm. 3.14]
in Figure 2. In the plot on the left, we use the stepsize

15 (V-1 -6J)°
“= mJ (J+1)2

with J = 3xB?(1 + 4y/nk), which optimizes the worst-
case linear rate p = (1 — am/1.5)*/28 from the DIGing

2While the authors of [5] do not explicitly assume the spectrum
property from Assumption 2, they make use of this property
in [5, Equation (14)] to prove their convergence bound.

paper. While our bound depends on the spectral gap o
and condition ratio k, this bound also depends on the
number of agents n and is vacuous in the limit as n — oo.
In the plot on the right, we use the (much larger) stepsize
which optimizes our bound from Theorem 1, for which
the bound from the DIGing paper is vacuous.

To summarize, our analysis is tighter than previous
bounds for DIGing (for both small and large stepsizes),
is independent of the number of agents, and is applicable
to any algorithm of the form (2).
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Appendix

Proof of Proposition 1. Suppose that the algorithm
matrices satisfy the conditions in (3), and let ¥ = yopt €
R4 for all i with "1 | Vfi(Yopt) = 0. Then there exist
matrices Z € R**?, & € R, and v € R such that

0 A-I B,

_ B A—-1T
Yopt | _ Cy Dy, € Du | ¢ 5
0 C. D,,—1I]| |v|’ Dyu Cy ’
For all agents 7 € {1,...,n}, use these to define
zy =2 — & Vfi(Yopt)s Y5 = Yopt 2 =0,
: = Vfi(yopt)a U:‘( =,

which is a fixed point of (2) corresponding to Yopt.

Now suppose (x},y7, 27, uf,vF) is a fixed point of (2)
such that v = yopt and Y ., V/fi(Yopt) = 0. Define the
average state as & = (1/n) Y ., a7, and similarly for the
other points. Then u = 0, so the concatenated matrix
vcat(Z, v) must be nonzero and in the space (3a). Now let
q be any nonzero vector such that ¢"1 = 0. For the fixed
point to not depend on the sequence of gossip matrices,
v; = ¥ must be in consensus. Then multiplying (2a) by

¢; and summing over i € {1,...,n},
A-T] n B, | n
0=1 Cy | D (aa})+ [Dyu| > (giu}).
.| =1 su | i=1

This must hold for all objective functions, which implies
the condition in (3b). O
Proof of Theorem 1. Let (x;,y;, 2i,u;,v;) denote a
trajectory of algorithm (2). From Proposition 1, there
exists a fixed point (zf 5 yr, 2 ur, vr) with yf = yope for
all i, where yopy € R4 is the optimizer of (1). We
denote the error coordinates as Z;(k) := z;(k) — z*, and
similarly for the other signals.

From the invariant (2c) and the gossip matrix being
weight-balanced, there exists 3(k) such that

= % th(k)

where 7; (k) is the basis in (6) and 7; (k) the corresponding
error signal. Multiplying X in the consensus LMI on the

right and left by §(k) and its transpose, respectively, and
defining IT = %llT, we obtain the consensus inequality

0> (E(k+1),(I1® P)E(k + 1)) (10a)
— p? (€(k), (T & P)E(k))

X (i8] oo m 24,

where (A, B) = tr(ATB) is the Frobenius inner product.
Now choose vectors qz,...,q, € R™ so that the matrix
[1 /v g qn] is orthonormal, and multiply the
matrix Y in the disagreement LMI on the right and left
by the weighted sum S (¢, ): £ (k) and its transpose,
respectively, and sum over m € {2,...,n}. This results
in the disagreement inequality

0> ((k+1),(I-M)®Q)&(k+1))
— P (€(k), (I =) @ Q) £(k))

LSO < [ZEZH (Mo @ (I —T0)) B(

(10b)

. ~(w(f>3)} (M, ® (I -T1) ® R) {w(w(f)B)D
sy 20 20

v < o | onea-meso)| 5 >
SO Mae+1) W0+ 1)

where we used that {g¢,, }7,_; form an orthonormal basis
for R™. Summing the inequalities in (10), we obtain

0> Y(é(k +1)) = P V(E(R))
S8 oerls)

| s-mem 1, ])

{loes ] 00

3(0) z
B-1 ~ ~
(] 5 | onea-mesw)| T >
SO M+ 1) W0+ 1)

where the Lyapunov function V' is defined in (5). Each
quadratic form in the first summation is nonnegative
from Assumption 1, the following term is nonnegative
from the joint spectrum property in Assumption 2, and
each term in the last summation is nonnegative from the
spectrum property in Assumption 2; see [8, Prop. 15-16].
Then using the slight abuse of notation V (k) = V(£(k)),
we have the decrease condition V(k + 1) < p?V(k),
which implies V (k) < p?* V(0). Now define the matrix
T:=TT® P+ (I —1I) ® Q, and note that T > 0 since P
and @ are positive definite. Letting cond(T") denote the
condition number of T, we have the bound

Hxl(k)f:vfﬂz < cond(T)V (k) < p% cond(T") V(0),

0 (9) holds with v = /cond(T) V (0). O
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