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On the Stable Resolution Limit of Total Variation

Regularization for Spike Deconvolution
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Abstract— The stability of spike deconvolution, which aims at
recovering point sources from their convolution with a point
spread function (PSF), is known to be related to the separation
between those sources. When the observations are noisy, it is
critical to ensure support stability, where the deconvolution does
not lead to spurious, or oppositely, missing estimates of the point
sources. In this paper, we study the resolution limit of stably
recovering the support of two closely located point sources using
the Beurling-LASSO estimator, which is a convex optimization
approach based on total variation regularization. We establish
a sufficient separation criterion between the sources, depending
only on the PSF, above which the Beurling-LASSO estimator is
guaranteed to return a stable estimate of the point sources, with
the same number of estimated elements as that of the ground
truth. Our result highlights the impact of PSF on the resolution
limit in the noisy setting, which was not evident in previous
studies of the noiseless setting. Towards the end, we show that
the same resolution limit applies to resolving two close-located
sources in conjunction of other well-separated sources.

Index Terms— Spectral estimation, super-resolution, resolution
limits, convex optimization.

I. INTRODUCTION

I
N ITS classical formulation, the super-resolution prob-

lem consists of recovering a stream of localized temporal

events, modeled as one-dimensional point sources (or spikes),

characterized by their positions and amplitudes, from distorted

and noisy observations. This problem finds a myriad of

applications in applied and experimental sciences, such as

spectrum and modal analysis, radar, sonar, optical imaging,

wireless communications and sensing systems. The distortion

is often characterized by a shift-invariant point spread function

(PSF), acting as a low-pass band-limited filter, on the stream

of spikes to recover, in accordance to the physical limitation

of the measurement device involved in the acquisition of the

point sources [1].

The problem, known as spike deconvolution, comes with

a handful of statistical challenges. Of particular interest to
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this paper is the support stability of the reconstruction in the

presence of additive noise, defined as the capability of a given

estimator to return the exact same number of point sources as

that of the ground truth, without spurious or missing elements.

This paper studies the support stability of the Beurling-LASSO

estimator [2] to reconstruct two closely located point sources.

Despite its apparent simplicity, this setup is of importance both

in theory and in practice. In theory, it allows us to develop a

deeper insight on the fundamental notion of resolution limit –

the minimal distance above which two point sources are said

to be distinguishable. In practice, it models the separation

of a weak moving target from a strong clutter in radar [3],

and accurate counting of the number of molecules in super-

resolution fluorescence microscopy [4].

The Beurling-LASSO estimator is a convex optimization

approach with the total variation (TV) regularization, which

has been shown to provide exact reconstruction of the point

sources in the absence of noise, whenever the point sources

are sufficiently separated [2], [5], [6]. The TV regularization,

applied to measures, can be regarded as a continuous analog

of the standard `1 regularization for finite-dimensional vec-

tors, but is advantageous by overcoming the basis mismatch

issue [7]. In this paper, we show that the Beurling-LASSO

estimator can also stably reconstruct the support of the two

close-located point sources provided that they are separated

by a distance that can be computed exactly using a formula

depending only on the PSF, revealing the impact of PSF on

the stability of spike deconvolution. Our result can be extended

to a multi-source setting containing a mixture of two close-

located sources and other well-separated sources.

A. Observation Model

We consider a scenario where there are only two point

sources to recover. Denoting by M(R) the set of complex

Radon measures over the reals, the signal to resolve is modeled

as a measure ν? ∈ M(R) of the form

ν?(τ) = c1δ(τ − τ1) + c2δ(τ − τ2), (1)

where δ(·) is the Dirac measure, τ1, τ2 ∈ R are the

time-domain locations of the two spikes and c1, c2 ∈
C\{0} are their non-zero associated complex amplitudes. The

continuous-time signal x(τ) resulted from the convolution of

the ground truth measure ν?(τ) with the PSF g(τ) writes as

x(τ) = (g ∗ ν?) (τ)

= c1 g(τ − τ1) + c2 g(τ − τ2), ∀τ ∈ R, (2)
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where ∗ denotes linear convolution. Furthermore, because of

the needs of digital processing, one typically takes discrete-

time measurements. An idealistic, yet credible approximation

of many super-resolution problems encountered in practice is

to consider measurements drawn from uniform sampling of the

Fourier transform of x(τ). Let F(·) be the Fourier transform

of a measure in M(R), defined as

F(µ)(f) =

∫

R

e−i2πfτdµ(τ), ∀µ ∈ M (R) , ∀f ∈ R, a.e..

The Fourier-domain counterpart of the observation model (2)

becomes

X(f) = G(f) · F(ν?)(f), ∀f ∈ R, a.e.,

where X = F(x), G = F(g) are the Fourier transforms of

the signal x(τ) and the PSF g(τ), respectively. We assume

that the PSF g(τ) is band-limited, with a bandwidth of B >
0. Therefore, G(f) = 0 for every f outside the interval(
−B

2 , B
2

)
. We further assume an odd number N = 2n + 1

of measurements1 are taken uniformly over the bandwidth(
−B

2 , B
2

)
. Therefore, the observation vector is given by x =

{xk = X(kB/N)}n
k=−n ∈ CN , corresponding to measuring

X(f) at frequencies {kB/N}n
k=−n ⊂

(
−B

2 , B
2

)
.

For convenience, we introduce a normalized measure µ? ∈
M(R) as µ?(t) = N

B ν?(Nt/B) for all t ∈ R, which by

combining with (1) can be rewritten as,

µ?(t) = c1δ(t − t1) + c2δ(t − t2), (3)

where t1 = Bτ1/N and t2 = Bτ2/N are the normalized

locations of the point sources. The observations x are linked

to µ? by the linear relation

x = Φg(µ?). (4)

Here, the measurement operator Φg : M(R) 7→ CN maps

every µ ∈ M(R) to the vector Φg(µ) ∈ CN defined by

Φg(µ)=diag(g) [F(µ)(−n),F(µ)(−n + 1), . . . ,F(µ)(n)]
�
,

(5)

where g = {gk = G(kB/N)}n
k=−n ∈ C

N is the vector

obtained by sampling the Fourier transform of the PSF g(τ)
at frequencies {kB/N}n

k=−n. Furthermore, notice that the

observation operator Φg is invariant with respect to integer

shifts of the underlying measure µ?. Thus, one can only hope

to identify µ? over the set of Radon measure defined over the

torus T ∼ R/Z, denoted as M(T). Without loss of generality,

the delays t1, t2 are normalized within the unit interval, i.e.

t1, t2 ∈ [− 1
2 , 1

2 ).2

In the presence of noise or measurement errors, we assume

x is corrupted by an additive term w. The observations are

given as

z = x + w = Φg(µ?) + w, (6)

1An odd number of measurements is considered only for clarity and
simplification purposes, and does not affect the generality of the results
presented in this paper.

2Since ti = Bτi/N , i = 1, 2, and assuming τi ∈ [−T/2, T/2), where T
is the time window of interest, then the ambiguity constraint ti ∈ [−1/2, 1/2)
suggests that the number of measurements should be greater than the time-
bandwidth product, i.e. N ≥ T · B, to avoid aliasing.

where kwk2 ≤ η is assumed to be bounded for some noise

level η > 0.

B. Reconstruction Using the Total Variation Minimization

Framework

In the absence of noise, the super-resolution problem is

defined as recovering µ? from the observations x and the

PSF g(τ), yielding a linear inverse problem over the set of

measures. Clearly, there are many possible measures that lead

to the same observations, making the problem ill-posed. It is

therefore necessary to impose structures on the measure of

interest, where one of the most widely used structures is a

sparsity prior. More precisely, one seeks for the measure µ̂\

with minimal support that is consistent with the observations

x given in (4). Denoting by k·k0 the “pseudo-norm” counting

the potentially infinite cardinality of the support of a measure

in M(T), the optimal estimator µ̂\ for the super-resolution

problem can be reformulated as the output of the optimization

program

µ̂\ = argmin
µ∈M(T)

kµk0 s.t. x = Φg(µ), (7)

which is known to be unique and equal to the ground truth µ?

as long as the number of measurements N is at least twice as

large as the number of spikes to recover [8].

However, on the computational front, the estimator (7)

is infeasible due to the combinatorial aspects inherent to

the definition of k·k0. Instead, a convex relaxation of the

estimator (7) is proposed in [2] to recover the measure. This is

achieved by relaxing the cost function by a convex surrogate

known as total variation (TV), denoted as k·kTV, whose

formal definition will be discussed later. The total variation

minimization of measures, equivalent to the atomic norm [9],

[10], is a versatile framework that can be adapted to solve a

variety of linear inverse problems over continuous dictionaries.

The resulting TV estimator, denoted as µ̂0, is given by

µ̂0 = arg min
µ∈M(T)

kµkTV s.t. x = Φg(µ), (8)

which is a convex program over the set of Radon measures,

and can be computed efficiently by solving an associated

semidefinite program (see e.g. [11]). In the presence of noisy

observations of the form (6), the Beurling-LASSO estimator

µ̂λ [12], also known as the atomic norm denoiser [11], can

be used to recover the ground truth. It can be understood as

an extension of the celebrated LASSO estimator over the set

of measures, which aims to estimate the ground truth measure

by minimizing a sum of the TV norm of the measure and

the squared Euclidean norm of the measurement residual (4),

so that the estimate µ̂λ is written as

µ̂λ = µ̂λ(z) = arg min
µ∈M(T)

1

2
kz − Φg(µ)k2

2 + λ kµkTV , (9)

where λ > 0 is a regularization parameter drawing a trade-off

between the TV norm of the estimate, as well as its fidelity

to the observations.
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Fig. 1. Illustration of support stability of the Beurling-LASSO estimator for reconstructing two point sources with different separations ∆ when the PSF is
the ideal low-pass filter g(τ) = sinc(πτ) and for a number of samples N = 129 with SNR = 40dB. The locations of point sources are estimated as the
peaks of the magnitude of the dual polynomial Φ∗

g(�pλ), where �pλ is the solution of (14). (a): ∆ = 1.2/N , the estimator returns exactly two spikes closely

located to the ground truth and is support stable. (b): ∆ = 1.1/N , the estimator returns two additional spurious spikes and is not support stable.

C. Resolution Limit of Spike Deconvolution

An important question for practical operations is the reso-

lution of spike deconvolution, where one would like to ensure

that the reconstructed measure is as close as possible to the

ground truth. It has been known for decades that the separation

between the spikes,

∆ = |t2 − t1|T � inf
`∈Z

|t2 − t1 + `| , (10)

which measures the distance over the torus T, plays an impor-

tant role – the smaller the separation, the more challenging it is

to resolve them. For example, the Rayleigh limit (see e.g. [13])

is a classical empirical criterion to characterize the resolution

limit the super-resolution problem, i.e., the minimal separation

between two point sources, above which those sources are said

to be distinguishable. In recent years, there has been a resurge

of interest in a formal characterization of this limit - both in

terms of achievability and impossibility. In particular, stability

has been shown to be related to the asymptotic behaviors of

the condition number of Vandermonde matrices with nodes

on the unit circle [14]–[16], which diverges below a critical

separation of the spikes. This phase transition induces the

existence of a resolution limit under which point sources

cannot be resolved in the presence of noise in the asymptotic

regime where N tends to infinity [17], regardless of the

algorithm used for reconstruction.

In this paper, we are interested in understanding the robust-

ness of an estimator in the presence of noise. Among the

many figures of merit to quantify this robustness, an important

criterion is the support stability of the estimator, defined below

when specialized to the two-spike setting.

Definition 1 (Support Stability): Consider the observations

z = Φg(µ?) + w. An estimator µ̂ = µ̂(z) based on z is

said to be support stable for a given ground truth measure

µ? of the form (3) if there exists η > 0 such that for all w

with kwk2 < η, the estimate µ̂ is a measure containing two

spikes, i.e.

µ̂(z) = ĉ1δ(t − t̂1) + ĉ2δ(t − t̂2),

and if the estimated parameters satisfy, up to a permutation Π
of the indices:

∣∣tk − t̂Π(s)

∣∣
T

= O(kwk2) and
∣∣cs − ĉΠ(s)

∣∣ =
O(kwk2) for s = 1, 2 in the limit of kwk2 → 0.

This notion, introduced in [6], characterizes the capability

of an estimator to output a measure containing the exact

same number of spikes as that of the ground truth, when the

signal-to-noise ratio (SNR) is large enough. As an example,

Fig. 1 plots the reconstruction of a ground truth measure

containing two spikes using the Beurling-LASSO estimator at

SNR = 40dB under different separations when the PSF is the

ideal low-pass filter. In this illustration, when ∆ = 1.2/N ,

the estimator returns exactly two spikes closely located to

the ground truth; on the other hand, when ∆ = 1.1/N ,

the estimator returns additional spurious spikes that are not

consistent with the ground truth, and therefore, is no longer

support stable.

D. Overview of the Main Result

This paper studies the support stability of the Beurling-

LASSO estimator (9) for the reconstruction of a two-spike

measure of the form (1). We show that, the Beurling-LASSO

estimator is support stable if the separation ∆ is greater than

γ?/N , which can be calculated exactly using the knowledge

of the PSF g(t). Our main contribution can be informally

summarized in the following statement.

Theorem 2 (main Result, Informal Statement): Suppose that

the PSF g(τ) satisfies some mild regularity conditions and

is band-limited within
(
−B

2 , B
2

)
. There exists a constant γ?,

depending only on g(τ), such that if a measure µ? of the

form (3) verifies

∆ := |t2 − t1|T >
γ?

N
,

then the Beurling-LASSO estimator is support stable when N
is sufficiently large.

The complete statement of the theorem (c.f. Theorem 6)

provides the formula of the stable resolution limit γ?, which

can be computed for an arbitrary PSF verifying the hypotheses

of the theorem. One highlight of our result is that it links

the stable resolution limit directly to the PSF, which is not

apparent in the study of the noise-free setting, where the

resolution limit of exact recovery is independent of the PSF.

This provides a quantitative means to evaluate and compare the

choices of different PSFs in imaging and sensing applications.
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TABLE I

VALUES OF THE MINIMAL SEPARATION γ� FOR COMMONLY ENCOUNTERED POINT SPREAD FUNCTIONS. HEREIN, J0(·) DENOTES THE BESSEL

FUNCTION OF THE FIRST KIND, AND ψτ0
(·) REFERS TO THE PROLATE SPHEROIDAL WAVE FUNCTION (PSWF) OF ORDER 0 FOR THE TEMPORAL

CONCENTRATION BAND [−τ0, τ0] [18], [19], I.E., THE FUNCTION g(·) WITH A FREQUENCY BAND
�
− 1

2
, 1

2

�
AND WITH ‖g‖L2

= 1 WHICH

MAXIMIZES THE INTEGRAL
� τ0

−τ0
|g(τ)|2dτ

The spectrum of a typical PSF has a decaying shape. A slower

decay usually is associated with a smaller resolution limit and

better super resolution capabilities for PSFs with the same

bandwidth.

For illustration purposes, Table I lists the approximate val-

ues of γ? associated with commonly encountered PSFs, such

as ideal low-pass filters, circular low-pass filters, triangular

low-pass filters, truncated Gaussian functions, and prolate

spheroidal wave functions. Since we focus on the case of only

two spikes, the separation condition γ? is smaller than those

in [5], [20], [21] for the noise-free setting, which allows more

spikes. In addition, Fig. 2 illustrates how the stable resolution

limit γ? increases while the temporal concentration of the

truncated Gaussian function and the prolate spheroidal wave

function degenerates. Finally, Fig. 3 compares the constant

γ? predicted by Theorem 2 with the empirical success rates

of the Beurling-LASSO estimator for different PSFs, which

corroborates the findings of our theory. Our result holds even

in the presence of additional point sources, as long as they are

well-separated, see Section V.

E. Connections to Related Works

The resolution limits of spike deconvolution have been

studied extensively, including but not limited to [22]–[27]. The

performance of the TV estimator (8) has been studied in the

noiseless setting with respect to the separation condition [2],

[6], [21]. Exact recovery of the TV estimator (8) is first

guaranteed in [2], for an arbitrary number of spikes, given

a separation ∆ > 4/N under the proviso that the number of

observations N is large enough, which has been later improved

to ∆ ≥ 2.56/N in [28]. On the other hand, it is known

that TV-regularization can fail whenever ∆ < 2/N [21].

Furthermore, experimental evidence suggest the existence of

a phase transition on the success of (8) whenever the minimal

separation between any pair of spikes crosses the threshold

∆ = 2/N in the limit of N tending to infinity. With the extra

assumption that the number of spikes is exactly two, as in (3),

it is shown in [6] that a separation ∆ > 1/N is necessary to

guarantee exact recovery.

The support stability of the Beurling-LASSO estimator is

studied in [6] under the non-degenerate source condition (c.f.

Def. 4), however it is unclear and challenging to establish

when this condition will hold for general sources. In [29],

[30], the support stability of reconstructing positive sources is

considered without imposing a minimal separation condition.

Our main theorem in this paper is achieved essentially via

verifying the non-degenerate source condition for the two-

spike case with arbitrary signs and the presence of additional

well-separated spikes, which is already quite technical and

non-trivial.

Furthermore, when the PSF is the ideal low-pass filter,

and under additive white Gaussian noise, the stability of TV

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 21,2020 at 23:41:00 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. The stable resolution limit γ� for (a) a truncated Gaussian PSF for different values of the parameter σ, and (b) the prolate spheroidal wave function
of order zero ψτ0

for different widths of the concentration band [−τ0, τ0].

Fig. 3. Empirical success rates for the Beurling-LASSO estimator to return a measure with two point sources, for three different point spread functions,
under additive white Gaussian noise, as a function of the separation parameter N∆. The support stability threshold γ� predicted by Theorem 2 is shown in
a black dashed line. Here, we set N = 101, SNR = 60dB. The results are averaged over 200 trials.

regularization is studied under various metrics. For example,

the stability of an estimator µ̂ in the observation domain is

studied in [11], [20], which looks at bounds on kΦg(µ̂−µ?)k2
2.

The performance of support detection has been examined

in [31]–[33], which quantifies the residual of µ̂ outside the

support of µ?, however these guarantees do not ensure the

estimate µ̂ contains the same number of spikes as the ground

truth µ?. A trade-off between the separation of the spikes

and the error of the parameters is highlighted in [34] without

resorting to the non-degenerate source condition. However,

the required separation for the result in [34] to hold is quite

large and assumes a Gaussian noise.

F. Organization of the Paper

The rest of this paper is organized as follows. Section II

provides some prerequisites on spike deconvolution using the

Beurling-LASSO estimator, including background literature.

Section III states formally the main theorem of this paper

including all technical details. Section IV proves the main

theorem and Section V discusses the extension of the main the-

orem to the reconstruction of multiple point sources. Finally,

we conclude in Section VI.

II. PREREQUISITES

In this section, we discuss the prerequisites on super reso-

lution using total variation regularization, which are useful to

the presentation and analysis of the main result in this paper.

A. Mathematical Notations

The transpose and adjunction of a vector v is denoted as

v� and v∗ respectively. The adjoint of a linear operator Φ
is written as Φ∗. Vectors of a dimension N = 2n + 1 are

indexed between −n and n, so that v = [v−n, . . . , vn]�. For

any t ∈ T, we introduce the atomic vector a (t) ∈ CN and its

derivative ȧ (t) ∈ CN as

a (t) =
[
e−2πi(−n)t, . . . , e−2πint

]�
,

ȧ (t) =
da(t)

dt
= −2πi

[
−ne−2πi(−n)t, . . . , ne−2πint

]�

= − 2πi diag(−n, . . . , n)a(t),

where diag(−n, . . . , n) is a diagonal matrix with diagonal

entries −n, . . . , n. Similarly, we define the `th order derivative

of a (t) as a(`) (t). To every vector q ∈ CN , we associate the

trigonometric polynomial Q(t) of degree n such that

Q(t) = a(t)∗q =

n∑

k=−n

qke2πikt, ∀t ∈ T.

Its derivative satisfies Q′(t) = ȧ(t)∗q for all t ∈ T. The real

part and conjugate of a complex number u is denoted as <(u)
and ū, and the sign of a non-zero complex number is given by

sgn(u) = u/|u|. For any two vectors z, p ∈ CN , we denote

by h·, ·i
R

the real inner product hz, pi
R

= <{z∗p}, and we

denote by z � p ∈ CN their element-wise product.
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The vector space of continuous functions from T to C,

denoted as C(T), is endowed with the supremum norm k ·k∞.

The total variation norm k · kTV, defined as the dual norm of

k · k∞, is given as

kµkTV = sup
h∈C(T)
‖h‖

∞
≤1

<
[∫

T

h (t)dµ (t)

]
, ∀µ ∈ M(T).

Given two functions g and h that depend on N , we use

the classical Landau’s notations g = O(h), g = o(h) and

g = ω(h) to denote limN→∞

∣∣∣ g(N)
h(N)

∣∣∣ = C for some C ∈ R,

limN→∞

∣∣∣ g(N)
h(N)

∣∣∣ = 0, and limN→∞

∣∣∣ g(N)
h(N)

∣∣∣ = ∞, respectively.

B. Tightness of Total Variation Minimization

In the noiseless setting, the TV estimator (8) is said to

be tight if its output µ̂0 is equal to the output µ̂\ of the

estimator (7). As for many other convex optimization-based

methods for solving inverse problems, the Lagrangian duality

theory can be leveraged to derive tightness guarantees. The

Lagrange dual problem associated to (8) reads

D0 (x) = arg max
p∈CN

hx, pi
R

subject to kΦ∗
g(p)k∞ ≤ 1, (11)

where the adjoint of the operator Φg in (5) is given by

Φ∗
g : C

N → M(T)

p 7→ Φ∗
g(p)(t) =

n∑

k=−n

pkḡkei2πkt,

= a (t)
∗
diag(g)p, ∀t ∈ T. (12)

In other words, Φ∗
g associates any p ∈ CN with a trigonomet-

ric polynomial Q(t) = a (t)
∗
q of degree at most n, where

q = diag(g)p. Moreover, as the restriction of the feasible set

of (11) to the span of the operator Φg is compact, the set of

solutions D0 (x) is non-empty as long as x is a consistent

observation under the observation model (4).

It is now well understood that the tightness of TV regular-

ization is characterized by the existence of a so-called dual

certificate [2]: a function lying in the feasible set of the dual

program (11), and satisfying certain extremal interpolation

properties. Considering an input measure with only two point

sources of the form (1), the corresponding dual certificate is

defined as follows.

Definition 3 (Dual Certificate [2]): A vector p ∈ C
N is said

to be a dual certificate for the optimization problem (8) with

an input µ? of the form (3) if and only if the trigonometric

polynomial Q(t) = a (t)∗ q with a coefficient vector q =
diag(g)p verifies the conditions

Q(t1) = sgn(c1), (13a)

Q(t2) = sgn(c2), (13b)

|Q(t)| < 1, ∀t ∈ T\{t1, t2}. (13c)

It can easily be verified that any dual certificate p achieves

dual optimality with a dual objective hx, pi
R

= kµ?kTV.

In fact, by a duality argument, if such a certificate exists,

µ? is the unique solution of (8). As a result, showing the

existence of a dual certificate of a given instance of the total

variation program (8) provides a constructive approach to

prove the tightness of the TV estimator µ̂0. We refer the reader

to [2], [35] for further discussion of this property.

C. Stability of the Beurling-LASSO Estimator

Moving to the noisy case, where we aim to recover µ? from

the noisy observations (6), it becomes necessary to invoke

the Beurling-LASSO estimator (9). Due to the existence of

noise, it is no longer possible to recover µ? perfectly. However,

we hope the estimator is stable, so that the estimate µ̂λ is close

to the ground truth measure µ? when the noise w and the

regularization parameter λ are small enough. More precisely,

we are interested in the support stability as defined in Def. 1,

which is a quite strong metric carrying the desirable notion of

maintaining a faithful estimate of each individual spike without

incurring spurious or missing spikes. The support stability of

the Beurling-LASSO estimator µ̂λ in (9) has been studied for a

broad class of measurement operators in [6]. The results, again,

are derived from an analysis of the Lagrange dual problem of

the estimator µ̂λ, which is given as

p̂λ = p̂λ(z) = arg max
p∈CN

hz, pi
R
− λ

2
kpk2

2

subject to kΦ∗
g(p)k∞ ≤ 1, (14)

Note that, contrary to (11), the solution p̂λ is unique for

every z and λ > 0, as (14) can equivalently be interpreted

as the projection of λ−1z onto the convex feasible set. As the

regularization parameter λ tends to 0, the output p̂λ(x) of the

dual problem (14) applied on the ground truth observations

x = Φg(µ) converges towards the element p̂min of the solution

set D0 (x) with the minimal norm so that [6]

lim
λ→0

p̂λ(x) = argmin {kpk2 : p ∈ D0(x)} := p̂min. (15)

The minimal norm solution p̂min to the dual of the TV

estimator (8) therefore encodes the behavior of the Beurling-

LASSO estimator when both the noise level kwk2 and λ tend

to 0. In fact, the support stability of Beurling-LASSO can

be guaranteed for a measure µ? if some algebraic properties

on p̂min can be verified. These properties introduced in [6] as

non-degenerate source conditions are recalled in the following

definition.

Definition 4 (Non-Degenerate Source Condition [6]): A

measure µ? of the form (3) is said to verify the non-degenerate

source condition with respect to the measurement operator

Φg if and only if the trigonometric polynomial Q̂min(t) =
a (t)

∗
q̂min with coefficients q̂min = diag(ḡ)p̂min, where p̂min

is defined in (15):

1) verifies the dual certificate conditions in (13),

2) has non-vanishing second derivatives at the source loca-

tions, or equivalently

d2

dt2

∣∣∣Q̂min (ts)
∣∣∣ < 0, s = 1, 2. (16)

The first condition in the above definition essentially

requires that the minimal norm solution p̂min is a valid dual
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certificate for the TV estimator (8) with noiseless input x and,

therefore, guarantees its tightness. In view of (15), this ensures

that the low-noise limit of the Beurling-LASSO estimator (9)

can recover the ground truth measure µ?, which is a natural

requirement for support stability. The second condition adds

an additional constraint, which enforces the certificate to have

a strictly concave modulus around the location of the point

sources, which, roughly speaking, ensures no spurious spikes

will be introduced when adding a little bit of noise. Together,

these conditions are used to guarantee the support stability of

the Beurling-LASSO estimator in the low-noise regime in [6],

that is recalled in the following proposition.

Proposition 5 (Support Stability of Beurling-LASSO [6]):

Suppose that the ground truth measure µ? verifies the non-

degenerate source condition with respect to the sampling

operator Φg in Def. 4. Then there exists α > 0 such that the

Beurling-LASSO estimator µ̂λ(z) applied to the noisy mea-

surements z = Φg (µ?) + w with a regularization parameter

λ = α−1 kwk2 is support stable in the sense of Def. 1.

Proposition 5 suggests a constructive approach to prove the

support stability of the Beurling-LASSO estimator, namely,

by verifying the minimal norm solution p̂min associated with

a measure µ? satisfies the non-degenerate source condition.

However, the original work [6] does not provide explicit means

to verify this condition. Subsequent works [29], [30] studied

the special case of positive sources. Nevertheless, it remains

unclear when these conditions are verified for general sources

and PSFs. The main theorem, presented in the next section,

is built upon verifying the non-degenerate source condition

for a two-spike measure with arbitrary coefficients and PSFs

satisfying some mild regularity conditions.

III. MAIN RESULT

This section formally introduces the main contribution of

this paper, which is to provide a sufficient separation condition

between the two spikes of a measure of the form (3) to

guarantee the support stability. The provided bound depends

only on the PSF g, and more specifically on its auto-correlation

function and successive derivatives. The presented result is

achieved via verifying the non-degenerate source condition

presented in Def. 4, whose proof will be detailed in Section IV.

We denote by κ = K(g) ∈ L2 the auto-correlation of the

PSF g ∈ L2, defined as

K (g) (τ) =

∫

R

g(u)g(τ + u)du, ∀τ ∈ R. (17)

Denote two auxiliary functions uβ, vβ ∈ L2 defined for every

β > 0 as

uβ(τ) = κ

(
τ − β

2

)
+ κ

(
τ +

β

2

)
, (18a)

vβ(τ) = κ

(
τ − β

2

)
− κ

(
τ +

β

2

)
. (18b)

The above two functions describe the auto-correlations of a

signal produced by two point sources separated by a distance

β with same and opposite signs, respectively. When g is real,

the κ is even, and we point out that the functions uβ, vβ are

even and odd, respectively. We are now ready to state the main

theorem of this paper.

Theorem 6 (Stable Resolution Limit of Beurling-LASSO):

Suppose that the PSF g satisfies the following regularity

conditions (H1)-(H4).

(H1) g ∈ L2 is real and non-zero, i.e. ∃τ ∈ R, g(τ) 6= 0.

(H2) G = F (g) ∈ L2 is band-limited within B, i.e.

G(f) = 0, ∀ |f | > B/2.

(H3) G is bounded, i.e.

sup
f∈R

|G(f)| = sup
f∈[−B/2,B/2]

|G(f)| < ∞.

(H4) For κ = K(g) ∈ L2 and its first three derivatives, κ(`)

for ` = 0, 1, 2, 3, and for any odd integer N ∈ 2Z + 1,

we have that

S`(N) � sup
t∈[− 1

2
, 1

2 ]

∣∣∣∣∣∣∣

∑

k∈Z

k 
=0

κ(`)

(
N

B
(t + k)

)
∣∣∣∣∣∣∣
< ∞,

(19a)

lim
N→∞

S`(N) = 0. (19b)

Let γ?, depending only on the PSF g, be defined as γ? =
max{γ?

1 , γ?
2 , γ?

3} > 0 with

γ?
1 = B sup

β>0

{
sup
τ≥0

|s̃β (τ)| > s̃β

(
β

2

)}
, (20a)

γ?
2 = B sup

β>0

{
sup
τ≥0

|r̃β (τ)| > r̃β

(
β

2

)}
, (20b)

γ?
3 = B sup

β>0

{
−κ′′(0)

2
+ κ′′(β)

2 − κ′(β)κ′′′(β) ≥ 0
}

,

(20c)

where the intermediate functions s̃β (τ), r̃β (τ) are further

defined, for any β > 0 and τ ∈ R as

s̃β (τ) = (−κ′′ (0) − κ′′ (β)) vβ (τ) − κ′ (β) u′
β (τ) , (21a)

r̃β (τ) = (−κ′′ (0) + κ′′ (β))uβ (τ) + κ′ (β) v′β (τ) . (21b)

Then there exists N0 ∈ N such that, for every N ≥ N0 and

every µ? of the form (3) with

∆ := |t1 − t2|T >
γ?

N
, (22)

there exists α > 0 such that the Beurling-LASSO estimator

µ̂λ (Φg (µ?) + w) with the regularization parameter λ =
α−1 kwk2 is support stable.

Theorem 6 provides an explicit means to compute γ?, based

on the evaluation of (20), for a given PSF satisfying the

regularity conditions. The key quantities, γ?
k , k = 1, 2, 3,

are suprema of continuous functions where the complexity

of the computation essentially depends on the variations and

smoothness of κ. It is worth noticing that these quantities are

also independent of the bandwidth B through a re-scaling the

PSF via a transform g (τ) ← g (cτ) for some c > 0, and can

therefore be computed for a PSF with unit bandwidth B = 1.

Table I provides several examples of stable resolution limits

for PSFs frequently encountered in practice. The separation
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condition (22) can be equivalently interpreted in terms of the

delays τ1, τ2 of the unnormalized measure ν? as in (1) as

B |τ2 − τ1| > γ?, (23)

provided the spikes to be localized are in the interval

(−N/2B, N/2B). In addition, our results allow arbitrary

coefficients of the spikes, as long as they are sufficiently

separated above the resolution limit.

If we impose a strictly stronger assumption that the PSF

decays “reasonably fast”, i.e, there exist constants C` > 0,

` = 0, 1, 2, 3 and δ > 0 such that
∣∣∣g(`)(τ)

∣∣∣ ≤ C`

1 + |τ |1+δ
, ∀τ ∈ R, ` = 0, 1, 2, 3, (24)

then the assumptions (H3) and (H4) are automatically ver-

ified, which greatly eases the applicability of Theorem 6.

Although (24) can be verified for the majority of the PSFs

encountered in practical applications, it excludes some PSFs

of theoretical interest, such as the ideal low-pass function

g(τ) = sinc (πτ), and the truncated Gaussian kernel.

IV. PROOF OF THEOREM 6

This section aims to prove Theorem 6. Recall Proposition 5,

which provides a sufficient condition to establish the support

stability of the Beurling-LASSO estimator (9). The proof

essentially consists of deriving a sufficiently large constant

γ? above which a ground truth measure µ? verifies the non-

degenerate source condition (c.f. Definition 4) outlined in

Proposition 5 when N is large enough. The proof is divided

into four major steps.

1) Using invariance properties of the non-degenerate source

condition, we start by reducing the problem to recon-

structing a “canonical” measure µ? exhibiting useful

symmetry and simplifying the ensuing calculations.

2) Next, we introduce a so-called minimal vanishing deriv-

ative polynomial QV (t) = a(t)∗ diag (ḡ)pV , where pV

is the solution to a simple linear system depending on

the parameters of the canonical measure µ?. Leveraging

Lemma 8 [6], we show that it is enough to show QV (t)
satisfies (13) and (16).

3) We next study the limiting behavior of QV (t), where it

converges towards a band-limited function QV (Nt/B)
as N → ∞. Furthermore, we show that, if QV (τ)
verifies the conditions in (65), then QV (t) satisfies (13)

and (16), provided that N is large enough.

4) Finally, we derive a sufficient separation condition γ?

above which the limit function QV (τ) verifies the con-

ditions (65) whenever N∆ > γ?. We conclude on the

statement of Theorem 6 by applying Proposition 5.

A. Canonical Reduction of the Problem

We start by reducing the problem to a simpler form without

loss of generality by exploiting the following invariances of

the non-degenerate source condition.

Lemma 7 (Invariances of the Non-Degenerate Source Con-

dition): Suppose that a measure µ1 ∈ M(T) of the form (3)

verifies the non-degenerate source condition given in Def. 4

with respect to the sampling operator Φg. The follow state-

ments hold:

• Translation invariance: for any t0 ∈ T, the measure

µ2(t) = µ1(t − t0) for all t ∈ T verifies the non-

degenerate source condition for the same operator.

• Scaling invariance: for any c > 0 and θ ∈ [0, 2π),
the measure µ2(t) = ceiθµ1(t) for all t ∈ T verifies the

non-degenerate source condition for the same operator.

• Time reversal invariance: the measure µ2(t) = µ1(−t)
for all t ∈ T verifies the non-degenerate source condition

for the same operator.

A proof of Lemma 7 is provided in Appendix A. Leveraging

this result, we conclude that the non-degenerate source condi-

tions depends only on the separation ∆ � |t2 − t1|T between

the two point sources and the angle θ � arg(c2/c1) mod π
between their complex amplitude. For any ∆ ∈ (0, 1

2 ] and

θ ∈ [0, π], we define the canonical measure µ?(∆, θ) as

µ?(∆, θ) = e−i θ

2 δ

(
t +

∆

2

)
+ ei θ

2 δ

(
t − ∆

2

)
. (25)

We can now restrict our analysis to canonical measures of

the form µ? = µ?(∆, θ) without loosing any generality, and

exploit the Hermitian symmetry of µ? to simplify the ensuing

calculations.

B. The Minimal Vanishing Derivative Polynomial

The minimal norm solution p̂min (defined in (15)) asso-

ciated to the measure µ? = µ?(∆, θ) can be equivalently

interpreted as a projection onto the spectrahedra of bounded

trigonometric polynomials. Such projection is difficult to

derive analytically, limiting the ability to establish the non-

degenerate source condition (c.f. Def. 4) through a direct

analysis of p̂min. To bypass this problem, it is proposed in [6]

to study instead the behaviors of a surrogate vector pV , defined

in the present context as the unique solution to the following

quadratic problem:

pV =arg min
p∈CN

kpk2

subject to a

(
∆

2

)∗

diag(ḡ)p = eiθ/2,

a

(
−∆

2

)∗

diag(ḡ)p = e−iθ/2,

ȧ

(
∆

2

)∗

diag(ḡ)p = 0,

ȧ

(
−∆

2

)∗

diag(ḡ)p = 0. (26)

A key property of pV , recalled in the following lemma,

is its equivalence with the minimal norm solution p̂min under

additional assumptions.

Lemma 8 (Equivalence of the Minimal Vanishing Deriv-

ative Solution [6]): If the solution pV of (26) satisfies∥∥Φ∗
g (pV )

∥∥
∞

≤ 1, then pV = p̂min is equal to the minimum

norm solution for the measure µ?.

Let qV = diag (ḡ)pV ∈ CN , and the associated polyno-

mial QV (t) = a(t)∗qV be the minimal vanishing derivative
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polynomial. Note that by construction, QV (t) verifies the

interpolation constraints (13a) and (13b). Additionally, if qV

also verifies the extremal constraint (13c),
∥∥Φ∗

g (pV )
∥∥
∞

=
supt∈T |QV (t)| ≤ 1, then pV = p̂min by Lemma 8. Therefore,

it is enough to show that QV (t) verifies (13c) and (16) to

conclude on the support stability of µ? for the sampling

operator Φg . To ensure that those conditions can be met,

we start by studying the asymptotic of QV (t) when N → ∞.

C. Asymptotic Analysis of QV (t)

We start the asymptotic analysis of the trigonometric poly-

nomial QV (t) = a(t)∗qV by defining the discrete auto-

correlation function K(t) of the PSF g(τ) as

K(t) �

n∑

k=−n

|gk|2 ei2πkt =
n∑

k=−n

∣∣∣∣G
(

Bk

N

)∣∣∣∣
2

ei2πkt, (27)

for any t ∈ R, which is a real and even trigonometric polyno-

mial. The following lemma, whose proof is delayed to Appen-

dix B, gives an explicit expression of the polynomial QV (t)
in terms of the parameters ∆, θ and the polynomial K(t).

Lemma 9: Suppose that g has at least four non-zero coef-

ficients, then for all ∆ ∈ (0, 1
2 ] and all θ ∈ [0, π], QV can be

decomposed as

QV (t) = cos

(
θ

2

)
R∆(t) + i sin

(
θ

2

)
S∆(t), ∀t ∈ T,

(28)

where R∆ and S∆ are respectively the even and odd real

trigonometric polynomials, independent of θ, given by

CR(∆)R∆(t) =

(−K ′′(0) + K ′′(∆))

(
K(t − ∆

2
) + K(t +

∆

2
)

)

+ K ′(∆)

(
K ′(t − ∆

2
) − K ′(t +

∆

2
)

)
, (29a)

CS(∆)S∆(t) =

(−K ′′(0) − K ′′(∆))

(
K(t − ∆

2
) − K(t +

∆

2
)

)

− K ′(∆)

(
K ′(t − ∆

2
) + K ′(t +

∆

2
)

)
, (29b)

where the quantities CR(∆) > 0 and CS(∆) > 0 are positive

and for all ∆ ∈ (0, 1
2 ] and given as

CR(∆) = (−K ′′(0) + K ′′(∆)) (K(0) + K(∆)) − K ′(∆)2

(30a)

CS(∆) = (−K ′′(0) − K ′′(∆)) (K(0) − K(∆)) − K ′(∆)2.

(30b)

Next, we demonstrate in Lemma 10 the uniform conver-

gence of K towards the auto-correlation function κ.

Lemma 10 (Uniform Convergence of K): Under the hypoth-

esis of Theorem 6, the equality

lim
N→∞

sup
t∈T

∣∣∣∣∣

(
B

N

)`+1

K(`) (t) − κ(`)

(
Nt

B

)∣∣∣∣∣ = 0, (31)

holds for ` = 0, 1, 2, 3.

The proof of the above is presented in Appendix C. By

(H1) and (H2), the Fourier transform G of the PSF g is non-

zero on a non-empty open interval I ⊂ R. By (H2), G is

band-limited within B, and one must have I ⊂ (−B/2, B/2).

It comes that if N ≥
⌈

4
|I|

⌉
, at least four elements of the form

{kB/N}|k|≤n will fall into I , and the vector g has at least

four non-zero coefficients. Lemma 10 can be applied to the

expression of QV (28) to get the existence of a function QV

verifying the convergence

lim
N→∞

sup
t∈T

∣∣∣∣∣

(
B

N

)`

Q
(`)
V (t) −Q(`)

V

(
Nt

B

)∣∣∣∣∣ = 0. (32)

for ` = 0, 1, 2. Moreover, defining β = N∆/B, the limit

function QV writes as

QV (τ) = cos

(
θ

2

)
rβ(τ) + i sin

(
θ

2

)
sβ(τ), ∀τ ∈ R.

(33)

The intermediate real functions rβ , sβ in the above expres-

sion are even and respectively, given by the limits of

RBβ/N (Bτ/N) and SBβ/N (Bτ/N), so that

Cr(β)rβ(τ) = (−κ′′(0) + κ′′(β)) uβ(τ) + κ′(β)v′β(τ),

(34a)

Cs(β)sβ(τ) = (−κ′′(0) − κ′′(β)) vβ(τ) − κ′(β)u′
β(τ),

(34b)

where the function uβ, vβ are defined in (18), and

Cr(β), Cs(β) are positive quantities given by

Cr(β) = (−κ′′(0) + κ′′(β)) (κ(0) + κ(β)) − κ′(β)2 > 0,

(35a)

Cs(β) = (−κ′′(0) − κ′′(β)) (κ(0) − κ(β)) − κ′(β)2 > 0.

(35b)

We highlight that the compositions (28) and (33) indicate

that both QV (t) and QV (τ) are Hermitian: QV (t) = QV (−t)
for all t ∈ T and QV (τ) = QV (−τ) for all τ ∈ R. Suppose

that the limit function QV verifies the conditions

d2 |QV |
dτ2

(
β

2

)
< 0, (36a)

|QV (τ)| < 1, ∀τ ∈ R
+\

{
β

2

}
. (36b)

It follows from the uniform convergence (32) of QV towards

Q (Nt/B), and the Hermitian symmetry of QV and QV that

there must exist an integer Ñ0 so that for all N ≥ Ñ0, QV

verifies (13c) and (16).

Therefore, using the results of Section IV-B, if QV ver-

ifies (65), then µ? (∆, θ) verifies the non-degenerate source

condition with respect to the measurement operator Φg when-

ever N ≥ N0 � max
{⌈

4
|I|

⌉
, Ñ0

}
.
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D. Non-Degeneracy of µ?(∆, θ)

It remains to derive sufficient conditions under which the

limit function QV satisfies (65) to conclude on the desired

result. First of all, it comes immediately from (28) that

|QV (τ)|2 = cos2
(

θ

2

)
|rβ(τ)|2 + sin2

(
θ

2

)
|sβ(τ)|2, (37)

holds for any τ ∈ R.

We start by discussing the condition (36b). From (37), it is

clear that (36b) is verified for every θ in [0, π] if and only if

|rβ(τ)| < 1 and |sβ(τ)| < 1 for all τ in R+\ {β/2}. Those

last inequalities can be equivalently interpreted in terms of the

functions r̃β(τ), s̃β(τ) introduced in (21) from the identity

r̃β(τ) = Cr(β)rβ(τ) and s̃β(τ) = Cs(τ)sβ(τ) for all τ ∈ R,

as we have that

|rβ(τ)| < 1 ⇐⇒ |r̃β(τ)|
Cr(β)

< 1,

|sβ(τ)| < 1 ⇐⇒ |s̃β(τ)|
Cs(β)

< 1.

Hence, the condition (36b) is equivalent to

Cr(β) − |r̃β(τ)| > 0, ∀τ ∈ R
+\

{
β

2

}
(38a)

Cs(β) − |s̃β(τ)| > 0, ∀τ ∈ R
+\

{
β

2

}
. (38b)

From the definitions (21) and (35), one has Cr(β) = r̃β(β
2 )

and Cs(β) = s̃β(β
2 ). Leveraging the hypothesis β =

N∆/B > max {γ?
1 , γ?

2} /B, the functions Cr(β) − |r̃β(τ)|
and Cs(β) − |s̃β(τ)| are non-negative and can reach 0 only

for τ = β/2. Hence (38) and subsequently (36b) are both

verified under the hypothesis of Theorem 6.

It remains to show that QV satisfies (36a). We recall that

the second derivative of the modulus of a function q = qR +
iqI , where qR, qI are its real and imaginary part, respectively,

reads (see e.g. [36])

d2 |q|
dτ2

(τ) = − (qR (τ) q′R (τ) + qI (τ) q′I (τ))
2

|q (τ)|3

+
|q′ (τ)|2 + qR (τ) q′′R (τ) + qI (τ) q′′I (τ)

|q (τ)| . (39)

Evaluating the above at τ = β
2 for the function QV leads to

d2 |QV |
dτ2

(β/2)

= cos (θ/2) r′′β (β/2) + sin (θ/2) s′′β (β/2)

=
(
−κ′′(0)

2
+ κ′′(β)

2 − κ′(β)κ′′′(β)
)

(
Cr(β)

−1
cos (θ/2) + Cs(β)

−1
sin (θ/2)

)
, (40)

which is strictly negative for every θ ∈ [0, π] by the hypothesis

β = N∆/B > γ?
3/B.

As a result, under the hypothesis of Theorem 6, if ∆ =
Bβ/N ≥ γ?/N with γ? = max {γ?

1 , γ?
2 , γ?

3}, there exists

N0 ∈ N such that for every N ≥ N0 the canonical measure

µ?(∆, θ) will verify the non-degenerate source condition as

in Def. 4 for the sampling operator Φg for every θ ∈ [0, π].

We conclude on the desired statement by an application of

Theorem 5.

V. EXTENSION TO MULTIPLE POINT SOURCES

The stable resolution limit presented in Section III only

applies to the simple case when only two point sources are

present. In this section, we show that the same resolution limit

continues to govern the support stability in a multi-source

setting including two close-located sources and other well-

separated sources.

We consider an extension of the normalized measure µ?

in (3) composing S point sources at locations T = {ts}S
s=1 ⊂

T, given as

µ?(t) =

S∑

s=1

csδ(t − ts), (41)

where {cs ∈ C}S
s=1 are non-zero complex amplitudes. Simi-

larly, we can extend the notion of support stability, defined

in Def. 1 to include more spikes. Without loss of generality,

we assume that t1 and t2 are closely located, while the

other sources are well-separated from each other. Theorem 11

establishes that the support stability of the Beurling-LASSO

estimator can be ensured under the same separation condition

between the two close sources as that of Theorem 6, depending

only on the characteristics of the PSF.

Theorem 11 (Extension to Multiple Point Sources): Suppose

that the PSF g satisfies the regularity conditions (H1)-(H4) of

Theorem 6. Let S ≥ 3 be a constant that does not grow with

N , and the support set T = {ts}S
s=1 of µ? verifies

∆ := |t2 − t1|T > γ?/N, (42a)

|ts′ − ts|T = ω(1/N), for s 6= s′ and {s, s′} 6= {1, 2},
(42b)

where γ? is the constant defined in the statement of Theorem 6.

Then there exists N0 ∈ N such that, for every N ≥ N0

and every measure µ? of the form (41) satisfying (42),

there exists α > 0 such that the Beurling-LASSO estimator

µ̂λ (Φg (µ?) + w) with the regularization parameter λ =
α−1 kwk2 is support stable.

The proof of this theorem is given in Appendix D. Similar

to the proof of Theorem 6 outlined in Section IV, it relies on

the characterization of the non-degenerate source condition

presented in [6]. More precisely, we show that, under the

assumptions of Theorem 11, the minimal vanishing derivative

polynomial associated to the measure µ? with S sources as

in (41) has the same asymptotic behavior as the sum of

the polynomial associated with the measure with two close

spikes, whose properties were studied in Section IV, and the

polynomials associated with each well-separated single spike.

We compare in Fig. 4 the theoretical threshold γ? provided

by Theorem 11 with the empirical success rate of the Beurling-

LASSO estimator to output a measure µ̂ with S spikes given

a ground truth µ? of the form (41), for different values of

the separation parameter ∆ and for different PSF g(τ). In the

experiments, we set |ts′ − ts|T = 5/N as a separation for

the well-separated spikes, where s 6= s′ and {s, s′} 6= {1, 2}.

The amplitude of the colliding spikes c1, c2 are chosen with
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Fig. 4. Empirical success rate for the Beurling-LASSO estimator to return a measure with S point sources, for three different point spread functions, under
additive white Gaussian noise, as a function of the separation parameter N∆. The support stability threshold γ� predicted by Theorem 11 is shown in a
black dashed line. Here, we set N = 101, SNR = 60dB and |ts′ − ts|T = 5/N as a separation for the well separated spikes s �= s′ and {s, s′} �= {1, 2}.
The results are averaged over 200 trials.

opposite signs c1 = 1, c2 = −1, while the amplitudes of the

well-separated ones {cs}S
s=3 are drawn uniformly at random

over the complex unit circle.

VI. CONCLUSIONS

This paper studies the support stability of the Beurling-

LASSO estimator for estimating two closely located point

sources, possibly in the presence of a finite number of well-

separated point sources, and characterizes the resolution limit

as a function of the PSF, above which the Beurling-LASSO

estimator is support stable. Our result highlights and quantifies

the role of PSF in noisy super resolution, which is not evident

in the study of the noiseless setting. Our analysis is based on

verifying the non-degenerate source conditions put forth in [6].

We believe it is possible to develop similar stable resolution

limits in higher dimensions [2], [37], by carefully generalizing

the arguments in our paper, which is left for the future work.

Finally, it will be interesting to study how the availability of

multiple snapshots impact the stable resolution limit [38].

APPENDIX A

PROOF OF LEMMA 7

We restrict the proof to showing the translation invariance

of the non-degenerate source condition. The scaling and time-

reversal invariances can be demonstrated by following an

analogous reasoning.

Consider a measure µ1(t) = c1δ(t − t1,1) + c2δ(t − t1,2)
for all t ∈ T, and let

µ2(t) = µ1(t − t0) = c1δ(t − t2,1) + c2δ(t − t2,2),

for some t0 ∈ T with t2,1 = t1,1 − t0 and t2,2 = t1,2 − t0.

Moreover, let xj = Φg(µj) for j = 1, 2, and consider an

element p1 within the feasible set of (14). For any t0 ∈ T,

we let p2 = a(−t0)� p1. Since p1 ∈ D0(x1) by hypothesis,

we have that

kΦg
∗ (p2)k∞ = sup

t∈T

|a(t)∗ diag(ḡ)p2|

= sup
t∈T

|a(t)∗ diag(ḡ) (a(−t0) � p1)|

= sup
t∈T

|a(t + t0)
∗ diag(ḡ)p1|

= sup
t∈T

|a(t)∗ diag(ḡ)p1|

=
∥∥Φ∗

g (p1)
∥∥
∞

≤ 1. (43)

It comes that p2 also lies in the feasible set of (14). Moreover,

from the definition (5) of the sampling operator Φg, we have

that

x2 = Φg(µ2) = Φg (µ1(· − t0)) = a(−t0) � x1.

Evaluating the cost function of (14) for p2 yields

hx2, p2iR = ha(−t0) � x1, a(−t0) � p1iR = hx1, p1iR .

This implies that p2 ∈ D0(x2) is a solution of (14) with an

input x2 if and only if p2 ∈ D0(x1) is a solution of (14)

with an input x1. Further noticing that kp2k2 = kp1k2,

we conclude that the minimal norm elements p̂1,min, p̂2,min

of the sets D0(x1), D0(x2), respectively, are linked by the

relation

p̂2,min = a(−t0) � p̂1,min.

Now, suppose that µ1 verifies the non-degenerate condition

with respect to Φg, and define the trigonometric polynomials

Q̂j,min(t) = a(t)∗ diag(ḡ)p̂j,min, for j = 1, 2. By Def. 4,

we have that for any t ∈ T

Q̂2,min(t − t0) = a(t − t0)
∗ diag(ḡ)p̂2,min

= a(t − t0)
∗ diag(ḡ) (a(−t0) � p̂1,min)

= a(t)∗ diag(ḡ)p̂1,min = Q̂1,min(t). (44)

Therefore Q̂2,min(t2,s) = Q̂2,min(t1,s) = sgn(cs) for s = 1, 2,

and |Q̂2,min(t)| < 1 for all t ∈ T\ {t2,1, t2,2}. Consequently

Q̂2,min(t) verifies conditions (13). A similar reasoning also

yields

d2

dt2

∣∣∣Q̂2,min (t2,s)
∣∣∣ =

d2

dt2

∣∣∣Q̂1,min (t1,s)
∣∣∣ < 0, s = 1, 2,

and Q̂2,min(t) verifies (16). We conclude that µ2 verifies the

non-degenerate source condition of the sampling operator Φg,

completing the proof of the translation invariance.
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APPENDIX B

PROOF OF LEMMA 9

We derive the expression of the polynomial QV (t) =
a(t)∗ diag(ḡ)pV . By the orthogonal projection theorem,

the solution pV of the quadratic program (26) belongs to the

subspace

pV ∈ span

{
diag(g)a

(
∆

2

)
, diag(g)a

(
−∆

2

)
,

diag(g)ȧ

(
∆

2

)
, diag(g)ȧ

(
−∆

2

)}
.

Recalling that qV = diag(ḡ)pV , it yields

qV ∈ span

{
diag(|g|2)a

(
∆

2

)
, diag(|g|2)a

(
−∆

2

)
,

diag(|g|2)ȧ
(

∆

2

)
, diag(|g|2)ȧ

(
−∆

2

)}
,

where, with a slight abuse of notation, the operator | · |2 is

interpreted element-wise. Remarkably, denoting by K(t) =∑n
k=−n |gk|2 ei2πkt, we have that, for every t, t′ ∈ T.

a (t)
∗
diag(|g|2)a (t′) =

n∑

k=−n

|gk|2 e2πik(t−t′) = K(t − t′)

a (t)∗ diag(|g|2)ȧ (t′) = − 2πi
n∑

k=−n

k |gk|2 e2πik(t−t′)

= − K ′(t − t′).

Therefore the polynomial QV (t) = a(t)∗qV lies in the span of

the translations of the auto-correlation K(t) and its derivative

K ′(t) at the spike locations {−∆/2, ∆/2}. Introducing a

change of basis for the purpose of convenience, the polynomial

QV (t) writes for all t ∈ T as

QV (t) = αR

(
K(t − ∆

2
) + K(t +

∆

2
)

)

− βR

(
K ′(t − ∆

2
) − K ′(t +

∆

2
)

)

+ iαS

(
K(t − ∆

2
) − K(t +

∆

2
)

)

− iβS

(
K ′(t − ∆

2
) + K ′(t +

∆

2
)

)
, (45)

for some coefficients {αR, βR, αS , βS} ⊂ C, which are fully

determined by the four interpolation constraints of (26), that

can be reinterpreted as

1

2

(
QV (

∆

2
) + QV (−∆

2
)

)
= cos

(
θ

2

)
, (46a)

1

2

(
Q′

V (
∆

2
) − Q′

V (−∆

2
)

)
= 0, (46b)

1

2i

(
QV (

∆

2
) − QV (−∆

2
)

)
= sin

(
θ

2

)
, (46c)

1

2i

(
Q′

V (
∆

2
) + Q′

V (−∆

2
)

)
= 0. (46d)

The linear system (46) can be reformulated in terms of the

4 × 4 block diagonal system

[
MR 0

0 MS

]
⎡
⎢⎢⎣

αR

βR

αS

βS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos
(

θ
2

)

0
sin

(
θ
2

)

0

⎤
⎥⎥⎦ , (47)

where each of the diagonal blocks can be decomposed as

MR =

[
K(0) + K(∆) K ′(∆)

K ′(∆) −K ′′(0) + K ′′(∆)

]

= A∗
R diag(g)∗ diag(g)AR, (48a)

MS =

[
K(0) − K(∆) −K ′(∆)

−K ′(∆) −K ′′(0) − K ′′(∆)

]

= A∗
S diag(g)∗ diag(g)AS . (48b)

Here, the intermediate matrices AR, AS ∈ CN×2 are given

by

AR = 2−1/2
[
a(∆

2 ) + a(−∆
2 ) ȧ(∆

2 ) − ȧ(−∆
2 )

]
,

AS = 2−1/2
[
a(∆

2 ) − a(−∆
2 ) ȧ(∆

2 ) + ȧ(−∆
2 )

]
.

Using the invertibility properties of Vandermonde matrices,

it can be verified that the matrix [AR, AS ] and all its sub-

matrices of size 4 × 4 are of the maximal rank whenever

0 < ∆ ≤ 1
2 . Consequently, if g has four or more non-zero

entries, the matrices diag(g)AR and diag(g)AS are also of

the maximal rank whenever 0 < ∆ ≤ 1
2 . We conclude, using

the decomposition on the right-hand-side of (48), that the

matrices MR, MS are positive definite Hermitian matrices,

and that the linear system (47) has a unique solution. Solving

this system leads to the desired expression of QV , where we

let CR = det(MR) > 0 and CS = det(MS) > 0.

APPENDIX C

PROOF OF LEMMA 10

Let by κ = K(g) ∈ L2 the autocorrelation of g. We start

by recalling that, by the Wiener-Khinchin theorem, F(κ) =
|G(·)|2 ∈ L2. It comes by (H2) and (H3) that the function f 7→
(i2πf)`F(κ)(f) is also band-limited within B and bounded

for any ` ∈ N. Therefore it is absolutely integrable over R for

any ` ∈ N. We conclude that κ possesses derivatives of all

orders and that

F(κ(`)) : f 7→ (i2πf)`F(κ)(f), ∀` ∈ N.

Fix an odd integer N = 2n + 1. Using the definition (27)

of K , we have for ` = 0, 1, 2, 3 that

(
B

N

)`+1

K(`)(t) =
B

N

n∑

k=−n

(
i2π

Bk

N

)` ∣∣∣∣G
(

Bk

N

)∣∣∣∣
2

ei2πkt

=
B

N

∑

k∈Z

(
i2π

Bk

N

)` ∣∣∣∣G
(

Bk

N

)∣∣∣∣
2

ei2πkt

=
∑

k∈Z

F
(

κ(`)

(
N

B
( t + · )

))
(k) , (49)

where we used the fact that G(Bk
N ) = 0 for all |k| ≥ n + 1

by the hypothesis (H2) in the second equality, and identified
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the expression with the Fourier transform of the derivatives

of κ in the last equality. Hence, the series in the last equality

converges absolutely and uniformly in t as it has finitely many

non-zero terms. Moreover the series

∑

k∈Z

κ(`)

(
N

B
(t + k)

)
= κ(`)

(
N

B
t

)
+

∑

k∈Z

k 
=0

κ(`)

(
N

B
(t + k)

)

(50)

converges uniformly for ` = 0, 1, 2, 3 as κ(`) is bounded

and by the hypothesis (H4). Applying the Poisson summation

formula between the right-hand-side of (49) and the left-hand-

side of (50) yields

(
B

N

)`+1

K(`)(t) =
∑

k∈Z

F
(

κ(`)

(
N

B
(t + · )

))
(k)

=
∑

k∈Z

κ(`)

(
N

B
(t + k)

)
. (51)

Substracting the term of index 0 in (51), taking the absolute

value and the supremum over t on both sides of the equality

yields

sup
t∈T

∣∣∣∣∣

(
B

N

)`+1

K(`) (t) − κ(`)

(
Nt

B

)∣∣∣∣∣

= sup
t∈T

∣∣∣∣∣∣∣

∑

k∈Z

k 
=0

κ(`)

(
N

B
(t + k)

)
∣∣∣∣∣∣∣
.

We conclude on the desired statement by setting the limit N →
∞ and using Assumption (H4).

APPENDIX D

PROOF OF THEOREM 11

Similarly to the proof given in Section IV, we leverage the

invariance of the non-degenerate source condition (proved in

Lemma 7) defined in [6] and may restrict, without loss of

generality, the analysis to measures µ? with support T =
{t1, . . . , tS} of the form

µ? = e−i θ

2 δ (t − ∆/2) + ei θ

2 δ (t + ∆/2) +
∑

s≥3

csδ(t − ts),

(52)

where we impose t1 = ∆/2 and t2 = −∆/2 for some ∆ > 0,

and c1 = e−i θ

2 and c2 = ei θ

2 for some θ ∈ [0, π]. The minimal

norm vanishing derivative polynomial QV associated to the

measure µ? in (52) is given by QV (t) = a(t)∗ diag(g)pV ,

where pV ∈ CN is defined as the solution of the quadratic

program

pV =arg min
p∈CN

kpk2

subject to a (ts)
∗ diag(ḡ)p = sgn(cs),

ȧ (ts)
∗
diag(ḡ)p = 0, s = 1, . . . , S. (53)

Invoking from [6] a generalization of Lemma 8 to the case of

measures with an arbitrary number S of point sources, it is

sufficient to show that QV (t) verifies the conditions

|QV (t)| < 1, ∀t /∈ T , (54a)

d2

dt2
|QV (ts)| < 0, s = 1, . . . , S, (54b)

for a large enough ∆ for any N ≥ N0 to conclude on the

support stability of the Beurling-LASSO estimator for any

measure µ? satisfying (42).

To proceed, we study, as in the proof of Theorem 6,

the asymptotic behavior of the polynomial QV (t) when N →
∞. Define for any s = 1, . . . , S, the subspace Es ⊂ CN as

Es = span {diag(g)a(ts), diag(g)ȧ(ts)} , (55)

and denote by F = E1 + E2 the sum of the two subspaces

associated with the two close point sources t1 and t2. It is

clear, from an orthogonality projection argument, that pV ∈
F +

∑S
s=3 Es. Let pF ∈ F be the solution of the quadratic

program (26) associated with the two close point sources t1
and t2. Similarly, for any s ≥ 3 denote by pEs

∈ Es the

unique solution of the quadratic program

pES
=arg min

p∈CN

kpk2

subject to a (ts)
∗
diag(ḡ)p = sgn(cs),

ȧ (ts)
∗
diag(ḡ)p = 0, (56)

which is equal to

pEs
=

sgn(cs)

K(0)
diag(g)a(ts) (57)

for all s = 3, . . . , S. We wish to show that pV converges

to pF +
∑S

s=3 pEs
in the limit of N to get the asymptotic

properties of QV (t). To that end, we define the matrix AEs
∈

CN×2 for s = 1, . . . , S as

AEs
=

[
diag(g)a(ts)/

√
K(0), diag(g)ȧ(ts)/

√
|K ′′(0)|

]
.

It is immediate that the columns of AEs
form an orthonormal

basis of Es. Let AF ∈ CN×4 and A ∈ CN×2S be the

concatenations

AF = [AE1
, AE2

],

A = [AF , AE3
, . . . ,AEs

] = [AE1
, AE2

, AE3
, . . . ,AEs

],

and w = [sgn(c1), 0, sgn(c2), 0, . . . sgn(cs), 0]� ∈ C2S .

By the orthogonal projection theorem, we have that

pF = K(0)−
1

2 AF (A∗
F AF )

−1
[sgn(c1), 0, sgn(c2), 0]�,

(58a)

pEs
=K(0)−

1

2 AEs

(
A∗

Es
AEs

)−1
[sgn(cs), 0]�, s=3, . . . S,

(58b)

pV = K(0)−
1

2 A (A∗A)
−1

w. (58c)

Moreover, denote by G ∈ C2S×2S the matrix

G =

⎡
⎢⎢⎢⎣

A∗
F AF 0 · · · 0

0 A∗
E3

AE3
· · · 0

...
...

. . .
...

0 0 · · · A∗
Es

AEs

⎤
⎥⎥⎥⎦ ,
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then (58) implies that

pV − pF −
S∑

s=3

pEs
= K(0)−1/2A

(
(A∗A)

−1 − G−1
)

w.

(59)

Next, we show that the difference (A∗A)
−1−G−1 is small

in norm when N → ∞. To proceed, we start by noticing that

A∗A − G =

⎡
⎢⎢⎢⎣

0 A∗
F AE3

· · · A∗
F AEs

A∗
E3

AF 0 · · · A∗
E3

AEs

...
...

. . .
...

A∗
Es

AF A∗
Es

AE3
· · · 0

⎤
⎥⎥⎥⎦ .

Denote by kMkmax = maxi,j |mi,j | the max-norm of M ,

which is the maximum of the absolute values of the entries

mi,j of M . A direct calculation establishes that each off-

diagonal block of A∗A − G verifies for any s, s′ ≥ 3
with s 6= s′

kA∗
F AEs

kmax = max

{∣∣∣∣
K(ts ± ∆/2)

K(0)

∣∣∣∣ ,
|K ′(ts ± ∆/2)|√
|K(0)K ′′(0)|

,

∣∣∣∣
K ′′(ts ± ∆/2)

K ′′(0)

∣∣∣∣

}
, (60a)

∥∥∥A∗
E

s′
AEs

∥∥∥
max

= max

{∣∣∣∣
K(ts − ts′)

K(0)

∣∣∣∣ ,
|K ′(ts − ts′)|√
|K(0)K ′′(0)|

,

∣∣∣∣
K ′′(ts − ts′)

K ′′(0)

∣∣∣∣

}
. (60b)

Taking the limit N → ∞ in (60a) yields

lim
N→∞

kA∗
F AEs

kmax

= lim
N→∞

max

{∣∣∣∣
κ(Nts/B ± γ/2)

κ(0)

∣∣∣∣ ,

|κ′(Nts/B ± γ/2)|√
|κ(0)κ′′(0)|

,

∣∣∣∣
κ′′(Nts/B ± γ/2)

κ′′(0)

∣∣∣∣

}

= max

{
lim

|τ |→∞

∣∣∣∣
κ(τ)

κ(0)

∣∣∣∣ ,

lim
|τ |→∞

∣∣∣∣∣
κ′(τ)√

|κ(0)κ′′(0)|

∣∣∣∣∣ , lim
|τ |→∞

∣∣∣∣
κ′′(τ)

κ′′(0)

∣∣∣∣

}

= 0,

where the first equality comes from Lemma 10, the sec-

ond equality from the assumption (42) which implies

|Nts/B ± γ/2| → ∞, s = 3, . . . , S, when N → ∞,

and the last equality holds under assumptions (H2) and

(H3) by the application of the Riemann-Lebesgue lemma

on the integrable functions F
{
κ(`)

}
(f) = (i2πf)` |G(f)|2,

` = 0, 1, 2. An analogous reasoning on (60b) leads to

limN→∞

∥∥∥A∗
Es′

AEs

∥∥∥
max

= 0, for all s, s′ ≥ 3 and s 6= s′.

We conclude that

lim
N→∞

kA∗A − Gkmax = 0. (61)

Next, by Lemma 10, the matrix G admits an invertible

limit, and we denote G = limN→∞ G. By continuity of the

inversion M 7→ M−1 at G, we have limN→∞ G−1 = G
−1

.

Moreover, from (61) we have

lim
N→∞

∥∥A∗A − G
∥∥

max

≤ lim
N→∞

(
kA∗A − Gkmax +

∥∥G − G
∥∥

max

)
= 0,

implying by continuity that limN→∞ (A∗A)−1 = G
−1

. Let

by k·k2 and k·kF the spectral norm and the Frobenius norm

of a matrix, respectively. We have by the previous arguments

that

lim
N→∞

∥∥∥(A∗A)
−1 − G−1

∥∥∥
2

≤ lim
N→∞

(∥∥∥(A∗A)
−1 − G

−1
∥∥∥

2
+

∥∥∥G
−1 − G−1

∥∥∥
2

)

= 0,

since S is finite and does not grow with N . This, together

with (59), yields
∥∥∥∥∥pV − pF −

S∑

s=3

pEs

∥∥∥∥∥
2

= K(0)−1/2
∥∥∥A

(
(A∗A)−1 − G−1

)
w

∥∥∥
2

≤ K(0)−1/2 kAkF

∥∥∥(A∗A)
−1 − G−1

∥∥∥
2
kwk2

=
√

2SK(0)−1/2
∥∥∥(A∗A)−1 − G−1

∥∥∥
2

≤
√

2S

(
Nκ(0)

B
+ o(N)

)−1/2 ∥∥∥(A∗A)
−1 − G−1

∥∥∥
2

≤ o(N−1/2), N → ∞, (62)

where the third line follows from kwk2 =
√

S and kAkF =√
2S, and the fourth line follows from Lemma 10.

Denote by QF (t) and QEs
(t) for any s ≥ 3 the trigono-

metric polynomials

QF (t) = a(t)∗ diag(g)pF ,

QEs
(t) = a(t)∗ diag(g)pEs

=
sgn(cs)

K(0)
K(t − ts),

for any t ∈ T and s = 3, . . . , S. We are now ready to derive

the asymptotic behavior of QV (t). First of all, for ` = 0, 1, 2,

we have that

sup
t∈T

∣∣∣∣∣Q
(`)
V (t) − Q

(`)
F (t) −

S∑

s=3

Q
(`)
Es

(t)

∣∣∣∣∣

= sup
t∈T

∣∣∣∣∣a
(`)(t)∗ diag(g)

(
pV − pF −

S∑

s=3

pEs

)∣∣∣∣∣

≤ sup
t∈T

∥∥∥diag(g)a(`)(t)∗
∥∥∥

2

∥∥∥∥∥pV − pF −
S∑

s=3

pEs

∥∥∥∥∥
2

≤ kgk∞ sup
t∈T

∥∥∥a(`)(t)
∥∥∥

2

∥∥∥∥∥pV − pF −
S∑

s=3

pEs

∥∥∥∥∥
2

= kgk∞ (2π)`

√√√√
n∑

k=−n

k2`

∥∥∥∥∥pV − pF −
S∑

s=3

pEs

∥∥∥∥∥
2
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≤ kgk∞ O
(
N `+ 1

2

)
o
(
N− 1

2

)

≤ o
(
N `

)
, N → ∞, (63)

where we used in the last inequality assumption (H3) to bound

kgk∞ = max

{∣∣∣∣G
(

kB

N

)∣∣∣∣
}n

k=−n

≤ sup
f∈[−B

2
, B

2
]

|G(f)| < ∞.

Next, we denote by QV (τ) the function

QV (τ) = QF (τ) +
S∑

s=3

QEs
(τ), ∀τ ∈ R,

where QF (τ) is the function given in (33) and QEs
(τ) =

sgn(ck)
κ(0) κ(τ − Nts

B ) for any s ≥ 3. It follows that

sup
t∈T

∣∣∣∣∣

(
B

N

)`

Q
(`)
V (t) −Q(`)

V

(
Nt

B

)∣∣∣∣∣

= sup
t∈T

∣∣∣∣∣

(
B

N

)`

Q
(`)
V (t) −Q(`)

F

(
Nt

B

)
−

S∑

s=3

Q(`)
Es

(
Nt

B

)∣∣∣∣∣

≤
(

B

N

)`

sup
t∈T

∣∣∣∣∣Q
(`)
V (t) − Q

(`)
F (t) −

S∑

s=3

Q
(`)
Es

(t)

∣∣∣∣∣

+ sup
t∈T

∣∣∣∣∣

(
B

N

)`

Q
(`)
F (t) −Q(`)

F

(
Nt

B

)∣∣∣∣∣

+

S∑

s=3

sup
t∈T

∣∣∣∣∣

(
B

N

)`

Q
(`)
Es

(t) −Q(`)
Es

(
Nt

B

)∣∣∣∣∣
≤ o(1), N → ∞, (64)

where the first inequality follows from the triangle inequality,

and the second inequality follows from the fact that each term

in the line above is controlled by (63) and (32) and Lemma 10,

respectively.

With (64) in place, similarly to the proof presented in

Section IV, we argue that the non-degenerate source condition

is verified for any N ≥ N0 for N0 sufficiently large if the limit

function QV (τ) meets the conditions

lim
N→∞

d2 |QV |
dτ2

(
Nts
B

)
< 0, s = 1, . . . , S, (65a)

lim
N→∞

∣∣∣∣QV

(
Nt

B

)∣∣∣∣ < 1, ∀t /∈ {ts} . (65b)

In order to verify (65), we start by noticing that for any τ ∈ R

and ` = 0, 1, 2,

lim
N→∞

∣∣∣Q(`)
V (τ)

∣∣∣ ≤ lim
N→∞

∣∣∣Q(`)
F (τ)

∣∣∣ +

S∑

s=3

lim
N→∞

∣∣∣Q(`)
Es

(τ)
∣∣∣ .

(66)

The condition (65a) can be verified by picking

ts�
∈ {t1, . . . , tS} and distinguishing two cases:

• If s? = 1, 2, and we have that for ` = 0, 1, 2 and for

s = 3, . . . S that

lim
N→∞

∣∣∣∣Q
(`)
Es

(
Nts�

B

)∣∣∣∣ = lim
N→∞

∣∣∣∣∣
κ(`)

(
N
B (ts�

− ts)
)

κ(0)

∣∣∣∣∣

= lim
|τ |→∞

∣∣∣∣
κ(`)(τ)

κ(0)

∣∣∣∣ = 0, (67)

where we used the separation assumption and the

Riemann-Lebesgue lemma on the integrable functions

F (`)(κ), ` = 0, 1, 2, in (67). This leads to

lim
N→∞

d2 |QV |
dτ2

(
Nts�

B

)
=

d2 |QF |
dτ2

(
Nts�

B

)
< 0

by (66), and by going to the limit N → ∞ in the

expression (39), and invoking the derivations on
d2|QV |

dτ2

presented in Section IV-B under the separation condi-

tion (42).

• If s? = 3, . . . , S, a similar reasoning yields that for any

` = 0, 1, 2 and any s = 3, . . . , S

lim
N→∞

∣∣∣∣Q
(`)
Es

(
Nts�

B

)∣∣∣∣ = lim
N→∞

∣∣∣∣∣
κ(`)

(
N
B (ts�

− ts)
)

κ(0)

∣∣∣∣∣

= lim
|τ |→∞

∣∣∣∣
κ(`)(τ)

κ(0)

∣∣∣∣ = 0,

lim
N→∞

∣∣∣∣Q
(`)
F

(
Nts�

B

)∣∣∣∣ = lim
|τ |→∞

∣∣∣Q(`)
F (τ)

∣∣∣ = 0.

We analogously obtain that

lim
N→∞

d2 |QV |
dτ2

(
Nts�

B

)
=

d2
∣∣QEs�

∣∣
dτ2

(
Nts�

B

)

=
κ′′(0)

κ(0)
< 0.

Finally, to show that (65b) holds, for any t ∈ T\ {ts},

we denote by s? the index of the closest point source in the

sense of the wrap-around distance

ts�
= min

s=1,...,S
|t − ts|T.

Here again, we distinguish two cases:

• If s? = 1, 2, we have for any s = 3, . . . , S that

lim
N→∞

∣∣∣∣QEs

(
Nt

B

)∣∣∣∣ = lim
N→∞

∣∣∣∣∣
κ
(

N
B (t − ts)

)

κ(0)

∣∣∣∣∣

= lim
|τ |→∞

∣∣∣∣
κ(τ)

κ(0)

∣∣∣∣ = 0, (68a)

lim
N→∞

∣∣∣∣QF

(
Nt

B

)∣∣∣∣ < 1, (68b)

where we used the Riemann-Lebesgue Lemma on F(κ)
in (68a), and by invoking the derivations on QF of

Section IV-B under the separation condition (42) in (68b).

• If s? = 3, . . . S, we have for any s = 3, . . . , S and s 6= s?

lim
N→∞

∣∣∣∣QEs

(
Nt

B

)∣∣∣∣ = lim
N→∞

∣∣∣∣∣
κ
(

N
B (t − ts)

)

κ(0)

∣∣∣∣∣

= lim
|τ |→∞

∣∣∣∣
κ(τ)

κ(0)

∣∣∣∣ = 0, (69a)

lim
N→∞

∣∣∣∣QEs�

(
Nt

B

)∣∣∣∣ = lim
N→∞

∣∣∣∣∣
κ
(

N
B (t − ts�

)
)

κ(0)

∣∣∣∣∣ < 1,

(69b)
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lim
N→∞

∣∣∣∣QF

(
Nt

B

)∣∣∣∣ = lim
|τ |→∞

|QF (τ)| = 0. (69c)

Summing all the terms in both cases, and invoking (66)

concludes on (65b).

In conclusion, under the conditions of Theorem 11, there

must exists N0 ∈ N such that the polynomial QV (τ) verifies

the conditions (54). We conclude that the measure µ? verifies

the non-degenerate source condition, implying the support

stability of the Beurling-LASSO estimator.
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