IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

7237

On the Stable Resolution Limit of Total Variation
Regularization for Spike Deconvolution

Maxime Ferreira Da Costa™, Member, IEEE, and Yuejie Chi

Abstract— The stability of spike deconvolution, which aims at
recovering point sources from their convolution with a point
spread function (PSF), is known to be related to the separation
between those sources. When the observations are noisy, it is
critical to ensure support stability, where the deconvolution does
not lead to spurious, or oppositely, missing estimates of the point
sources. In this paper, we study the resolution limit of stably
recovering the support of two closely located point sources using
the Beurling-LASSO estimator, which is a convex optimization
approach based on total variation regularization. We establish
a sufficient separation criterion between the sources, depending
only on the PSF, above which the Beurling-LASSO estimator is
guaranteed to return a stable estimate of the point sources, with
the same number of estimated elements as that of the ground
truth. Our result highlights the impact of PSF on the resolution
limit in the noisy setting, which was not evident in previous
studies of the noiseless setting. Towards the end, we show that
the same resolution limit applies to resolving two close-located
sources in conjunction of other well-separated sources.

Index Terms— Spectral estimation, super-resolution, resolution
limits, convex optimization.

I. INTRODUCTION

N ITS classical formulation, the super-resolution prob-

lem consists of recovering a stream of localized temporal
events, modeled as one-dimensional point sources (or spikes),
characterized by their positions and amplitudes, from distorted
and noisy observations. This problem finds a myriad of
applications in applied and experimental sciences, such as
spectrum and modal analysis, radar, sonar, optical imaging,
wireless communications and sensing systems. The distortion
is often characterized by a shift-invariant point spread function
(PSF), acting as a low-pass band-limited filter, on the stream
of spikes to recover, in accordance to the physical limitation
of the measurement device involved in the acquisition of the
point sources [1].

The problem, known as spike deconvolution, comes with
a handful of statistical challenges. Of particular interest to
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this paper is the support stability of the reconstruction in the
presence of additive noise, defined as the capability of a given
estimator to return the exact same number of point sources as
that of the ground truth, without spurious or missing elements.
This paper studies the support stability of the Beurling-LASSO
estimator [2] to reconstruct two closely located point sources.
Despite its apparent simplicity, this setup is of importance both
in theory and in practice. In theory, it allows us to develop a
deeper insight on the fundamental notion of resolution limit —
the minimal distance above which two point sources are said
to be distinguishable. In practice, it models the separation
of a weak moving target from a strong clutter in radar [3],
and accurate counting of the number of molecules in super-
resolution fluorescence microscopy [4].

The Beurling-LASSO estimator is a convex optimization
approach with the total variation (TV) regularization, which
has been shown to provide exact reconstruction of the point
sources in the absence of noise, whenever the point sources
are sufficiently separated [2], [S], [6]. The TV regularization,
applied to measures, can be regarded as a continuous analog
of the standard ¢; regularization for finite-dimensional vec-
tors, but is advantageous by overcoming the basis mismatch
issue [7]. In this paper, we show that the Beurling-LASSO
estimator can also stably reconstruct the support of the two
close-located point sources provided that they are separated
by a distance that can be computed exactly using a formula
depending only on the PSF, revealing the impact of PSF on
the stability of spike deconvolution. Our result can be extended
to a multi-source setting containing a mixture of two close-
located sources and other well-separated sources.

A. Observation Model

We consider a scenario where there are only two point
sources to recover. Denoting by M(R) the set of complex
Radon measures over the reals, the signal to resolve is modeled
as a measure v, € M(R) of the form

Vie(T) = 16(T — 11) + c20(T — T2), (1)

where 0(-) is the Dirac measure, 71,72 € R are the
time-domain locations of the two spikes and c¢j,co €
C\{0} are their non-zero associated complex amplitudes. The
continuous-time signal x(7) resulted from the convolution of
the ground truth measure v, (7) with the PSF g(7) writes as

a(1) = (g vs) (7)

=c1 g(t—71)+c2 g(t— 1), VT ER, 2)
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where x denotes linear convolution. Furthermore, because of
the needs of digital processing, one typically takes discrete-
time measurements. An idealistic, yet credible approximation
of many super-resolution problems encountered in practice is
to consider measurements drawn from uniform sampling of the
Fourier transform of x(7). Let F(-) be the Fourier transform
of a measure in M(R), defined as

F(u)(f) = /Re*ﬁ”ffdu(ﬂ, Ve M(R), Vf R, ae..

The Fourier-domain counterpart of the observation model (2)
becomes

X(f) =G(f) - Fw)(f),

where X = F(x), G = F(g) are the Fourier transforms of
the signal x(7) and the PSF g(7), respectively. We assume
that the PSF ¢(7) is band-limited, with a bandwidth of B >
0. Therefore, G(f) = 0 for every f outside the interval
(—g, %) We further assume an odd number N = 2n + 1
of measurements' are taken uniformly over the bandwidth
—g, %) Therefore, the observation vector is given by =
{zx = X(kB/N)}__ € CV, corresponding to measuring
X(f) at frequencies {kB/N}.__ c (-£,2).

For convenience, we introduce a normalized measure j, €
M(R) as p.(t) = Zv(Nt/B) for all t € R, which by

combining with (1) can be rewritten as,
ps(t) = c16(t —t1) + cad(t — t2), (3)

where t; = B7i/N and to = B7o/N are the normalized
locations of the point sources. The observations x are linked
to 4 by the linear relation

x=d,(p.). 4)

Here, the measurement operator ®, : M(R) — C~ maps
every 11 € M(R) to the vector ®,(;) € CV defined by

®, (1) =diag(g) [F () (—n), F(u)(=n + 1),..., F(u)(n)]
®)

where g = {gx = G(kB/N)},__, € CV is the vector
obtained by sampling the Fourier transform of the PSF g(7)
at frequencies {kB/N},_ . Furthermore, notice that the
observation operator ®, is invariant with respect to integer
shifts of the underlying measure si,. Thus, one can only hope
to identify i, over the set of Radon measure defined over the
torus T ~ R/Z, denoted as M (T). Without loss of generality,
the delays ti,to are normalized within the unit interval, i.e.
1 1y2
tr,ts € [=3,3)-
In the presence of noise or measurement errors, we assume
x is corrupted by an additive term w. The observations are
given as

VfeR, ae.,

z=x+w=Py(u,) +w, (6)

'An odd number of measurements is considered only for clarity and
simplification purposes, and does not affect the generality of the results
presented in this paper.

2Since t; = B7; /N, i = 1,2, and assuming 7; € [~T/2,T/2), where T
is the time window of interest, then the ambiguity constraint ¢; € [—1/2,1/2)
suggests that the number of measurements should be greater than the time-
bandwidth product, i.e. N > T - B, to avoid aliasing.
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where ||lw|, < 7 is assumed to be bounded for some noise
level n > 0.

B. Reconstruction Using the Total Variation Minimization
Framework

In the absence of noise, the super-resolution problem is
defined as recovering p, from the observations x and the
PSF g(7), yielding a linear inverse problem over the set of
measures. Clearly, there are many possible measures that lead
to the same observations, making the problem ill-posed. It is
therefore necessary to impose structures on the measure of
interest, where one of the most widely used structures is a
sparsity prior. More precisely, one seeks for the measure iy
with minimal support that is consistent with the observations
x given in (4). Denoting by ||-||, the “pseudo-norm” counting
the potentially infinite cardinality of the support of a measure
in M(T), the optimal estimator iy for the super-resolution
problem can be reformulated as the output of the optimization
program

iy = argmin [ufly st @ = B, (u), )
HeEM(T)

which is known to be unique and equal to the ground truth g,
as long as the number of measurements NN is at least twice as
large as the number of spikes to recover [8].

However, on the computational front, the estimator (7)
is infeasible due to the combinatorial aspects inherent to
the definition of |-||,. Instead, a convex relaxation of the
estimator (7) is proposed in [2] to recover the measure. This is
achieved by relaxing the cost function by a convex surrogate
known as total variation (TV), denoted as |||/, whose
formal definition will be discussed later. The total variation
minimization of measures, equivalent to the atomic norm [9],
[10], is a versatile framework that can be adapted to solve a
variety of linear inverse problems over continuous dictionaries.
The resulting TV estimator, denoted as Jig, is given by

fo = argmin ||pl|py st &= @4(u), (8)
HEM(T)

which is a convex program over the set of Radon measures,
and can be computed efficiently by solving an associated
semidefinite program (see e.g. [11]). In the presence of noisy
observations of the form (6), the Beurling-LASSO estimator
iix [12], also known as the atomic norm denoiser [11], can
be used to recover the ground truth. It can be understood as
an extension of the celebrated LASSO estimator over the set
of measures, which aims to estimate the ground truth measure
by minimizing a sum of the TV norm of the measure and
the squared Euclidean norm of the measurement residual (4),
so that the estimate i) is written as

N N o1 2
fix = pia(z) = argmin o |z — &g (u)ll; + Allullpy . )
neM(T)
where A > 0 is a regularization parameter drawing a trade-off
between the TV norm of the estimate, as well as its fidelity
to the observations.
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Illustration of support stability of the Beurling-LASSO estimator for reconstructing two point sources with different separations A when the PSF is

the ideal low-pass filter g(7) = sinc(77) and for a number of samples N = 129 with SNR = 40dB. The locations of point sources are estimated as the
peaks of the magnitude of the dual polynomial ®7(py), where Py is the solution of (14). (a): A = 1.2/N, the estimator returns exactly two spikes closely
located to the ground truth and is support stable. (b): A = 1.1/N, the estimator returns two additional spurious spikes and is not support stable.

C. Resolution Limit of Spike Deconvolution

An important question for practical operations is the reso-
lution of spike deconvolution, where one would like to ensure
that the reconstructed measure is as close as possible to the
ground truth. It has been known for decades that the separation
between the spikes,

A= |t2—t1|Té}r€1£|t2—t1 +1, (10)
which measures the distance over the torus T, plays an impor-
tant role — the smaller the separation, the more challenging it is
to resolve them. For example, the Rayleigh limit (see e.g. [13])
is a classical empirical criterion to characterize the resolution
limit the super-resolution problem, i.e., the minimal separation
between two point sources, above which those sources are said
to be distinguishable. In recent years, there has been a resurge
of interest in a formal characterization of this limit - both in
terms of achievability and impossibility. In particular, stability
has been shown to be related to the asymptotic behaviors of
the condition number of Vandermonde matrices with nodes
on the unit circle [14]-[16], which diverges below a critical
separation of the spikes. This phase transition induces the
existence of a resolution limit under which point sources
cannot be resolved in the presence of noise in the asymptotic
regime where N tends to infinity [17], regardless of the
algorithm used for reconstruction.

In this paper, we are interested in understanding the robust-
ness of an estimator in the presence of noise. Among the
many figures of merit to quantify this robustness, an important
criterion is the support stability of the estimator, defined below
when specialized to the two-spike setting.

Definition 1 (Support Stability): Consider the observations
z = ®,(ps) + w. An estimator i = [i(z) based on z is
said to be support stable for a given ground truth measure
1y of the form (3) if there exists 7 > 0 such that for all w
with [|wl|, < 7, the estimate /i is a measure containing two
spikes, i.e.

fi(z) = G16(t — 1) + C20(t — Ba),

and if the estimated parameters satisfy, up to a permutation II
of the indices: ‘tk - tH(s)‘T = O(||lw||2) and ‘cs —Crs)| =
O(||lw||y) for s =1,2 in the limit of ||wl|, — 0.

This notion, introduced in [6], characterizes the capability
of an estimator to output a measure containing the exact
same number of spikes as that of the ground truth, when the
signal-to-noise ratio (SNR) is large enough. As an example,
Fig. 1 plots the reconstruction of a ground truth measure
containing two spikes using the Beurling-LASSO estimator at
SNR = 40dB under different separations when the PSF is the
ideal low-pass filter. In this illustration, when A = 1.2/N,
the estimator returns exactly two spikes closely located to
the ground truth; on the other hand, when A = 1.1/N,
the estimator returns additional spurious spikes that are not
consistent with the ground truth, and therefore, is no longer
support stable.

D. Overview of the Main Result

This paper studies the support stability of the Beurling-
LASSO estimator (9) for the reconstruction of a two-spike
measure of the form (1). We show that, the Beurling-LASSO
estimator is support stable if the separation A is greater than
~*/N, which can be calculated exactly using the knowledge
of the PSF g¢(t). Our main contribution can be informally
summarized in the following statement.

Theorem 2 (main Result, Informal Statement): Suppose that
the PSF ¢(7) satisfies some mild regularity conditions and
is band-limited within (—£, £). There exists a constant ~*,
depending only on g(7), such that if a measure p, of the
form (3) verifies

A= |t2 _tll']l‘ > ,YN,
then the Beurling-LASSO estimator is support stable when N
is sufficiently large.

The complete statement of the theorem (c.f. Theorem 6)
provides the formula of the stable resolution limit 4*, which
can be computed for an arbitrary PSF verifying the hypotheses
of the theorem. One highlight of our result is that it links
the stable resolution limit directly to the PSF, which is not
apparent in the study of the noise-free setting, where the
resolution limit of exact recovery is independent of the PSF.
This provides a quantitative means to evaluate and compare the
choices of different PSFs in imaging and sensing applications.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 21,2020 at 23:41:00 UTC from IEEE Xplore. Restrictions apply.



7240

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

TABLE I

VALUES OF THE MINIMAL SEPARATION 7* FOR COMMONLY ENCOUNTERED POINT SPREAD FUNCTIONS. HEREIN, Jo(-) DENOTES THE BESSEL
FUNCTION OF THE FIRST KIND, AND %), (-) REFERS TO THE PROLATE SPHEROIDAL WAVE FUNCTION (PSWF) OF ORDER 0 FOR THE TEMPORAL

CONCENTRATION BAND [—TO, 7-0] [18],[19],1.E., THE FUNCTION g(:) WITH A FREQUENCY BAND (

11

—3,3) AND WITH [[g|| ., = 1 WHICH

MAXIMIZES THE INTEGRAL f_“;o lg(m)|?dr

Point spread function Fourier transform y*

Ideal low-pass: sinc(7T) 1.132
Circular low-pass: Jo(77)/v/7T 1.253
Triangular low-pass: sinc(7r/2)2 1.449

2

Truncated Gaussian: e 202 * sinc(77)

(see Fig. 2 (a))

Prolate spheroidal wave function: ¢, (T)

(see Fig. 2 (b))

The spectrum of a typical PSF has a decaying shape. A slower
decay usually is associated with a smaller resolution limit and
better super resolution capabilities for PSFs with the same
bandwidth.

For illustration purposes, Table I lists the approximate val-
ues of 7, associated with commonly encountered PSFs, such
as ideal low-pass filters, circular low-pass filters, triangular
low-pass filters, truncated Gaussian functions, and prolate
spheroidal wave functions. Since we focus on the case of only
two spikes, the separation condition ~* is smaller than those
in [5], [20], [21] for the noise-free setting, which allows more
spikes. In addition, Fig. 2 illustrates how the stable resolution
limit v* increases while the temporal concentration of the
truncated Gaussian function and the prolate spheroidal wave
function degenerates. Finally, Fig. 3 compares the constant
~* predicted by Theorem 2 with the empirical success rates
of the Beurling-LASSO estimator for different PSFs, which
corroborates the findings of our theory. Our result holds even
in the presence of additional point sources, as long as they are
well-separated, see Section V.

E. Connections to Related Works

The resolution limits of spike deconvolution have been
studied extensively, including but not limited to [22]-[27]. The
performance of the TV estimator (8) has been studied in the
noiseless setting with respect to the separation condition [2],

[6], [21]. Exact recovery of the TV estimator (8) is first
guaranteed in [2], for an arbitrary number of spikes, given
a separation A > 4/N under the proviso that the number of
observations NN is large enough, which has been later improved
to A > 2.56/N in [28]. On the other hand, it is known
that TV-regularization can fail whenever A < 2/N [21].
Furthermore, experimental evidence suggest the existence of
a phase transition on the success of (8) whenever the minimal
separation between any pair of spikes crosses the threshold
A =2/N in the limit of N tending to infinity. With the extra
assumption that the number of spikes is exactly two, as in (3),
it is shown in [6] that a separation A > 1/N is necessary to
guarantee exact recovery.

The support stability of the Beurling-LASSO estimator is
studied in [6] under the non-degenerate source condition (c.f.
Def. 4), however it is unclear and challenging to establish
when this condition will hold for general sources. In [29],
[30], the support stability of reconstructing positive sources is
considered without imposing a minimal separation condition.
Our main theorem in this paper is achieved essentially via
verifying the non-degenerate source condition for the two-
spike case with arbitrary signs and the presence of additional
well-separated spikes, which is already quite technical and
non-trivial.

Furthermore, when the PSF is the ideal low-pass filter,
and under additive white Gaussian noise, the stability of TV

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 21,2020 at 23:41:00 UTC from IEEE Xplore. Restrictions apply.
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(b)

Fig. 2. The stable resolution limit v* for (a) a truncated Gaussian PSF for different values of the parameter o, and (b) the prolate spheroidal wave function

of order zero 1, for different widths of the concentration band [—70, To].

Ideal low-pass | | PSWF

] ] ]
g g g |
2 0.5 £ 0.5 405 ;
Q Q Q
3 3] 31 |
=3 = =
17} | wn wn |

0 0 0

095 1 1.132 1.2 1.25 1.3 141449 1.5 1.6 2.2 23 237 2.5

NA NA NA
. . 2
(@) g(7) = sinc(77) (b) g(7) = sinc(x7/2) (©) g(7) = 1s(7)
Fig. 3.  Empirical success rates for the Beurling-LASSO estimator to return a measure with two point sources, for three different point spread functions,

under additive white Gaussian noise, as a function of the separation parameter N A. The support stability threshold v* predicted by Theorem 2 is shown in
a black dashed line. Here, we set N = 101, SNR = 60dB. The results are averaged over 200 trials.

regularization is studied under various metrics. For example,
the stability of an estimator [ in the observation domain is
studied in [11], [20], which looks at bounds on ||, (11— ) ||3.
The performance of support detection has been examined
in [31]-[33], which quantifies the residual of i outside the
support of u,, however these guarantees do not ensure the
estimate /i contains the same number of spikes as the ground
truth p,. A trade-off between the separation of the spikes
and the error of the parameters is highlighted in [34] without
resorting to the non-degenerate source condition. However,
the required separation for the result in [34] to hold is quite
large and assumes a Gaussian noise.

FE. Organization of the Paper

The rest of this paper is organized as follows. Section II
provides some prerequisites on spike deconvolution using the
Beurling-LASSO estimator, including background literature.
Section III states formally the main theorem of this paper
including all technical details. Section IV proves the main
theorem and Section V discusses the extension of the main the-
orem to the reconstruction of multiple point sources. Finally,
we conclude in Section VI.

II. PREREQUISITES

In this section, we discuss the prerequisites on super reso-
lution using total variation regularization, which are useful to
the presentation and analysis of the main result in this paper.

A. Mathematical Notations

The transpose and adjunction of a vector v is denoted as
v' and v* respectively. The adjoint of a linear operator ®
is written as ®*. Vectors of a dimension N = 2n + 1 are
indexed between —n and n, so that v = [v_,,,...,v,] . For
any t € T, we introduce the atomic vector a (t) € CV and its

derivative @ (t) € CV as

. ) T
a (t) = e—2m(—n)t, o )e—QTI"L'r’Lt:| ,
(.1/ (t) :dzit) = _27TZ |:_7/7}6727“""‘(7"'7')157 . ’ne*QW’int T

= — 2midiag(—n,...,n)a(t),

where diag(—n,...,n) is a diagonal matrix with diagonal
entries —n, . .., n. Similarly, we define the ¢th order derivative
of a () as a¥) (t). To every vector ¢ € CV, we associate the
trigonometric polynomial Q)(¢) of degree n such that

Qt)=a(t)'q= Y qe®™*, VteT.

k=—n

Its derivative satisfies Q’(¢) = a(t)*q for all ¢t € T. The real
part and conjugate of a complex number w is denoted as ¥ (u)
and u, and the sign of a non-zero complex number is given by
sgn(u) = u/|ul. For any two vectors z,p € C, we denote
by (-,-)p the real inner product (z,p), = R{z*p}, and we
denote by z © p € CV their element-wise product.
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The vector space of continuous functions from T to C,
denoted as C(T), is endowed with the supremum norm || - || .
The total variation norm || - || v, defined as the dual norm of
| ||oo, is given as

lure = swp ®| [T (0], v Mo
heC(T) T
[Ih]] <1

Given two functions g and & that depend on N, we use
the classical Landau’s notations ¢ = O(h), ¢ = o(h) and

g = w(h) to denote limy_, ‘% = C for some C € R,

mpy oo ‘%‘ =0, and limpy_, ‘%‘ = 00, respectively.

B. Tightness of Total Variation Minimization

In the noiseless setting, the TV estimator (8) is said to
be tight if its output fip is equal to the output iy of the
estimator (7). As for many other convex optimization-based
methods for solving inverse problems, the Lagrangian duality
theory can be leveraged to derive tightness guarantees. The
Lagrange dual problem associated to (8) reads

Dy (x) = arg max (x, p)g
peCN

subject to [[®7(p)[l < 1, (11)
where the adjoint of the operator ®, in (5) is given by

o CV — M(T)

n
P ®;(p)(1) = > prgee™,
k=—n

=a(t)" diag(g)p, VteT. (12)

In other words, ®7 associates any p € C» with a trigonomet-
ric polynomial Q(t) = a (t)* q of degree at most n, where
q = diag(g)p. Moreover, as the restriction of the feasible set
of (11) to the span of the operator ®, is compact, the set of
solutions Dy (x) is non-empty as long as « is a consistent
observation under the observation model (4).

It is now well understood that the tightness of TV regular-
ization is characterized by the existence of a so-called dual
certificate [2]: a function lying in the feasible set of the dual
program (11), and satisfying certain extremal interpolation
properties. Considering an input measure with only two point
sources of the form (1), the corresponding dual certificate is
defined as follows.

Definition 3 (Dual Certificate [2]): A vector p € CY is said
to be a dual certificate for the optimization problem (8) with
an input p, of the form (3) if and only if the trigonometric
polynomial Q(t) = a ()" q with a coefficient vector ¢ =
diag(g)p verifies the conditions

Q(t1) = sgn(c1), (13a)

Q(t2) = sgn(ca), (13b)

Q)| <1, VteT\{t1,ta2}. (13¢)

It can easily be verified that any dual certificate p achieves
dual optimality with a dual objective (x,p)p = ||]Tv-

In fact, by a duality argument, if such a certificate exists,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

14 1s the unique solution of (8). As a result, showing the
existence of a dual certificate of a given instance of the total
variation program (8) provides a constructive approach to
prove the tightness of the TV estimator fig. We refer the reader
to [2], [35] for further discussion of this property.

C. Stability of the Beurling-LASSO Estimator

Moving to the noisy case, where we aim to recover p, from
the noisy observations (6), it becomes necessary to invoke
the Beurling-LASSO estimator (9). Due to the existence of
noise, it is no longer possible to recover p, perfectly. However,
we hope the estimator is stable, so that the estimate /i) is close
to the ground truth measure p, when the noise w and the
regularization parameter A\ are small enough. More precisely,
we are interested in the support stability as defined in Def. 1,
which is a quite strong metric carrying the desirable notion of
maintaining a faithful estimate of each individual spike without
incurring spurious or missing spikes. The support stability of
the Beurling-LASSO estimator iy in (9) has been studied for a
broad class of measurement operators in [6]. The results, again,
are derived from an analysis of the Lagrange dual problem of
the estimator fi, which is given as

~ . A 9
P = Da(z) = argmax (z,p)p — D) Ipll5
peCN

subject to [} (p)loo < 1,

(14)

Note that, contrary to (11), the solution p, is unique for
every z and A > 0, as (14) can equivalently be interpreted
as the projection of A~!z onto the convex feasible set. As the
regularization parameter \ tends to 0, the output py () of the
dual problem (14) applied on the ground truth observations
x = ®,(u) converges towards the element py,in Of the solution
set Dy () with the minimal norm so that [6]

;li%ﬁ/\(w) = argmin{HpHQ oY S DO(w)} = ﬁmin- (15)

The minimal norm solution Py, to the dual of the TV
estimator (8) therefore encodes the behavior of the Beurling-
LASSO estimator when both the noise level |w||2 and A tend
to 0. In fact, the support stability of Beurling-LASSO can
be guaranteed for a measure p, if some algebraic properties
on Puin can be verified. These properties introduced in [6] as
non-degenerate source conditions are recalled in the following
definition.

Definition 4 (Non-Degenerate Source Condition [6]): A
measure /i, of the form (3) is said to verify the non-degenerate
source condition with respect to the measurement operator
®, if and only if the trigonometric polynomial Quin(t) =
a (t)* Gin With coefficients @in = diag(g)ﬁmin» where Piin
is defined in (15):

1) verifies the dual certificate conditions in (13),

2) has non-vanishing second derivatives at the source loca-

tions, or equivalently
2
% ‘Qmin (ts)

The first condition in the above definition essentially

requires that the minimal norm solution Py, is a valid dual

<0, s=1,2. (16)
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certificate for the TV estimator (8) with noiseless input x and,
therefore, guarantees its tightness. In view of (15), this ensures
that the low-noise limit of the Beurling-LASSO estimator (9)
can recover the ground truth measure ,, which is a natural
requirement for support stability. The second condition adds
an additional constraint, which enforces the certificate to have
a strictly concave modulus around the location of the point
sources, which, roughly speaking, ensures no spurious spikes
will be introduced when adding a little bit of noise. Together,
these conditions are used to guarantee the support stability of
the Beurling-LASSO estimator in the low-noise regime in [6],
that is recalled in the following proposition.

Proposition 5 (Support Stability of Beurling-LASSO [6]):
Suppose that the ground truth measure u, verifies the non-
degenerate source condition with respect to the sampling
operator ®, in Def. 4. Then there exists o > 0 such that the
Beurling-LASSO estimator ji)(z) applied to the noisy mea-
surements z = ®, (u.) + w with a regularization parameter
A= a ! ||wl|, is support stable in the sense of Def. 1.

Proposition 5 suggests a constructive approach to prove the
support stability of the Beurling-LASSO estimator, namely,
by verifying the minimal norm solution Py, associated with
a measure i, satisfies the non-degenerate source condition.
However, the original work [6] does not provide explicit means
to verify this condition. Subsequent works [29], [30] studied
the special case of positive sources. Nevertheless, it remains
unclear when these conditions are verified for general sources
and PSFs. The main theorem, presented in the next section,
is built upon verifying the non-degenerate source condition
for a two-spike measure with arbitrary coefficients and PSFs
satisfying some mild regularity conditions.

III. MAIN RESULT

This section formally introduces the main contribution of
this paper, which is to provide a sufficient separation condition
between the two spikes of a measure of the form (3) to
guarantee the support stability. The provided bound depends
only on the PSF ¢, and more specifically on its auto-correlation
function and successive derivatives. The presented result is
achieved via verifying the non-degenerate source condition
presented in Def. 4, whose proof will be detailed in Section IV.

We denote by k = K(g) € Lo the auto-correlation of the
PSF g € Lo, defined as

K (g) (T):/ng(T—i—u)du, Vr e R. (17)

Denote two auxiliary functions ug, vg € Lo defined for every

6 >0 as
u5(7)—/€<7—§>+/€<7+§>,

iy =r(r-2) (e L),

The above two functions describe the auto-correlations of a
signal produced by two point sources separated by a distance
[ with same and opposite signs, respectively. When g is real,
the k is even, and we point out that the functions ug, vg are

(18a)

(18b)
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even and odd, respectively. We are now ready to state the main
theorem of this paper.

Theorem 6 (Stable Resolution Limit of Beurling-LASSO):
Suppose that the PSF ¢ satisfies the following regularity
conditions (H1)-(H4).

(H1) g € Lo is real and non-zero, i.e. 37 € R, g(7) # 0.
(H2) G = F (g) € Lo is band-limited within B, i.e.

G(f)=0, VY|f|> B/2.
(H3) @ is bounded, i.e.

sup |G(f)| =
fER fel-

sup |
B/2,B/2]

G(f)] < .
(H4) For r = K(g) € Ly and its first three derivatives, ()
for £ =0,1,2,3, and for any odd integer N € 27 + 1,
we have that

Si(N) = sup Z k& (% (t+ k‘)) < 00,
te[-3.3] [kez

(19a)

Jim_S(N) = 0. (19b)

Let ~*, depending only on the PSF g, be defined as +* =
max{y,v3,v4} > 0 with
| > 55 ( }

)
)| >7p ( )} (20b)

"(0)° + K"(B)° — K (D" (9) > 0}
(20c)

~1 = Bsup {Sup [sa (T (20a)

B>0 (72>0

~v3 = Bsup {sup |7a (T
B>0 (>0

= Bsup {
B>0

where the intermediate functions Sg (1), 75 (7) are further
defined, for any > 0 and 7 € R as

853(7) = (=K"(0) = " (B)) vg (1) = K" (B)ujz (1), (2la)
73 (1) = (=" (0) + " (8)) up (1) + K" (B) v (7). (21b)

Then there exists Ny € N such that, for every N > Ny and
every pu, of the form (3) with

,y*
Wa
there exists o > 0 such that the Beurling-LASSO estimator
fx (P4 (11+) +w) with the regularization parameter A =
a~ 1w, is support stable.

Theorem 6 provides an explicit means to compute v*, based
on the evaluation of (20), for a given PSF satisfying the
regularity conditions. The key quantities, 75, £ = 1,2,3,
are suprema of continuous functions where the complexity
of the computation essentially depends on the variations and
smoothness of «. It is worth noticing that these quantities are
also independent of the bandwidth B through a re-scaling the
PSF via a transform ¢ (7) < g (¢7) for some ¢ > 0, and can
therefore be computed for a PSF with unit bandwidth B = 1.
Table I provides several examples of stable resolution limits
for PSFs frequently encountered in practice. The separation

A=t — to|p > (22)
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condition (22) can be equivalently interpreted in terms of the
delays 71, 7o of the unnormalized measure v, as in (1) as

Bl — 7| >, (23)

provided the spikes to be localized are in the interval
(=N/2B,N/2B). In addition, our results allow arbitrary
coefficients of the spikes, as long as they are sufficiently
separated above the resolution limit.

If we impose a strictly stronger assumption that the PSF
decays “reasonably fast”, i.e, there exist constants Cy > 0,
¢ =0,1,2,3 and § > 0 such that

C

(€) -t
‘g (7)‘ = 1+ |T|1+5a
then the assumptions (H3) and (H4) are automatically ver-
ified, which greatly eases the applicability of Theorem 6.
Although (24) can be verified for the majority of the PSFs
encountered in practical applications, it excludes some PSFs
of theoretical interest, such as the ideal low-pass function

g(7) = sinc (77), and the truncated Gaussian kernel.

VreR, £=0,1,2,3, (24

IV. PROOF OF THEOREM 6

This section aims to prove Theorem 6. Recall Proposition 5,
which provides a sufficient condition to establish the support
stability of the Beurling-LASSO estimator (9). The proof
essentially consists of deriving a sufficiently large constant
~v* above which a ground truth measure u, verifies the non-
degenerate source condition (c.f. Definition 4) outlined in
Proposition 5 when NV is large enough. The proof is divided
into four major steps.

1) Using invariance properties of the non-degenerate source
condition, we start by reducing the problem to recon-
structing a ‘“canonical” measure i, exhibiting useful
symmetry and simplifying the ensuing calculations.

2) Next, we introduce a so-called minimal vanishing deriv-
ative polynomial Qv (t) = a(t)* diag (g) pv, where py
is the solution to a simple linear system depending on
the parameters of the canonical measure . Leveraging
Lemma 8 [6], we show that it is enough to show Qv ()
satisfies (13) and (16).

3) We next study the limiting behavior of Qv (t), where it
converges towards a band-limited function Qy (Nt/B)
as N — oo. Furthermore, we show that, if Qv (7)
verifies the conditions in (65), then Qv (¢) satisfies (13)
and (16), provided that V is large enough.

4) Finally, we derive a sufficient separation condition v,
above which the limit function Qy (1) verifies the con-
ditions (65) whenever NA > ~,. We conclude on the
statement of Theorem 6 by applying Proposition 5.

A. Canonical Reduction of the Problem

We start by reducing the problem to a simpler form without
loss of generality by exploiting the following invariances of
the non-degenerate source condition.

Lemma 7 (Invariances of the Non-Degenerate Source Con-
dition): Suppose that a measure 3 € M(T) of the form (3)
verifies the non-degenerate source condition given in Def. 4
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with respect to the sampling operator ®,. The follow state-
ments hold:

o Translation invariance: for any ty, € T, the measure
pa(t) = pa(t — to) for all ¢ € T verifies the non-
degenerate source condition for the same operator.

o Scaling invariance: for any ¢ > 0 and 0 € |[0,27),
the measure pa(t) = ce?puy(t) for all ¢t € T verifies the
non-degenerate source condition for the same operator.

o Time reversal invariance: the measure po(t) = pi(—t)
for all t € T verifies the non-degenerate source condition
for the same operator.

A proof of Lemma 7 is provided in Appendix A. Leveraging
this result, we conclude that the non-degenerate source condi-
tions depends only on the separation A £ |ty — ti|p between
the two point sources and the angle 6 = arg(cy/c1) modw
between their complex amplitude. For any A € (0,3] and
0 € [0, 7], we define the canonical measure ji, (A, 0) as

(A, 0) = 7735 <t+ %) +e'35 (t— %) .

We can now restrict our analysis to canonical measures of
the form p, = p.(A, ) without loosing any generality, and
exploit the Hermitian symmetry of p, to simplify the ensuing
calculations.

(25)

B. The Minimal Vanishing Derivative Polynomial

The minimal norm solution P,,;, (defined in (15)) asso-
ciated to the measure g, = p«(A,0) can be equivalently
interpreted as a projection onto the spectrahedra of bounded
trigonometric polynomials. Such projection is difficult to
derive analytically, limiting the ability to establish the non-
degenerate source condition (c.f. Def. 4) through a direct
analysis of ppi,. To bypass this problem, it is proposed in [6]
to study instead the behaviors of a surrogate vector py/, defined
in the present context as the unique solution to the following
quadratic problem:

py =argmin [p|,
peCN

(26)

A key property of py, recalled in the following lemma,
is its equivalence with the minimal norm solution p,;, under
additional assumptions.

Lemma 8 (Equivalence of the Minimal Vanishing Deriv-
ative Solution [6]): If the solution py of (26) satisfies
||<D; (pV)HOO < 1, then py = Puin is equal to the minimum
norm solution for the measure ..

Let gy = diag (g) py € CV, and the associated polyno-
mial Qv (t) = a(t)*qy be the minimal vanishing derivative
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polynomial. Note that by construction, Qv (t) verifies the
interpolation constraints (13a) and (13b). Additionally, if qyv
also verifies the extremal constraint (13c), |<I>; (pV)HOO =
sup;er |Qv (t)| < 1, then py = Pmin by Lemma 8. Therefore,
it is enough to show that Qv (t) verifies (13c) and (16) to
conclude on the support stability of p, for the sampling
operator ®,. To ensure that those conditions can be met,
we start by studying the asymptotic of Qv (t) when N — cc.

C. Asymptotic Analysis of Qv (t)

We start the asymptotic analysis of the trigonometric poly-
nomial Qv (t) = a(t)*qy by defining the discrete auto-
correlation function K (t) of the PSF g(7) as

. : Bk
K(t) & ) |orl” ™ = G(W)

k=—n
for any ¢t € R, which is a real and even trigonometric polyno-
mial. The following lemma, whose proof is delayed to Appen-
dix B, gives an explicit expression of the polynomial Qv (t)
in terms of the parameters A, 6 and the polynomial K ().
Lemma 9: Suppose that g has at least four non-zero coef-
ficients, then for all A € (0,1] and all 6 € [0, 7], Qv can be
decomposed as

Qv (t) = cos (g) RA(t) +isin (g) Sa(t), VteT,
(28)

2 .
ezQTrkt ; (27)

n

>

k=—n

where Ra and Sa are respectively the even and odd real
trigonometric polynomials, independent of 6, given by

Cr(A)RA(t) =

(—K"(0) + K"(A)) <K(t - %) + K(t+ %))

+ K'(A) (K’(t - %) - K'(t+ %)) , (29a)
Cs(A)Sa(t) =
(K" - K@) (Kl - 5) = K+ 5))
— K'(A) (K’(t — %) + K'(t + %)) : (29b)

where the quantities Cr(A) > 0 and Cg(A) > 0 are positive
and for all A € (0, 3] and given as
Cr(A) = (K"(0) + K"(A)) (K(0) + K(A)) = K'(A)?
(30a)
Cs(A) = (=K"(0) = K"(A)) (K(0) - K(A)) - K'(A)%.
(30b)
Next, we demonstrate in Lemma 10 the uniform conver-
gence of K towards the auto-correlation function x.

Lemma 10 (Uniform Convergence of K ): Under the hypoth-
esis of Theorem 6, the equality

e+1
(%) K© (t) — k@ <%>‘ =0, @3

holds for £ =0, 1,2, 3.

lim sup
N—oo e

7245

The proof of the above is presented in Appendix C. By
(H1) and (H2), the Fourier transform G of the PSF g is non-
zero on a non-empty open interval I C R. By (H2), G is
band-limited within B, and one must have I C (—B/2, B/2).

It comes that if N > [%ﬂ s
{kB/N} <, will fall into I, and the vector g has at least
four non-zero coefficients. Lemma 10 can be applied to the
expression of QQy (28) to get the existence of a function Qy

verifying the convergence

B\* Nt
Baro-ar(G)-e o

for £ = 0,1,2. Moreover, defining 5 = NA/B, the limit
function Qy writes as

at least four elements of the form

lim sup
N—oo e

0 0
Qy (1) = cos <§> rg(T) + isin <§> sg(T), VT eR.
(33)
The intermediate real functions rg,sg in the above expres-
sion are even and respectively, given by the limits of

Rpg/n(BT/N) and Spg/n(BT/N), so that

Cr(B)rp(r) = (=" (0) + £"(B)) us(7) + ' (B)vs(7),

(34a)

Cs(B)sp(1) = (=K"(0) — &"(B)) va(T) — K'(B)ug(T),
(34b)
where the function wug,vg are defined in (18), and

C(0),Cs(B) are positive quantities given by

Cr(B) = (—=£"(0) + &"(B)) (x(0) + k() — &'(8)* >0,
(35a)

Cs(B) = (=r"(0) = &"(8)) (5(0) = K(B)) — K (8)* > 0.
(35b)

We highlight that the compositions (28) and (33) indicate
that both Qv (t) and Qy (7) are Hermitian: Qv (t) = Qv (—t)

forall t € T and Qv (1) = Qy (—7) for all 7 € R. Suppose
that the limit function Qy  verifies the conditions

(2) <0

|Qv(T)| <1, Vr€ IR{JF\{g}.

d?|Qv|
dr?

(36a)

(36b)

It follows from the uniform convergence (32) of @)y towards
Q (Nt/B), and the Hermitian symmetry of Qv and Qy that
there must exist an integer Ny so that for all N > Ny, Qv
verifies (13c) and (16).

Therefore, using the results of Section IV-B, if Qy ver-
ifies (65), then u, (A, #) verifies the non-degenerate source
condition with respect to the measurement operator ®, when-

ever N > Ny £ max { [‘%—I ,ZVO}.
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D. Non-Degeneracy of (A, 0)

It remains to derive sufficient conditions under which the
limit function Qy  satisfies (65) to conclude on the desired
result. First of all, it comes immediately from (28) that

Qur) = eos? (5 ) Inor)? -+ sn (5 ) o), 37

holds for any 7 € R.

We start by discussing the condition (36b). From (37), it is
clear that (36b) is verified for every ¢ in [0, 7] if and only if
|r3(T)| < 1 and |sg(7)| < 1 for all 7 in RT\ {3/2}. Those
last inequalities can be equivalently interpreted in terms of the
functions 73(7), sg(7) introduced in (21) from the identity

73(7) = Cr(B)ra(7) and 5(1) = Cs(1)sa(r) for all T € R,
as we have that
ra(r)l < 1= DLy
C.(B)
|5(7)|

[sg(T)] <1< <1

Cs(B)

Hence, the condition (36b) is equivalent to
69 - ()| >0, wrern {51
C(®) - Fp()| >0, vrerA\ {51,

From the definitions (21) and (35), one has C,(3) = rg(g)
and Cs(8) = §5(§) Leveraging the hypothesis § =
NA/B > max{v},75} /B, the functions C,(5) — |73(7)|
and Cs(B) — |sg(7)| are non-negative and can reach 0 only
for 7 = (/2. Hence (38) and subsequently (36b) are both
verified under the hypothesis of Theorem 6.

It remains to show that Qy satisfies (36a). We recall that
the second derivative of the modulus of a function ¢ = gr +
iqr, where qg, qr are its real and imaginary part, respectively,
reads (see e.g. [36])

(38a)

(38b)

Clal () _ (@D s (1) +ar (1) ¢t (1)
dr? ) ja (7)[°
QIO OGO ta@g 0
Iq( )l
Evaluating the above at 7 = g for the function Qv leads to
T (319
= 008(9/2 5 (8/2) +sin (0/2) 575 (3/2)

2

\./\./

= (-7 +#"(®) - (B)R"(8))
(Cr ()" cos (6/2) + Co(8) " sin (0/2))

which is strictly negative for every 6 € [0, 7] by the hypothesis
8=NA/B >~3/B.

As a result, under the hypothesis of Theorem 6, if A =
BB/N > ~*/N with v* = max{~},75,7%}, there exists
Ny € N such that for every N > Ny the canonical measure
1+ (A, 0) will verify the non-degenerate source condition as
in Def. 4 for the sampling operator ®, for every 6 € [0, ].

(40)
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We conclude on the desired statement by an application of
Theorem 5. u

V. EXTENSION TO MULTIPLE POINT SOURCES

The stable resolution limit presented in Section III only
applies to the simple case when only two point sources are
present. In this section, we show that the same resolution limit
continues to govern the support stability in a multi-source
setting including two close-located sources and other well-
separated sources.

We consider an extension of the normalized measure Lo
in (3) composing S point sources at locations 7 = {4 }S 1 C

T, given as
S
t) = cd(t —to),
s=1

where {cs € (C} _, are non-zero complex amplitudes. Simi-
larly, we can extend the notion of support stability, defined
in Def. 1 to include more spikes. Without loss of generality,
we assume that ¢; and ¢, are closely located, while the
other sources are well-separated from each other. Theorem 11
establishes that the support stability of the Beurling-LASSO
estimator can be ensured under the same separation condition
between the two close sources as that of Theorem 6, depending
only on the characteristics of the PSF.

Theorem 11 (Extension to Multiple Point Sources): Suppose
that the PSF ¢ satisfies the regularity conditions (H1)-(H4) of
Theorem 6. Let S > 3 be a constant that does not grow with
N, and the support set 7 = {ts}f:1 of . verifies

(41)

A = |t2 — t1|T > ’y*/N, (4221)
[ts — ts|lp = w(1/N), for s # s" and {s,s'} # {1,2},
(42b)

where ~* is the constant defined in the statement of Theorem 6.
Then there exists Ny € N such that, for every N > Ny
and every measure p, of the form (41) satisfying (42),
there exists o > 0 such that the Beurling-LASSO estimator
fx (@g (14+) +w) with the regularization parameter A =
a1 ||wl|, is support stable.

The proof of this theorem is given in Appendix D. Similar
to the proof of Theorem 6 outlined in Section IV, it relies on
the characterization of the non-degenerate source condition
presented in [6]. More precisely, we show that, under the
assumptions of Theorem 11, the minimal vanishing derivative
polynomial associated to the measure pu, with S sources as
in (41) has the same asymptotic behavior as the sum of
the polynomial associated with the measure with two close
spikes, whose properties were studied in Section IV, and the
polynomials associated with each well-separated single spike.

We compare in Fig. 4 the theoretical threshold v* provided
by Theorem 11 with the empirical success rate of the Beurling-
LASSO estimator to output a measure i with S spikes given
a ground truth p, of the form (41), for different values of
the separation parameter A and for different PSF ¢(7). In the
experiments, we set |ty —ts|; = 5/N as a separation for
the well-separated spikes, where s # s’ and {s, s’} # {1,2}.
The amplitude of the colliding spikes c;, co are chosen with
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Fig. 4. Empirical success rate for the Beurling-LASSO estimator to return a measure with .S point sources, for three different point spread functions, under
additive white Gaussian noise, as a function of the separation parameter NA. The support stability threshold v* predicted by Theorem 11 is shown in a
black dashed line. Here, we set N = 101, SNR = 60dB and |tys — ts|p = 5/N as a separation for the well separated spikes s # s” and {s, s’} # {1,2}.

The results are averaged over 200 trials.

opposite signs ¢; = 1, co = —1, while the amplitudes of the
well-separated ones {cs}5_5 are drawn uniformly at random
over the complex unit circle.

VI. CONCLUSIONS

This paper studies the support stability of the Beurling-
LASSO estimator for estimating two closely located point
sources, possibly in the presence of a finite number of well-
separated point sources, and characterizes the resolution limit
as a function of the PSF, above which the Beurling-LASSO
estimator is support stable. Our result highlights and quantifies
the role of PSF in noisy super resolution, which is not evident
in the study of the noiseless setting. Our analysis is based on
verifying the non-degenerate source conditions put forth in [6].
We believe it is possible to develop similar stable resolution
limits in higher dimensions [2], [37], by carefully generalizing
the arguments in our paper, which is left for the future work.
Finally, it will be interesting to study how the availability of
multiple snapshots impact the stable resolution limit [38].

APPENDIX A
PROOF OF LEMMA 7

We restrict the proof to showing the translation invariance
of the non-degenerate source condition. The scaling and time-
reversal invariances can be demonstrated by following an
analogous reasoning.

Consider a measure 1(t) = c16(t — t1.1) + c20(t — t1,2)
for all t € T, and let

/Lg(t) = /Ll(t — to) = 015(t — t2’1) + 025(t — t272),

for some ty € T with to1 = t11 — 1o and too = t12 — to.
Moreover, let «; = ®4(u;) for j = 1,2, and consider an
element p; within the feasible set of (14). For any to € T,
we let ps = a(—tp) © pi1. Since p; € Do(x1) by hypothesis,
we have that

194" (P2)l

sup |a(t)" diag(g)p2|
teT

= sup |a(t)* diag(g) (a(—to) © p1)|
teT

= sup|a(t +to)" diag(g)p1|
teT

= sup|a(t)” diag(g)p:]
teT

= |25 Pl < 1. (43)

It comes that ps also lies in the feasible set of (14). Moreover,
from the definition (5) of the sampling operator ®,, we have
that

Ty = Og(p2) = Py (11(- — t0)) = a(—to) © 1.

Evaluating the cost function of (14) for p, yields

(2, p2)g = (a(—to) © x1,a(—ty) © p1)g = (T1,P1)p -

This implies that pa € Dy(x2) is a solution of (14) with an
input @, if and only if pa € Dy(x1) is a solution of (14)
with an input @;. Further noticing that ||p2ll, = |[|p1ll,»
we conclude that the minimal norm elements P1 min, P2 min
of the sets Dy(x1), Do(x2), respectively, are linked by the
relation

P2,min = @(—1t0) © P1,min-
Now, suppose that p; verifies the non-degenerate condition
with respect to ®,4, and define the trigonometric polynomials

Qjmin(t) = a(t)* diag(g)P; min. for j = 1,2. By Def. 4,
we have that for any ¢t € T

Q2,min(t — to)

a(t - tO)* diag(g)ﬁZmin
a(t —to)" diag(g) (a(—to) © P1,min)
(I(t)* diag(g)ﬁl,min = Q17[nin(t). (44)

Therefore @g,min(tls) = @Q,min(tm) =sgn(cy) for s =1,2,
and |@2,min(t)| < 1 for all t € T\ {t2,1,%2,2}. Consequently
@g,min(t) verifies conditions (13). A similar reasoning also
yields

d2
de?

d2

Amints = 75
|@oamin (t2.0)| = =

‘@l,min (tl,s)

<0, s=1,2,

and @gmm(t) verifies (16). We conclude that po verifies the
non-degenerate source condition of the sampling operator ®,
completing the proof of the translation invariance. [ ]
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APPENDIX B
PROOF OF LEMMA 9

We derive the expression of the polynomial Qv (t) =

a(t)* diag(g)py. By the orthogonal projection theorem,
the solution py of the quadratic program (26) belongs to the
subspace

o < oun o (2) o (-2),
st (2) oo (~2)).

Recalling that qy = diag(g)pv, it yields

. A ) A
av € span {ailg*)a (5 ) dins(laPa (-5 )

(e (5 ) anetioa (-3 )}

where, with a slight abuse of notation, the operator | - |2 is
interpreted element-wise. Remarkably, denoting by K (t) =

Sr__lgk)® €2, we have that, for every t,¢' € T.
a ()" diag(|g|*)a Z |gi[* 2™ = K (1 — 1)
k=—n
a (t)" ding(gl2)a (1) = —2mi 3 Klgyf? 20—
k=—n
= —K'(t-1).

Therefore the polynomial Qv (t) = a(t)*qy lies in the span of
the translations of the auto-correlation K (t) and its derivative
K'(t) at the spike locations {—A/2; A/2}. Introducing a
change of basis for the purpose of convenience, the polynomial
Qv (t) writes for all ¢t € T as

Qvt)= agr <K(t - %) + K(t+ 5))
A

- Br <K’(t - %) - K'(t+

2
A
) K(t+ 5))

+iag (K(t— 5

A A
—ifs (K’(t —5) K+ 5)) ;o (45)
for some coefficients {a g, fr, @s, s} C C, which are fully

determined by the four interpolation constraints of (26), that
can be reinterpreted as

(v rovi-) —os(3), e
; (Q ) - (-5) ) (46b)
- (QV(A v(-5) ) - ( ) (46¢)
- (Q’v(ﬁ FQU-5) ) - (46d)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

The linear system (46) can be reformulated in terms of the
4 x 4 block diagonal system

QR cos (g)
[]%R ]\23} ff; - sino(g) ’ 47)
Bs 0
where each of the diagonal blocks can be decomposed as
Mp = [K(O) ;’— K(A) " K,(A) " :|
K'(A) —K"(0)+ K"(A)
= Aj diag(g)” diag(g) Ar, (48a)
-K'(4A)  —K"(0) - K"(A)
= A diag(g)" diag(g)As (48b)

Here, the intermediate matrices Ar, Ag € CV*2 are given
by
Ap=2""[a(3) +a(-3) a()-a(-2)].
As =27"[a(3) —a(-%) a(3)+a(-9)].
Using the invertibility properties of Vandermonde matrices,
it can be verified that the matrix [Agr, Ag] and all its sub-
matrices of size 4 x 4 are of the maximal rank whenever
0 <AL % Consequently, if g has four or more non-zero
entries, the matrices diag(g)Ar and diag(g)Ag are also of
the maximal rank whenever 0 < A < % We conclude, using
the decomposition on the right-hand-side of (48), that the
matrices Mp, Mg are positive definite Hermitian matrices,
and that the linear system (47) has a unique solution. Solving

this system leads to the desired expression of )y, where we
let Cr = det(Mp) > 0 and C'g = det(Myg) > 0. [ |

a(—

APPENDIX C
PROOF OF LEMMA 10

Let by k = K(g) € Lo the autocorrelation of g. We start
by recalling that, by the Wiener-Khinchin theorem, F(x) =
|G(-)|* € Lo. It comes by (H2) and (H3) that the function f —
(i2m f)* F(k)(f) is also band-limited within B and bounded
for any ¢ € N. Therefore it is absolutely integrable over R for
any ¢ € N. We conclude that x possesses derivatives of all
orders and that

F(EO): e @2nf) F(r)(f),

Fix an odd integer N = 2n + 1. Using the definition (27)
of K, we have for ¢ = 0,1, 2,3 that
Bk |?
G (W) e

() wr0-2 £ ()
2

%k%@w%) G<%)
(20 (F ) 0. 6o

where we used the fact that G(2£) = 0 for all |k| > n + 1
by the hypothesis (H2) in the second equality, and identified

V¢ € N.

2wkt

ezQﬂ'kt

I
7]
\ﬁ
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the expression with the Fourier transform of the derivatives
of x in the last equality. Hence, the series in the last equality
converges absolutely and uniformly in ¢ as it has finitely many
non-zero terms. Moreover the series

> k" ( t+k))—/@(£)( )+§Zrﬂ>( t+k;)>

kez
k#£0
(50)

converges uniformly for ¢ = 0,1,2,3 as s is bounded

and by the hypothesis (H4). Applying the Poisson summation
formula between the right-hand-side of (49) and the left-hand-

side of (50) yields
(5)" w0 (e o))
(51

kEZ
( (t+ k))

>
kEZ

Substracting the term of index O in (51), taking the absolute

value and the supremum over ¢ on both sides of the equality

yields
41
BY k@ @y o (N
N B

= sup Zm

teT

sup
teT

(Fa+n)].

keZ
k0
We conclude on the desired statement by setting the limit N —
oo and using Assumption (H4). [ ]
APPENDIX D

PROOF OF THEOREM 11

Similarly to the proof given in Section IV, we leverage the
invariance of the non-degenerate source condition (proved in
Lemma 7) defined in [6] and may restrict, without loss of
generality, the analysis to measures u, with support 7 =
{t1,...,ts} of the form

o =eTE (= A)2) + B0 (E+A)2) + > bt — 1),
s>3

(52)

where we impose ¢ = A/2 and t; = —A/2 for some A > 0,
and ¢; = e~ and ¢, = €% for some 0 € [0, 7). The minimal
norm vanishing derivative polynomial @)y associated to the
measure i, in (52) is given by Qv (t) = a(t)* diag(g)pv,
where py € CV is defined as the solution of the quadratic
program

py =argmin ||p|,

peCN
subjectto a (ts)* diag(g)p = sgn(cs),
a(ts)" diag(g)p=0, s=1,...,5 (53)

7249

Invoking from [6] a generalization of Lemma 8 to the case of
measures with an arbitrary number S of point sources, it is
sufficient to show that )y (¢) verifies the conditions

Qvt) <1, Vt¢T,

vl <o

for a large enough A for any N > Ny to conclude on the
support stability of the Beurling-LASSO estimator for any
measure (i, satisfying (42).

To proceed, we study, as in the proof of Theorem 6,
the asymptotic behavior of the polynomial Qv (t) when N —
0o. Define for any s = 1,...,5, the subspace E, C CV as

E, = span {diag(g)a(ts),diag(g)a(ts)}, (55)

and denote by F' = E; + E5 the sum of the two subspaces
associated with the two close point sources ¢; and 5. It is
clear, from an orthogonality projection argument, that py €
F+ ES 3 Es. Let pr € I' be the solution of the quadratic
program (26) associated with the two close point sources t;
and ?o. Similarly, for any s > 3 denote by pgp, € E; the
unique solution of the quadratic program

(54a)

s=1,...,5, (54b)

pes =argmin p|,
peCN

subjectto a (ts)* diag(g)p = sgn(cs),

a(ts)" diag(g)p = 0, (56)
which is equal to
P, = Siﬁ((g;) diag(g)alt) 7

for all s = 3 ,S. We wish to show that py converges
to pr + Z 73 PE, in the limit of NV to get the asymptotic
properties of Qv (t). To that end, we define the matrix Ap, €
CN*2fors=1,...,5 as

Ap, = |diag(g)a(ts)/\/K(0),diag(g)a(ts)/+/| K" (0 }

It is immediate that the columns of A g, form an orthonormal
basis of Es. Let Ap € CVN** and A € CVN*25 be the
concatenations

Ap = PAEN‘4EA’

A= [AFvAE:w"'vAES] = [AEUAEszE:w"'vAEs]a

and w = [sgn(c1),0,sgn(cz),0,...sgn(cs),0]T € C25,
By the orthogonal projection theorem, we have that

K(0) 2 Ap (AjAp) " [sgn(er), 0,sgn(c2), 0],

Pr =

(582)
pr.=K(0)? Ap, (A5, Ap,)  [sen(c,),0]T, s=3,...5,
(58b)
py =K(0) 2A(A*A) w. (58¢)

Moreover, denote by G' € C2%*29 the matrix

ALAp 0 - 0

| O Ay Ap, -0 |
0 0 Ay Ap,
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then (58) implies that
s

pv —Pr — ZPES
s=3

= K(0)"/2A ((A*A)’l - G—l) w.
(59

Next, we show that the difference (A*A)~' — G~ is small
in norm when N — oo. To proceed, we start by noticing that

0 AL AR, ARAE,
wa_go |ABAR O At A,
Ap Ap A Ap, 0
Denote by ||M]||, .. = max;;|m; ;| the max-norm of M,

which is the maximum of the absolute values of the entries
m;; of M. A direct calculation establishes that each off-
diagonal block of A*A — G verifies for any s,s' > 3
with s # s’

|K'(ts = A/2)]|

sllmax —

ax{ K(t, +A/2) ‘

K(0) [K(0)K"(0)]
K"(ts + A/2)
| K@)‘} (o0
* — max K(ts_tS’) |K/(ts _ts/)|
HAES/ AES max o { K(O) |K(O)K”(O)| ,

K"(ts —tg)
K//(O)

} . (60b)

Taking the limit N — oo in (60a) yields
li A7
Ngnoo H F

s llmax

HWMBrmw

lim max
N —o00

K(0)
' (Nts/B £ v/2)| |K"(Nty/B £~/2) } }
[k(0)&"(0)] K" (0)
= max im @
- {Jmn@’
K'(T) lim K" (T)
Irl—00 | /J(0)&" (0)] | 17100 | £”(0)

:07

where the first equality comes from Lemma 10, the sec-
ond equality from the assumption (42) which implies
INts/B+~v/2] — oo, s = 3,...,5, when N — oo,
and the last equality holds under assumptions (H2) and
(H3) by the application of the Riemann-Lebesgue lemma
on the integrable functions F {x)} (f) = (i2nf)* |G(f)|,
¢ = 0,1,2. An analogous reasoning on (60b) leads to
My oo A*ES/AES‘ =0, for all 5,8 > 3 and s # s'.
We conclude that e

lim A"A -G 61)

max
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Next, by Lemma 10, the matrix G admits an invertible
limit, and we denote G = limy_.», G. By continuity of the
inversion M — M~' at G, we have limy_..o G 1 =G

Moreover, from (61) we have

A - GHmax
< lim (JA"A-G]|
N—o0

N—o00

+||G -G 0,

max Il’l‘EX)

implying by continuity that limy_.. (A*A)"! = G ' Let

by ||-||, and ||| the spectral norm and the Frobenius norm
of a matrix, respectively. We have by the previous arguments
that

hm H A*A G_1H

2
% o (a1
N—oo 2 2

since S is finite and does not grow with V. This, together
with (59), yields

pPv —PFr — XS:PES
s=3 2

=Ko A (@™ -6 u,
SK@*mmukm> -7l
- aea e,
< 2S <ﬂ JrO(N)>1/2 H(A*A)fl _ GﬂH
>~ B 2
<o(N~Y%), N — oo, (62)

where the third line follows from |jw||, = v/S and ||A||p =
\/ﬁ, and the fourth line follows from Lemma 10.

Denote by Qr(t) and Qg,(t) for any s > 3 the trigono-
metric polynomials

Qr(t) = a(t)” diag(g)pr,

* 1 — Sgn(cs)
t)=a(t)"d = K(t—t,),
Qp. (1) = a(t)" ding(@pr, = e K (1 —12)
forany t € T and s = 3,...,S. We are now ready to derive
the asymptotic behavior of Qv (¢). First of all, for £ = 0,1,2,
we have that

14 14 4
sup [QY (1) — Q5 (1) }j@”
teT
S
= sup |a')(t)" diag(g) (pv —pr — ZPES> ‘
teT 5—3
< sup Hdiag(g)a“) |, |[pv —pr=>_p,
teT pore )
< |lg supHa“) t H pv —pr— Y Pg,
gl sup [0 Soe|
n
= lgllo @m* | > k*|lpv —pr - pn.
k=—n s=3 2
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1 1 ()
< gl 0 (N*¥) o (N7H) =t [T <0 @
T|— R
<o(NY), N oo (63) 7o
where we used the separation assumption and the
where we used in the last inequality assumption (H3) to bound Riemann-Lebesgue lemma on the integrable functions
B\ " FO(k), £=0,1,2, in (67). This leads to
= G| — < G .
Is1le max{‘ (N)‘}k a1 E]l s . d?|Qv| (Nt d*|Qr| (Nt
" 2072 lim =) = =] <0
) N—oo dr2 B dr? B
Next, we denote by Qy (7) the function
S by (66), and by going to the limit N — oo 1n the
. expression (39), and invoking the derivations on d* |QV|
Q(r) = Qr(r)+ Z Or.(7), VT ER, presented in Section IV-B under the separation condl-
_ ) . . tion (42).
where Qp(7) is the function given in (33) and Qp, (1) = o If s, =3,...,5, a similar reasoning yields that for any
%K(T ML) for any s > 3. It follows that (=0,1,2and any s =3,...,S
¢ 0 (N —
B\ o (Nt (Nts* )‘ .| O (S (s, —ts))
sup (N) Qv t)-Qv | 3 i Q) B N #(0)
¢ )
_ B oo ® T LG
= sup (N) V() = ( ) Z Qp oo | R(0) | T
. Nt . £)
¢ S lim Q(Z) (—*) = lim ‘Q( T ‘ =0.
tet 5=3 We analogously obtain that
B\" o (Nt )
() QP - o (F) L @lov] (Nt ) &|0p, | (Nt
tet N—oo dr2 B ) dr? B
S "
%) Nt) K (0)
+ su — Q — = < 0.
sz;teﬂl?( ) 5= E(B #(0)
<o(l), N — oo, (64) Finally, to show that (65b) holds, for any ¢t € T\ {¢},

we denote by s, the index of the closest point source in the

where the first inequality follows from the triangle inequality, (opce of the wrap-around distance

and the second inequality follows from the fact that each term

in the line above is controlled by (63) and (32) and Lemma 10, ts, = 71{1111 [t — ts|r.
respectively. ’
With (64) in place, similarly to the proof presented in Here again, we distinguish two cases:
Section IV, we argue that the non-degenerate source condition o If s, = 1,2, we have for any s = 3,...,S that
is verified for any N > N for Ny sufficiently large if the limit N
function Qy (7) meets the conditions hm ‘ O, ( M) ~ lim K (E(f — ts))
2|0y [ Nt N=ee| o (0)
lim 24 ( > <0, s=1,...,5, (652) K(7)
N—oco dT B = lim |—<%| = O7 (683.)
Nt | 7| =00 H(O)
lim |Qy < > <1, Vté&{ts}. (65b) Nt
N—oo Nlim ‘QF (—) <1, (68b)

In order to verify (65), we start by noticing that for any 7 € R
and £ =0,1,2, where we used the Riemann-Lebesgue Lemma on F (k)

in (68a), and by invoking the derivations on Qp of
Section IV-B under the separation condition (42) in (68b).

s
(é) () . (0)
hm ‘Q ‘< fim ‘Q ‘+§_:31\}gnw‘QEs(7)‘. o If s, =3,...5, wehave forany s = 3,...,S5 and s # s*

(66) Nt Kt —ts
lim ‘QE (—) ‘ = lim M
The condition (65a) can be verified by picking N—eo N—oo #(0)
ts, € {t1,...,ts} and distinguishing two cases: . K(T)
= lim |—=| =0, (69a)
e If s, = 1,2, and we have that for £ = 0,1,2 and for |7|—oo | £(0)
s=3,...5 that . Nt ' H(%(t ts*))
lim |Qp, | —= || = lim | ———~| <1,
N, RO (3 (k. — 1) N | TP B )| T T w(0)
Q —= || = lim EA
N—»oo B N —o0 H(O) (69b)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 21,2020 at 23:41:00 UTC from IEEE Xplore. Restrictions apply.



7252

lim |Qp ()] = 0.

|7]—00

N
o ()

Summing all the terms in both cases, and invoking (66)
concludes on (65b).

In conclusion, under the conditions of Theorem 11, there
must exists Ny € N such that the polynomial Qy (7) verifies
the conditions (54). We conclude that the measure i, verifies
the non-degenerate source condition, implying the support
stability of the Beurling-LASSO estimator. [ |
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