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Abstract—This paper concerns the task of generating simpler
yet accurate mmWave channel models based on clustering all
multipath components arriving at the receiver. Our work focuses
on 28 GHz communications in urban outdoor scenarios simulated
with a ray-tracer tool. We investigate the effectiveness of k-
means and k-power-means clustering algorithms in predicting
the optimal number of clusters by using cluster validity indices
(CVIs) and score fusion techniques. Our results show how the
joint use of these techniques generate accurate approximation of
the mmWave large-scale and small-scale channel models, greatly
simplifying the complexity of analyzing large amount of rays at
any receiver location.

Index Terms—mmWave, channel propagation models, cluster-
ing algorithms, cluster validity indices

I. INTRODUCTION

One of the many disruptive technologies of future 5G wire-
less standards is represented by millimeter-wave (mmWave)
communications in the 30–300 GHz band. Despite the fact that
mmWave provides the high-speed data transfers and ubiquitous
connectivity with very low latency responses, transmissions at
these frequencies suffer from high propagation loss, sensitivity
to blockage, atmospheric attenuation and diffraction loss.
Solving these problems starts with a clear understanding of
the radio channel propagation models in the mmWave band,
which can be obtained by extensive experimental measure-
ments (via steerable antennas and channel sounders) or via
software ray-tracing simulations.

In this paper we are concerned with the task of generating
simpler yet accurate mmWave radio channel models by using
the ray tracing method. As a first task, we investigate the
role of clustering algorithms in grouping the large amount
of rays arriving at the receiver site. We observe that a clever
use of clustering greatly simplifies ray-based channel analysis
without loosing necessary accuracy. We use two variants
of the well known k-means clustering algorithm in which
the Euclidean distance metric is replaced with the multipath
component distance (MCD). The result is a multi-dimensional
space created by the channel parameters—Time-of-Arrival
(ToA), azimuth and elevation of the Angle-of-Arrival (AoA)
and Angle-of-Departure (AoD)—that define the multipath
components (MPCs) received at each location. The clustering
algorithms take this space as input, and group all MPCs in
various clusters. To quantify the goodness of their solution, we

use cluster validity indices (CVIs) and score fusion techniques.
In the end, we combine all CVIs in an ensemble, to obtain a
better predictor of clustering quality comparing with the one
provided by each CVI taken separately.

Our simulations concern a mmWave urban outdoor scenario
with multiple receiver locations. Scenario and simulations are
generated and performed with a professional software ray-
tracer tool, namely, Wireless InSite by Remcom. MATLAB
code is used to implement the clustering algorithms applied to
the estimated channel parameters as well as for the validation
of their results. Finally, we process the inter- and intra-cluster
parameters that describe the clusters and the rays in each
cluster, and we investigate the effect of the two clustering
solutions on the generation of channel propagation models.
We find that the statistics extracted from the clustered solution
represent an accurate approximation of the values estimated
by the ray tracer without clustering. Thus, the large-scale and
small-scale channel models that we generate could be used by
a wireless network architect to get a first order of magnitude
estimate of both path loss and root mean square (RMS) delay
spread, to forecast network coverage and maximum data rate
in the channel without using a ray-tracer or measuring channel
parameters with expensive dedicated hardware.

The rest of the paper is organized as follows. Section II
reviews briefly clustering concepts and validation techniques
used in our research, and provides links for their full descrip-
tion. Section III introduces the outdoor scenario, and presents
the results of the two variants of the k-means algorithm, the
validation of their results and the effect of the clustering
solutions to channel modeling. Section IV concludes the paper.

II. CLUSTERING AND VALIDATION TECHNIQUES

Transmissions in radio channels are characterized by large
scale effects (e.g., path loss, shadowing loss) and small-scale
effects (e.g., fading loss). One way to model small-scale fading
is through multipath components with randomly distributed
amplitudes, phases and angles-of-arrival (AoA) that combine
at the receiver causing the received signal to distort or fade.
The other factor that influences the small-scale propagation
channel model is the Doppler spread due to the mobility
and speed of transmitter (Tx) and receiver (Rx) (such as in
cars, on people and on other moving objects). To evaluate
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channel time-dispersive properties, the RMS delay spread of
the received rays is considered a good indicator as it provides a
measure of the severity of Inter Symbol Interference (ISI). This
translates to more complicated schemes for symbol recovery
at the receiver and in limitations of the maximum achievable
channel data rate. As a rule of thumb, an RMS delay spread
ten times smaller than the transmitted symbol time period
guarantees no requirement for an ISI equalizer at the receiver.

In this paper, we are concerned with the multipath problem
and with the analysis of sorting and grouping the rays received
from multiple paths into clusters. We use well known center-
based clustering algorithms that partition input data around
few centroids or central points [1]. Among the most common
algorithms in this class, k-means [2] and one of its variants, k-
power-means, are used in many studies [3], [4], [5], [6]. For the
cluster definition for mmWave MPCs and for the description
of the clustering process using k-means and k-power-means
with the multipath component distance (MCD) metric [7], the
reader is referred to one of our previous papers [8].

Clustering as an unsupervised pattern classification method
partitions the elements in a data set into clusters by identifying
similar values of the parameters that characterize them. In
our case, these elements are the arriving MPCs at each
receiver point. They are characterized by various radio channel
parameters (e.g., power levels, ToA, AoA, AoD) with different
values from one MPC to another.

The next step in the clustering process, once the algorithm
has partitioned the input data set, is to prove the accuracy
of the result. For details about the types of cluster validation
and of the methods that we implement in our research, we
direct the reader to reference [8]. In this study, we pursue
internal validation methods by applying the following Cluster
Validity Indices (CVIs): Calinski-Harabasz (CH) [9], Davies-
Bouldin (DB) [10], generalized Dunn (GD) [11], [12], Xie-
Benie (XB) [13] and PBM [14]. Their formulas and the way
they measure the cluster size and the cluster separation are
described in [8]. As we explained there, each CVI might cap-
ture only specific aspects of the clustering solution (i.e., some
clusters might not be considered compact just because they
have an elongated shape). Therefore, we decide to combine
all CVIs in an ensemble [15] that provides a more accurate
prediction of the clustering quality than any individual CVI.
These are the score fusion-based techniques where the SFx
scores are defined by the arithmetic, geometric and harmonic
mean of the five CVIs [8].

III. SIMULATION RESULTS

This section describes our ray-tracer simulations and the
results of the clustering algorithms applied to the channel para-
meters estimated with this tool. It also provides the findings on
the optimal number K of clusters when we implement both
the CVIs and the score fusion techniques mentioned in the
previous section. For further details and motivations, the reader
is referred to [8]. A wider mmWave spectrum below 100 GHz
is analyzed in one of our papers [16]. In the present work, we
simulate only 28 GHz communications in an urban scenario

(Rosslyn, VA) delivered with the ray-tracing tool (Fig. 1). The
transmitter (Tx) is located at a fixed site on a traffic light pole
(the green dot) while the receiver (Rx) is in a car that can
be at any location marked with a red dot in this picture. The
full details of the setup and the way we orient the antennas to
receive the transmitted signals are described in [8].

Fig. 1. 44 MPCs at receiver Rx#9.

A. Clustering algorithm results

This section provides the clustering results of the two
variants of the k-means algorithm. 44 MPCs are received at
receiver Rx#9 on a side street in our urban scenario (Fig. 1).
Each MPC is characterized by a power level, AoA, AoD,
and a certain excess delay (ToA). For this one-time channel
realization, the real part of the complex impulse response
(CIR) shows (in different colors) the received power levels and
ToA of all clustered MPCs (Fig. 2). A star marks the average
power value of each cluster and its average ToA. These values
are calculated using the channel parameters of the MPCs in
each cluster. The clustering algorithm is k-means with MCD.
The 3D results (Fig. 3) show the effect of capturing all five
parameters of the MPCs (azimuth & elevation for AoA and
AoD, and excess delay) in the clustering process. They allow
for a better partition because they correlate the temporal and
spatial characteristics of the radio channel.

Using k-power-means with MCD as another clustering
option, we obtain different clustered CIR (Fig. 4) and ToA
vs. AoA/AoD (Fig. 5) pictures. The average values of the Rx
power and ToA in each cluster (marked with a star in Fig. 4)
are very close to each other, even though the MPCs in each
cluster are dispersed in time. The 5-dimensional space used for
clustering (Fig. 2) is now biased by the received power (Fig. 4),
showing that grouping rays around the strongest MPCs is the
factor that reduces the number of clusters.

B. CVIs and score fusion results

The results of the clustering process are validated and the
optimal K value is found by applying the CVIs mentioned
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Fig. 2. Clustered CIR at Rx#9 based on k-means with MCD.

Fig. 3. Clustering via k-means algorithm—ToA vs. AoA, AoD.

Fig. 4. Clustered CIR at Rx#9 based on k-power-means with MCD.

Fig. 5. Clustering via k-power-means algorithm—ToA vs. AoA, AoD.

in Section II. In our scenario, receiver Rx#9 is placed on a

side street at approximately 150 m (Euclidean distance) from
the transmitter (Fig. 1). The simulation shows only 44 MPCs
reaching this receiver. If we estimate 3 rays per cluster, then
all MPCs can be grouped in maximum 15 clusters. This guess
is always required, to set the initial K input of the clustering
algorithm; in our case, the range is [2, 15].

As mentioned, not all CVIs are able to find the optimal
K value. When the k-means algorithm is used, indices CH,
DB and GD cannot find this number correctly, whereas XB
and PBM point to an optimal number of clusters of 6 and
5, respectively. Using the ensemble predictor, we plug the
normalized and biased CVI values obtained for Rx#9 (for each
input value K) into the score fusion formulas described in [8].
Unfortunately, we cannot predict K using only the maximum
value of the CVIs because not all CVIs agree with each other.
However, if we use score fusion methods, the SFg and SFh
scores based on geometric and harmonic mean agree on this
value (i.e., K = 8 clusters). Moreover, the average of the
three scores points to the same value for K. We repeat this
study for all 14 receivers installed on the street where Rx#9 is
placed. The results show an agreement among the three score
fusion values regarding the optimal K value for most of the
receivers, except Rx#8, Rx#9, Rx#10 and Rx#14 for which
only two scores agree on the same K.

As the second clustering algorithm in our analysis, we use
the k-power-means variant. The distance metric and the local
and global centroids used in the CVI formulas are all weighted
by the power of each MPC. The same five CVIs and three
score fusion factors are used to validate the clustering results
when the same set of MPCs (at Rx#9) is clustered. Now, the
optimal K number is 2. We repeat the study for all 14 receivers
located on that street. This time, for each receiver on the street,
all three score fusion values report the same optimal K.

C. Cluster-based channel modeling

Channel model analysis implies a large-scale channel
model, which is an indication of the received power attenuation
with distance, including path loss and shadowing, and a
small-scale channel model, which is related to environment
(e.g., power decay rate, path arrival rate, RMS delay spread
and angular spread). Cluster-based channel modeling applies
to both models, and has been lately given more attention,
especially in mmWave indoor scenarios [17], [18], [19]. Our
paper fills the gap and studies the influence of clustering to
the channel model in an outdoor scenario.

Path loss (PL) is the signal attenuation due to a decreased
antenna reception when the distance between Tx and Rx in-
creases; it is associated with a path loss exponent n that shows
how fast path loss increases in various environments. The
large-scale propagation model also accounts for shadowing
loss, which is caused by the absorption of the radiated signal
by obstacles and scattering structures. The shadowing factor
χσ in (1) is typically modeled by a random variable with log-
normal distribution with zero mean and standard deviation σ:

PL(d)[dB] = PLFS(d0) + 10nlog10
d

d0
+ χσ (1)
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where PL(d0) is the free-space loss at reference distance
d0 given by: PLFS(d0)[dB] = 20log10

4πd0
λ . In a previous

paper [20], we developed the large-scale channel model for
the same urban outdoor scenario. Hundreds of random Rx
points were generated at each receiver location, every 10
m, on the same street considered for the NLOS scenario, in
order to estimate the path loss exponent (n) and the standard
deviation (σ) of the shadowing factor used in (1). This time,
we considered only one Rx point at each location, but we
captured all MPCs arriving at this receiver (for clustering
purpose). The number of clusters (CLx) estimated with the
k-means clustering algorithm at each of the 14 locations on
the street and the strongest path in each cluster are summarized
in Table I. While this table shows the path loss of the MPC

TABLE I
PATH LOSS FOR STRONGEST MPC [dB]—k-MEANS ALGORITHM.

Rx CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8

1 102.5 96.6 91.2 184.1

2 93.5 183.1 130.6 96.7

3 134.1 97.97

4 100.6 129.2 180.5

5 137.8 102.2 182.8

6 147.5 121.2 105.5 208.1 141.5

7 128.3 210.1 126.6 125.1

8 110.1 126.4 111.5 207.8

9 112.2 147.6 188.5 203.2 186.3 181.6 163.5 110.1

10 117.2 207.9 109.6 133.4

11 190.7 129.6 129.3

12 128.7 134.7 196.1

13 183.1 136.9 123.5 200.8

14 198.7 129.6 182.7 139.3

that represents the centroid of each cluster, we plot in Fig. 6
the average value of the path loss for all clusters at each Rx
location, and we compare it with the curve obtained based
on equation (1) where a path loss exponent of n = 4.71 was
found (in our previous study) for this street when antennas
with half-power beamwidth (HPBW) of 22◦ and 15 dBi gain
were used and no beam alignment was implemented for the
Tx and Rx antennas. Fig. 6 proves that for the studied distance
range (70 to 200 m) the average path loss based on clustering
(blue diamonds) is well matched by the path loss model
(green triangles) given by equation (1). The conclusion is that
a simplified path loss model based on clustering eliminates
the lengthy process required to describe fully equation (1).
In the same time, the plot in Fig. 7 shows the path loss
of the dominant MPC in all clusters at each Rx point, and
how these defining MPCs compare with the average path loss
values (i.e., the red dots) taken over the MPCs recorded at
each location. The distribution of the cluster centroids shows
that these dominant paths can be used to send multiple data
streams between the Tx and Rx. Thus, we can say that
knowing the number of clusters at each receiver determines
the maximum number of independent streams that can be sent

Fig. 6. Average Path Loss using Clustering vs. Path Loss model.

Fig. 7. Clusters Path Loss vs. Average Clustered Path Loss.

in one polarization, and also influences the channel capacity.
Also, these centroids provide a possible localization of the
reflectors in the dual delay–angle space while the distribution
of the MPCs within each cluster describes the dispersion
characteristics of these reflectors.

In the second part of our analysis dedicated to the small-
scale channel model we are interested in two sets of para-
meters, inter- and intra-cluster parameters that describe the
clusters and the rays in each cluster. They matter for a
better understanding of the mmWave channel. For example,
a good angular dispersion characterization helps design a
better control of the beamwidth and directivity of an array
antenna. Also, as already mentioned, clustering of MPCs may
significantly affect channel capacity; hence, RMS delay spread
(RMS DS) is another important factor to us.

We start by analyzing first the RMS delay spread, as this
parameter is tightly connected with the maximum data rate
achievable in the channel. For that reason, we capture the delay
spread reported by the ray-tracer at each of the 14 locations
on the street (last column in Table II); these numbers are in
accordance with outdoor measurement campaigns in an urban
canyon [21]. Using the same formulas (2) implemented by
the ray-tracer, we calculate the RMS DS values of each cluster
based on the partitioning obtained with the k-means algorithm:

σDS =

√∑Lk

i=1(τi − τ̄)2Pi
PR

; τ̄ =

∑Lk

i=1 Piτi
PR

(2)

where Pi and τi are the power and delay of an arriving MPC
while PR and τ̄ are the power of all Lk MPCs in one cluster
and their mean arrival time. We repeat this procedure for the
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Fig. 8. CDF and truncated normal distribution of clustered RMS DS.

k-power-means algorithm, but for lack of space we omit this
table. Nevertheless, the plots of the Cumulative Distribution
Function (CDF) of the clustered RMS delay spread for both
variants of k-means are captured in Fig. 8 and their fitted
distribution parameters are shown in Table III.

The task is to calculate the new values of the RMS DS
based on the clustering solution, to check if they are a good
representation of the values provided by the ray-tracer tool,
or if the channel model can be simplified. Each RMS DS
value in the CLx cells in Table II is the result of the MPCs
grouped in one cluster for that specific partition. We weight
these CLx values with the number of MPCs in each cluster,
and the resulted RMS DS values for all 14 receivers are plotted
on the same graph (Fig. 9) with the ones given by the ray-
tracer (last column in Table II).

TABLE II
CLUSTER-BASED RMS DELAY SPREAD [NS]—k-MEANS ALGORITHM.

Rx CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 RT

1 0.862 0.449 0.755 1.000 29.45

2 12.44 219.5 81.98 18.17 32.61

3 115.7 48.67 48.73

4 61 79.94 115.9 61.06

5 151.8 69.55 154.6 69.63

6 120 187.9 10.93 80.58 48.28 86.76

7 24.44 25 42 46.29 55.73

8 3.025 29.12 56.31 90.8 59.42

9 46.67 102 70.54 5.89 3 4.17 13.5 0.22 52.09

10 108 60.83 2.15 0.968 59.78

11 91.19 18.54 46.81 49.73

12 38.92 154 187 65.85

13 52.93 193 121 242 124.1

14 14.41 43.7 37.1 184 87.69

For the k-power-means algorithm, we use a similar pro-
cedure, only that we have only 2 clusters for each receiver
(except Rx#1 that has 3), and the weighting function is with
the power of the strongest MPC that defines each cluster. These
RMS DS values are also plotted in Fig. 9.

As mentioned, one goal is to extract a possible approxima-
tion of the channel model when only few MPCs are taken into
consideration. When k-power-means is used, almost always,
we have only two clusters for all receivers on that street. The
power levels of the defining MPCs for the two clusters are
in close range. When the k-means version of the algorithm
is used, the solution has many more clusters. The difference
between the received power levels of the strongest dominant

Fig. 9. CDFs of the RMS DS for ray-tracer values and cluster-based values.

Fig. 10. CDF and normal distribution of the clustered RMS AoA spread.

MPC that defines one cluster and the weakest dominant MPC
that defines another cluster is between 61 and 102 dB. Never-
theless, when we consider only the clusters grouped around
the two strongest dominant MPCs, the power values of these
MPCs are again in close range. That tells us that if nothing
else matters, except for the strongest MPCs, we could have a
good approximation of the channel model by considering only
a limited number of clusters and their associated MPCs.

As a first step, we retain the model captured in Table II
with the number of clusters for each receiver resulted from
clustering with k-means, and the model with only 2 clusters
per receiver for the k-power-means variant. Based on Fig. 9,
the RMS DS for both clustering solutions provides a good
approximation for the RMS delay spread on that street. The
k-power-means RMS DS (magenta) plot is more optimistic
(i.e., smaller RMS DS) because power is the major weight
factor. MPCs with close Rx power levels are many times also
close in time; hence a tighter grouping around the dominant
ray in each cluster. The k-means RMS DS (brown) plot is a
fifty-fifty split around the RMS DS (blue) plot that represents
the ray-tracer values because only the 5-dimensional space
(ToA, and azimuth and elevation for AoA, AoD) is used for
clustering. Another reason for the skew between plots is the
very limited number of simulations we considered at each of
the 14 receivers. Despite that, the conclusion is that a wireless
network architect can use (in the first stage) the fitted truncated
normal distributions of the clustered RMS DS (Fig. 8) to
get a good estimate of the delay spread and maximum data
rate in the channel without using a ray-tracer or measuring
channel parameters with expensive, dedicated hardware. A
similar approximation is possible for the RMS angular spread
(AS) for the azimuth of the AoA (Fig. 10).

In addition to RMS DS and RMS AS, in Table III, we also
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summarize other inter-cluster parameters part of our analysis.
We check the cluster power decay rate Γ defined as the decay
rate of the strongest path within each cluster, and the cluster
inter-arrival time defined as the relative delay between two
adjacent clusters. The delay of a cluster is taken as the delay of
the strongest MPC in the cluster. The inverse of the mean inter-
cluster arrival time is the inter-cluster arrival rate Λ. Similar
to [4], we prove that the cluster peak power variation could be
modeled with a normal distribution in the dB-domain while
the cluster inter-arrival time is described by a Poisson process,
modeled by an exponential distribution. Besides inter-cluster
parameters, there are intra-cluster parameters that we only
mention here. They can be described in the time domain by
the average number of rays, ray arrival rate, and ray power
decay time, and in the angular domain by cluster azimuth
and elevation spread.

TABLE III
INTER-CLUSTER PARAMETERS AND THEIR DISTRIBUTION PARAMETERS

Cluster Parameter/Alg k-means k-power-means

No of clusters (µ/σ) 3.9286 / 1.3848 -

Power decay (µ/σ) (-145.06) / 37.184 (-114.13) / 13.677

Arrival rate 1/Λ [ns] 822 610

RMS DS (µ/σ) 7.22E(-8) / 6.69E(-8) 5.08E(-8) / 6.44E(-8)

RMS AS (µ/σ) 0.18503 / 0.16093 0.12817 / 0.1058

IV. CONCLUSIONS

The paper is concerned with providing accurate channel
models for mmWave urban outdoor transmissions at 28 GHz
based on clustering the channel parameters estimated with a
professional ray-tracer. To cluster data, we compare k-means
and k-power-means clustering. Their results are validated
using cluster validity indices and score fusion techniques. We
tackle both large-scale and small-scale aspects of radio channel
models, namely, path loss, RMS delay spread and RMS angle
spread. Other inter-cluster parameters like cluster power decay
and cluster arrival rate are also investigated. The conclusion
is that even for a small set of estimations obtained with the
ray-tracer, we still have a good approximation of the channel
propagation model for the chosen outdoor scenario. All our
observations about the number of clusters, their dominant
MPCs and RMS delay spread values emphasize that the
clustering nature of the multipath channel has a vital role in
the link capacity of the mmWave communication system.
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